A machine reading comprehension framework for recognizing emotion cause in conversations
Recognizing Emotion Cause in Conversations (RECC) is a key issue in modeling human cognitive processes, involving Conversational Causal Emotion Entailment task (C2E2) and Conversational Causal Span Extraction task (C2SE). Previous emotion cause extraction research has been concentrated at the clause...
Saved in:
Published in | Knowledge-based systems Vol. 289; p. 111532 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
08.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recognizing Emotion Cause in Conversations (RECC) is a key issue in modeling human cognitive processes, involving Conversational Causal Emotion Entailment task (C2E2) and Conversational Causal Span Extraction task (C2SE). Previous emotion cause extraction research has been concentrated at the clause level, detecting if the cause is in the text, not describing the underlying causes in texts well. In order to address this issue, we suggest a novel approach that can recognize emotion cause spans. These spans can represent or imply the causes for controlling emotions. In this paper, we use a Machine Reading Comprehension framework to Recognize the Emotion Cause in Conversations (MRC-RECC), at both the span level and clause level simultaneously. Specifically, we use two types of queries to build the associations between the two different subtasks: emotion causal entailment task and emotion causal span extraction task. Our framework can recognize emotion cause more effectively by using joint learning to make these two tasks complement each other. Experiments demonstrate that our MRC-RECC provides state-of-the-art performances, which can reason more emotion causes in conversation texts. The code can be found at https://github.com/Guangzidetiaoyue/MRC-RECCON.
•We detect dynamic emotion causes in conversations from a cognitive perspective.•We recognize emotion causes in conversations at both the span level and clause level.•We achieve a new SOTA performance for detecting emotion cause in conversations. |
---|---|
AbstractList | Recognizing Emotion Cause in Conversations (RECC) is a key issue in modeling human cognitive processes, involving Conversational Causal Emotion Entailment task (C2E2) and Conversational Causal Span Extraction task (C2SE). Previous emotion cause extraction research has been concentrated at the clause level, detecting if the cause is in the text, not describing the underlying causes in texts well. In order to address this issue, we suggest a novel approach that can recognize emotion cause spans. These spans can represent or imply the causes for controlling emotions. In this paper, we use a Machine Reading Comprehension framework to Recognize the Emotion Cause in Conversations (MRC-RECC), at both the span level and clause level simultaneously. Specifically, we use two types of queries to build the associations between the two different subtasks: emotion causal entailment task and emotion causal span extraction task. Our framework can recognize emotion cause more effectively by using joint learning to make these two tasks complement each other. Experiments demonstrate that our MRC-RECC provides state-of-the-art performances, which can reason more emotion causes in conversation texts. The code can be found at https://github.com/Guangzidetiaoyue/MRC-RECCON.
•We detect dynamic emotion causes in conversations from a cognitive perspective.•We recognize emotion causes in conversations at both the span level and clause level.•We achieve a new SOTA performance for detecting emotion cause in conversations. |
ArticleNumber | 111532 |
Author | Ying, Lizhi Qin, Xuanmei Huang, Yongfeng Jiang, Minghu Yang, Jinshuai Zou, Jiajun Zhang, Yexuan Wu, Sixing |
Author_xml | – sequence: 1 givenname: Jiajun orcidid: 0009-0005-9472-2315 surname: Zou fullname: Zou, Jiajun email: zjj21@mails.tsinghua.edu.cn organization: School of Humanities, Tsinghua University, Beijing 100084, China – sequence: 2 givenname: Yexuan surname: Zhang fullname: Zhang, Yexuan organization: Department of Electronic Engineering, Tsinghua University, Beijing 100084, China – sequence: 3 givenname: Sixing surname: Wu fullname: Wu, Sixing organization: School of Control and Computer Engineering, North China Electric Power University, Beijing 100096, China – sequence: 4 givenname: Jinshuai orcidid: 0000-0002-6293-1981 surname: Yang fullname: Yang, Jinshuai organization: Department of Electronic Engineering, Tsinghua University, Beijing 100084, China – sequence: 5 givenname: Xuanmei surname: Qin fullname: Qin, Xuanmei organization: School of Control and Computer Engineering, North China Electric Power University, Beijing 100096, China – sequence: 6 givenname: Lizhi surname: Ying fullname: Ying, Lizhi organization: Department of Electronic Engineering, Tsinghua University, Beijing 100084, China – sequence: 7 givenname: Minghu surname: Jiang fullname: Jiang, Minghu organization: School of Humanities, Tsinghua University, Beijing 100084, China – sequence: 8 givenname: Yongfeng surname: Huang fullname: Huang, Yongfeng email: yfhuang@tsinghua.edu.cn organization: School of Humanities, Tsinghua University, Beijing 100084, China |
BookMark | eNp9kM1KAzEUhYNUsK2-gYt5gRmTTNJMNkIp_kHBjYK7kElu2rROUpJaqU_vDOPa1b1czjnc883QJMQACN0SXBFMFne7ah9iPueKYsoqQgiv6QWakkbQUjAsJ2iKJcelwJxcoVnOO4wxpaSZoo9l0Wmz9QGKBNr6sClM7A4JthCyj6FwSXfwHdO-cDH1GhM3wf8MOujicVAY_ZWh8P0SwwlS1sM1X6NLpz8z3PzNOXp_fHhbPZfr16eX1XJdGsr5seTOSMq0pG3bCmYpW2gAaRyXUjpuTSucrJ2Vdd04YrWQpqZcGNxK2kjDbD1HbMw1KeacwKlD8p1OZ0WwGuionRrpqIGOGun0tvvRBv1vJw9JZeMhGLC-73hUNvr_A34BR-50ZQ |
Cites_doi | 10.3390/app9061123 10.1162/tacl_a_00300 10.18653/v1/2020.acl-main.288 10.1016/j.knosys.2021.107965 10.18653/v1/D18-1280 10.18653/v1/2020.coling-main.17 10.18653/v1/D18-1506 10.18653/v1/2020.emnlp-main.128 10.18653/v1/2020.acl-main.289 10.1007/s12559-021-09925-7 10.18653/v1/2020.acl-main.342 10.1609/aaai.v33i01.33016818 10.18653/v1/2020.emnlp-main.597 10.18653/v1/D19-1563 10.1162/tacl_a_00541 10.1109/TAFFC.2022.3204972 10.1609/aaai.v33i01.33016343 10.1109/TAFFC.2014.2317187 10.1109/MIS.2016.31 10.18653/v1/2021.naacl-main.375 10.1007/s10579-008-9076-6 10.1017/S1351324921000395 10.1609/aaai.v35i14.17500 10.1007/s00500-020-05223-w 10.1145/3404835.3463046 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.knosys.2024.111532 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-7409 |
ExternalDocumentID | 10_1016_j_knosys_2024_111532 S0950705124001679 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABMYL ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L AAQXK AAXKI AAYXX ABXDB ACNNM ADJOM ADMUD AFJKZ ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 G8K HLZ HVGLF HZ~ LG9 LY7 M41 R2- SBC SET UHS WUQ |
ID | FETCH-LOGICAL-c255t-5fc924a92bbb74d246aee9cf5999f5dcb7f93fd9338f1da79c3257c0b9289c4d3 |
IEDL.DBID | AIKHN |
ISSN | 0950-7051 |
IngestDate | Thu Sep 26 16:18:48 EDT 2024 Sat Mar 16 16:14:10 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Emotion Conversations texts Emotion cause Machine reading comprehension |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c255t-5fc924a92bbb74d246aee9cf5999f5dcb7f93fd9338f1da79c3257c0b9289c4d3 |
ORCID | 0009-0005-9472-2315 0000-0002-6293-1981 |
ParticipantIDs | crossref_primary_10_1016_j_knosys_2024_111532 elsevier_sciencedirect_doi_10_1016_j_knosys_2024_111532 |
PublicationCentury | 2000 |
PublicationDate | 2024-04-08 |
PublicationDateYYYYMMDD | 2024-04-08 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-08 day: 08 |
PublicationDecade | 2020 |
PublicationTitle | Knowledge-based systems |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Cambria (b5) 2016; 31 D. Hazarika, S. Poria, R. Mihalcea, E. Cambria, R. Zimmermann, Icon: Interactive conversational memory network for multimodal emotion detection, in: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, 2018, pp. 2594–2604. Cambria, Liu, Decherchi, Xing, Kwok (b6) 2022 Z. Ding, R. Xia, J. Yu, ECPE-2D: Emotion-cause pair extraction based on joint two-dimensional representation, interaction and prediction, in: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020, pp. 3161–3170. Y. Chen, S.Y.M. Lee, S. Li, C.-R. Huang, Emotion cause detection with linguistic constructions, in: Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010), 2010, pp. 179–187. Liu, Ott, Goyal, Du, Joshi, Chen, Levy, Lewis, Zettlemoyer, Stoyanov (b46) 2019 Joshi, Chen, Liu, Weld, Zettlemoyer, Levy (b49) 2020; 8 Yan, Gui, Pergola, He (b52) 2021 Jiao, Yang, King, Lyu (b34) 2019 Li, Lin, Fu, Wang (b53) 2021 Devlin, Chang, Lee, Toutanova (b25) 2019 P. Wei, J. Zhao, W. Mao, Effective inter-clause modeling for end-to-end emotion-cause pair extraction, in: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020, pp. 3171–3181. Yu, Dohan, Luong, Zhao, Chen, Norouzi, Le (b41) 2018 Zhao, Zhao, Li, Qin (b37) 2023 C. Fan, H. Yan, J. Du, L. Gui, L. Bing, M. Yang, R. Xu, R. Mao, A knowledge regularized hierarchical approach for emotion cause analysis, in: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP, 2019, pp. 5614–5624. Chen, Shi, Yang, Huang (b11) 2022; 238 Song, Beck (b18) 2023; 11 Yang, Zhang, Ji, Ananiadou (b55) 2023 Y. Chen, W. Hou, S. Li, C. Wu, X. Zhang, End-to-end emotion-cause pair extraction with graph convolutional network, in: Proceedings of the 28th International Conference on Computational Linguistics, 2020, pp. 198–207. C. Fan, C. Yuan, J. Du, L. Gui, M. Yang, R. Xu, Transition-based directed graph construction for emotion-cause pair extraction, in: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020, pp. 3707–3717. X. Li, K. Song, S. Feng, D. Wang, Y. Zhang, A co-attention neural network model for emotion cause analysis with emotional context awareness, in: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, 2018, pp. 4752–4757. Munezero, Montero, Sutinen, Pajunen (b2) 2014; 5 N. Majumder, S. Poria, D. Hazarika, R. Mihalcea, A. Gelbukh, E. Cambria, Dialoguernn: An attentive rnn for emotion detection in conversations, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, (01) 2019, pp. 6818–6825. Wu, Chen, Wu, Huang, Li (b23) 2020 Diao, Lin, Yang, Fan, Chu, Wu, Xu (b9) 2021; 25 J. Liu, Y. Chen, K. Liu, W. Bi, X. Liu, Event extraction as machine reading comprehension, in: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP, 2020, pp. 1641–1651. Seo, Kembhavi, Farhadi, Hajishirzi (b40) 2016 Loshchilov, Hutter (b57) 2017 Shen, Wu, Yang, Quan (b31) 2021 Hu, Dong, Wang, Sun (b54) 2020 Busso, Bulut, Lee, Kazemzadeh, Mower, Kim, Chang, Lee, Narayanan (b47) 2008; 42 Talmy (b16) 2000 Turcan, Wang, Anubhai, Bhattacharjee, Al-Onaizan, Muresan (b22) 2021 Radford, Wu, Child, Luan, Amodei, Sutskever (b42) 2019; 1 T. Ishiwatari, Y. Yasuda, T. Miyazaki, J. Goto, Relation-aware graph attention networks with relational position encodings for emotion recognition in conversations, in: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP, 2020, pp. 7360–7370. Rajpurkar, Zhang, Lopyrev, Liang (b50) 2016 Zhang, Wu, Sun, Li, Zhu, Zhou (b30) 2019 C. Huang, A. Trabelsi, X. Qin, N. Farruque, L. Mou, O.R. Zaiane, Seq2emo: a sequence to multi-label emotion classification model, in: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2021, pp. 4717–4724. Gui, Wu, Xu, Lu, Zhou (b14) 2016 Yang, Ji, Zhang, Xie, Ananiadou (b56) 2023 Gui, Xu, Lu, Wu, Zhou (b19) 2016 Li, Su, Shen, Li, Cao, Niu (b48) 2017 Jabreel, Moreno (b3) 2019; 9 B. Ma, C. Liu, J. Wang, S. Hu, F. Yang, X. Cai, G. Wan, J. Chen, J. Liao, Distant Supervision based Machine Reading Comprehension for Extractive Summarization in Customer Service, in: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2021, pp. 1895–1899. Poria, Majumder, Hazarika, Ghosal, Bhardwaj, Jian, Hong, Ghosh, Roy, Chhaya (b1) 2021; 13 Xia, Ding (b10) 2019 S. Chen, Y. Wang, J. Liu, Y. Wang, Bidirectional machine reading comprehension for aspect sentiment triplet extraction, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, (14) 2021, pp. 12666–12674. Li, Zhu, Mao, Cambria (b7) 2023 Ghosal, Majumder, Poria, Chhaya, Gelbukh (b28) 2019 Li, Meng, Lin, Liu, Fu, Cao, Wang, Zhou (b36) 2022 Baradaran, Ghiasi, Amirkhani (b39) 2022; 28 Zhao, Zhao, Lu (b38) 2022 Z. Ding, H. He, M. Zhang, R. Xia, From independent prediction to reordered prediction: Integrating relative position and global label information to emotion cause identification, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, (01) 2019, pp. 6343–6350. Adikari (b17) 2022 Hazarika, Poria, Zadeh, Cambria, Morency, Zimmermann (b33) 2018; Vol. 2018 S.Y.M. Lee, Y. Chen, C.-R. Huang, A text-driven rule-based system for emotion cause detection, in: Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text, 2010, pp. 45–53. Mao, Liu, He, Li, Cambria (b8) 2023; 14 Diao (10.1016/j.knosys.2024.111532_b9) 2021; 25 Shen (10.1016/j.knosys.2024.111532_b31) 2021 Hazarika (10.1016/j.knosys.2024.111532_b33) 2018; Vol. 2018 10.1016/j.knosys.2024.111532_b45 Yang (10.1016/j.knosys.2024.111532_b55) 2023 10.1016/j.knosys.2024.111532_b44 10.1016/j.knosys.2024.111532_b43 Song (10.1016/j.knosys.2024.111532_b18) 2023; 11 Joshi (10.1016/j.knosys.2024.111532_b49) 2020; 8 Cambria (10.1016/j.knosys.2024.111532_b5) 2016; 31 Loshchilov (10.1016/j.knosys.2024.111532_b57) 2017 Devlin (10.1016/j.knosys.2024.111532_b25) 2019 Poria (10.1016/j.knosys.2024.111532_b1) 2021; 13 10.1016/j.knosys.2024.111532_b15 Yu (10.1016/j.knosys.2024.111532_b41) 2018 10.1016/j.knosys.2024.111532_b13 Radford (10.1016/j.knosys.2024.111532_b42) 2019; 1 10.1016/j.knosys.2024.111532_b12 Gui (10.1016/j.knosys.2024.111532_b19) 2016 10.1016/j.knosys.2024.111532_b51 Seo (10.1016/j.knosys.2024.111532_b40) 2016 Cambria (10.1016/j.knosys.2024.111532_b6) 2022 Yan (10.1016/j.knosys.2024.111532_b52) 2021 Zhao (10.1016/j.knosys.2024.111532_b37) 2023 Chen (10.1016/j.knosys.2024.111532_b11) 2022; 238 Xia (10.1016/j.knosys.2024.111532_b10) 2019 Wu (10.1016/j.knosys.2024.111532_b23) 2020 10.1016/j.knosys.2024.111532_b29 10.1016/j.knosys.2024.111532_b27 10.1016/j.knosys.2024.111532_b26 10.1016/j.knosys.2024.111532_b24 10.1016/j.knosys.2024.111532_b21 10.1016/j.knosys.2024.111532_b20 Mao (10.1016/j.knosys.2024.111532_b8) 2023; 14 Zhang (10.1016/j.knosys.2024.111532_b30) 2019 Busso (10.1016/j.knosys.2024.111532_b47) 2008; 42 Hu (10.1016/j.knosys.2024.111532_b54) 2020 10.1016/j.knosys.2024.111532_b4 Jabreel (10.1016/j.knosys.2024.111532_b3) 2019; 9 Adikari (10.1016/j.knosys.2024.111532_b17) 2022 Munezero (10.1016/j.knosys.2024.111532_b2) 2014; 5 Yang (10.1016/j.knosys.2024.111532_b56) 2023 Li (10.1016/j.knosys.2024.111532_b7) 2023 Gui (10.1016/j.knosys.2024.111532_b14) 2016 Zhao (10.1016/j.knosys.2024.111532_b38) 2022 Baradaran (10.1016/j.knosys.2024.111532_b39) 2022; 28 10.1016/j.knosys.2024.111532_b35 Liu (10.1016/j.knosys.2024.111532_b46) 2019 Talmy (10.1016/j.knosys.2024.111532_b16) 2000 10.1016/j.knosys.2024.111532_b32 Li (10.1016/j.knosys.2024.111532_b48) 2017 Ghosal (10.1016/j.knosys.2024.111532_b28) 2019 Jiao (10.1016/j.knosys.2024.111532_b34) 2019 Rajpurkar (10.1016/j.knosys.2024.111532_b50) 2016 Li (10.1016/j.knosys.2024.111532_b53) 2021 Turcan (10.1016/j.knosys.2024.111532_b22) 2021 Li (10.1016/j.knosys.2024.111532_b36) 2022 |
References_xml | – start-page: 1003 year: 2019 end-page: 1012 ident: b10 article-title: Emotion-cause pair extraction: A new task to emotion analysis in texts publication-title: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics contributor: fullname: Ding – start-page: 3364 year: 2021 end-page: 3375 ident: b52 article-title: Position bias mitigation: A knowledge-aware graph model for emotion cause extraction publication-title: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers) contributor: fullname: He – start-page: 2212 year: 2020 end-page: 2219 ident: b23 article-title: A multi-task learning neural network for emotion-cause pair extraction publication-title: ECAI 2020 contributor: fullname: Li – start-page: 1551 year: 2021 end-page: 1560 ident: b31 article-title: Directed acyclic graph network for conversational emotion recognition publication-title: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers) contributor: fullname: Quan – start-page: 1639 year: 2016 end-page: 1649 ident: b14 article-title: Event-driven emotion cause extraction with corpus construction publication-title: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing contributor: fullname: Zhou – year: 2018 ident: b41 article-title: Qanet: Combining local convolution with global self-attention for reading comprehension contributor: fullname: Le – year: 2019 ident: b46 article-title: Roberta: A robustly optimized bert pretraining approach contributor: fullname: Stoyanov – volume: 28 start-page: 683 year: 2022 end-page: 732 ident: b39 article-title: A survey on machine reading comprehension systems publication-title: Nat. Lang. Eng. contributor: fullname: Amirkhani – volume: 11 start-page: 157 year: 2023 end-page: 175 ident: b18 article-title: Modeling emotion dynamics in song lyrics with state space models publication-title: Trans. Assoc. Comput. Linguist. contributor: fullname: Beck – start-page: 986 year: 2017 end-page: 995 ident: b48 article-title: DailyDialog: A manually labelled multi-turn dialogue dataset publication-title: Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers) contributor: fullname: Niu – year: 2016 ident: b40 article-title: Bidirectional attention flow for machine comprehension contributor: fullname: Hajishirzi – volume: 31 start-page: 102 year: 2016 end-page: 107 ident: b5 article-title: Affective computing and sentiment analysis publication-title: IEEE Intell. Syst. contributor: fullname: Cambria – start-page: 397 year: 2019 end-page: 406 ident: b34 article-title: HiGRU: Hierarchical gated recurrent units for utterance-level emotion recognition publication-title: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers) contributor: fullname: Lyu – start-page: 3829 year: 2022 end-page: 3839 ident: b6 article-title: SenticNet 7: A commonsense-based neurosymbolic AI framework for explainable sentiment analysis publication-title: Proceedings of the Thirteenth Language Resources and Evaluation Conference contributor: fullname: Kwok – year: 2023 ident: b55 article-title: A bipartite graph is all we need for enhancing emotional reasoning with commonsense knowledge publication-title: Proceedings of CIKM contributor: fullname: Ananiadou – start-page: 4209 year: 2022 end-page: 4215 ident: b36 article-title: Neutral utterances are also causes: Enhancing conversational causal emotion entailment with social commonsense knowledge publication-title: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22 contributor: fullname: Zhou – volume: Vol. 2018 start-page: 2122 year: 2018 ident: b33 article-title: Conversational memory network for emotion recognition in dyadic dialogue videos publication-title: Proceedings of the Conference. Association for Computational Linguistics. North American Chapter. Meeting contributor: fullname: Zimmermann – start-page: 3975 year: 2021 end-page: 3989 ident: b22 article-title: Multi-task learning and adapted knowledge models for emotion-cause extraction publication-title: Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021 contributor: fullname: Muresan – year: 2017 ident: b57 article-title: Fixing weight decay regularization in adam contributor: fullname: Hutter – start-page: 154 year: 2019 end-page: 164 ident: b28 article-title: DialogueGCN: A graph convolutional neural network for emotion recognition in conversation publication-title: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing contributor: fullname: Gelbukh – start-page: 2383 year: 2016 end-page: 2392 ident: b50 article-title: SQuAD: 100,000+ questions for machine comprehension of text publication-title: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing contributor: fullname: Liang – volume: 5 start-page: 101 year: 2014 end-page: 111 ident: b2 article-title: Are they different? Affect, feeling, emotion, sentiment, and opinion detection in text publication-title: IEEE Trans. Affect. Comput. contributor: fullname: Pajunen – start-page: 2704 year: 2020 end-page: 2710 ident: b54 article-title: Heterogeneous graph transformer publication-title: Proceedings of the Web Conference 2020 contributor: fullname: Sun – volume: 13 start-page: 1317 year: 2021 end-page: 1332 ident: b1 article-title: Recognizing emotion cause in conversations publication-title: Cogn. Comput. contributor: fullname: Chhaya – volume: 238 year: 2022 ident: b11 article-title: Recurrent synchronization network for emotion-cause pair extraction publication-title: Knowl.-Based Syst. contributor: fullname: Huang – year: 2023 ident: b56 article-title: On the evaluations of ChatGPT and emotion-enhanced prompting for mental health analysis contributor: fullname: Ananiadou – start-page: 98 year: 2016 end-page: 109 ident: b19 article-title: Emotion cause extraction, a challenging task with corpus construction publication-title: Social Media Processing: 5th National Conference, SMP 2016, Nanchang, China, October 29–30, 2016, Proceedings contributor: fullname: Zhou – start-page: 4171 year: 2019 end-page: 4186 ident: b25 article-title: BERT: Pre-training of deep bidirectional transformers for language understanding publication-title: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers) contributor: fullname: Toutanova – volume: 1 start-page: 9 year: 2019 ident: b42 article-title: Language models are unsupervised multitask learners publication-title: OpenAI Blog contributor: fullname: Sutskever – year: 2022 ident: b17 article-title: Modelling Human Emotion Dynamics from Social Media Footprints with Artificial Intelligence and Natural Language Processing contributor: fullname: Adikari – year: 2023 ident: b37 article-title: Knowledge-bridged causal interaction network for causal emotion entailment publication-title: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence contributor: fullname: Qin – volume: 14 start-page: 1743 year: 2023 end-page: 1753 ident: b8 article-title: The biases of pre-trained language models: An empirical study on prompt-based sentiment analysis and emotion detection publication-title: IEEE Trans. Affect. Comput. contributor: fullname: Cambria – start-page: 4524 year: 2022 end-page: 4530 ident: b38 article-title: CauAIN: Causal aware interaction network for emotion recognition in conversations publication-title: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22 contributor: fullname: Lu – year: 2000 ident: b16 article-title: Toward a Cognitive Semantics contributor: fullname: Talmy – volume: 42 start-page: 335 year: 2008 end-page: 359 ident: b47 article-title: IEMOCAP: Interactive emotional dyadic motion capture database publication-title: Lang. Resour. Eval. contributor: fullname: Narayanan – volume: 8 start-page: 64 year: 2020 end-page: 77 ident: b49 article-title: Spanbert: Improving pre-training by representing and predicting spans publication-title: Trans. Assoc. Comput. Linguist. contributor: fullname: Levy – start-page: 1204 year: 2021 end-page: 1214 ident: b53 article-title: Past, present, and future: Conversational emotion recognition through structural modeling of psychological knowledge publication-title: Findings of the Association for Computational Linguistics: EMNLP 2021 contributor: fullname: Wang – year: 2023 ident: b7 article-title: SKIER: A symbolic knowledge integrated model for conversational emotion recognition publication-title: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence contributor: fullname: Cambria – start-page: 5415 year: 2019 end-page: 5421 ident: b30 article-title: Modeling both context-and speaker-sensitive dependence for emotion detection in multi-speaker conversations publication-title: IJCAI contributor: fullname: Zhou – volume: 25 start-page: 1297 year: 2021 end-page: 1307 ident: b9 article-title: Emotion cause detection with enhanced-representation attention convolutional-context network publication-title: Soft Comput. contributor: fullname: Xu – volume: 9 start-page: 1123 year: 2019 ident: b3 article-title: A deep learning-based approach for multi-label emotion classification in tweets publication-title: Appl. Sci. contributor: fullname: Moreno – volume: 9 start-page: 1123 issue: 6 year: 2019 ident: 10.1016/j.knosys.2024.111532_b3 article-title: A deep learning-based approach for multi-label emotion classification in tweets publication-title: Appl. Sci. doi: 10.3390/app9061123 contributor: fullname: Jabreel – year: 2017 ident: 10.1016/j.knosys.2024.111532_b57 contributor: fullname: Loshchilov – start-page: 3975 year: 2021 ident: 10.1016/j.knosys.2024.111532_b22 article-title: Multi-task learning and adapted knowledge models for emotion-cause extraction contributor: fullname: Turcan – year: 2019 ident: 10.1016/j.knosys.2024.111532_b46 contributor: fullname: Liu – year: 2000 ident: 10.1016/j.knosys.2024.111532_b16 contributor: fullname: Talmy – start-page: 397 year: 2019 ident: 10.1016/j.knosys.2024.111532_b34 article-title: HiGRU: Hierarchical gated recurrent units for utterance-level emotion recognition contributor: fullname: Jiao – volume: 8 start-page: 64 year: 2020 ident: 10.1016/j.knosys.2024.111532_b49 article-title: Spanbert: Improving pre-training by representing and predicting spans publication-title: Trans. Assoc. Comput. Linguist. doi: 10.1162/tacl_a_00300 contributor: fullname: Joshi – start-page: 4209 year: 2022 ident: 10.1016/j.knosys.2024.111532_b36 article-title: Neutral utterances are also causes: Enhancing conversational causal emotion entailment with social commonsense knowledge contributor: fullname: Li – ident: 10.1016/j.knosys.2024.111532_b13 – ident: 10.1016/j.knosys.2024.111532_b51 doi: 10.18653/v1/2020.acl-main.288 – volume: 238 year: 2022 ident: 10.1016/j.knosys.2024.111532_b11 article-title: Recurrent synchronization network for emotion-cause pair extraction publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.107965 contributor: fullname: Chen – ident: 10.1016/j.knosys.2024.111532_b32 doi: 10.18653/v1/D18-1280 – ident: 10.1016/j.knosys.2024.111532_b27 doi: 10.18653/v1/2020.coling-main.17 – start-page: 1551 year: 2021 ident: 10.1016/j.knosys.2024.111532_b31 article-title: Directed acyclic graph network for conversational emotion recognition contributor: fullname: Shen – start-page: 4524 year: 2022 ident: 10.1016/j.knosys.2024.111532_b38 article-title: CauAIN: Causal aware interaction network for emotion recognition in conversations contributor: fullname: Zhao – start-page: 1639 year: 2016 ident: 10.1016/j.knosys.2024.111532_b14 article-title: Event-driven emotion cause extraction with corpus construction contributor: fullname: Gui – ident: 10.1016/j.knosys.2024.111532_b20 doi: 10.18653/v1/D18-1506 – start-page: 5415 year: 2019 ident: 10.1016/j.knosys.2024.111532_b30 article-title: Modeling both context-and speaker-sensitive dependence for emotion detection in multi-speaker conversations contributor: fullname: Zhang – ident: 10.1016/j.knosys.2024.111532_b44 doi: 10.18653/v1/2020.emnlp-main.128 – year: 2022 ident: 10.1016/j.knosys.2024.111532_b17 contributor: fullname: Adikari – start-page: 154 year: 2019 ident: 10.1016/j.knosys.2024.111532_b28 article-title: DialogueGCN: A graph convolutional neural network for emotion recognition in conversation contributor: fullname: Ghosal – start-page: 3364 year: 2021 ident: 10.1016/j.knosys.2024.111532_b52 article-title: Position bias mitigation: A knowledge-aware graph model for emotion cause extraction contributor: fullname: Yan – ident: 10.1016/j.knosys.2024.111532_b24 doi: 10.18653/v1/2020.acl-main.289 – volume: 13 start-page: 1317 year: 2021 ident: 10.1016/j.knosys.2024.111532_b1 article-title: Recognizing emotion cause in conversations publication-title: Cogn. Comput. doi: 10.1007/s12559-021-09925-7 contributor: fullname: Poria – start-page: 1003 year: 2019 ident: 10.1016/j.knosys.2024.111532_b10 article-title: Emotion-cause pair extraction: A new task to emotion analysis in texts contributor: fullname: Xia – ident: 10.1016/j.knosys.2024.111532_b26 doi: 10.18653/v1/2020.acl-main.342 – ident: 10.1016/j.knosys.2024.111532_b35 doi: 10.1609/aaai.v33i01.33016818 – ident: 10.1016/j.knosys.2024.111532_b29 doi: 10.18653/v1/2020.emnlp-main.597 – start-page: 2212 year: 2020 ident: 10.1016/j.knosys.2024.111532_b23 article-title: A multi-task learning neural network for emotion-cause pair extraction contributor: fullname: Wu – volume: 1 start-page: 9 issue: 8 year: 2019 ident: 10.1016/j.knosys.2024.111532_b42 article-title: Language models are unsupervised multitask learners publication-title: OpenAI Blog contributor: fullname: Radford – ident: 10.1016/j.knosys.2024.111532_b21 doi: 10.18653/v1/D19-1563 – year: 2016 ident: 10.1016/j.knosys.2024.111532_b40 contributor: fullname: Seo – volume: 11 start-page: 157 year: 2023 ident: 10.1016/j.knosys.2024.111532_b18 article-title: Modeling emotion dynamics in song lyrics with state space models publication-title: Trans. Assoc. Comput. Linguist. doi: 10.1162/tacl_a_00541 contributor: fullname: Song – year: 2023 ident: 10.1016/j.knosys.2024.111532_b7 article-title: SKIER: A symbolic knowledge integrated model for conversational emotion recognition contributor: fullname: Li – start-page: 2704 year: 2020 ident: 10.1016/j.knosys.2024.111532_b54 article-title: Heterogeneous graph transformer contributor: fullname: Hu – volume: 14 start-page: 1743 issue: 3 year: 2023 ident: 10.1016/j.knosys.2024.111532_b8 article-title: The biases of pre-trained language models: An empirical study on prompt-based sentiment analysis and emotion detection publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2022.3204972 contributor: fullname: Mao – ident: 10.1016/j.knosys.2024.111532_b15 doi: 10.1609/aaai.v33i01.33016343 – volume: 5 start-page: 101 issue: 2 year: 2014 ident: 10.1016/j.knosys.2024.111532_b2 article-title: Are they different? Affect, feeling, emotion, sentiment, and opinion detection in text publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2014.2317187 contributor: fullname: Munezero – year: 2023 ident: 10.1016/j.knosys.2024.111532_b55 article-title: A bipartite graph is all we need for enhancing emotional reasoning with commonsense knowledge contributor: fullname: Yang – volume: 31 start-page: 102 issue: 2 year: 2016 ident: 10.1016/j.knosys.2024.111532_b5 article-title: Affective computing and sentiment analysis publication-title: IEEE Intell. Syst. doi: 10.1109/MIS.2016.31 contributor: fullname: Cambria – year: 2023 ident: 10.1016/j.knosys.2024.111532_b37 article-title: Knowledge-bridged causal interaction network for causal emotion entailment contributor: fullname: Zhao – year: 2023 ident: 10.1016/j.knosys.2024.111532_b56 contributor: fullname: Yang – volume: Vol. 2018 start-page: 2122 year: 2018 ident: 10.1016/j.knosys.2024.111532_b33 article-title: Conversational memory network for emotion recognition in dyadic dialogue videos contributor: fullname: Hazarika – ident: 10.1016/j.knosys.2024.111532_b4 doi: 10.18653/v1/2021.naacl-main.375 – start-page: 3829 year: 2022 ident: 10.1016/j.knosys.2024.111532_b6 article-title: SenticNet 7: A commonsense-based neurosymbolic AI framework for explainable sentiment analysis contributor: fullname: Cambria – year: 2018 ident: 10.1016/j.knosys.2024.111532_b41 contributor: fullname: Yu – volume: 42 start-page: 335 year: 2008 ident: 10.1016/j.knosys.2024.111532_b47 article-title: IEMOCAP: Interactive emotional dyadic motion capture database publication-title: Lang. Resour. Eval. doi: 10.1007/s10579-008-9076-6 contributor: fullname: Busso – volume: 28 start-page: 683 issue: 6 year: 2022 ident: 10.1016/j.knosys.2024.111532_b39 article-title: A survey on machine reading comprehension systems publication-title: Nat. Lang. Eng. doi: 10.1017/S1351324921000395 contributor: fullname: Baradaran – start-page: 2383 year: 2016 ident: 10.1016/j.knosys.2024.111532_b50 article-title: SQuAD: 100,000+ questions for machine comprehension of text contributor: fullname: Rajpurkar – ident: 10.1016/j.knosys.2024.111532_b43 doi: 10.1609/aaai.v35i14.17500 – volume: 25 start-page: 1297 year: 2021 ident: 10.1016/j.knosys.2024.111532_b9 article-title: Emotion cause detection with enhanced-representation attention convolutional-context network publication-title: Soft Comput. doi: 10.1007/s00500-020-05223-w contributor: fullname: Diao – ident: 10.1016/j.knosys.2024.111532_b12 – start-page: 98 year: 2016 ident: 10.1016/j.knosys.2024.111532_b19 article-title: Emotion cause extraction, a challenging task with corpus construction contributor: fullname: Gui – ident: 10.1016/j.knosys.2024.111532_b45 doi: 10.1145/3404835.3463046 – start-page: 4171 year: 2019 ident: 10.1016/j.knosys.2024.111532_b25 article-title: BERT: Pre-training of deep bidirectional transformers for language understanding contributor: fullname: Devlin – start-page: 986 year: 2017 ident: 10.1016/j.knosys.2024.111532_b48 article-title: DailyDialog: A manually labelled multi-turn dialogue dataset contributor: fullname: Li – start-page: 1204 year: 2021 ident: 10.1016/j.knosys.2024.111532_b53 article-title: Past, present, and future: Conversational emotion recognition through structural modeling of psychological knowledge contributor: fullname: Li |
SSID | ssj0002218 |
Score | 2.4343095 |
Snippet | Recognizing Emotion Cause in Conversations (RECC) is a key issue in modeling human cognitive processes, involving Conversational Causal Emotion Entailment task... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 111532 |
SubjectTerms | Conversations texts Emotion Emotion cause Machine reading comprehension |
Title | A machine reading comprehension framework for recognizing emotion cause in conversations |
URI | https://dx.doi.org/10.1016/j.knosys.2024.111532 |
Volume | 289 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ07T8MwEMdPfSwsvBHlUXlgNSWO08RjVVEVEF2gUrfI8UMURFql7QADn51z4iCQEANbEp2l6GL_7y7-2Qa4EMbt6xkLmilmKDdxQGUWKYrh1bhZuSCI3Wrk-0l_POW3s2jWgGG9FsZhlV77K00v1do_6Xlv9pbzee8BkwPsrxiweMnSiya0MRyxpAXtwc3dePIlyIyVv_mcPXUN6hV0Jeb1ki9Wb27fbsadfEQh-z1CfYs6o13Y9ukiGVRvtAcNk-_DTn0UA_Ej8wBmA_JaYpGGFBUWTxwsXpgnB6gvcmJrCItglko8NvTu7Ex1kA9RcrMyZI4XDkQvPOVzCNPR9eNwTP2hCVRhdbCmkVVYUknBsiyLuWa8L40RykaYCdpIqyy2IrRaYGlqAy1joUIcteoqE1h6Ka7DI2jli9wcA5FYTHDDZJCYiKOhTCRKUhJro_taWtkBWjsqXVZ7Y6Q1NPacVo5NnWPTyrEdiGtvpj--cYry_WfLk3-3PIUtd1eyNskZtNbFxpxjGrHOutC8_Ai6vrN8Ana7ybg |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ07T8MwEMet0g6w8EaUpwdWqyRx6nisKqqWPhZaqZtlO7YoiLRK2wE-PefEQSAhBrYoOUvRxf7fXfyzjdAdN25fT8aJ0qEh1LCASBVrAuHVuFm5IGBuNfJ40u7P6OM8ntdQt1oL47BKr_2lphdq7e-0vDdbq8Wi9QTJAfRXCFi0YOn5DmpANsBhdDY6g2F_8iXIYVj85nP2xDWoVtAVmNdrtly_u327Q-rkI47C3yPUt6jTO0T7Pl3EnfKNjlDNZMfooDqKAfuReYLmHfxWYJEG5yUWjx0snptnB6gvM2wrCAtDloo9NvTh7Ex5kA_Wcrs2eAEXDkTPPeVzima9h2m3T_yhCURDdbAhsdVQUkkeKqUYTUPalsZwbWPIBG2casUsj2zKoTS1QSoZ1xGMWn2vOJRemqbRGapny8ycIyyhmKAmlEFiYgqGMpEgSQlLTdpOpZVNRCpHiVW5N4aooLEXUTpWOMeK0rFNxCpvih_fWIB8_9ny4t8tb9FufzoeidFgMrxEe-5Jwd0kV6i-ybfmGlKKjbrxXeYTW_XLrA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+machine+reading+comprehension+framework+for+recognizing+emotion+cause+in+conversations&rft.jtitle=Knowledge-based+systems&rft.au=Zou%2C+Jiajun&rft.au=Zhang%2C+Yexuan&rft.au=Wu%2C+Sixing&rft.au=Yang%2C+Jinshuai&rft.date=2024-04-08&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=289&rft_id=info:doi/10.1016%2Fj.knosys.2024.111532&rft.externalDocID=S0950705124001679 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |