A federated learning approach to QoS forecasting in cellular vehicular communications: Approaches and empirical evidence

QoS forecasting for cellular vehicular communications allows cooperative, connected and automated mobility applications to tailor their behavior to the expected communication conditions on the road. In a nutshell, vehicles may, for example, execute cooperative maneuvers if the communication quality...

Full description

Saved in:
Bibliographic Details
Published inComputer networks (Amsterdam, Netherlands : 1999) Vol. 242; p. 110239
Main Authors Baganal-Krishna, Nehal, Lübben, Ralf, Liotou, Eirini, Katsaros, Konstantinos V., Rizk, Amr
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract QoS forecasting for cellular vehicular communications allows cooperative, connected and automated mobility applications to tailor their behavior to the expected communication conditions on the road. In a nutshell, vehicles may, for example, execute cooperative maneuvers if the communication quality of service is only above a certain quantitative level whereas if not they revert to the individual autonomous mode. In this paper, we propose and show empirical methods for estimating packet-based QoS metrics obtained from 5G network measurements with a direct application to vehicular applications. As many distributed vehicular applications possess strict QoS requirements, we focus here on bounding packet-based statistical QoS quantiles, specifically for latency and loss. Our approach is based on training regression neural networks in a federated learning fashion and show that it can obtain predictions on par with centralized training without the vehicles needing to transmit raw measurement data. In contrast to QoS prediction using physical layer information, we briefly discuss the embedding of such much simpler application-level service within the 5G architecture. We also validate our approach through recovering classical closed-form delay quantiles that are obtained from analytical models of simple queueing systems. We show that our approach goes beyond these simple models in that it provides quantile estimates for the complex scenario of cellular vehicle communications and under different application traffic patterns including empirical data traffic traces as well as 5G testbed measurements.
AbstractList QoS forecasting for cellular vehicular communications allows cooperative, connected and automated mobility applications to tailor their behavior to the expected communication conditions on the road. In a nutshell, vehicles may, for example, execute cooperative maneuvers if the communication quality of service is only above a certain quantitative level whereas if not they revert to the individual autonomous mode. In this paper, we propose and show empirical methods for estimating packet-based QoS metrics obtained from 5G network measurements with a direct application to vehicular applications. As many distributed vehicular applications possess strict QoS requirements, we focus here on bounding packet-based statistical QoS quantiles, specifically for latency and loss. Our approach is based on training regression neural networks in a federated learning fashion and show that it can obtain predictions on par with centralized training without the vehicles needing to transmit raw measurement data. In contrast to QoS prediction using physical layer information, we briefly discuss the embedding of such much simpler application-level service within the 5G architecture. We also validate our approach through recovering classical closed-form delay quantiles that are obtained from analytical models of simple queueing systems. We show that our approach goes beyond these simple models in that it provides quantile estimates for the complex scenario of cellular vehicle communications and under different application traffic patterns including empirical data traffic traces as well as 5G testbed measurements.
ArticleNumber 110239
Author Liotou, Eirini
Katsaros, Konstantinos V.
Lübben, Ralf
Rizk, Amr
Baganal-Krishna, Nehal
Author_xml – sequence: 1
  givenname: Nehal
  orcidid: 0000-0002-9099-1754
  surname: Baganal-Krishna
  fullname: Baganal-Krishna, Nehal
  organization: University of Ulm, Germany
– sequence: 2
  givenname: Ralf
  orcidid: 0000-0003-0671-463X
  surname: Lübben
  fullname: Lübben, Ralf
  organization: Flensburg University of Applied Sciences, Germany
– sequence: 3
  givenname: Eirini
  surname: Liotou
  fullname: Liotou, Eirini
  organization: Institute of Communications and Computer Systems (ICCS), Greece
– sequence: 4
  givenname: Konstantinos V.
  surname: Katsaros
  fullname: Katsaros, Konstantinos V.
  organization: Institute of Communications and Computer Systems (ICCS), Greece
– sequence: 5
  givenname: Amr
  orcidid: 0000-0002-9385-7729
  surname: Rizk
  fullname: Rizk, Amr
  email: rizk@ieee.org
  organization: University of Duisburg–Essen, Germany
BookMark eNp9kM1KxDAcxIOs4O7qG3jIC7QmaZumHoRl8QsWRNRzSNN_3SxtUpLsom9vaz17moFhhuG3QgvrLCB0TUlKCeU3h1S73kJMGWF5SilhWXWGllSULCkJrxajz0SVUCb4BVqFcCCE5DkTS_S1wS004FWEBnegvDX2E6th8E7pPY4Ov7o33DoPWoU4ZcZiDV137JTHJ9gb_evGA_3RGq2icTbc4s3fAgSsbIOhH4wf0w7DyTRgNVyi81Z1Aa7-dI0-Hu7ft0_J7uXxebvZJZoVRUx4wWrQpCEVMEW5AiVKDoTXXNOsFKythK6hrUEVIIBpQktOcy4o54pkpMzWKJ93tXcheGjl4E2v_LekRE705EHO9ORET870xtrdXIPx28mAl0Gb6XdjRhRRNs78P_ADfOZ-vA
Cites_doi 10.1109/VTC2021-Spring51267.2021.9448806
10.1109/ITC31.2019.00022
10.1145/3229543.3229549
10.1145/2829988.2787486
10.1109/TCCN.2017.2755007
10.1109/TNET.2020.2996964
10.1145/637246.637247
10.1109/TNET.2003.815304
10.1145/3565473.3569190
10.1109/ACCESS.2020.3022291
10.1109/TNET.2013.2261914
10.2307/1913643
10.1109/TNET.2007.896235
10.1109/JSAC.2020.3000405
10.1145/3326285.3329038
10.1016/j.comcom.2019.05.005
10.1109/TNET.2007.899014
10.1145/3098822.3098843
10.1109/ICC42927.2021.9500495
10.1109/TCOM.1964.1088883
10.1186/s13174-018-0087-2
10.1145/3229607.3229613
10.1016/j.comnet.2022.109329
10.1016/j.comcom.2021.02.009
10.1145/2740070.2626324
10.1145/3183516
10.1002/1099-131X(200007)19:4<299::AID-FOR775>3.0.CO;2-V
10.1109/ICC45041.2023.10279762
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.comnet.2024.110239
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-7069
ExternalDocumentID 10_1016_j_comnet_2024_110239
S1389128624000719
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6I.
6OB
7-5
71M
77K
8P~
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMYL
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
XFK
ZMT
ZY4
~G-
AAXKI
AAYXX
AFJKZ
CITATION
ID FETCH-LOGICAL-c255t-652bec0d09e2a16aea876e06b6c13782f98cbefbea5e8e2c01761468166a03073
IEDL.DBID .~1
ISSN 1389-1286
IngestDate Thu Sep 26 18:20:05 EDT 2024
Sat Mar 23 16:29:20 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Federated learning
Vehicular communications
5G measurements
Predictive QoS
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c255t-652bec0d09e2a16aea876e06b6c13782f98cbefbea5e8e2c01761468166a03073
ORCID 0000-0002-9099-1754
0000-0002-9385-7729
0000-0003-0671-463X
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1389128624000719
ParticipantIDs crossref_primary_10_1016_j_comnet_2024_110239
elsevier_sciencedirect_doi_10_1016_j_comnet_2024_110239
PublicationCentury 2000
PublicationDate April 2024
2024-04-00
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: April 2024
PublicationDecade 2020
PublicationTitle Computer networks (Amsterdam, Netherlands : 1999)
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sivaraman, Winstein, Thaker, Balakrishnan (b33) 2014; 44
C. Rattaro, P. Belzarena, Throughput prediction in wireless networks using statistical learning, in: LAWDN-Latin-American Workshop on Dynamic Networks, 2010, pp. 4–p.
M. Dong, T. Meng, D. Zarchy, E. Arslan, Y. Gilad, B. Godfrey, M. Schapira, PCC Vivace: Online-Learning Congestion Control, in: Proc. USENIX NSDI, 2018, pp. 343–356.
Spiteri, Urgaonkar, Sitaraman (b4) 2020; 28
D. Schäufele, M. Kasparick, J. Schwardmann, J. Morgenroth, S. Stańczak, Terminal-Side Data Rate Prediction For High-Mobility Users, in: Proc. IEEE VTC, 2021.
F.Y. Yan, H. Ayers, C. Zhu, S. Fouladi, J. Hong, K. Zhang, P. Levis, K. Winstein, Learning in situ: a randomized experiment in video streaming, in: Proc. USENIX NSDI, 2020, pp. 495–511.
C. Qiao, G. Li, J. Wang, Y. Liu, NEIVA: Environment Identification based Video Bitrate Adaption in Cellular Networks, in: Proc. IEEE/ACM IWQoS, 2019.
3GPP (b12) 2020
Boutaba, Salahuddin, Limam, Ayoubi, Shahriar, Estrada-Solano, Caicedo (b20) 2018; 9
A. Mestres, E. Alarcón, Y. Ji, A. Cabellos-Aparicio, Understanding the Modeling of Computer Network Delays Using Neural Networks, in: Proc. ACM Big-DAMA Workshop, 2018, pp. 46–52.
Liu, Ravindran, Loguinov (b7) 2008; 16
Etengu, Tan, Kwang, Abbou, Chuah (b34) 2020; 8
Lübben, Fidler, Liebeherr (b8) 2014; 22
D.F. Külzer, F. Debbichi, S. Stańczak, M. Botsov, On Latency Prediction with Deep Learning and Passive Probing at High Mobility, in: Proc. IEEE ICC, 2021.
H. Mao, R. Netravali, M. Alizadeh, Neural Adaptive Video Streaming with Pensieve, in: Proc. ACM SIGCOMM, 2017, pp. 197–210.
K. Winstein, A. Sivaraman, H. Balakrishnan, Stochastic Forecasts Achieve High Throughput and Low Delay over Cellular Networks, in: Proc. USENIX NSDI, 2013, pp. 459–471.
Jain, Dovrolis (b14) 2003; 11
Li, Jamieson, DeSalvo, Rostamizadeh, Talwalkar (b17) 2018; 18
Koenker, Bassett (b16) 1978; 46
McMahan, Moore, Ramage, Hampson, y Arcas (b19) 2023
B. Jaeger, M. Helm, L. Schwegmann, G. Carle, Modeling TCP Performance Using Graph Neural Networks, in: Proc. ACM Workshop on Graph Neural Networking, GNNet, 2022, pp. 18–23.
R. Lübben, A. Rizk, TAILING: Tail Distribution Forecasting of Packet Delays Using Quantile Regression Neural Networks, in: IEEE International Conference on Communications (ICC), 2023, pp. 377–383.
Yin, Jindal, Sekar, Sinopoli (b3) 2015; 45
Khangura, Akin (b28) 2021; 170
Taylor (b2) 2000; 19
Beutel, Topal, Mathur, Qiu, Fernandez-Marques, Gao, Sani, Li, Parcollet, de Gusmão, Lane (b18) 2022
Liu, Ravindran, Loguinov (b6) 2007; 15
S. Xiao, D. He, Z. Gong, Deep-Q: Traffic-Driven QoS Inference Using Deep Generative Network, in: Proc. ACM Workshop NetAI, 2018, pp. 67–73.
Zhang, Patras, Haddadi (b21) 2019
A. Pásztor, D. Veitch, Active probing using packet quartets, in: Proceedings of the 2nd ACM SIGCOMM Internet Measurement Workshop, 2002, pp. 293–305.
S.K. Khangura, S. Akin, Measurement-Based Online Available Bandwidth Estimation Employing Reinforcement Learning, in: Proc. IEEE ITC, 2019, pp. 95–103.
Gadaleta, Chiariotti, Rossi, Zanella (b23) 2017; 3
Khangura, Fidler, Rosenhahn (b26) 2019; 144
Ferriol-Galmés, Suárez-Varela, Paillissé, Shi, Xiao, Cheng, Barlet-Ros, Cabellos-Aparicio (b41) 2022; 217
.
Anjali, Scoglio, De Oliveira, Chen, Akyildiz, Smith, Uhl, Sciuto (b36) 2002
Bhat, Rizk, Zink, Steinmetz (b37) 2018; 14
Baran (b35) 1964; 12
Koenker, Chesher, Jackson (b1) 2005
Rizk, Fidler (b9) 2008; vol. 5425
Fidler, Rizk (b15) 2015
Rusek, Suárez-Varela, Almasan, Barlet-Ros, Cabellos-Aparicio (b40) 2020; 38
Measurement Lab, The M-Lab NDT Data Set.
Koenker (10.1016/j.comnet.2024.110239_b1) 2005
Baran (10.1016/j.comnet.2024.110239_b35) 1964; 12
Zhang (10.1016/j.comnet.2024.110239_b21) 2019
Bhat (10.1016/j.comnet.2024.110239_b37) 2018; 14
Li (10.1016/j.comnet.2024.110239_b17) 2018; 18
Liu (10.1016/j.comnet.2024.110239_b7) 2008; 16
3GPP (10.1016/j.comnet.2024.110239_b12) 2020
Rusek (10.1016/j.comnet.2024.110239_b40) 2020; 38
10.1016/j.comnet.2024.110239_b10
10.1016/j.comnet.2024.110239_b32
10.1016/j.comnet.2024.110239_b11
10.1016/j.comnet.2024.110239_b30
Khangura (10.1016/j.comnet.2024.110239_b26) 2019; 144
10.1016/j.comnet.2024.110239_b31
10.1016/j.comnet.2024.110239_b38
10.1016/j.comnet.2024.110239_b39
Beutel (10.1016/j.comnet.2024.110239_b18) 2022
Khangura (10.1016/j.comnet.2024.110239_b28) 2021; 170
Fidler (10.1016/j.comnet.2024.110239_b15) 2015
10.1016/j.comnet.2024.110239_b5
10.1016/j.comnet.2024.110239_b13
Anjali (10.1016/j.comnet.2024.110239_b36) 2002
Boutaba (10.1016/j.comnet.2024.110239_b20) 2018; 9
Rizk (10.1016/j.comnet.2024.110239_b9) 2008; vol. 5425
Sivaraman (10.1016/j.comnet.2024.110239_b33) 2014; 44
Gadaleta (10.1016/j.comnet.2024.110239_b23) 2017; 3
Lübben (10.1016/j.comnet.2024.110239_b8) 2014; 22
10.1016/j.comnet.2024.110239_b22
Taylor (10.1016/j.comnet.2024.110239_b2) 2000; 19
10.1016/j.comnet.2024.110239_b42
Jain (10.1016/j.comnet.2024.110239_b14) 2003; 11
Yin (10.1016/j.comnet.2024.110239_b3) 2015; 45
Liu (10.1016/j.comnet.2024.110239_b6) 2007; 15
10.1016/j.comnet.2024.110239_b29
Etengu (10.1016/j.comnet.2024.110239_b34) 2020; 8
10.1016/j.comnet.2024.110239_b27
10.1016/j.comnet.2024.110239_b25
Spiteri (10.1016/j.comnet.2024.110239_b4) 2020; 28
McMahan (10.1016/j.comnet.2024.110239_b19) 2023
Ferriol-Galmés (10.1016/j.comnet.2024.110239_b41) 2022; 217
Koenker (10.1016/j.comnet.2024.110239_b16) 1978; 46
10.1016/j.comnet.2024.110239_b24
References_xml – volume: 144
  start-page: 18
  year: 2019
  end-page: 30
  ident: b26
  article-title: Machine learning for measurement-based bandwidth estimation
  publication-title: Comput. Commun.
  contributor:
    fullname: Rosenhahn
– volume: 12
  start-page: 1
  year: 1964
  end-page: 9
  ident: b35
  article-title: On distributed communications networks
  publication-title: IEEE Trans. Commun. Syst.
  contributor:
    fullname: Baran
– volume: 8
  start-page: 166384
  year: 2020
  end-page: 166441
  ident: b34
  article-title: AI-assisted framework for green-routing and load balancing in hybrid software-defined networking: Proposal, challenges and future perspective
  publication-title: IEEE Access
  contributor:
    fullname: Chuah
– year: 2005
  ident: b1
  publication-title: Quantile Regression
  contributor:
    fullname: Jackson
– volume: 28
  start-page: 1698
  year: 2020
  end-page: 1711
  ident: b4
  article-title: BOLA: Near-optimal bitrate adaptation for online videos
  publication-title: IEEE/ACM Trans. Netw.
  contributor:
    fullname: Sitaraman
– volume: vol. 5425
  start-page: 53
  year: 2008
  end-page: 61
  ident: b9
  article-title: On the identifiability of link service curves from end-host measurements
  publication-title: Network Control and Optimization, Euro-NF Workshop, NET-COOP
  contributor:
    fullname: Fidler
– volume: 38
  start-page: 2260
  year: 2020
  end-page: 2270
  ident: b40
  article-title: RouteNet: Leveraging Graph Neural Networks for Network Modeling and Optimization in SDN
  publication-title: IEEE J. Sel. Areas Commun.
  contributor:
    fullname: Cabellos-Aparicio
– start-page: 205
  year: 2002
  end-page: 214
  ident: b36
  article-title: A new path selection algorithm for MPLS networks based on available bandwidth estimation
  publication-title: International Workshop on Quality of Future Internet Services
  contributor:
    fullname: Sciuto
– volume: 19
  start-page: 299
  year: 2000
  end-page: 311
  ident: b2
  article-title: A quantile regression neural network approach to estimating the conditional density of multiperiod returns
  publication-title: J. Forecast.
  contributor:
    fullname: Taylor
– volume: 22
  start-page: 484
  year: 2014
  end-page: 497
  ident: b8
  article-title: Stochastic bandwidth estimation in networks with random service
  publication-title: IEEE/ACM Trans. Netw.
  contributor:
    fullname: Liebeherr
– year: 2020
  ident: b12
  article-title: 3Rd generation partnership project; technical specification group services and system aspects; architecture enhancements for 5G system (5GS) to support network data analytics services (release 16): TS23. 288 V16. 4.0
  contributor:
    fullname: 3GPP
– volume: 16
  start-page: 130
  year: 2008
  end-page: 143
  ident: b7
  article-title: A stochastic foundation of available bandwidth estimation: Multi-hop analysis
  publication-title: IEEE/ACM Trans. Netw.
  contributor:
    fullname: Loguinov
– volume: 44
  start-page: 479
  year: 2014
  end-page: 490
  ident: b33
  article-title: An experimental study of the learnability of congestion control
  publication-title: SIGCOMM Comput. Commun. Rev.
  contributor:
    fullname: Balakrishnan
– volume: 15
  start-page: 918
  year: 2007
  end-page: 931
  ident: b6
  article-title: A queueing-theoretic foundation of available bandwidth estimation: Single-hop analysis
  publication-title: IEEE/ACM Trans. Netw.
  contributor:
    fullname: Loguinov
– year: 2023
  ident: b19
  article-title: Communication-efficient learning of deep networks from decentralized data
  contributor:
    fullname: y Arcas
– volume: 9
  year: 2018
  ident: b20
  article-title: A comprehensive survey on machine learning for networking: evolution, applications and research opportunities
  publication-title: J. Internet Serv. Appl.
  contributor:
    fullname: Caicedo
– volume: 14
  start-page: 1
  year: 2018
  end-page: 25
  ident: b37
  article-title: SABR: Network-assisted content distribution for Qoe-driven ABR video streaming
  publication-title: ACM Trans. Multimedia Comput. Commun. Appl. (TOMM)
  contributor:
    fullname: Steinmetz
– volume: 217
  year: 2022
  ident: b41
  article-title: Building a digital twin for network optimization using graph neural networks
  publication-title: Comput. Netw.
  contributor:
    fullname: Cabellos-Aparicio
– volume: 3
  start-page: 703
  year: 2017
  end-page: 718
  ident: b23
  article-title: D-DASH: A Deep Q-Learning Framework for DASH Video Streaming
  publication-title: IEEE Transactions on Cognitive Communications and Networking
  contributor:
    fullname: Zanella
– volume: 45
  start-page: 325
  year: 2015
  end-page: 338
  ident: b3
  article-title: A control-theoretic approach for dynamic adaptive video streaming over HTTP
  publication-title: SIGCOMM Comput. Commun. Rev.
  contributor:
    fullname: Sinopoli
– volume: 11
  start-page: 537
  year: 2003
  end-page: 549
  ident: b14
  article-title: End-to-end available bandwidth: measurement methodology, dynamics, and relation with TCP throughput
  publication-title: IEEE/ACM Trans. Netw.
  contributor:
    fullname: Dovrolis
– volume: 46
  start-page: 33
  year: 1978
  end-page: 50
  ident: b16
  article-title: Regression quantiles
  publication-title: Econometrica
  contributor:
    fullname: Bassett
– year: 2022
  ident: b18
  article-title: Flower: A friendly federated learning research framework
  contributor:
    fullname: Lane
– volume: 170
  start-page: 177
  year: 2021
  end-page: 189
  ident: b28
  article-title: Online available bandwidth estimation using multiclass supervised learning techniques
  publication-title: Comput. Commun.
  contributor:
    fullname: Akin
– start-page: 92
  year: 2015
  end-page: 105
  ident: b15
  article-title: A guide to the stochastic network calculus 17(1)
  contributor:
    fullname: Rizk
– start-page: 2224
  year: 2019
  end-page: 2287
  ident: b21
  article-title: Deep learning in mobile and wireless networking: A survey 21(3)
  contributor:
    fullname: Haddadi
– volume: 18
  year: 2018
  ident: b17
  article-title: Hyperband: A novel bandit-based approach to hyperparameter optimization
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Talwalkar
– volume: vol. 5425
  start-page: 53
  year: 2008
  ident: 10.1016/j.comnet.2024.110239_b9
  article-title: On the identifiability of link service curves from end-host measurements
  contributor:
    fullname: Rizk
– ident: 10.1016/j.comnet.2024.110239_b29
  doi: 10.1109/VTC2021-Spring51267.2021.9448806
– ident: 10.1016/j.comnet.2024.110239_b10
– ident: 10.1016/j.comnet.2024.110239_b27
  doi: 10.1109/ITC31.2019.00022
– ident: 10.1016/j.comnet.2024.110239_b31
  doi: 10.1145/3229543.3229549
– volume: 45
  start-page: 325
  issue: 4
  year: 2015
  ident: 10.1016/j.comnet.2024.110239_b3
  article-title: A control-theoretic approach for dynamic adaptive video streaming over HTTP
  publication-title: SIGCOMM Comput. Commun. Rev.
  doi: 10.1145/2829988.2787486
  contributor:
    fullname: Yin
– volume: 3
  start-page: 703
  issue: 4
  year: 2017
  ident: 10.1016/j.comnet.2024.110239_b23
  article-title: D-DASH: A Deep Q-Learning Framework for DASH Video Streaming
  publication-title: IEEE Transactions on Cognitive Communications and Networking
  doi: 10.1109/TCCN.2017.2755007
  contributor:
    fullname: Gadaleta
– volume: 28
  start-page: 1698
  issue: 4
  year: 2020
  ident: 10.1016/j.comnet.2024.110239_b4
  article-title: BOLA: Near-optimal bitrate adaptation for online videos
  publication-title: IEEE/ACM Trans. Netw.
  doi: 10.1109/TNET.2020.2996964
  contributor:
    fullname: Spiteri
– ident: 10.1016/j.comnet.2024.110239_b13
  doi: 10.1145/637246.637247
– volume: 11
  start-page: 537
  issue: 4
  year: 2003
  ident: 10.1016/j.comnet.2024.110239_b14
  article-title: End-to-end available bandwidth: measurement methodology, dynamics, and relation with TCP throughput
  publication-title: IEEE/ACM Trans. Netw.
  doi: 10.1109/TNET.2003.815304
  contributor:
    fullname: Jain
– start-page: 92
  year: 2015
  ident: 10.1016/j.comnet.2024.110239_b15
  contributor:
    fullname: Fidler
– ident: 10.1016/j.comnet.2024.110239_b24
– ident: 10.1016/j.comnet.2024.110239_b42
  doi: 10.1145/3565473.3569190
– volume: 8
  start-page: 166384
  year: 2020
  ident: 10.1016/j.comnet.2024.110239_b34
  article-title: AI-assisted framework for green-routing and load balancing in hybrid software-defined networking: Proposal, challenges and future perspective
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3022291
  contributor:
    fullname: Etengu
– volume: 22
  start-page: 484
  issue: 2
  year: 2014
  ident: 10.1016/j.comnet.2024.110239_b8
  article-title: Stochastic bandwidth estimation in networks with random service
  publication-title: IEEE/ACM Trans. Netw.
  doi: 10.1109/TNET.2013.2261914
  contributor:
    fullname: Lübben
– volume: 46
  start-page: 33
  issue: 1
  year: 1978
  ident: 10.1016/j.comnet.2024.110239_b16
  article-title: Regression quantiles
  publication-title: Econometrica
  doi: 10.2307/1913643
  contributor:
    fullname: Koenker
– volume: 15
  start-page: 918
  issue: 4
  year: 2007
  ident: 10.1016/j.comnet.2024.110239_b6
  article-title: A queueing-theoretic foundation of available bandwidth estimation: Single-hop analysis
  publication-title: IEEE/ACM Trans. Netw.
  doi: 10.1109/TNET.2007.896235
  contributor:
    fullname: Liu
– start-page: 2224
  year: 2019
  ident: 10.1016/j.comnet.2024.110239_b21
  contributor:
    fullname: Zhang
– volume: 38
  start-page: 2260
  issue: 10
  year: 2020
  ident: 10.1016/j.comnet.2024.110239_b40
  article-title: RouteNet: Leveraging Graph Neural Networks for Network Modeling and Optimization in SDN
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2020.3000405
  contributor:
    fullname: Rusek
– year: 2022
  ident: 10.1016/j.comnet.2024.110239_b18
  contributor:
    fullname: Beutel
– start-page: 205
  year: 2002
  ident: 10.1016/j.comnet.2024.110239_b36
  article-title: A new path selection algorithm for MPLS networks based on available bandwidth estimation
  contributor:
    fullname: Anjali
– ident: 10.1016/j.comnet.2024.110239_b25
  doi: 10.1145/3326285.3329038
– volume: 144
  start-page: 18
  year: 2019
  ident: 10.1016/j.comnet.2024.110239_b26
  article-title: Machine learning for measurement-based bandwidth estimation
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2019.05.005
  contributor:
    fullname: Khangura
– ident: 10.1016/j.comnet.2024.110239_b38
– ident: 10.1016/j.comnet.2024.110239_b32
– volume: 16
  start-page: 130
  issue: 1
  year: 2008
  ident: 10.1016/j.comnet.2024.110239_b7
  article-title: A stochastic foundation of available bandwidth estimation: Multi-hop analysis
  publication-title: IEEE/ACM Trans. Netw.
  doi: 10.1109/TNET.2007.899014
  contributor:
    fullname: Liu
– ident: 10.1016/j.comnet.2024.110239_b22
  doi: 10.1145/3098822.3098843
– year: 2023
  ident: 10.1016/j.comnet.2024.110239_b19
  contributor:
    fullname: McMahan
– ident: 10.1016/j.comnet.2024.110239_b30
  doi: 10.1109/ICC42927.2021.9500495
– volume: 12
  start-page: 1
  issue: 1
  year: 1964
  ident: 10.1016/j.comnet.2024.110239_b35
  article-title: On distributed communications networks
  publication-title: IEEE Trans. Commun. Syst.
  doi: 10.1109/TCOM.1964.1088883
  contributor:
    fullname: Baran
– year: 2020
  ident: 10.1016/j.comnet.2024.110239_b12
  contributor:
    fullname: 3GPP
– volume: 9
  issue: 1
  year: 2018
  ident: 10.1016/j.comnet.2024.110239_b20
  article-title: A comprehensive survey on machine learning for networking: evolution, applications and research opportunities
  publication-title: J. Internet Serv. Appl.
  doi: 10.1186/s13174-018-0087-2
  contributor:
    fullname: Boutaba
– ident: 10.1016/j.comnet.2024.110239_b39
  doi: 10.1145/3229607.3229613
– volume: 217
  year: 2022
  ident: 10.1016/j.comnet.2024.110239_b41
  article-title: Building a digital twin for network optimization using graph neural networks
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2022.109329
  contributor:
    fullname: Ferriol-Galmés
– ident: 10.1016/j.comnet.2024.110239_b5
– volume: 170
  start-page: 177
  year: 2021
  ident: 10.1016/j.comnet.2024.110239_b28
  article-title: Online available bandwidth estimation using multiclass supervised learning techniques
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2021.02.009
  contributor:
    fullname: Khangura
– volume: 18
  issue: 185
  year: 2018
  ident: 10.1016/j.comnet.2024.110239_b17
  article-title: Hyperband: A novel bandit-based approach to hyperparameter optimization
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Li
– year: 2005
  ident: 10.1016/j.comnet.2024.110239_b1
  contributor:
    fullname: Koenker
– volume: 44
  start-page: 479
  issue: 4
  year: 2014
  ident: 10.1016/j.comnet.2024.110239_b33
  article-title: An experimental study of the learnability of congestion control
  publication-title: SIGCOMM Comput. Commun. Rev.
  doi: 10.1145/2740070.2626324
  contributor:
    fullname: Sivaraman
– volume: 14
  start-page: 1
  issue: 2s
  year: 2018
  ident: 10.1016/j.comnet.2024.110239_b37
  article-title: SABR: Network-assisted content distribution for Qoe-driven ABR video streaming
  publication-title: ACM Trans. Multimedia Comput. Commun. Appl. (TOMM)
  doi: 10.1145/3183516
  contributor:
    fullname: Bhat
– volume: 19
  start-page: 299
  issue: 4
  year: 2000
  ident: 10.1016/j.comnet.2024.110239_b2
  article-title: A quantile regression neural network approach to estimating the conditional density of multiperiod returns
  publication-title: J. Forecast.
  doi: 10.1002/1099-131X(200007)19:4<299::AID-FOR775>3.0.CO;2-V
  contributor:
    fullname: Taylor
– ident: 10.1016/j.comnet.2024.110239_b11
  doi: 10.1109/ICC45041.2023.10279762
SSID ssj0004428
Score 2.4625404
Snippet QoS forecasting for cellular vehicular communications allows cooperative, connected and automated mobility applications to tailor their behavior to the...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 110239
SubjectTerms 5G measurements
Federated learning
Predictive QoS
Vehicular communications
Title A federated learning approach to QoS forecasting in cellular vehicular communications: Approaches and empirical evidence
URI https://dx.doi.org/10.1016/j.comnet.2024.110239
Volume 242
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXvQg_sSfIwevcW2WZqu3MhzT4UDncLeSpC9awW64Kp78203SFCeIB08lJQnlJXnva_u99yF0ZmJWJrOeIipgjLBIh0Qy7VRTI5qZkK-dNuDNmA-n7HoWzRqoX-fCWFql9_2VT3fe2t9pe2u2F3nenrhfbNQmOLhAaZP4mAl_Zk-ff37TPBhz-qq2M7G96_Q5x_EycxdgGZWUWT48tZLhv4WnlZAz2EKbHivipHqcbdSAYgdtrFQQ3EUfCda2HIRBjBn2ChCPuC4Ujss5vp1PsAGmoMTSMpxxXmD7sd6yT_E7POWOh4rVap7I8gInfgZYYlFkGF4WuaslgsGrkO6h6eDyvj8kXkyBKPPWUBIeUbNcQRbEQEXIBQjjByHgkquwY2CCjntKgpYgIugBVeakcpuWFXIunCPYR81iXsABwgYhRhB2GDfQiUkdCxqoIBZcxoGO4qx7iEhtw3RR1cxIazLZc1rZPLU2TyubH6Jubej0x9qnxq3_OfLo3yOP0bptVRycE9QsX9_g1MCLUrbc_mmhteRqNBzb6-juYfQF-xPSCw
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4QD-rB-DPizx68VrbRFeaNEAkqkBgg4da03avOxEEEjSf_dtuui5gYD163tVleu-992773PoQuTc5KZdpSRAWUEhrrkEiqnWtqHKUm5WvnDTgYst6E3k3jaQV1yloYK6v02F9gukNrf6Tuo1mfZ1l95H6xRbbAwSXKZA2tU8uPzaa--vzWeVDqDFbt1cReXtbPOZGXmTwHK6mMqBXER9Yz_Lf8tJJzujto25NF3C7uZxdVIN9DWystBPfRRxtr2w_CUMYUewuIR1x2CsfLGX6YjbBhpqDEwkqccZZj-7Xeyk_xOzxlToiK1WqhyOIat_0MsMAiTzG8zDPXTASDtyE9QJPuzbjTI95NgSjz2rAkLI7MegVpkEAkQiZAGCCEgEmmwobhCTppKQlagoihBZEyjyqzdVkhY8IhwSGq5rMcjhA2FDGGsEGZ4U5U6kREgQoSwWQS6DhJmzVEyhjyedE0g5dqsmdexJzbmPMi5jXULAPNfyw-N7j-58jjf4-8QBu98aDP-7fD-xO0ac8UgpxTVF2-vsGZ4RpLee720hd609IB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+federated+learning+approach+to+QoS+forecasting+in+cellular+vehicular+communications%3A+Approaches+and+empirical+evidence&rft.jtitle=Computer+networks+%28Amsterdam%2C+Netherlands+%3A+1999%29&rft.au=Baganal-Krishna%2C+Nehal&rft.au=L%C3%BCbben%2C+Ralf&rft.au=Liotou%2C+Eirini&rft.au=Katsaros%2C+Konstantinos+V.&rft.date=2024-04-01&rft.pub=Elsevier+B.V&rft.issn=1389-1286&rft.eissn=1872-7069&rft.volume=242&rft_id=info:doi/10.1016%2Fj.comnet.2024.110239&rft.externalDocID=S1389128624000719
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-1286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-1286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-1286&client=summon