Ultra-large memory window for non-volatile memory based on ReS2/hBN/Multilayer Graphene heterojunction

With the rapid advancement of technology and the exponential growth of big data, the demand for high-performance memory devices intensifies. Non-volatile memories based on van der Waals materials garner significant attention due to their superior data retention and long-term storage capabilities. Ho...

Full description

Saved in:
Bibliographic Details
Published inFlatChem Vol. 52; p. 100886
Main Authors You, Jiawang, Wang, Wenxiang, Li, Xiaohuan, Xu, Yushi, He, Jinjin, Mao, Han, Wei, Zheng, Sun, Lianfeng, Chen, Xiaoqing, Li, Yong Jun, Liu, Zheng, Wei, Hang, Xue, Mei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the rapid advancement of technology and the exponential growth of big data, the demand for high-performance memory devices intensifies. Non-volatile memories based on van der Waals materials garner significant attention due to their superior data retention and long-term storage capabilities. However, current floating-gate (FG) memories typically exhibit a memory window of less than 60 %, which limits data storage stability and device lifespan. Therefore, developing non-volatile FG memories with larger memory windows is crucial for modern digital technologies. In this work, we fabricate a non-volatile FG memory device based on a rhenium disulfide (ReS2)/hexagonal boron nitride (hBN)/multilayer graphene (MLG) heterostructure, ReS2 serves as the channel material, hBN acts as the tunneling dielectric, and multilayer graphene functions as the floating gate. Due to the high carrier mobility of ReS2 and the excellent charge storage and release capabilities of graphene, the device demonstrates a high on/off ratio (106) and outstanding long-term data retention (>1000 s). It also exhibits low programming current and the potential for multi-level storage applications. Most notably, the device achieves a significant memory window of 85.5 %, enabling enhanced charge storage capacity and improved stability. This performance is attributed to the effective charge injection and retention enabled by Fowler–Nordheim tunneling through the hBN tunneling barrier These exceptional properties support the realization of efficient and stable data storage, which paves the way for developing next-generation memory technologies. [Display omitted] •A ReS2/hBN/graphene FG memory shows an ultra-large memory window of 85.5 %.•The device exhibits excellent retention (>1000 s) and on/off ratio exceeding 106.•Low programming current and multilevel data storage are achieved via pulse gating.•Rectifying behavior is observed, indicating multifunctional device potential.•The work offers a promising approach for next-generation 2D non-volatile memories.
AbstractList With the rapid advancement of technology and the exponential growth of big data, the demand for high-performance memory devices intensifies. Non-volatile memories based on van der Waals materials garner significant attention due to their superior data retention and long-term storage capabilities. However, current floating-gate (FG) memories typically exhibit a memory window of less than 60 %, which limits data storage stability and device lifespan. Therefore, developing non-volatile FG memories with larger memory windows is crucial for modern digital technologies. In this work, we fabricate a non-volatile FG memory device based on a rhenium disulfide (ReS2)/hexagonal boron nitride (hBN)/multilayer graphene (MLG) heterostructure, ReS2 serves as the channel material, hBN acts as the tunneling dielectric, and multilayer graphene functions as the floating gate. Due to the high carrier mobility of ReS2 and the excellent charge storage and release capabilities of graphene, the device demonstrates a high on/off ratio (106) and outstanding long-term data retention (>1000 s). It also exhibits low programming current and the potential for multi-level storage applications. Most notably, the device achieves a significant memory window of 85.5 %, enabling enhanced charge storage capacity and improved stability. This performance is attributed to the effective charge injection and retention enabled by Fowler–Nordheim tunneling through the hBN tunneling barrier These exceptional properties support the realization of efficient and stable data storage, which paves the way for developing next-generation memory technologies. [Display omitted] •A ReS2/hBN/graphene FG memory shows an ultra-large memory window of 85.5 %.•The device exhibits excellent retention (>1000 s) and on/off ratio exceeding 106.•Low programming current and multilevel data storage are achieved via pulse gating.•Rectifying behavior is observed, indicating multifunctional device potential.•The work offers a promising approach for next-generation 2D non-volatile memories.
ArticleNumber 100886
Author Wei, Hang
Xue, Mei
Wei, Zheng
Li, Yong Jun
Wang, Wenxiang
Chen, Xiaoqing
Li, Xiaohuan
Sun, Lianfeng
He, Jinjin
Mao, Han
Xu, Yushi
Liu, Zheng
You, Jiawang
Author_xml – sequence: 1
  givenname: Jiawang
  surname: You
  fullname: You, Jiawang
  organization: College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
– sequence: 2
  givenname: Wenxiang
  surname: Wang
  fullname: Wang, Wenxiang
  organization: Department of Mechanics and Engineering Science, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China
– sequence: 3
  givenname: Xiaohuan
  surname: Li
  fullname: Li, Xiaohuan
  organization: College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
– sequence: 4
  givenname: Yushi
  surname: Xu
  fullname: Xu, Yushi
  organization: College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
– sequence: 5
  givenname: Jinjin
  surname: He
  fullname: He, Jinjin
  organization: College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
– sequence: 6
  givenname: Han
  surname: Mao
  fullname: Mao, Han
  organization: College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
– sequence: 7
  givenname: Zheng
  surname: Wei
  fullname: Wei, Zheng
  organization: Nanofabrication Laboratory, National Center for Nanoscience and Technology, Beijing 100190, China
– sequence: 8
  givenname: Lianfeng
  surname: Sun
  fullname: Sun, Lianfeng
  organization: Nanofabrication Laboratory, National Center for Nanoscience and Technology, Beijing 100190, China
– sequence: 9
  givenname: Xiaoqing
  surname: Chen
  fullname: Chen, Xiaoqing
  organization: Key Laboratory of Optoelectronics Technology of Education, School of Information Science and Technology, Beijing University of Technology, Beijing 100124, China
– sequence: 10
  givenname: Yong Jun
  surname: Li
  fullname: Li, Yong Jun
  email: liyongjun@bjut.edu.cn
  organization: Institute of Laser Engineering, School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China
– sequence: 11
  givenname: Zheng
  surname: Liu
  fullname: Liu, Zheng
  email: z.liu@ntu.edu.sg
  organization: School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
– sequence: 12
  givenname: Hang
  surname: Wei
  fullname: Wei, Hang
  email: weihang@ime.edu.cn
  organization: College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
– sequence: 13
  givenname: Mei
  surname: Xue
  fullname: Xue, Mei
  email: setsubai@sina.cn
  organization: College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
BookMark eNp9kM1OwzAMgCM0JMbYE3DJC3TLT9OmBw4wwUAaIAE7R2nqsFRdMqXdpr09HUOIEydbtj_b-i7RwAcPCF1TMqGEZtN6YhvdmQkjTPQVImV2hoYsFSxhGcsHf_ILNG7bmhDCiiylnAyRXTZd1Emj4yfgNaxDPOC981XYYxsi7k8lu9Cvd81vu9QtVDh4_AbvbLq6e5k-b5t-QB8g4nnUmxV4wCvoIIZ6603ngr9C51Y3LYx_4ggtH-4_Zo_J4nX-NLtdJIYJ0SVZlmstoNAyzSShgoPUXEJRlkJa0JYLS7k0PK9onklb2pzwnikNFFXKDOcjxE97TQxtG8GqTXRrHQ-KEnW0pWr1bUsdbamTrZ66OVHQv7ZzEFVrHHgDlYtgOlUF9y__BWuRdwM
Cites_doi 10.1002/adfm.201606129
10.1016/j.mee.2008.08.007
10.1038/s41586-019-1573-9
10.1039/D0NR03965A
10.1021/acsnano.5b04851
10.1002/adfm.202001688
10.1021/acsaelm.2c00409
10.1038/ncomms2652
10.1109/TED.2004.838327
10.1038/ncomms4252
10.1088/2053-1583/1/1/011002
10.1002/aelm.202100564
10.1002/smll.201800319
10.1016/j.mee.2007.04.120
10.1002/inf2.12005
10.1038/s41586-021-03339-z
10.1002/pssr.201800658
10.1038/s41565-021-00921-4
10.1016/j.chip.2023.100059
10.1103/PhysRevLett.97.187401
10.1109/JPROC.2003.811702
10.1038/s41586-018-0008-3
10.1126/science.1102896
10.1021/acs.nanolett.7b03140
10.1038/nnano.2012.193
10.1016/j.nanoen.2020.105692
10.1038/s41427-021-00307-x
10.1039/C9NH00743A
10.1038/s41467-018-05397-w
10.3390/s22103944
10.1021/acsnano.8b04885
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID AAYXX
CITATION
DOI 10.1016/j.flatc.2025.100886
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2452-2627
ExternalDocumentID 10_1016_j_flatc_2025_100886
S2452262725000807
GroupedDBID --M
0R~
4G.
7-5
AABXZ
AAEDT
AAEDW
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACVFH
ADBBV
ADCNI
AEBSH
AEIPS
AEUPX
AEZYN
AFJKZ
AFPUW
AFRZQ
AFTJW
AFZHZ
AGCQF
AGUBO
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJSZI
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFKBS
EJD
FDB
FIRID
FYGXN
KOM
M41
O9-
OAUVE
ROL
SPC
SPCBC
SSK
SSM
SSZ
T5K
~G-
AAYXX
AFXIZ
AGRNS
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c255t-667aa5e9a84680153e8a38e9bb58feaf35f138c37d1768fbf703667bce9d42c33
IEDL.DBID AIKHN
ISSN 2452-2627
IngestDate Thu Jul 24 02:20:01 EDT 2025
Sat Aug 16 17:01:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Van der Waals heterostructure
Non-volatile memory
Floating-gate memory
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c255t-667aa5e9a84680153e8a38e9bb58feaf35f138c37d1768fbf703667bce9d42c33
ParticipantIDs crossref_primary_10_1016_j_flatc_2025_100886
elsevier_sciencedirect_doi_10_1016_j_flatc_2025_100886
PublicationCentury 2000
PublicationDate July 2025
2025-07-00
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: July 2025
PublicationDecade 2020
PublicationTitle FlatChem
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Liao, Zhao, Li, Wang, Ge, Wang, Wang, Zhang (bb0040) 2020; 5
Castellanos-Gomez, Buscema, Molenaar, Singh, Janssen, van der Zant, Steele (bb0160) 2014; 1
Lin, Komsa, Yeh, Bjorkman, Liang, Ho, Huang, Chiu, Suenaga (bb0070) 2015; 9
Lu, Hsieh, Liu (bb0015) 2009; 86
Hong, Park, Lee, Lee, Yun, Yoo, Kim (bb0145) 2021; 13
Novoselov, Morozov, Jiang, Zhang, Dubonos, Grigorieva, Firsov (bb0155) 2004; 306
Wang, Kalantar-Zadeh, Kis, Coleman, Strano (bb0030) 2012; 7
Rahman, Davey, Qiao (bb0055) 2017; 27
Bez, Camerlenghi, Modelli, Visconti (bb0010) 2003; 91
Zhou, Lin, Huang, Zhou, Chen, Xia, Wang, Xie, Yu, Lei, Wu, Liu, Fu, Zeng, Hsu, Yang, Lu, Yu, Shen, Lin, Yakobson, Liu, Suenaga, Liu, Liu (bb0035) 2018; 556
Yoon, Kim, Kim, Lee, Kim (bb0165) 2022; 22
Liu, Duan, Shin, Park, Huang, Duan (bb0045) 2021; 591
Ferrari, Meyer, Scardaci, Casiraghi, Lazzeri, Mauri, Piscanec, Jiang, Novoselov, Roth, Geim (bb0105) 2006; 97
Tongay, Sahin, Ko, Luce, Fan, Liu, Zhou, Huang, Ho, Yan, Ogletree, Aloni, Ji, Li, Li, Peeters, Wu (bb0065) 2014; 5
Akinwande, Huyghebaert, Wang, Serna, Goossens, Li, Wong, Koppens (bb0095) 2019; 573
Hou, Zhang, Liu, Ding, Bao, Zhang, Zhou (bb0135) 2018; 14
Mukherjee, Zulkefli, Watanabe, Taniguchi, Wakayama, Nakaharai (bb0080) 2020; 30
Chan, Man, He, Yuen, Lee, Chan (bb0025) 2004; 51
Wang, Jin, Wang, Wei, Xu, Peng, Liu, Wang, You, Impundu, Zheng, Li, Sun (bb0150) 2023; 19
Zhang, Tan, Zhang, Gao, Hu, Wang, Duan, Yang, Hu (bb0090) 2021; 33
Zhou, Ning, Shen, Guo, Zhang, Dong, Lu, Feng, Hao (bb0120) 2021; 7
Li, Han, Pi, Niu, Han, Wang, Su, Li, Xiong, Bando, Zhai (bb0075) 2019; 1
Wu, Xie, Wang, Zhang, Hu, Liu (bb0085) 2020; 12
Xiang, Liu, Xu, Tan, Hu, Lei, Zheng, Wu, Neto, Liu, Chen (bb0050) 2018; 9
Zhang, Zhang, Li, Xu, Yang, Sun (bb0005) 2023; 2
Jin, Zhu, Wang, Wang, Peng, Peng, Liu, Wei, Chu, Fan, Li, Sun (bb0100) 2022; 4
Zhao, Wei, Yang, Zhang, Wang (bb0140) 2021; 82
Xiong, Chen, Zhang, Zhou (bb0060) 2019; 13
Kim, Lee (bb0020) 2007; 84
Wang, Liu, Gao, Cao, Long, Pan, Zhang, Zeng, Wang, Hu, Liang, Miao (bb0115) 2018; 12
Li, Chen, Zong, Zhang (bb0125) 2017; 17
Choi, Lee, Yu, Lee, Lee, Kim, Hone, Yoo (bb0130) 2013; 4
Liu, Liu, Jiang, Li, Ding, Wang, Jiang, Sun, Wang, Chen, Zhang, Zhou (bb0110) 2021; 16
Wang (10.1016/j.flatc.2025.100886_bb0150) 2023; 19
Zhang (10.1016/j.flatc.2025.100886_bb0090) 2021; 33
Lin (10.1016/j.flatc.2025.100886_bb0070) 2015; 9
Liu (10.1016/j.flatc.2025.100886_bb0045) 2021; 591
Rahman (10.1016/j.flatc.2025.100886_bb0055) 2017; 27
Zhou (10.1016/j.flatc.2025.100886_bb0120) 2021; 7
Li (10.1016/j.flatc.2025.100886_bb0075) 2019; 1
Castellanos-Gomez (10.1016/j.flatc.2025.100886_bb0160) 2014; 1
Xiong (10.1016/j.flatc.2025.100886_bb0060) 2019; 13
Akinwande (10.1016/j.flatc.2025.100886_bb0095) 2019; 573
Ferrari (10.1016/j.flatc.2025.100886_bb0105) 2006; 97
Choi (10.1016/j.flatc.2025.100886_bb0130) 2013; 4
Kim (10.1016/j.flatc.2025.100886_bb0020) 2007; 84
Wu (10.1016/j.flatc.2025.100886_bb0085) 2020; 12
Zhou (10.1016/j.flatc.2025.100886_bb0035) 2018; 556
Wang (10.1016/j.flatc.2025.100886_bb0115) 2018; 12
Li (10.1016/j.flatc.2025.100886_bb0125) 2017; 17
Jin (10.1016/j.flatc.2025.100886_bb0100) 2022; 4
Hou (10.1016/j.flatc.2025.100886_bb0135) 2018; 14
Hong (10.1016/j.flatc.2025.100886_bb0145) 2021; 13
Liu (10.1016/j.flatc.2025.100886_bb0110) 2021; 16
Bez (10.1016/j.flatc.2025.100886_bb0010) 2003; 91
Zhao (10.1016/j.flatc.2025.100886_bb0140) 2021; 82
Tongay (10.1016/j.flatc.2025.100886_bb0065) 2014; 5
Lu (10.1016/j.flatc.2025.100886_bb0015) 2009; 86
Chan (10.1016/j.flatc.2025.100886_bb0025) 2004; 51
Mukherjee (10.1016/j.flatc.2025.100886_bb0080) 2020; 30
Yoon (10.1016/j.flatc.2025.100886_bb0165) 2022; 22
Xiang (10.1016/j.flatc.2025.100886_bb0050) 2018; 9
Zhang (10.1016/j.flatc.2025.100886_bb0005) 2023; 2
Novoselov (10.1016/j.flatc.2025.100886_bb0155) 2004; 306
Wang (10.1016/j.flatc.2025.100886_bb0030) 2012; 7
Liao (10.1016/j.flatc.2025.100886_bb0040) 2020; 5
References_xml – volume: 2
  year: 2023
  ident: bb0005
  article-title: Van der Waals materials-based floating gate memory for neuromorphic computing
  publication-title: Chip
– volume: 12
  start-page: 9513
  year: 2018
  end-page: 9520
  ident: bb0115
  article-title: Negative Photoconductance in van der Waals Heterostructure-based floating gate phototransistor
  publication-title: ACS Nano
– volume: 16
  start-page: 874
  year: 2021
  end-page: 881
  ident: bb0110
  article-title: Ultrafast non-volatile flash memory based on van der Waals heterostructures
  publication-title: Nat. Nanotechnol.
– volume: 91
  start-page: 489
  year: 2003
  end-page: 502
  ident: bb0010
  article-title: Introduction to flash memory
  publication-title: Proc. IEEE
– volume: 17
  start-page: 6353
  year: 2017
  end-page: 6359
  ident: bb0125
  article-title: Floating-gate manipulated graphene-black phosphorus heterojunction for nonvolatile Ambipolar Schottky junction memories, memory inverter circuits, and logic rectifiers
  publication-title: Nano Lett.
– volume: 86
  start-page: 283
  year: 2009
  end-page: 286
  ident: bb0015
  article-title: Future challenges of flash memory technologies
  publication-title: Microelectron. Eng.
– volume: 14
  year: 2018
  ident: bb0135
  article-title: Charge-trap memory based on hybrid 0D quantum dot-2D WSe
  publication-title: Small
– volume: 51
  start-page: 2054
  year: 2004
  end-page: 2060
  ident: bb0025
  article-title: SOI flash memory scaling limit and design consideration based on 2-D analytical modeling
  publication-title: IEEE Trans. Electron Devices
– volume: 7
  start-page: 699
  year: 2012
  end-page: 712
  ident: bb0030
  article-title: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
  publication-title: Nat. Nanotechnol.
– volume: 591
  start-page: 43
  year: 2021
  end-page: 53
  ident: bb0045
  article-title: Promises and prospects of two-dimensional transistors
  publication-title: Nature
– volume: 573
  start-page: 507
  year: 2019
  end-page: 518
  ident: bb0095
  article-title: Graphene and two-dimensional materials for silicon technology
  publication-title: Nature
– volume: 5
  start-page: 787
  year: 2020
  end-page: 807
  ident: bb0040
  article-title: Interface engineering of two-dimensional transition metal dichalcogenides towards next-generation electronic devices: recent advances and challenges
  publication-title: Nanoscale Horiz.
– volume: 7
  year: 2021
  ident: bb0120
  article-title: An ULTRAFAST quasi-non-volatile semi-floating gate memory with low-power optoelectronic memory application
  publication-title: Adv. Electron. Mater.
– volume: 22
  year: 2022
  ident: bb0165
  article-title: Surface properties of CVD-grown graphene transferred by wet and dry transfer processes
  publication-title: Sensors (Basel)
– volume: 30
  year: 2020
  ident: bb0080
  article-title: Laser-assisted multilevel non-volatile memory device based on 2D van-der-Waals few-layer-ReS
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 11249
  year: 2015
  end-page: 11257
  ident: bb0070
  article-title: Single layer ReS
  publication-title: ACS Nano
– volume: 33
  year: 2021
  ident: bb0090
  article-title: Atomically thin hexagonal boron nitride and its Heterostructures
  publication-title: Adv. Mater.
– volume: 306
  start-page: 666
  year: 2004
  end-page: 669
  ident: bb0155
  article-title: Electric field effect in atomically thin carbon films
  publication-title: Science
– volume: 556
  start-page: 355
  year: 2018
  end-page: 359
  ident: bb0035
  article-title: A library of atomically thin metal chalcogenides
  publication-title: Nature
– volume: 19
  year: 2023
  ident: bb0150
  article-title: High-speed optoelectronic nonvolatile memory based on van der Waals Heterostructures
  publication-title: Small
– volume: 27
  year: 2017
  ident: bb0055
  article-title: Advent of 2D rhenium disulfide (ReS
  publication-title: Adv. Funct. Mater.
– volume: 13
  year: 2019
  ident: bb0060
  article-title: Electronic and optoelectronic applications based on ReS
  publication-title: Phys. Status Solidi (RRL)
– volume: 1
  start-page: 54
  year: 2019
  end-page: 73
  ident: bb0075
  article-title: Emerging in-plane anisotropic two-dimensional materials
  publication-title: InfoMat
– volume: 82
  year: 2021
  ident: bb0140
  article-title: Mechanoplastic tribotronic two-dimensional multibit nonvolatile optoelectronic memory
  publication-title: Nano Energy
– volume: 12
  start-page: 18800
  year: 2020
  end-page: 18806
  ident: bb0085
  article-title: Multi-level flash memory device based on stacked anisotropic ReS
  publication-title: Nanoscale
– volume: 1
  year: 2014
  ident: bb0160
  article-title: Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping
  publication-title: 2D Materials
– volume: 84
  start-page: 1976
  year: 2007
  end-page: 1981
  ident: bb0020
  article-title: Memory technology in the future
  publication-title: Microelectron. Eng.
– volume: 9
  start-page: 2966
  year: 2018
  ident: bb0050
  article-title: Two-dimensional multibit optoelectronic memory with broadband spectrum distinction
  publication-title: Nat. Commun.
– volume: 5
  start-page: 3252
  year: 2014
  ident: bb0065
  article-title: Monolayer behaviour in bulk ReS
  publication-title: Nat. Commun.
– volume: 13
  year: 2021
  ident: bb0145
  article-title: Multifunctional molybdenum disulfide flash memory using a PEDOT:PSS floating gate
  publication-title: NPG Asia Mater.
– volume: 4
  start-page: 2964
  year: 2022
  end-page: 2969
  ident: bb0100
  article-title: Optoelectronic nonvolatile memories using graphene/hexagonal boron nitride/rhenium disulfide Heterostructure
  publication-title: ACS Appl. Electron. Mater.
– volume: 97
  year: 2006
  ident: bb0105
  article-title: Raman spectrum of graphene and graphene layers
  publication-title: Phys. Rev. Lett.
– volume: 4
  start-page: 1624
  year: 2013
  ident: bb0130
  article-title: Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices
  publication-title: Nat. Commun.
– volume: 27
  year: 2017
  ident: 10.1016/j.flatc.2025.100886_bb0055
  article-title: Advent of 2D rhenium disulfide (ReS2): fundamentals to applications
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201606129
– volume: 86
  start-page: 283
  year: 2009
  ident: 10.1016/j.flatc.2025.100886_bb0015
  article-title: Future challenges of flash memory technologies
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2008.08.007
– volume: 573
  start-page: 507
  year: 2019
  ident: 10.1016/j.flatc.2025.100886_bb0095
  article-title: Graphene and two-dimensional materials for silicon technology
  publication-title: Nature
  doi: 10.1038/s41586-019-1573-9
– volume: 12
  start-page: 18800
  year: 2020
  ident: 10.1016/j.flatc.2025.100886_bb0085
  article-title: Multi-level flash memory device based on stacked anisotropic ReS2-boron nitride-graphene heterostructures
  publication-title: Nanoscale
  doi: 10.1039/D0NR03965A
– volume: 9
  start-page: 11249
  year: 2015
  ident: 10.1016/j.flatc.2025.100886_bb0070
  article-title: Single layer ReS2:Two-dimensional semiconductor with tunable in plane anisotropy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b04851
– volume: 30
  year: 2020
  ident: 10.1016/j.flatc.2025.100886_bb0080
  article-title: Laser-assisted multilevel non-volatile memory device based on 2D van-der-Waals few-layer-ReS2/h-BN/graphene Heterostructures
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202001688
– volume: 4
  start-page: 2964
  year: 2022
  ident: 10.1016/j.flatc.2025.100886_bb0100
  article-title: Optoelectronic nonvolatile memories using graphene/hexagonal boron nitride/rhenium disulfide Heterostructure
  publication-title: ACS Appl. Electron. Mater.
  doi: 10.1021/acsaelm.2c00409
– volume: 4
  start-page: 1624
  year: 2013
  ident: 10.1016/j.flatc.2025.100886_bb0130
  article-title: Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2652
– volume: 51
  start-page: 2054
  year: 2004
  ident: 10.1016/j.flatc.2025.100886_bb0025
  article-title: SOI flash memory scaling limit and design consideration based on 2-D analytical modeling
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2004.838327
– volume: 5
  start-page: 3252
  year: 2014
  ident: 10.1016/j.flatc.2025.100886_bb0065
  article-title: Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4252
– volume: 1
  year: 2014
  ident: 10.1016/j.flatc.2025.100886_bb0160
  article-title: Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping
  publication-title: 2D Materials
  doi: 10.1088/2053-1583/1/1/011002
– volume: 7
  year: 2021
  ident: 10.1016/j.flatc.2025.100886_bb0120
  article-title: An ULTRAFAST quasi-non-volatile semi-floating gate memory with low-power optoelectronic memory application
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.202100564
– volume: 14
  year: 2018
  ident: 10.1016/j.flatc.2025.100886_bb0135
  article-title: Charge-trap memory based on hybrid 0D quantum dot-2D WSe2 structure
  publication-title: Small
  doi: 10.1002/smll.201800319
– volume: 84
  start-page: 1976
  year: 2007
  ident: 10.1016/j.flatc.2025.100886_bb0020
  article-title: Memory technology in the future
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2007.04.120
– volume: 1
  start-page: 54
  year: 2019
  ident: 10.1016/j.flatc.2025.100886_bb0075
  article-title: Emerging in-plane anisotropic two-dimensional materials
  publication-title: InfoMat
  doi: 10.1002/inf2.12005
– volume: 19
  year: 2023
  ident: 10.1016/j.flatc.2025.100886_bb0150
  article-title: High-speed optoelectronic nonvolatile memory based on van der Waals Heterostructures
  publication-title: Small
– volume: 591
  start-page: 43
  year: 2021
  ident: 10.1016/j.flatc.2025.100886_bb0045
  article-title: Promises and prospects of two-dimensional transistors
  publication-title: Nature
  doi: 10.1038/s41586-021-03339-z
– volume: 13
  year: 2019
  ident: 10.1016/j.flatc.2025.100886_bb0060
  article-title: Electronic and optoelectronic applications based on ReS2
  publication-title: Phys. Status Solidi (RRL)
  doi: 10.1002/pssr.201800658
– volume: 16
  start-page: 874
  year: 2021
  ident: 10.1016/j.flatc.2025.100886_bb0110
  article-title: Ultrafast non-volatile flash memory based on van der Waals heterostructures
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-021-00921-4
– volume: 33
  year: 2021
  ident: 10.1016/j.flatc.2025.100886_bb0090
  article-title: Atomically thin hexagonal boron nitride and its Heterostructures
  publication-title: Adv. Mater.
– volume: 2
  year: 2023
  ident: 10.1016/j.flatc.2025.100886_bb0005
  article-title: Van der Waals materials-based floating gate memory for neuromorphic computing
  publication-title: Chip
  doi: 10.1016/j.chip.2023.100059
– volume: 97
  year: 2006
  ident: 10.1016/j.flatc.2025.100886_bb0105
  article-title: Raman spectrum of graphene and graphene layers
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.187401
– volume: 91
  start-page: 489
  year: 2003
  ident: 10.1016/j.flatc.2025.100886_bb0010
  article-title: Introduction to flash memory
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2003.811702
– volume: 556
  start-page: 355
  year: 2018
  ident: 10.1016/j.flatc.2025.100886_bb0035
  article-title: A library of atomically thin metal chalcogenides
  publication-title: Nature
  doi: 10.1038/s41586-018-0008-3
– volume: 306
  start-page: 666
  year: 2004
  ident: 10.1016/j.flatc.2025.100886_bb0155
  article-title: Electric field effect in atomically thin carbon films
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 17
  start-page: 6353
  year: 2017
  ident: 10.1016/j.flatc.2025.100886_bb0125
  article-title: Floating-gate manipulated graphene-black phosphorus heterojunction for nonvolatile Ambipolar Schottky junction memories, memory inverter circuits, and logic rectifiers
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b03140
– volume: 7
  start-page: 699
  year: 2012
  ident: 10.1016/j.flatc.2025.100886_bb0030
  article-title: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.193
– volume: 82
  year: 2021
  ident: 10.1016/j.flatc.2025.100886_bb0140
  article-title: Mechanoplastic tribotronic two-dimensional multibit nonvolatile optoelectronic memory
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105692
– volume: 13
  year: 2021
  ident: 10.1016/j.flatc.2025.100886_bb0145
  article-title: Multifunctional molybdenum disulfide flash memory using a PEDOT:PSS floating gate
  publication-title: NPG Asia Mater.
  doi: 10.1038/s41427-021-00307-x
– volume: 5
  start-page: 787
  year: 2020
  ident: 10.1016/j.flatc.2025.100886_bb0040
  article-title: Interface engineering of two-dimensional transition metal dichalcogenides towards next-generation electronic devices: recent advances and challenges
  publication-title: Nanoscale Horiz.
  doi: 10.1039/C9NH00743A
– volume: 9
  start-page: 2966
  year: 2018
  ident: 10.1016/j.flatc.2025.100886_bb0050
  article-title: Two-dimensional multibit optoelectronic memory with broadband spectrum distinction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05397-w
– volume: 22
  year: 2022
  ident: 10.1016/j.flatc.2025.100886_bb0165
  article-title: Surface properties of CVD-grown graphene transferred by wet and dry transfer processes
  publication-title: Sensors (Basel)
  doi: 10.3390/s22103944
– volume: 12
  start-page: 9513
  year: 2018
  ident: 10.1016/j.flatc.2025.100886_bb0115
  article-title: Negative Photoconductance in van der Waals Heterostructure-based floating gate phototransistor
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b04885
SSID ssj0002964130
Score 2.2962193
Snippet With the rapid advancement of technology and the exponential growth of big data, the demand for high-performance memory devices intensifies. Non-volatile...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 100886
SubjectTerms Floating-gate memory
Non-volatile memory
Van der Waals heterostructure
Title Ultra-large memory window for non-volatile memory based on ReS2/hBN/Multilayer Graphene heterojunction
URI https://dx.doi.org/10.1016/j.flatc.2025.100886
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF1qe_Eiior1iz14dEmazSabYy3WarGH1mJvYTfdpZXYllIp_ntnNklREA-eQhIGlrdh5k32zQwhN8BBNc4-YQEXnIUmTJgKhWE2EkmogDNrN7TveRD1xuHTRExqpFPVwqCssvT9hU933rp84pVoeqv53BvhmWEQBXEgHO-J90gjgOjq10mj_djvDXa_WvBkseWmjqAJQ5uq_5BTetlcuW6GgUDNgMSy6t9i1Le40z0kByVhpO1iTUekZhbHxI7zzVqxHGXc9B3Fsp90C9n1ckuBhFJI6Rm4HQA9373GcDWlywUdmlHgze4Gnqu9zRVwbvqAbavB69EZqmOWbxDscMNOyLh7_9LpsXJiAssgNdiwKIqVEiZRwCog9AhupOLSJFoLaY2yXNgWlxmPpy1IM6y22H4rinVmkmkYZJyfkjos0ZwRmhlfKiniRPsqTJTQQimrjUp8m8lM-k1yW2GUrorGGGmlGHtLHaQpQpoWkDZJVOGY_tjfFFz3X4bn_zW8IPt4V0hrL0l9s_4wV0AgNvq6_EDw2h--9r8ApBHF6g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4QDnoxGjXiswePNgvb7W73iEQEeRwEEm6bdmkDZAVCMMR_78w-iCbGg9dtJmm-NjPfbL-ZIeQBOKjG2SfM5YIzz3ghU54wzPoi9BRwZp0O7esP_PbYe52ISYk0i1oYlFXmvj_z6am3zr84OZrOej53hvhm6Ppu4IqU9wQHpILdqeCaVxqdbnuw_9WCL4v1dOoImjC0KfoPpUovm6i0m6ErUDMgsaz6txj1Le60TshxThhpI9vTKSmZ5Rmx42S7USxBGTd9R7HsJ91Bdr3aUSChFFJ6Bm4HQE_2yxiupnS1pG9m6Dqzp4GT1t4mCjg3fcG21eD16AzVMasFBDs8sHMybj2Pmm2WT0xgMaQGW-b7gVLChApYBYQewY1UXJpQayGtUZYLW-cy5sG0DmmG1Rbbb_mBjk049dyY8wtShi2aS0JjU5NKiiDUNeWFSmihlNVGhTUby1jWquSxwChaZ40xokIxtohSSCOENMogrRK_wDH6cb4RuO6_DK_-a3hPDtujfi_qdQbda3KEK5nM9oaUt5sPcwtkYqvv8svyBdrMxzY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra-large+memory+window+for+non-volatile+memory+based+on+ReS2%2FhBN%2FMultilayer+Graphene+heterojunction&rft.jtitle=FlatChem&rft.au=You%2C+Jiawang&rft.au=Wang%2C+Wenxiang&rft.au=Li%2C+Xiaohuan&rft.au=Xu%2C+Yushi&rft.date=2025-07-01&rft.pub=Elsevier+B.V&rft.issn=2452-2627&rft.eissn=2452-2627&rft.volume=52&rft_id=info:doi/10.1016%2Fj.flatc.2025.100886&rft.externalDocID=S2452262725000807
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-2627&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-2627&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-2627&client=summon