Ultra-large memory window for non-volatile memory based on ReS2/hBN/Multilayer Graphene heterojunction
With the rapid advancement of technology and the exponential growth of big data, the demand for high-performance memory devices intensifies. Non-volatile memories based on van der Waals materials garner significant attention due to their superior data retention and long-term storage capabilities. Ho...
Saved in:
Published in | FlatChem Vol. 52; p. 100886 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the rapid advancement of technology and the exponential growth of big data, the demand for high-performance memory devices intensifies. Non-volatile memories based on van der Waals materials garner significant attention due to their superior data retention and long-term storage capabilities. However, current floating-gate (FG) memories typically exhibit a memory window of less than 60 %, which limits data storage stability and device lifespan. Therefore, developing non-volatile FG memories with larger memory windows is crucial for modern digital technologies. In this work, we fabricate a non-volatile FG memory device based on a rhenium disulfide (ReS2)/hexagonal boron nitride (hBN)/multilayer graphene (MLG) heterostructure, ReS2 serves as the channel material, hBN acts as the tunneling dielectric, and multilayer graphene functions as the floating gate. Due to the high carrier mobility of ReS2 and the excellent charge storage and release capabilities of graphene, the device demonstrates a high on/off ratio (106) and outstanding long-term data retention (>1000 s). It also exhibits low programming current and the potential for multi-level storage applications. Most notably, the device achieves a significant memory window of 85.5 %, enabling enhanced charge storage capacity and improved stability. This performance is attributed to the effective charge injection and retention enabled by Fowler–Nordheim tunneling through the hBN tunneling barrier These exceptional properties support the realization of efficient and stable data storage, which paves the way for developing next-generation memory technologies.
[Display omitted]
•A ReS2/hBN/graphene FG memory shows an ultra-large memory window of 85.5 %.•The device exhibits excellent retention (>1000 s) and on/off ratio exceeding 106.•Low programming current and multilevel data storage are achieved via pulse gating.•Rectifying behavior is observed, indicating multifunctional device potential.•The work offers a promising approach for next-generation 2D non-volatile memories. |
---|---|
AbstractList | With the rapid advancement of technology and the exponential growth of big data, the demand for high-performance memory devices intensifies. Non-volatile memories based on van der Waals materials garner significant attention due to their superior data retention and long-term storage capabilities. However, current floating-gate (FG) memories typically exhibit a memory window of less than 60 %, which limits data storage stability and device lifespan. Therefore, developing non-volatile FG memories with larger memory windows is crucial for modern digital technologies. In this work, we fabricate a non-volatile FG memory device based on a rhenium disulfide (ReS2)/hexagonal boron nitride (hBN)/multilayer graphene (MLG) heterostructure, ReS2 serves as the channel material, hBN acts as the tunneling dielectric, and multilayer graphene functions as the floating gate. Due to the high carrier mobility of ReS2 and the excellent charge storage and release capabilities of graphene, the device demonstrates a high on/off ratio (106) and outstanding long-term data retention (>1000 s). It also exhibits low programming current and the potential for multi-level storage applications. Most notably, the device achieves a significant memory window of 85.5 %, enabling enhanced charge storage capacity and improved stability. This performance is attributed to the effective charge injection and retention enabled by Fowler–Nordheim tunneling through the hBN tunneling barrier These exceptional properties support the realization of efficient and stable data storage, which paves the way for developing next-generation memory technologies.
[Display omitted]
•A ReS2/hBN/graphene FG memory shows an ultra-large memory window of 85.5 %.•The device exhibits excellent retention (>1000 s) and on/off ratio exceeding 106.•Low programming current and multilevel data storage are achieved via pulse gating.•Rectifying behavior is observed, indicating multifunctional device potential.•The work offers a promising approach for next-generation 2D non-volatile memories. |
ArticleNumber | 100886 |
Author | Wei, Hang Xue, Mei Wei, Zheng Li, Yong Jun Wang, Wenxiang Chen, Xiaoqing Li, Xiaohuan Sun, Lianfeng He, Jinjin Mao, Han Xu, Yushi Liu, Zheng You, Jiawang |
Author_xml | – sequence: 1 givenname: Jiawang surname: You fullname: You, Jiawang organization: College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China – sequence: 2 givenname: Wenxiang surname: Wang fullname: Wang, Wenxiang organization: Department of Mechanics and Engineering Science, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China – sequence: 3 givenname: Xiaohuan surname: Li fullname: Li, Xiaohuan organization: College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China – sequence: 4 givenname: Yushi surname: Xu fullname: Xu, Yushi organization: College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China – sequence: 5 givenname: Jinjin surname: He fullname: He, Jinjin organization: College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China – sequence: 6 givenname: Han surname: Mao fullname: Mao, Han organization: College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China – sequence: 7 givenname: Zheng surname: Wei fullname: Wei, Zheng organization: Nanofabrication Laboratory, National Center for Nanoscience and Technology, Beijing 100190, China – sequence: 8 givenname: Lianfeng surname: Sun fullname: Sun, Lianfeng organization: Nanofabrication Laboratory, National Center for Nanoscience and Technology, Beijing 100190, China – sequence: 9 givenname: Xiaoqing surname: Chen fullname: Chen, Xiaoqing organization: Key Laboratory of Optoelectronics Technology of Education, School of Information Science and Technology, Beijing University of Technology, Beijing 100124, China – sequence: 10 givenname: Yong Jun surname: Li fullname: Li, Yong Jun email: liyongjun@bjut.edu.cn organization: Institute of Laser Engineering, School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China – sequence: 11 givenname: Zheng surname: Liu fullname: Liu, Zheng email: z.liu@ntu.edu.sg organization: School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore – sequence: 12 givenname: Hang surname: Wei fullname: Wei, Hang email: weihang@ime.edu.cn organization: College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China – sequence: 13 givenname: Mei surname: Xue fullname: Xue, Mei email: setsubai@sina.cn organization: College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China |
BookMark | eNp9kM1OwzAMgCM0JMbYE3DJC3TLT9OmBw4wwUAaIAE7R2nqsFRdMqXdpr09HUOIEydbtj_b-i7RwAcPCF1TMqGEZtN6YhvdmQkjTPQVImV2hoYsFSxhGcsHf_ILNG7bmhDCiiylnAyRXTZd1Emj4yfgNaxDPOC981XYYxsi7k8lu9Cvd81vu9QtVDh4_AbvbLq6e5k-b5t-QB8g4nnUmxV4wCvoIIZ6603ngr9C51Y3LYx_4ggtH-4_Zo_J4nX-NLtdJIYJ0SVZlmstoNAyzSShgoPUXEJRlkJa0JYLS7k0PK9onklb2pzwnikNFFXKDOcjxE97TQxtG8GqTXRrHQ-KEnW0pWr1bUsdbamTrZ66OVHQv7ZzEFVrHHgDlYtgOlUF9y__BWuRdwM |
Cites_doi | 10.1002/adfm.201606129 10.1016/j.mee.2008.08.007 10.1038/s41586-019-1573-9 10.1039/D0NR03965A 10.1021/acsnano.5b04851 10.1002/adfm.202001688 10.1021/acsaelm.2c00409 10.1038/ncomms2652 10.1109/TED.2004.838327 10.1038/ncomms4252 10.1088/2053-1583/1/1/011002 10.1002/aelm.202100564 10.1002/smll.201800319 10.1016/j.mee.2007.04.120 10.1002/inf2.12005 10.1038/s41586-021-03339-z 10.1002/pssr.201800658 10.1038/s41565-021-00921-4 10.1016/j.chip.2023.100059 10.1103/PhysRevLett.97.187401 10.1109/JPROC.2003.811702 10.1038/s41586-018-0008-3 10.1126/science.1102896 10.1021/acs.nanolett.7b03140 10.1038/nnano.2012.193 10.1016/j.nanoen.2020.105692 10.1038/s41427-021-00307-x 10.1039/C9NH00743A 10.1038/s41467-018-05397-w 10.3390/s22103944 10.1021/acsnano.8b04885 |
ContentType | Journal Article |
Copyright | 2025 |
Copyright_xml | – notice: 2025 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.flatc.2025.100886 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2452-2627 |
ExternalDocumentID | 10_1016_j_flatc_2025_100886 S2452262725000807 |
GroupedDBID | --M 0R~ 4G. 7-5 AABXZ AAEDT AAEDW AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABJNI ABMAC ACDAQ ACGFS ACRLP ACVFH ADBBV ADCNI AEBSH AEIPS AEUPX AEZYN AFJKZ AFPUW AFRZQ AFTJW AFZHZ AGCQF AGUBO AIEXJ AIGII AIIUN AIKHN AITUG AJSZI AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLXMC EBS EFJIC EFKBS EJD FDB FIRID FYGXN KOM M41 O9- OAUVE ROL SPC SPCBC SSK SSM SSZ T5K ~G- AAYXX AFXIZ AGRNS BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c255t-667aa5e9a84680153e8a38e9bb58feaf35f138c37d1768fbf703667bce9d42c33 |
IEDL.DBID | AIKHN |
ISSN | 2452-2627 |
IngestDate | Thu Jul 24 02:20:01 EDT 2025 Sat Aug 16 17:01:46 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Van der Waals heterostructure Non-volatile memory Floating-gate memory |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c255t-667aa5e9a84680153e8a38e9bb58feaf35f138c37d1768fbf703667bce9d42c33 |
ParticipantIDs | crossref_primary_10_1016_j_flatc_2025_100886 elsevier_sciencedirect_doi_10_1016_j_flatc_2025_100886 |
PublicationCentury | 2000 |
PublicationDate | July 2025 2025-07-00 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: July 2025 |
PublicationDecade | 2020 |
PublicationTitle | FlatChem |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Liao, Zhao, Li, Wang, Ge, Wang, Wang, Zhang (bb0040) 2020; 5 Castellanos-Gomez, Buscema, Molenaar, Singh, Janssen, van der Zant, Steele (bb0160) 2014; 1 Lin, Komsa, Yeh, Bjorkman, Liang, Ho, Huang, Chiu, Suenaga (bb0070) 2015; 9 Lu, Hsieh, Liu (bb0015) 2009; 86 Hong, Park, Lee, Lee, Yun, Yoo, Kim (bb0145) 2021; 13 Novoselov, Morozov, Jiang, Zhang, Dubonos, Grigorieva, Firsov (bb0155) 2004; 306 Wang, Kalantar-Zadeh, Kis, Coleman, Strano (bb0030) 2012; 7 Rahman, Davey, Qiao (bb0055) 2017; 27 Bez, Camerlenghi, Modelli, Visconti (bb0010) 2003; 91 Zhou, Lin, Huang, Zhou, Chen, Xia, Wang, Xie, Yu, Lei, Wu, Liu, Fu, Zeng, Hsu, Yang, Lu, Yu, Shen, Lin, Yakobson, Liu, Suenaga, Liu, Liu (bb0035) 2018; 556 Yoon, Kim, Kim, Lee, Kim (bb0165) 2022; 22 Liu, Duan, Shin, Park, Huang, Duan (bb0045) 2021; 591 Ferrari, Meyer, Scardaci, Casiraghi, Lazzeri, Mauri, Piscanec, Jiang, Novoselov, Roth, Geim (bb0105) 2006; 97 Tongay, Sahin, Ko, Luce, Fan, Liu, Zhou, Huang, Ho, Yan, Ogletree, Aloni, Ji, Li, Li, Peeters, Wu (bb0065) 2014; 5 Akinwande, Huyghebaert, Wang, Serna, Goossens, Li, Wong, Koppens (bb0095) 2019; 573 Hou, Zhang, Liu, Ding, Bao, Zhang, Zhou (bb0135) 2018; 14 Mukherjee, Zulkefli, Watanabe, Taniguchi, Wakayama, Nakaharai (bb0080) 2020; 30 Chan, Man, He, Yuen, Lee, Chan (bb0025) 2004; 51 Wang, Jin, Wang, Wei, Xu, Peng, Liu, Wang, You, Impundu, Zheng, Li, Sun (bb0150) 2023; 19 Zhang, Tan, Zhang, Gao, Hu, Wang, Duan, Yang, Hu (bb0090) 2021; 33 Zhou, Ning, Shen, Guo, Zhang, Dong, Lu, Feng, Hao (bb0120) 2021; 7 Li, Han, Pi, Niu, Han, Wang, Su, Li, Xiong, Bando, Zhai (bb0075) 2019; 1 Wu, Xie, Wang, Zhang, Hu, Liu (bb0085) 2020; 12 Xiang, Liu, Xu, Tan, Hu, Lei, Zheng, Wu, Neto, Liu, Chen (bb0050) 2018; 9 Zhang, Zhang, Li, Xu, Yang, Sun (bb0005) 2023; 2 Jin, Zhu, Wang, Wang, Peng, Peng, Liu, Wei, Chu, Fan, Li, Sun (bb0100) 2022; 4 Zhao, Wei, Yang, Zhang, Wang (bb0140) 2021; 82 Xiong, Chen, Zhang, Zhou (bb0060) 2019; 13 Kim, Lee (bb0020) 2007; 84 Wang, Liu, Gao, Cao, Long, Pan, Zhang, Zeng, Wang, Hu, Liang, Miao (bb0115) 2018; 12 Li, Chen, Zong, Zhang (bb0125) 2017; 17 Choi, Lee, Yu, Lee, Lee, Kim, Hone, Yoo (bb0130) 2013; 4 Liu, Liu, Jiang, Li, Ding, Wang, Jiang, Sun, Wang, Chen, Zhang, Zhou (bb0110) 2021; 16 Wang (10.1016/j.flatc.2025.100886_bb0150) 2023; 19 Zhang (10.1016/j.flatc.2025.100886_bb0090) 2021; 33 Lin (10.1016/j.flatc.2025.100886_bb0070) 2015; 9 Liu (10.1016/j.flatc.2025.100886_bb0045) 2021; 591 Rahman (10.1016/j.flatc.2025.100886_bb0055) 2017; 27 Zhou (10.1016/j.flatc.2025.100886_bb0120) 2021; 7 Li (10.1016/j.flatc.2025.100886_bb0075) 2019; 1 Castellanos-Gomez (10.1016/j.flatc.2025.100886_bb0160) 2014; 1 Xiong (10.1016/j.flatc.2025.100886_bb0060) 2019; 13 Akinwande (10.1016/j.flatc.2025.100886_bb0095) 2019; 573 Ferrari (10.1016/j.flatc.2025.100886_bb0105) 2006; 97 Choi (10.1016/j.flatc.2025.100886_bb0130) 2013; 4 Kim (10.1016/j.flatc.2025.100886_bb0020) 2007; 84 Wu (10.1016/j.flatc.2025.100886_bb0085) 2020; 12 Zhou (10.1016/j.flatc.2025.100886_bb0035) 2018; 556 Wang (10.1016/j.flatc.2025.100886_bb0115) 2018; 12 Li (10.1016/j.flatc.2025.100886_bb0125) 2017; 17 Jin (10.1016/j.flatc.2025.100886_bb0100) 2022; 4 Hou (10.1016/j.flatc.2025.100886_bb0135) 2018; 14 Hong (10.1016/j.flatc.2025.100886_bb0145) 2021; 13 Liu (10.1016/j.flatc.2025.100886_bb0110) 2021; 16 Bez (10.1016/j.flatc.2025.100886_bb0010) 2003; 91 Zhao (10.1016/j.flatc.2025.100886_bb0140) 2021; 82 Tongay (10.1016/j.flatc.2025.100886_bb0065) 2014; 5 Lu (10.1016/j.flatc.2025.100886_bb0015) 2009; 86 Chan (10.1016/j.flatc.2025.100886_bb0025) 2004; 51 Mukherjee (10.1016/j.flatc.2025.100886_bb0080) 2020; 30 Yoon (10.1016/j.flatc.2025.100886_bb0165) 2022; 22 Xiang (10.1016/j.flatc.2025.100886_bb0050) 2018; 9 Zhang (10.1016/j.flatc.2025.100886_bb0005) 2023; 2 Novoselov (10.1016/j.flatc.2025.100886_bb0155) 2004; 306 Wang (10.1016/j.flatc.2025.100886_bb0030) 2012; 7 Liao (10.1016/j.flatc.2025.100886_bb0040) 2020; 5 |
References_xml | – volume: 2 year: 2023 ident: bb0005 article-title: Van der Waals materials-based floating gate memory for neuromorphic computing publication-title: Chip – volume: 12 start-page: 9513 year: 2018 end-page: 9520 ident: bb0115 article-title: Negative Photoconductance in van der Waals Heterostructure-based floating gate phototransistor publication-title: ACS Nano – volume: 16 start-page: 874 year: 2021 end-page: 881 ident: bb0110 article-title: Ultrafast non-volatile flash memory based on van der Waals heterostructures publication-title: Nat. Nanotechnol. – volume: 91 start-page: 489 year: 2003 end-page: 502 ident: bb0010 article-title: Introduction to flash memory publication-title: Proc. IEEE – volume: 17 start-page: 6353 year: 2017 end-page: 6359 ident: bb0125 article-title: Floating-gate manipulated graphene-black phosphorus heterojunction for nonvolatile Ambipolar Schottky junction memories, memory inverter circuits, and logic rectifiers publication-title: Nano Lett. – volume: 86 start-page: 283 year: 2009 end-page: 286 ident: bb0015 article-title: Future challenges of flash memory technologies publication-title: Microelectron. Eng. – volume: 14 year: 2018 ident: bb0135 article-title: Charge-trap memory based on hybrid 0D quantum dot-2D WSe publication-title: Small – volume: 51 start-page: 2054 year: 2004 end-page: 2060 ident: bb0025 article-title: SOI flash memory scaling limit and design consideration based on 2-D analytical modeling publication-title: IEEE Trans. Electron Devices – volume: 7 start-page: 699 year: 2012 end-page: 712 ident: bb0030 article-title: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides publication-title: Nat. Nanotechnol. – volume: 591 start-page: 43 year: 2021 end-page: 53 ident: bb0045 article-title: Promises and prospects of two-dimensional transistors publication-title: Nature – volume: 573 start-page: 507 year: 2019 end-page: 518 ident: bb0095 article-title: Graphene and two-dimensional materials for silicon technology publication-title: Nature – volume: 5 start-page: 787 year: 2020 end-page: 807 ident: bb0040 article-title: Interface engineering of two-dimensional transition metal dichalcogenides towards next-generation electronic devices: recent advances and challenges publication-title: Nanoscale Horiz. – volume: 7 year: 2021 ident: bb0120 article-title: An ULTRAFAST quasi-non-volatile semi-floating gate memory with low-power optoelectronic memory application publication-title: Adv. Electron. Mater. – volume: 22 year: 2022 ident: bb0165 article-title: Surface properties of CVD-grown graphene transferred by wet and dry transfer processes publication-title: Sensors (Basel) – volume: 30 year: 2020 ident: bb0080 article-title: Laser-assisted multilevel non-volatile memory device based on 2D van-der-Waals few-layer-ReS publication-title: Adv. Funct. Mater. – volume: 9 start-page: 11249 year: 2015 end-page: 11257 ident: bb0070 article-title: Single layer ReS publication-title: ACS Nano – volume: 33 year: 2021 ident: bb0090 article-title: Atomically thin hexagonal boron nitride and its Heterostructures publication-title: Adv. Mater. – volume: 306 start-page: 666 year: 2004 end-page: 669 ident: bb0155 article-title: Electric field effect in atomically thin carbon films publication-title: Science – volume: 556 start-page: 355 year: 2018 end-page: 359 ident: bb0035 article-title: A library of atomically thin metal chalcogenides publication-title: Nature – volume: 19 year: 2023 ident: bb0150 article-title: High-speed optoelectronic nonvolatile memory based on van der Waals Heterostructures publication-title: Small – volume: 27 year: 2017 ident: bb0055 article-title: Advent of 2D rhenium disulfide (ReS publication-title: Adv. Funct. Mater. – volume: 13 year: 2019 ident: bb0060 article-title: Electronic and optoelectronic applications based on ReS publication-title: Phys. Status Solidi (RRL) – volume: 1 start-page: 54 year: 2019 end-page: 73 ident: bb0075 article-title: Emerging in-plane anisotropic two-dimensional materials publication-title: InfoMat – volume: 82 year: 2021 ident: bb0140 article-title: Mechanoplastic tribotronic two-dimensional multibit nonvolatile optoelectronic memory publication-title: Nano Energy – volume: 12 start-page: 18800 year: 2020 end-page: 18806 ident: bb0085 article-title: Multi-level flash memory device based on stacked anisotropic ReS publication-title: Nanoscale – volume: 1 year: 2014 ident: bb0160 article-title: Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping publication-title: 2D Materials – volume: 84 start-page: 1976 year: 2007 end-page: 1981 ident: bb0020 article-title: Memory technology in the future publication-title: Microelectron. Eng. – volume: 9 start-page: 2966 year: 2018 ident: bb0050 article-title: Two-dimensional multibit optoelectronic memory with broadband spectrum distinction publication-title: Nat. Commun. – volume: 5 start-page: 3252 year: 2014 ident: bb0065 article-title: Monolayer behaviour in bulk ReS publication-title: Nat. Commun. – volume: 13 year: 2021 ident: bb0145 article-title: Multifunctional molybdenum disulfide flash memory using a PEDOT:PSS floating gate publication-title: NPG Asia Mater. – volume: 4 start-page: 2964 year: 2022 end-page: 2969 ident: bb0100 article-title: Optoelectronic nonvolatile memories using graphene/hexagonal boron nitride/rhenium disulfide Heterostructure publication-title: ACS Appl. Electron. Mater. – volume: 97 year: 2006 ident: bb0105 article-title: Raman spectrum of graphene and graphene layers publication-title: Phys. Rev. Lett. – volume: 4 start-page: 1624 year: 2013 ident: bb0130 article-title: Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices publication-title: Nat. Commun. – volume: 27 year: 2017 ident: 10.1016/j.flatc.2025.100886_bb0055 article-title: Advent of 2D rhenium disulfide (ReS2): fundamentals to applications publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201606129 – volume: 86 start-page: 283 year: 2009 ident: 10.1016/j.flatc.2025.100886_bb0015 article-title: Future challenges of flash memory technologies publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2008.08.007 – volume: 573 start-page: 507 year: 2019 ident: 10.1016/j.flatc.2025.100886_bb0095 article-title: Graphene and two-dimensional materials for silicon technology publication-title: Nature doi: 10.1038/s41586-019-1573-9 – volume: 12 start-page: 18800 year: 2020 ident: 10.1016/j.flatc.2025.100886_bb0085 article-title: Multi-level flash memory device based on stacked anisotropic ReS2-boron nitride-graphene heterostructures publication-title: Nanoscale doi: 10.1039/D0NR03965A – volume: 9 start-page: 11249 year: 2015 ident: 10.1016/j.flatc.2025.100886_bb0070 article-title: Single layer ReS2:Two-dimensional semiconductor with tunable in plane anisotropy publication-title: ACS Nano doi: 10.1021/acsnano.5b04851 – volume: 30 year: 2020 ident: 10.1016/j.flatc.2025.100886_bb0080 article-title: Laser-assisted multilevel non-volatile memory device based on 2D van-der-Waals few-layer-ReS2/h-BN/graphene Heterostructures publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202001688 – volume: 4 start-page: 2964 year: 2022 ident: 10.1016/j.flatc.2025.100886_bb0100 article-title: Optoelectronic nonvolatile memories using graphene/hexagonal boron nitride/rhenium disulfide Heterostructure publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.2c00409 – volume: 4 start-page: 1624 year: 2013 ident: 10.1016/j.flatc.2025.100886_bb0130 article-title: Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices publication-title: Nat. Commun. doi: 10.1038/ncomms2652 – volume: 51 start-page: 2054 year: 2004 ident: 10.1016/j.flatc.2025.100886_bb0025 article-title: SOI flash memory scaling limit and design consideration based on 2-D analytical modeling publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2004.838327 – volume: 5 start-page: 3252 year: 2014 ident: 10.1016/j.flatc.2025.100886_bb0065 article-title: Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling publication-title: Nat. Commun. doi: 10.1038/ncomms4252 – volume: 1 year: 2014 ident: 10.1016/j.flatc.2025.100886_bb0160 article-title: Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping publication-title: 2D Materials doi: 10.1088/2053-1583/1/1/011002 – volume: 7 year: 2021 ident: 10.1016/j.flatc.2025.100886_bb0120 article-title: An ULTRAFAST quasi-non-volatile semi-floating gate memory with low-power optoelectronic memory application publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.202100564 – volume: 14 year: 2018 ident: 10.1016/j.flatc.2025.100886_bb0135 article-title: Charge-trap memory based on hybrid 0D quantum dot-2D WSe2 structure publication-title: Small doi: 10.1002/smll.201800319 – volume: 84 start-page: 1976 year: 2007 ident: 10.1016/j.flatc.2025.100886_bb0020 article-title: Memory technology in the future publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2007.04.120 – volume: 1 start-page: 54 year: 2019 ident: 10.1016/j.flatc.2025.100886_bb0075 article-title: Emerging in-plane anisotropic two-dimensional materials publication-title: InfoMat doi: 10.1002/inf2.12005 – volume: 19 year: 2023 ident: 10.1016/j.flatc.2025.100886_bb0150 article-title: High-speed optoelectronic nonvolatile memory based on van der Waals Heterostructures publication-title: Small – volume: 591 start-page: 43 year: 2021 ident: 10.1016/j.flatc.2025.100886_bb0045 article-title: Promises and prospects of two-dimensional transistors publication-title: Nature doi: 10.1038/s41586-021-03339-z – volume: 13 year: 2019 ident: 10.1016/j.flatc.2025.100886_bb0060 article-title: Electronic and optoelectronic applications based on ReS2 publication-title: Phys. Status Solidi (RRL) doi: 10.1002/pssr.201800658 – volume: 16 start-page: 874 year: 2021 ident: 10.1016/j.flatc.2025.100886_bb0110 article-title: Ultrafast non-volatile flash memory based on van der Waals heterostructures publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-00921-4 – volume: 33 year: 2021 ident: 10.1016/j.flatc.2025.100886_bb0090 article-title: Atomically thin hexagonal boron nitride and its Heterostructures publication-title: Adv. Mater. – volume: 2 year: 2023 ident: 10.1016/j.flatc.2025.100886_bb0005 article-title: Van der Waals materials-based floating gate memory for neuromorphic computing publication-title: Chip doi: 10.1016/j.chip.2023.100059 – volume: 97 year: 2006 ident: 10.1016/j.flatc.2025.100886_bb0105 article-title: Raman spectrum of graphene and graphene layers publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.187401 – volume: 91 start-page: 489 year: 2003 ident: 10.1016/j.flatc.2025.100886_bb0010 article-title: Introduction to flash memory publication-title: Proc. IEEE doi: 10.1109/JPROC.2003.811702 – volume: 556 start-page: 355 year: 2018 ident: 10.1016/j.flatc.2025.100886_bb0035 article-title: A library of atomically thin metal chalcogenides publication-title: Nature doi: 10.1038/s41586-018-0008-3 – volume: 306 start-page: 666 year: 2004 ident: 10.1016/j.flatc.2025.100886_bb0155 article-title: Electric field effect in atomically thin carbon films publication-title: Science doi: 10.1126/science.1102896 – volume: 17 start-page: 6353 year: 2017 ident: 10.1016/j.flatc.2025.100886_bb0125 article-title: Floating-gate manipulated graphene-black phosphorus heterojunction for nonvolatile Ambipolar Schottky junction memories, memory inverter circuits, and logic rectifiers publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b03140 – volume: 7 start-page: 699 year: 2012 ident: 10.1016/j.flatc.2025.100886_bb0030 article-title: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.193 – volume: 82 year: 2021 ident: 10.1016/j.flatc.2025.100886_bb0140 article-title: Mechanoplastic tribotronic two-dimensional multibit nonvolatile optoelectronic memory publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105692 – volume: 13 year: 2021 ident: 10.1016/j.flatc.2025.100886_bb0145 article-title: Multifunctional molybdenum disulfide flash memory using a PEDOT:PSS floating gate publication-title: NPG Asia Mater. doi: 10.1038/s41427-021-00307-x – volume: 5 start-page: 787 year: 2020 ident: 10.1016/j.flatc.2025.100886_bb0040 article-title: Interface engineering of two-dimensional transition metal dichalcogenides towards next-generation electronic devices: recent advances and challenges publication-title: Nanoscale Horiz. doi: 10.1039/C9NH00743A – volume: 9 start-page: 2966 year: 2018 ident: 10.1016/j.flatc.2025.100886_bb0050 article-title: Two-dimensional multibit optoelectronic memory with broadband spectrum distinction publication-title: Nat. Commun. doi: 10.1038/s41467-018-05397-w – volume: 22 year: 2022 ident: 10.1016/j.flatc.2025.100886_bb0165 article-title: Surface properties of CVD-grown graphene transferred by wet and dry transfer processes publication-title: Sensors (Basel) doi: 10.3390/s22103944 – volume: 12 start-page: 9513 year: 2018 ident: 10.1016/j.flatc.2025.100886_bb0115 article-title: Negative Photoconductance in van der Waals Heterostructure-based floating gate phototransistor publication-title: ACS Nano doi: 10.1021/acsnano.8b04885 |
SSID | ssj0002964130 |
Score | 2.2962193 |
Snippet | With the rapid advancement of technology and the exponential growth of big data, the demand for high-performance memory devices intensifies. Non-volatile... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 100886 |
SubjectTerms | Floating-gate memory Non-volatile memory Van der Waals heterostructure |
Title | Ultra-large memory window for non-volatile memory based on ReS2/hBN/Multilayer Graphene heterojunction |
URI | https://dx.doi.org/10.1016/j.flatc.2025.100886 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF1qe_Eiior1iz14dEmazSabYy3WarGH1mJvYTfdpZXYllIp_ntnNklREA-eQhIGlrdh5k32zQwhN8BBNc4-YQEXnIUmTJgKhWE2EkmogDNrN7TveRD1xuHTRExqpFPVwqCssvT9hU933rp84pVoeqv53BvhmWEQBXEgHO-J90gjgOjq10mj_djvDXa_WvBkseWmjqAJQ5uq_5BTetlcuW6GgUDNgMSy6t9i1Le40z0kByVhpO1iTUekZhbHxI7zzVqxHGXc9B3Fsp90C9n1ckuBhFJI6Rm4HQA9373GcDWlywUdmlHgze4Gnqu9zRVwbvqAbavB69EZqmOWbxDscMNOyLh7_9LpsXJiAssgNdiwKIqVEiZRwCog9AhupOLSJFoLaY2yXNgWlxmPpy1IM6y22H4rinVmkmkYZJyfkjos0ZwRmhlfKiniRPsqTJTQQimrjUp8m8lM-k1yW2GUrorGGGmlGHtLHaQpQpoWkDZJVOGY_tjfFFz3X4bn_zW8IPt4V0hrL0l9s_4wV0AgNvq6_EDw2h--9r8ApBHF6g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4QDnoxGjXiswePNgvb7W73iEQEeRwEEm6bdmkDZAVCMMR_78w-iCbGg9dtJmm-NjPfbL-ZIeQBOKjG2SfM5YIzz3ghU54wzPoi9BRwZp0O7esP_PbYe52ISYk0i1oYlFXmvj_z6am3zr84OZrOej53hvhm6Ppu4IqU9wQHpILdqeCaVxqdbnuw_9WCL4v1dOoImjC0KfoPpUovm6i0m6ErUDMgsaz6txj1Le60TshxThhpI9vTKSmZ5Rmx42S7USxBGTd9R7HsJ91Bdr3aUSChFFJ6Bm4HQE_2yxiupnS1pG9m6Dqzp4GT1t4mCjg3fcG21eD16AzVMasFBDs8sHMybj2Pmm2WT0xgMaQGW-b7gVLChApYBYQewY1UXJpQayGtUZYLW-cy5sG0DmmG1Rbbb_mBjk049dyY8wtShi2aS0JjU5NKiiDUNeWFSmihlNVGhTUby1jWquSxwChaZ40xokIxtohSSCOENMogrRK_wDH6cb4RuO6_DK_-a3hPDtujfi_qdQbda3KEK5nM9oaUt5sPcwtkYqvv8svyBdrMxzY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra-large+memory+window+for+non-volatile+memory+based+on+ReS2%2FhBN%2FMultilayer+Graphene+heterojunction&rft.jtitle=FlatChem&rft.au=You%2C+Jiawang&rft.au=Wang%2C+Wenxiang&rft.au=Li%2C+Xiaohuan&rft.au=Xu%2C+Yushi&rft.date=2025-07-01&rft.pub=Elsevier+B.V&rft.issn=2452-2627&rft.eissn=2452-2627&rft.volume=52&rft_id=info:doi/10.1016%2Fj.flatc.2025.100886&rft.externalDocID=S2452262725000807 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-2627&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-2627&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-2627&client=summon |