A federated learning approach to QoS forecasting in cellular vehicular communications: Approaches and empirical evidence
QoS forecasting for cellular vehicular communications allows cooperative, connected and automated mobility applications to tailor their behavior to the expected communication conditions on the road. In a nutshell, vehicles may, for example, execute cooperative maneuvers if the communication quality...
Saved in:
Published in | Computer networks (Amsterdam, Netherlands : 1999) Vol. 242; p. 110239 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | QoS forecasting for cellular vehicular communications allows cooperative, connected and automated mobility applications to tailor their behavior to the expected communication conditions on the road. In a nutshell, vehicles may, for example, execute cooperative maneuvers if the communication quality of service is only above a certain quantitative level whereas if not they revert to the individual autonomous mode. In this paper, we propose and show empirical methods for estimating packet-based QoS metrics obtained from 5G network measurements with a direct application to vehicular applications. As many distributed vehicular applications possess strict QoS requirements, we focus here on bounding packet-based statistical QoS quantiles, specifically for latency and loss. Our approach is based on training regression neural networks in a federated learning fashion and show that it can obtain predictions on par with centralized training without the vehicles needing to transmit raw measurement data. In contrast to QoS prediction using physical layer information, we briefly discuss the embedding of such much simpler application-level service within the 5G architecture. We also validate our approach through recovering classical closed-form delay quantiles that are obtained from analytical models of simple queueing systems. We show that our approach goes beyond these simple models in that it provides quantile estimates for the complex scenario of cellular vehicle communications and under different application traffic patterns including empirical data traffic traces as well as 5G testbed measurements. |
---|---|
AbstractList | QoS forecasting for cellular vehicular communications allows cooperative, connected and automated mobility applications to tailor their behavior to the expected communication conditions on the road. In a nutshell, vehicles may, for example, execute cooperative maneuvers if the communication quality of service is only above a certain quantitative level whereas if not they revert to the individual autonomous mode. In this paper, we propose and show empirical methods for estimating packet-based QoS metrics obtained from 5G network measurements with a direct application to vehicular applications. As many distributed vehicular applications possess strict QoS requirements, we focus here on bounding packet-based statistical QoS quantiles, specifically for latency and loss. Our approach is based on training regression neural networks in a federated learning fashion and show that it can obtain predictions on par with centralized training without the vehicles needing to transmit raw measurement data. In contrast to QoS prediction using physical layer information, we briefly discuss the embedding of such much simpler application-level service within the 5G architecture. We also validate our approach through recovering classical closed-form delay quantiles that are obtained from analytical models of simple queueing systems. We show that our approach goes beyond these simple models in that it provides quantile estimates for the complex scenario of cellular vehicle communications and under different application traffic patterns including empirical data traffic traces as well as 5G testbed measurements. |
ArticleNumber | 110239 |
Author | Liotou, Eirini Katsaros, Konstantinos V. Lübben, Ralf Rizk, Amr Baganal-Krishna, Nehal |
Author_xml | – sequence: 1 givenname: Nehal orcidid: 0000-0002-9099-1754 surname: Baganal-Krishna fullname: Baganal-Krishna, Nehal organization: University of Ulm, Germany – sequence: 2 givenname: Ralf orcidid: 0000-0003-0671-463X surname: Lübben fullname: Lübben, Ralf organization: Flensburg University of Applied Sciences, Germany – sequence: 3 givenname: Eirini surname: Liotou fullname: Liotou, Eirini organization: Institute of Communications and Computer Systems (ICCS), Greece – sequence: 4 givenname: Konstantinos V. surname: Katsaros fullname: Katsaros, Konstantinos V. organization: Institute of Communications and Computer Systems (ICCS), Greece – sequence: 5 givenname: Amr orcidid: 0000-0002-9385-7729 surname: Rizk fullname: Rizk, Amr email: rizk@ieee.org organization: University of Duisburg–Essen, Germany |
BookMark | eNp9kM1KxDAcxIOs4O7qG3jIC7QmaZumHoRl8QsWRNRzSNN_3SxtUpLsom9vaz17moFhhuG3QgvrLCB0TUlKCeU3h1S73kJMGWF5SilhWXWGllSULCkJrxajz0SVUCb4BVqFcCCE5DkTS_S1wS004FWEBnegvDX2E6th8E7pPY4Ov7o33DoPWoU4ZcZiDV137JTHJ9gb_evGA_3RGq2icTbc4s3fAgSsbIOhH4wf0w7DyTRgNVyi81Z1Aa7-dI0-Hu7ft0_J7uXxebvZJZoVRUx4wWrQpCEVMEW5AiVKDoTXXNOsFKythK6hrUEVIIBpQktOcy4o54pkpMzWKJ93tXcheGjl4E2v_LekRE705EHO9ORET870xtrdXIPx28mAl0Gb6XdjRhRRNs78P_ADfOZ-vA |
Cites_doi | 10.1109/VTC2021-Spring51267.2021.9448806 10.1109/ITC31.2019.00022 10.1145/3229543.3229549 10.1145/2829988.2787486 10.1109/TCCN.2017.2755007 10.1109/TNET.2020.2996964 10.1145/637246.637247 10.1109/TNET.2003.815304 10.1145/3565473.3569190 10.1109/ACCESS.2020.3022291 10.1109/TNET.2013.2261914 10.2307/1913643 10.1109/TNET.2007.896235 10.1109/JSAC.2020.3000405 10.1145/3326285.3329038 10.1016/j.comcom.2019.05.005 10.1109/TNET.2007.899014 10.1145/3098822.3098843 10.1109/ICC42927.2021.9500495 10.1109/TCOM.1964.1088883 10.1186/s13174-018-0087-2 10.1145/3229607.3229613 10.1016/j.comnet.2022.109329 10.1016/j.comcom.2021.02.009 10.1145/2740070.2626324 10.1145/3183516 10.1002/1099-131X(200007)19:4<299::AID-FOR775>3.0.CO;2-V 10.1109/ICC45041.2023.10279762 |
ContentType | Journal Article |
Copyright | 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.comnet.2024.110239 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-7069 |
ExternalDocumentID | 10_1016_j_comnet_2024_110239 S1389128624000719 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6I. 6OB 7-5 71M 77K 8P~ AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABMAC ABMYL ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 XFK ZMT ZY4 ~G- AAXKI AAYXX AFJKZ CITATION |
ID | FETCH-LOGICAL-c255t-652bec0d09e2a16aea876e06b6c13782f98cbefbea5e8e2c01761468166a03073 |
IEDL.DBID | .~1 |
ISSN | 1389-1286 |
IngestDate | Thu Sep 26 18:20:05 EDT 2024 Sat Mar 23 16:29:20 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Federated learning Vehicular communications 5G measurements Predictive QoS |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c255t-652bec0d09e2a16aea876e06b6c13782f98cbefbea5e8e2c01761468166a03073 |
ORCID | 0000-0002-9099-1754 0000-0002-9385-7729 0000-0003-0671-463X |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1389128624000719 |
ParticipantIDs | crossref_primary_10_1016_j_comnet_2024_110239 elsevier_sciencedirect_doi_10_1016_j_comnet_2024_110239 |
PublicationCentury | 2000 |
PublicationDate | April 2024 2024-04-00 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: April 2024 |
PublicationDecade | 2020 |
PublicationTitle | Computer networks (Amsterdam, Netherlands : 1999) |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Sivaraman, Winstein, Thaker, Balakrishnan (b33) 2014; 44 C. Rattaro, P. Belzarena, Throughput prediction in wireless networks using statistical learning, in: LAWDN-Latin-American Workshop on Dynamic Networks, 2010, pp. 4–p. M. Dong, T. Meng, D. Zarchy, E. Arslan, Y. Gilad, B. Godfrey, M. Schapira, PCC Vivace: Online-Learning Congestion Control, in: Proc. USENIX NSDI, 2018, pp. 343–356. Spiteri, Urgaonkar, Sitaraman (b4) 2020; 28 D. Schäufele, M. Kasparick, J. Schwardmann, J. Morgenroth, S. Stańczak, Terminal-Side Data Rate Prediction For High-Mobility Users, in: Proc. IEEE VTC, 2021. F.Y. Yan, H. Ayers, C. Zhu, S. Fouladi, J. Hong, K. Zhang, P. Levis, K. Winstein, Learning in situ: a randomized experiment in video streaming, in: Proc. USENIX NSDI, 2020, pp. 495–511. C. Qiao, G. Li, J. Wang, Y. Liu, NEIVA: Environment Identification based Video Bitrate Adaption in Cellular Networks, in: Proc. IEEE/ACM IWQoS, 2019. 3GPP (b12) 2020 Boutaba, Salahuddin, Limam, Ayoubi, Shahriar, Estrada-Solano, Caicedo (b20) 2018; 9 A. Mestres, E. Alarcón, Y. Ji, A. Cabellos-Aparicio, Understanding the Modeling of Computer Network Delays Using Neural Networks, in: Proc. ACM Big-DAMA Workshop, 2018, pp. 46–52. Liu, Ravindran, Loguinov (b7) 2008; 16 Etengu, Tan, Kwang, Abbou, Chuah (b34) 2020; 8 Lübben, Fidler, Liebeherr (b8) 2014; 22 D.F. Külzer, F. Debbichi, S. Stańczak, M. Botsov, On Latency Prediction with Deep Learning and Passive Probing at High Mobility, in: Proc. IEEE ICC, 2021. H. Mao, R. Netravali, M. Alizadeh, Neural Adaptive Video Streaming with Pensieve, in: Proc. ACM SIGCOMM, 2017, pp. 197–210. K. Winstein, A. Sivaraman, H. Balakrishnan, Stochastic Forecasts Achieve High Throughput and Low Delay over Cellular Networks, in: Proc. USENIX NSDI, 2013, pp. 459–471. Jain, Dovrolis (b14) 2003; 11 Li, Jamieson, DeSalvo, Rostamizadeh, Talwalkar (b17) 2018; 18 Koenker, Bassett (b16) 1978; 46 McMahan, Moore, Ramage, Hampson, y Arcas (b19) 2023 B. Jaeger, M. Helm, L. Schwegmann, G. Carle, Modeling TCP Performance Using Graph Neural Networks, in: Proc. ACM Workshop on Graph Neural Networking, GNNet, 2022, pp. 18–23. R. Lübben, A. Rizk, TAILING: Tail Distribution Forecasting of Packet Delays Using Quantile Regression Neural Networks, in: IEEE International Conference on Communications (ICC), 2023, pp. 377–383. Yin, Jindal, Sekar, Sinopoli (b3) 2015; 45 Khangura, Akin (b28) 2021; 170 Taylor (b2) 2000; 19 Beutel, Topal, Mathur, Qiu, Fernandez-Marques, Gao, Sani, Li, Parcollet, de Gusmão, Lane (b18) 2022 Liu, Ravindran, Loguinov (b6) 2007; 15 S. Xiao, D. He, Z. Gong, Deep-Q: Traffic-Driven QoS Inference Using Deep Generative Network, in: Proc. ACM Workshop NetAI, 2018, pp. 67–73. Zhang, Patras, Haddadi (b21) 2019 A. Pásztor, D. Veitch, Active probing using packet quartets, in: Proceedings of the 2nd ACM SIGCOMM Internet Measurement Workshop, 2002, pp. 293–305. S.K. Khangura, S. Akin, Measurement-Based Online Available Bandwidth Estimation Employing Reinforcement Learning, in: Proc. IEEE ITC, 2019, pp. 95–103. Gadaleta, Chiariotti, Rossi, Zanella (b23) 2017; 3 Khangura, Fidler, Rosenhahn (b26) 2019; 144 Ferriol-Galmés, Suárez-Varela, Paillissé, Shi, Xiao, Cheng, Barlet-Ros, Cabellos-Aparicio (b41) 2022; 217 . Anjali, Scoglio, De Oliveira, Chen, Akyildiz, Smith, Uhl, Sciuto (b36) 2002 Bhat, Rizk, Zink, Steinmetz (b37) 2018; 14 Baran (b35) 1964; 12 Koenker, Chesher, Jackson (b1) 2005 Rizk, Fidler (b9) 2008; vol. 5425 Fidler, Rizk (b15) 2015 Rusek, Suárez-Varela, Almasan, Barlet-Ros, Cabellos-Aparicio (b40) 2020; 38 Measurement Lab, The M-Lab NDT Data Set. Koenker (10.1016/j.comnet.2024.110239_b1) 2005 Baran (10.1016/j.comnet.2024.110239_b35) 1964; 12 Zhang (10.1016/j.comnet.2024.110239_b21) 2019 Bhat (10.1016/j.comnet.2024.110239_b37) 2018; 14 Li (10.1016/j.comnet.2024.110239_b17) 2018; 18 Liu (10.1016/j.comnet.2024.110239_b7) 2008; 16 3GPP (10.1016/j.comnet.2024.110239_b12) 2020 Rusek (10.1016/j.comnet.2024.110239_b40) 2020; 38 10.1016/j.comnet.2024.110239_b10 10.1016/j.comnet.2024.110239_b32 10.1016/j.comnet.2024.110239_b11 10.1016/j.comnet.2024.110239_b30 Khangura (10.1016/j.comnet.2024.110239_b26) 2019; 144 10.1016/j.comnet.2024.110239_b31 10.1016/j.comnet.2024.110239_b38 10.1016/j.comnet.2024.110239_b39 Beutel (10.1016/j.comnet.2024.110239_b18) 2022 Khangura (10.1016/j.comnet.2024.110239_b28) 2021; 170 Fidler (10.1016/j.comnet.2024.110239_b15) 2015 10.1016/j.comnet.2024.110239_b5 10.1016/j.comnet.2024.110239_b13 Anjali (10.1016/j.comnet.2024.110239_b36) 2002 Boutaba (10.1016/j.comnet.2024.110239_b20) 2018; 9 Rizk (10.1016/j.comnet.2024.110239_b9) 2008; vol. 5425 Sivaraman (10.1016/j.comnet.2024.110239_b33) 2014; 44 Gadaleta (10.1016/j.comnet.2024.110239_b23) 2017; 3 Lübben (10.1016/j.comnet.2024.110239_b8) 2014; 22 10.1016/j.comnet.2024.110239_b22 Taylor (10.1016/j.comnet.2024.110239_b2) 2000; 19 10.1016/j.comnet.2024.110239_b42 Jain (10.1016/j.comnet.2024.110239_b14) 2003; 11 Yin (10.1016/j.comnet.2024.110239_b3) 2015; 45 Liu (10.1016/j.comnet.2024.110239_b6) 2007; 15 10.1016/j.comnet.2024.110239_b29 Etengu (10.1016/j.comnet.2024.110239_b34) 2020; 8 10.1016/j.comnet.2024.110239_b27 10.1016/j.comnet.2024.110239_b25 Spiteri (10.1016/j.comnet.2024.110239_b4) 2020; 28 McMahan (10.1016/j.comnet.2024.110239_b19) 2023 Ferriol-Galmés (10.1016/j.comnet.2024.110239_b41) 2022; 217 Koenker (10.1016/j.comnet.2024.110239_b16) 1978; 46 10.1016/j.comnet.2024.110239_b24 |
References_xml | – volume: 144 start-page: 18 year: 2019 end-page: 30 ident: b26 article-title: Machine learning for measurement-based bandwidth estimation publication-title: Comput. Commun. contributor: fullname: Rosenhahn – volume: 12 start-page: 1 year: 1964 end-page: 9 ident: b35 article-title: On distributed communications networks publication-title: IEEE Trans. Commun. Syst. contributor: fullname: Baran – volume: 8 start-page: 166384 year: 2020 end-page: 166441 ident: b34 article-title: AI-assisted framework for green-routing and load balancing in hybrid software-defined networking: Proposal, challenges and future perspective publication-title: IEEE Access contributor: fullname: Chuah – year: 2005 ident: b1 publication-title: Quantile Regression contributor: fullname: Jackson – volume: 28 start-page: 1698 year: 2020 end-page: 1711 ident: b4 article-title: BOLA: Near-optimal bitrate adaptation for online videos publication-title: IEEE/ACM Trans. Netw. contributor: fullname: Sitaraman – volume: vol. 5425 start-page: 53 year: 2008 end-page: 61 ident: b9 article-title: On the identifiability of link service curves from end-host measurements publication-title: Network Control and Optimization, Euro-NF Workshop, NET-COOP contributor: fullname: Fidler – volume: 38 start-page: 2260 year: 2020 end-page: 2270 ident: b40 article-title: RouteNet: Leveraging Graph Neural Networks for Network Modeling and Optimization in SDN publication-title: IEEE J. Sel. Areas Commun. contributor: fullname: Cabellos-Aparicio – start-page: 205 year: 2002 end-page: 214 ident: b36 article-title: A new path selection algorithm for MPLS networks based on available bandwidth estimation publication-title: International Workshop on Quality of Future Internet Services contributor: fullname: Sciuto – volume: 19 start-page: 299 year: 2000 end-page: 311 ident: b2 article-title: A quantile regression neural network approach to estimating the conditional density of multiperiod returns publication-title: J. Forecast. contributor: fullname: Taylor – volume: 22 start-page: 484 year: 2014 end-page: 497 ident: b8 article-title: Stochastic bandwidth estimation in networks with random service publication-title: IEEE/ACM Trans. Netw. contributor: fullname: Liebeherr – year: 2020 ident: b12 article-title: 3Rd generation partnership project; technical specification group services and system aspects; architecture enhancements for 5G system (5GS) to support network data analytics services (release 16): TS23. 288 V16. 4.0 contributor: fullname: 3GPP – volume: 16 start-page: 130 year: 2008 end-page: 143 ident: b7 article-title: A stochastic foundation of available bandwidth estimation: Multi-hop analysis publication-title: IEEE/ACM Trans. Netw. contributor: fullname: Loguinov – volume: 44 start-page: 479 year: 2014 end-page: 490 ident: b33 article-title: An experimental study of the learnability of congestion control publication-title: SIGCOMM Comput. Commun. Rev. contributor: fullname: Balakrishnan – volume: 15 start-page: 918 year: 2007 end-page: 931 ident: b6 article-title: A queueing-theoretic foundation of available bandwidth estimation: Single-hop analysis publication-title: IEEE/ACM Trans. Netw. contributor: fullname: Loguinov – year: 2023 ident: b19 article-title: Communication-efficient learning of deep networks from decentralized data contributor: fullname: y Arcas – volume: 9 year: 2018 ident: b20 article-title: A comprehensive survey on machine learning for networking: evolution, applications and research opportunities publication-title: J. Internet Serv. Appl. contributor: fullname: Caicedo – volume: 14 start-page: 1 year: 2018 end-page: 25 ident: b37 article-title: SABR: Network-assisted content distribution for Qoe-driven ABR video streaming publication-title: ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) contributor: fullname: Steinmetz – volume: 217 year: 2022 ident: b41 article-title: Building a digital twin for network optimization using graph neural networks publication-title: Comput. Netw. contributor: fullname: Cabellos-Aparicio – volume: 3 start-page: 703 year: 2017 end-page: 718 ident: b23 article-title: D-DASH: A Deep Q-Learning Framework for DASH Video Streaming publication-title: IEEE Transactions on Cognitive Communications and Networking contributor: fullname: Zanella – volume: 45 start-page: 325 year: 2015 end-page: 338 ident: b3 article-title: A control-theoretic approach for dynamic adaptive video streaming over HTTP publication-title: SIGCOMM Comput. Commun. Rev. contributor: fullname: Sinopoli – volume: 11 start-page: 537 year: 2003 end-page: 549 ident: b14 article-title: End-to-end available bandwidth: measurement methodology, dynamics, and relation with TCP throughput publication-title: IEEE/ACM Trans. Netw. contributor: fullname: Dovrolis – volume: 46 start-page: 33 year: 1978 end-page: 50 ident: b16 article-title: Regression quantiles publication-title: Econometrica contributor: fullname: Bassett – year: 2022 ident: b18 article-title: Flower: A friendly federated learning research framework contributor: fullname: Lane – volume: 170 start-page: 177 year: 2021 end-page: 189 ident: b28 article-title: Online available bandwidth estimation using multiclass supervised learning techniques publication-title: Comput. Commun. contributor: fullname: Akin – start-page: 92 year: 2015 end-page: 105 ident: b15 article-title: A guide to the stochastic network calculus 17(1) contributor: fullname: Rizk – start-page: 2224 year: 2019 end-page: 2287 ident: b21 article-title: Deep learning in mobile and wireless networking: A survey 21(3) contributor: fullname: Haddadi – volume: 18 year: 2018 ident: b17 article-title: Hyperband: A novel bandit-based approach to hyperparameter optimization publication-title: J. Mach. Learn. Res. contributor: fullname: Talwalkar – volume: vol. 5425 start-page: 53 year: 2008 ident: 10.1016/j.comnet.2024.110239_b9 article-title: On the identifiability of link service curves from end-host measurements contributor: fullname: Rizk – ident: 10.1016/j.comnet.2024.110239_b29 doi: 10.1109/VTC2021-Spring51267.2021.9448806 – ident: 10.1016/j.comnet.2024.110239_b10 – ident: 10.1016/j.comnet.2024.110239_b27 doi: 10.1109/ITC31.2019.00022 – ident: 10.1016/j.comnet.2024.110239_b31 doi: 10.1145/3229543.3229549 – volume: 45 start-page: 325 issue: 4 year: 2015 ident: 10.1016/j.comnet.2024.110239_b3 article-title: A control-theoretic approach for dynamic adaptive video streaming over HTTP publication-title: SIGCOMM Comput. Commun. Rev. doi: 10.1145/2829988.2787486 contributor: fullname: Yin – volume: 3 start-page: 703 issue: 4 year: 2017 ident: 10.1016/j.comnet.2024.110239_b23 article-title: D-DASH: A Deep Q-Learning Framework for DASH Video Streaming publication-title: IEEE Transactions on Cognitive Communications and Networking doi: 10.1109/TCCN.2017.2755007 contributor: fullname: Gadaleta – volume: 28 start-page: 1698 issue: 4 year: 2020 ident: 10.1016/j.comnet.2024.110239_b4 article-title: BOLA: Near-optimal bitrate adaptation for online videos publication-title: IEEE/ACM Trans. Netw. doi: 10.1109/TNET.2020.2996964 contributor: fullname: Spiteri – ident: 10.1016/j.comnet.2024.110239_b13 doi: 10.1145/637246.637247 – volume: 11 start-page: 537 issue: 4 year: 2003 ident: 10.1016/j.comnet.2024.110239_b14 article-title: End-to-end available bandwidth: measurement methodology, dynamics, and relation with TCP throughput publication-title: IEEE/ACM Trans. Netw. doi: 10.1109/TNET.2003.815304 contributor: fullname: Jain – start-page: 92 year: 2015 ident: 10.1016/j.comnet.2024.110239_b15 contributor: fullname: Fidler – ident: 10.1016/j.comnet.2024.110239_b24 – ident: 10.1016/j.comnet.2024.110239_b42 doi: 10.1145/3565473.3569190 – volume: 8 start-page: 166384 year: 2020 ident: 10.1016/j.comnet.2024.110239_b34 article-title: AI-assisted framework for green-routing and load balancing in hybrid software-defined networking: Proposal, challenges and future perspective publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3022291 contributor: fullname: Etengu – volume: 22 start-page: 484 issue: 2 year: 2014 ident: 10.1016/j.comnet.2024.110239_b8 article-title: Stochastic bandwidth estimation in networks with random service publication-title: IEEE/ACM Trans. Netw. doi: 10.1109/TNET.2013.2261914 contributor: fullname: Lübben – volume: 46 start-page: 33 issue: 1 year: 1978 ident: 10.1016/j.comnet.2024.110239_b16 article-title: Regression quantiles publication-title: Econometrica doi: 10.2307/1913643 contributor: fullname: Koenker – volume: 15 start-page: 918 issue: 4 year: 2007 ident: 10.1016/j.comnet.2024.110239_b6 article-title: A queueing-theoretic foundation of available bandwidth estimation: Single-hop analysis publication-title: IEEE/ACM Trans. Netw. doi: 10.1109/TNET.2007.896235 contributor: fullname: Liu – start-page: 2224 year: 2019 ident: 10.1016/j.comnet.2024.110239_b21 contributor: fullname: Zhang – volume: 38 start-page: 2260 issue: 10 year: 2020 ident: 10.1016/j.comnet.2024.110239_b40 article-title: RouteNet: Leveraging Graph Neural Networks for Network Modeling and Optimization in SDN publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2020.3000405 contributor: fullname: Rusek – year: 2022 ident: 10.1016/j.comnet.2024.110239_b18 contributor: fullname: Beutel – start-page: 205 year: 2002 ident: 10.1016/j.comnet.2024.110239_b36 article-title: A new path selection algorithm for MPLS networks based on available bandwidth estimation contributor: fullname: Anjali – ident: 10.1016/j.comnet.2024.110239_b25 doi: 10.1145/3326285.3329038 – volume: 144 start-page: 18 year: 2019 ident: 10.1016/j.comnet.2024.110239_b26 article-title: Machine learning for measurement-based bandwidth estimation publication-title: Comput. Commun. doi: 10.1016/j.comcom.2019.05.005 contributor: fullname: Khangura – ident: 10.1016/j.comnet.2024.110239_b38 – ident: 10.1016/j.comnet.2024.110239_b32 – volume: 16 start-page: 130 issue: 1 year: 2008 ident: 10.1016/j.comnet.2024.110239_b7 article-title: A stochastic foundation of available bandwidth estimation: Multi-hop analysis publication-title: IEEE/ACM Trans. Netw. doi: 10.1109/TNET.2007.899014 contributor: fullname: Liu – ident: 10.1016/j.comnet.2024.110239_b22 doi: 10.1145/3098822.3098843 – year: 2023 ident: 10.1016/j.comnet.2024.110239_b19 contributor: fullname: McMahan – ident: 10.1016/j.comnet.2024.110239_b30 doi: 10.1109/ICC42927.2021.9500495 – volume: 12 start-page: 1 issue: 1 year: 1964 ident: 10.1016/j.comnet.2024.110239_b35 article-title: On distributed communications networks publication-title: IEEE Trans. Commun. Syst. doi: 10.1109/TCOM.1964.1088883 contributor: fullname: Baran – year: 2020 ident: 10.1016/j.comnet.2024.110239_b12 contributor: fullname: 3GPP – volume: 9 issue: 1 year: 2018 ident: 10.1016/j.comnet.2024.110239_b20 article-title: A comprehensive survey on machine learning for networking: evolution, applications and research opportunities publication-title: J. Internet Serv. Appl. doi: 10.1186/s13174-018-0087-2 contributor: fullname: Boutaba – ident: 10.1016/j.comnet.2024.110239_b39 doi: 10.1145/3229607.3229613 – volume: 217 year: 2022 ident: 10.1016/j.comnet.2024.110239_b41 article-title: Building a digital twin for network optimization using graph neural networks publication-title: Comput. Netw. doi: 10.1016/j.comnet.2022.109329 contributor: fullname: Ferriol-Galmés – ident: 10.1016/j.comnet.2024.110239_b5 – volume: 170 start-page: 177 year: 2021 ident: 10.1016/j.comnet.2024.110239_b28 article-title: Online available bandwidth estimation using multiclass supervised learning techniques publication-title: Comput. Commun. doi: 10.1016/j.comcom.2021.02.009 contributor: fullname: Khangura – volume: 18 issue: 185 year: 2018 ident: 10.1016/j.comnet.2024.110239_b17 article-title: Hyperband: A novel bandit-based approach to hyperparameter optimization publication-title: J. Mach. Learn. Res. contributor: fullname: Li – year: 2005 ident: 10.1016/j.comnet.2024.110239_b1 contributor: fullname: Koenker – volume: 44 start-page: 479 issue: 4 year: 2014 ident: 10.1016/j.comnet.2024.110239_b33 article-title: An experimental study of the learnability of congestion control publication-title: SIGCOMM Comput. Commun. Rev. doi: 10.1145/2740070.2626324 contributor: fullname: Sivaraman – volume: 14 start-page: 1 issue: 2s year: 2018 ident: 10.1016/j.comnet.2024.110239_b37 article-title: SABR: Network-assisted content distribution for Qoe-driven ABR video streaming publication-title: ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) doi: 10.1145/3183516 contributor: fullname: Bhat – volume: 19 start-page: 299 issue: 4 year: 2000 ident: 10.1016/j.comnet.2024.110239_b2 article-title: A quantile regression neural network approach to estimating the conditional density of multiperiod returns publication-title: J. Forecast. doi: 10.1002/1099-131X(200007)19:4<299::AID-FOR775>3.0.CO;2-V contributor: fullname: Taylor – ident: 10.1016/j.comnet.2024.110239_b11 doi: 10.1109/ICC45041.2023.10279762 |
SSID | ssj0004428 |
Score | 2.4625404 |
Snippet | QoS forecasting for cellular vehicular communications allows cooperative, connected and automated mobility applications to tailor their behavior to the... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 110239 |
SubjectTerms | 5G measurements Federated learning Predictive QoS Vehicular communications |
Title | A federated learning approach to QoS forecasting in cellular vehicular communications: Approaches and empirical evidence |
URI | https://dx.doi.org/10.1016/j.comnet.2024.110239 |
Volume | 242 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXvQg_sSfIwevcW2WZqu3MhzT4UDncLeSpC9awW64Kp78203SFCeIB08lJQnlJXnva_u99yF0ZmJWJrOeIipgjLBIh0Qy7VRTI5qZkK-dNuDNmA-n7HoWzRqoX-fCWFql9_2VT3fe2t9pe2u2F3nenrhfbNQmOLhAaZP4mAl_Zk-ff37TPBhz-qq2M7G96_Q5x_EycxdgGZWUWT48tZLhv4WnlZAz2EKbHivipHqcbdSAYgdtrFQQ3EUfCda2HIRBjBn2ChCPuC4Ujss5vp1PsAGmoMTSMpxxXmD7sd6yT_E7POWOh4rVap7I8gInfgZYYlFkGF4WuaslgsGrkO6h6eDyvj8kXkyBKPPWUBIeUbNcQRbEQEXIBQjjByHgkquwY2CCjntKgpYgIugBVeakcpuWFXIunCPYR81iXsABwgYhRhB2GDfQiUkdCxqoIBZcxoGO4qx7iEhtw3RR1cxIazLZc1rZPLU2TyubH6Jubej0x9qnxq3_OfLo3yOP0bptVRycE9QsX9_g1MCLUrbc_mmhteRqNBzb6-juYfQF-xPSCw |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4QD-rB-DPizx68VrbRFeaNEAkqkBgg4da03avOxEEEjSf_dtuui5gYD163tVleu-992773PoQuTc5KZdpSRAWUEhrrkEiqnWtqHKUm5WvnDTgYst6E3k3jaQV1yloYK6v02F9gukNrf6Tuo1mfZ1l95H6xRbbAwSXKZA2tU8uPzaa--vzWeVDqDFbt1cReXtbPOZGXmTwHK6mMqBXER9Yz_Lf8tJJzujto25NF3C7uZxdVIN9DWystBPfRRxtr2w_CUMYUewuIR1x2CsfLGX6YjbBhpqDEwkqccZZj-7Xeyk_xOzxlToiK1WqhyOIat_0MsMAiTzG8zDPXTASDtyE9QJPuzbjTI95NgSjz2rAkLI7MegVpkEAkQiZAGCCEgEmmwobhCTppKQlagoihBZEyjyqzdVkhY8IhwSGq5rMcjhA2FDGGsEGZ4U5U6kREgQoSwWQS6DhJmzVEyhjyedE0g5dqsmdexJzbmPMi5jXULAPNfyw-N7j-58jjf4-8QBu98aDP-7fD-xO0ac8UgpxTVF2-vsGZ4RpLee720hd609IB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+federated+learning+approach+to+QoS+forecasting+in+cellular+vehicular+communications%3A+Approaches+and+empirical+evidence&rft.jtitle=Computer+networks+%28Amsterdam%2C+Netherlands+%3A+1999%29&rft.au=Baganal-Krishna%2C+Nehal&rft.au=L%C3%BCbben%2C+Ralf&rft.au=Liotou%2C+Eirini&rft.au=Katsaros%2C+Konstantinos+V.&rft.date=2024-04-01&rft.pub=Elsevier+B.V&rft.issn=1389-1286&rft.eissn=1872-7069&rft.volume=242&rft_id=info:doi/10.1016%2Fj.comnet.2024.110239&rft.externalDocID=S1389128624000719 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-1286&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-1286&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-1286&client=summon |