Federated Learning for intrusion detection system: Concepts, challenges and future directions

The rapid development of the Internet and smart devices trigger surge in network traffic making its infrastructure more complex and heterogeneous. The predominated usage of mobile phones, wearable devices and autonomous vehicles are examples of distributed networks which generate huge amount of data...

Full description

Saved in:
Bibliographic Details
Published inComputer communications Vol. 195; pp. 346 - 361
Main Authors Agrawal, Shaashwat, Sarkar, Sagnik, Aouedi, Ons, Yenduri, Gokul, Piamrat, Kandaraj, Alazab, Mamoun, Bhattacharya, Sweta, Maddikunta, Praveen Kumar Reddy, Gadekallu, Thippa Reddy
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The rapid development of the Internet and smart devices trigger surge in network traffic making its infrastructure more complex and heterogeneous. The predominated usage of mobile phones, wearable devices and autonomous vehicles are examples of distributed networks which generate huge amount of data each and every day. The computational power of these devices have also seen steady progression which has created the need to transmit information, store data locally and drive network computations towards edge devices. Intrusion detection systems (IDS) play a significant role in ensuring security and privacy of such devices. Machine Learning (ML) and Deep Learning (DL) with Intrusion Detection Systems have gained great momentum due to their achievement of high classification accuracy. However the privacy and security aspects potentially gets jeopardized due to the need of storing and communicating data to centralized server. On the contrary, Federated Learning (FL) fits in appropriately as a privacy-preserving decentralized learning technique that does not transfer data but trains models locally and transfers the parameters to the centralized server. The present paper aims to present an extensive and exhaustive review on the use of FL in intrusion detection system. In order to establish the need for FL, various types of IDS, relevant ML approaches and its associated issues are discussed. The paper presents detailed overview of the implementation of FL in various aspects of anomaly detection. The allied challenges of FL implementations are also identified which provides idea on the scope of future direction of research. The paper finally presents the plausible solutions associated with the identified challenges in FL based intrusion detection system implementation acting as a baseline for prospective research.
AbstractList The rapid development of the Internet and smart devices trigger surge in network traffic making its infrastructure more complex and heterogeneous. The predominated usage of mobile phones, wearable devices and autonomous vehicles are examples of distributed networks which generate huge amount of data each and every day. The computational power of these devices have also seen steady progression which has created the need to transmit information, store data locally and drive network computations towards edge devices. Intrusion detection systems play a significant role in ensuring security and privacy of such devices. Machine Learning and Deep Learning with Intrusion Detection Systems have gained great momentum due to their achievement of high classification accuracy. However the privacy and security aspects potentially gets jeopardised due to the need of storing and communicating data to centralized server.On the contrary, federated learning (FL) fits in appropriately as a privacy-preserving decentralized learning technique that does not transfer data but trains models locally and transfers the parameters to the centralized server. The present paper aims to present an extensive and exhaustive review on the use of FL in intrusion detection system. In order to establish the need for FL, various types of IDS, relevant ML approaches and its associated issues are discussed. The paper presents detailed overview of the implementation of FL in various aspects of anomaly detection. The allied challenges of FL implementations are also identified which provides idea on the scope of future direction of research.The paper finally presents the plausible solutions associated with the identified challenges in FL based intrusion detection system implementation acting as a baseline for prospective research.
The rapid development of the Internet and smart devices trigger surge in network traffic making its infrastructure more complex and heterogeneous. The predominated usage of mobile phones, wearable devices and autonomous vehicles are examples of distributed networks which generate huge amount of data each and every day. The computational power of these devices have also seen steady progression which has created the need to transmit information, store data locally and drive network computations towards edge devices. Intrusion detection systems (IDS) play a significant role in ensuring security and privacy of such devices. Machine Learning (ML) and Deep Learning (DL) with Intrusion Detection Systems have gained great momentum due to their achievement of high classification accuracy. However the privacy and security aspects potentially gets jeopardized due to the need of storing and communicating data to centralized server. On the contrary, Federated Learning (FL) fits in appropriately as a privacy-preserving decentralized learning technique that does not transfer data but trains models locally and transfers the parameters to the centralized server. The present paper aims to present an extensive and exhaustive review on the use of FL in intrusion detection system. In order to establish the need for FL, various types of IDS, relevant ML approaches and its associated issues are discussed. The paper presents detailed overview of the implementation of FL in various aspects of anomaly detection. The allied challenges of FL implementations are also identified which provides idea on the scope of future direction of research. The paper finally presents the plausible solutions associated with the identified challenges in FL based intrusion detection system implementation acting as a baseline for prospective research.
Author Sarkar, Sagnik
Piamrat, Kandaraj
Aouedi, Ons
Gadekallu, Thippa Reddy
Agrawal, Shaashwat
Bhattacharya, Sweta
Maddikunta, Praveen Kumar Reddy
Yenduri, Gokul
Alazab, Mamoun
Author_xml – sequence: 1
  givenname: Shaashwat
  orcidid: 0000-0002-0006-267X
  surname: Agrawal
  fullname: Agrawal, Shaashwat
  email: shaashwat.agrawal2018@vitstudent.ac.in
  organization: School of Computer Science and Engineering, VIT, Vellore, India
– sequence: 2
  givenname: Sagnik
  orcidid: 0000-0003-2030-9438
  surname: Sarkar
  fullname: Sarkar, Sagnik
  email: sagnik.sarkar2018@vitstudent.ac.in
  organization: School of Computer Science and Engineering, VIT, Vellore, India
– sequence: 3
  givenname: Ons
  orcidid: 0000-0002-2343-0850
  surname: Aouedi
  fullname: Aouedi, Ons
  email: ons.aouedi@ls2n.fr
  organization: University of Nantes, France
– sequence: 4
  givenname: Gokul
  surname: Yenduri
  fullname: Yenduri, Gokul
  email: gokul.yenduri@vit.ac.in
  organization: School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, India
– sequence: 5
  givenname: Kandaraj
  orcidid: 0000-0002-4350-0254
  surname: Piamrat
  fullname: Piamrat, Kandaraj
  email: kandaraj.piamrat@ls2n.fr
  organization: University of Nantes, France
– sequence: 6
  givenname: Mamoun
  surname: Alazab
  fullname: Alazab, Mamoun
  email: alazab.m@ieee.org
  organization: Charles Darwin University, Australia
– sequence: 7
  givenname: Sweta
  surname: Bhattacharya
  fullname: Bhattacharya, Sweta
  email: sweta.b@vit.ac.in
  organization: School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, India
– sequence: 8
  givenname: Praveen Kumar Reddy
  surname: Maddikunta
  fullname: Maddikunta, Praveen Kumar Reddy
  email: praveenkumarreddy@vit.ac.in
  organization: School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, India
– sequence: 9
  givenname: Thippa Reddy
  orcidid: 0000-0003-0097-801X
  surname: Gadekallu
  fullname: Gadekallu, Thippa Reddy
  email: thippareddy.g@vit.ac.in
  organization: School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, India
BackLink https://hal.science/hal-03779486$$DView record in HAL
BookMark eNqFkFFLwzAQgIMouKn_wIe8CrZekrZpfRBkOBUGvij4IiFLrpqxpSPJhP17W6ovPigc3HHcd3d8U3LoO4-EnDPIGbDqapWbbtNHzoHzHJocGD8gE1ZLkUkQr4dkAqyATFRVcUymMa4AoJBSTMjbHC0GndDSBergnX-nbReo8ynsous8tZjQpKGK-5hwc01nnTe4TfGSmg-9XqN_x0i1t7TdpV1Aal0YiXhKjlq9jnj2nU_Iy_zuefaQLZ7uH2e3i8zwskxZubQl04i1ACyFaEwFBa8b2QjZLKXmnAlYWm4KUdYF1NgKXutGtHUFrWUaxAm5GPf2_6htcBsd9qrTTj3cLtTQAyFlU9TVJ-tnr8dZE7oYA7bKuKSHd1PQbq0YqEGqWqlRqhqkKmhUL7WHi1_wz7V_sJsRw17Cp8OgonHYWxxVKdu5vxd8AeTulZI
CitedBy_id crossref_primary_10_1016_j_knosys_2023_110658
crossref_primary_10_1145_3701724
crossref_primary_10_37391_ijeer_120223
crossref_primary_10_3390_s22124394
crossref_primary_10_1007_s11235_024_01216_4
crossref_primary_10_1109_TNSM_2025_3525554
crossref_primary_10_7717_peerj_cs_1947
crossref_primary_10_1109_ACCESS_2024_3437192
crossref_primary_10_1109_TCE_2024_3377550
crossref_primary_10_3390_fi15120403
crossref_primary_10_7717_peerj_cs_2400
crossref_primary_10_1016_j_engappai_2023_106771
crossref_primary_10_1109_ACCESS_2023_3327922
crossref_primary_10_1007_s42452_024_06165_w
crossref_primary_10_1016_j_future_2024_107559
crossref_primary_10_1155_2023_8068038
crossref_primary_10_1007_s11277_024_11669_0
crossref_primary_10_1016_j_solener_2024_112942
crossref_primary_10_1016_j_comnet_2024_110351
crossref_primary_10_1016_j_comnet_2024_110358
crossref_primary_10_32604_cmes_2024_048932
crossref_primary_10_3390_electronics12163382
crossref_primary_10_1109_TCE_2023_3321846
crossref_primary_10_3389_fcomp_2024_1387354
crossref_primary_10_37394_232016_2023_18_37
crossref_primary_10_1109_ACCESS_2024_3369915
crossref_primary_10_1016_j_iswa_2024_200462
crossref_primary_10_1111_exsy_13318
crossref_primary_10_1016_j_future_2023_09_019
crossref_primary_10_3390_info14010041
crossref_primary_10_1016_j_compind_2023_103888
crossref_primary_10_1016_j_future_2024_107487
crossref_primary_10_1007_s10207_023_00805_9
crossref_primary_10_1109_TNSM_2024_3384942
crossref_primary_10_3390_app14198840
crossref_primary_10_1007_s11042_024_19777_6
crossref_primary_10_1016_j_apenergy_2024_124789
crossref_primary_10_1016_j_esr_2024_101602
crossref_primary_10_1038_s41598_024_78262_0
crossref_primary_10_1007_s11277_023_10773_x
crossref_primary_10_1142_S0218001424390014
crossref_primary_10_1007_s11042_024_19694_8
crossref_primary_10_1007_s43926_025_00108_6
crossref_primary_10_1109_ACCESS_2024_3472907
crossref_primary_10_1016_j_compeleceng_2024_109725
crossref_primary_10_1016_j_cosrev_2024_100697
crossref_primary_10_3390_electronics13244907
crossref_primary_10_1016_j_vehcom_2022_100551
crossref_primary_10_1109_ACCESS_2024_3362347
crossref_primary_10_1109_JBHI_2022_3185673
crossref_primary_10_1007_s10586_024_04356_z
crossref_primary_10_1007_s10462_024_10766_7
crossref_primary_10_3390_fi16080264
crossref_primary_10_1016_j_comnet_2024_110837
crossref_primary_10_1109_ACCESS_2024_3454211
crossref_primary_10_1038_s41598_024_70032_2
crossref_primary_10_1155_2023_2956990
crossref_primary_10_3390_diagnostics14242891
crossref_primary_10_1016_j_jpdc_2024_104976
crossref_primary_10_1007_s13042_024_02269_2
crossref_primary_10_1007_s10845_023_02298_8
crossref_primary_10_1016_j_comcom_2023_05_004
crossref_primary_10_3390_app15052416
crossref_primary_10_3390_healthcare10061110
crossref_primary_10_1016_j_future_2023_10_005
crossref_primary_10_1016_j_cose_2023_103531
crossref_primary_10_1016_j_comnet_2024_110308
crossref_primary_10_1016_j_comcom_2023_04_023
crossref_primary_10_15622_ia_22_5_4
crossref_primary_10_1007_s00521_023_08933_y
crossref_primary_10_1016_j_adhoc_2023_103320
crossref_primary_10_1016_j_is_2025_102524
crossref_primary_10_1111_exsy_13066
crossref_primary_10_1016_j_eswa_2023_120715
crossref_primary_10_3390_a15070247
crossref_primary_10_1109_OJCOMS_2024_3438264
crossref_primary_10_1145_3696012
crossref_primary_10_3390_electronics14050995
crossref_primary_10_3390_s23167038
crossref_primary_10_56294_mw2024552
crossref_primary_10_1142_S0218194024500190
crossref_primary_10_1109_JAS_2024_124215
crossref_primary_10_3390_computers14030087
crossref_primary_10_1109_TCC_2024_3503358
crossref_primary_10_1016_j_future_2023_07_001
crossref_primary_10_32604_cmc_2023_043752
crossref_primary_10_3390_electronics14051019
crossref_primary_10_3390_su15020964
crossref_primary_10_3390_electronics12010158
crossref_primary_10_1109_ACCESS_2024_3494057
crossref_primary_10_1109_ACCESS_2025_3529894
crossref_primary_10_3390_sym16091151
crossref_primary_10_1007_s10586_023_04234_0
crossref_primary_10_1007_s43926_025_00117_5
crossref_primary_10_1109_OJCOMS_2024_3484228
crossref_primary_10_3390_electronics14061176
crossref_primary_10_1109_ACCESS_2024_3460468
crossref_primary_10_1109_JIOT_2024_3407584
crossref_primary_10_3390_fi14020044
crossref_primary_10_1016_j_ogla_2024_08_004
crossref_primary_10_32604_csse_2023_038085
crossref_primary_10_1109_JBHI_2022_3181823
crossref_primary_10_1109_ACCESS_2024_3420078
crossref_primary_10_1016_j_comcom_2025_108112
crossref_primary_10_1007_s10489_024_05589_6
crossref_primary_10_1016_j_vehcom_2024_100837
crossref_primary_10_1007_s12145_024_01438_9
crossref_primary_10_1016_j_enbuild_2024_115164
Cites_doi 10.1109/MIS.2020.2988525
10.1016/bs.hna.2018.08.002
10.1109/TSG.2020.3010230
10.1109/ACCESS.2020.2978082
10.1016/j.future.2020.10.007
10.1109/ACCESS.2020.2994079
10.1145/3234150
10.1016/j.cmpb.2017.09.005
10.1109/ACCESS.2020.3013541
10.1109/TII.2019.2938778
10.1155/2018/7068349
10.1109/MCI.2020.2976185
10.1016/j.jnca.2021.102983
10.1109/ACCESS.2020.3041641
10.14722/diss.2020.23003
10.1016/j.jnca.2020.102631
10.1145/3368926.3369705
10.1109/ACCESS.2020.3007577
10.1109/MCE.2021.3116917
10.1109/COMST.2021.3058573
10.1109/ACCESS.2020.3000179
10.1145/3427477.3429987
10.1109/COMST.2019.2904897
10.1109/ACCESS.2021.3075203
10.1016/j.knosys.2019.105124
10.1016/j.jnca.2020.102688
10.1109/TDSC.2020.3021407
10.1109/TNNLS.2019.2919699
10.1145/3387107
10.1016/j.comnet.2021.107840
10.1109/TVT.2017.2745110
10.1109/MCOM.2018.1701227
10.1016/j.neucom.2015.09.116
10.1109/TCAD.2020.3012749
10.1109/MCOM.001.1900461
10.1109/COMST.2020.2986024
10.1016/j.cose.2016.11.004
10.1016/j.neucom.2019.11.041
10.1007/s11831-020-09496-0
10.1145/3298981
10.1109/TNSM.2020.3032618
10.1007/s12083-017-0630-0
10.1145/2046660.2046682
10.1145/3178582
10.1109/MWC.001.1900119
10.1109/ACCESS.2020.2998358
10.1109/ACCESS.2019.2919736
10.1016/j.neunet.2014.09.003
10.1109/TII.2019.2956474
10.1007/s10586-017-1117-8
10.1109/ACCESS.2020.3041793
10.1109/TSG.2011.2159818
10.3390/s21010214
10.1109/MSP.2020.2975749
10.1016/j.jnca.2021.103111
10.1109/TNSM.2020.2971776
10.3390/electronics9020219
10.1109/MNET.011.2000286
10.1016/j.knosys.2021.106775
10.1109/JIOT.2021.3079472
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOI 10.1016/j.comcom.2022.09.012
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1873-703X
EndPage 361
ExternalDocumentID oai_HAL_hal_03779486v1
10_1016_j_comcom_2022_09_012
S0140366422003516
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
77K
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
WH7
ZMT
~G-
07C
29F
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
F0J
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SEW
SSH
TAE
UHS
VH1
VOH
WUQ
XPP
ZY4
1XC
ID FETCH-LOGICAL-c255t-5bd51aee830e5339c60428979379b7a22130bd2c4358408ef328a93f860fd1a03
IEDL.DBID .~1
ISSN 0140-3664
IngestDate Fri May 09 12:24:52 EDT 2025
Tue Jul 01 02:43:08 EDT 2025
Thu Apr 24 22:52:37 EDT 2025
Fri Feb 23 02:39:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Federated Learning
Intrusion detection system
Machine Learning
Deep Learning
Anomaly detection
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c255t-5bd51aee830e5339c60428979379b7a22130bd2c4358408ef328a93f860fd1a03
ORCID 0000-0002-2343-0850
0000-0003-0097-801X
0000-0002-4350-0254
0000-0002-0006-267X
0000-0003-2030-9438
PageCount 16
ParticipantIDs hal_primary_oai_HAL_hal_03779486v1
crossref_citationtrail_10_1016_j_comcom_2022_09_012
crossref_primary_10_1016_j_comcom_2022_09_012
elsevier_sciencedirect_doi_10_1016_j_comcom_2022_09_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Computer communications
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Lu, Liao, Lio, Hui (b97) 2020; 8
M. Naehrig, K. Lauter, V. Vaikuntanathan, Can homomorphic encryption be practical?, in: Proceedings of the 3rd ACM Workshop on Cloud Computing Security Workshop, 2011, pp. 113–124.
Fan, Li, Zhan, Cui, Zhang (b95) 2020
Begli, Derakhshan (b92) 2021
Pang, Huang, Xie, Han, Cai (b120) 2020
Wang, Yao, Shan, Li, Viswanath, Zheng, Zhao (b74) 2019
Chen, Ning, Slawski, Rangwala (b96) 2020
Fuller, Fan, Day, Barlow (b114) 2020; 8
Mothukuri, Khare, Parizi, Pouriyeh, Dehghantanha, Srivastava (b14) 2021
Fathi-Kazerooni, Rojas-Cessa (b80) 2020; 8
Zisselman, Adler, Elad (b70) 2018
Deng (b29) 2014; 3
Ferdowsi, Saad (b76) 2019
Tian, Luo, Qiu, Du, Guizani (b48) 2020; 16
Y. Zhao, J. Chen, D. Wu, J. Teng, S. Yu, Multi-task network anomaly detection using federated learning, in: Proceedings of the Tenth International Symposium on Information and Communication Technology, 2019, pp. 273–279.
Vishal, Johari (b53) 2018
Gupta, Jha, Gandotra, Jain (b94) 2017; 67
20), 2020, pp. 493–506.
Zhang, Patras, Haddadi (b7) 2019; 21
C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, Y. Liu, Batchcrypt: Efficient homomorphic encryption for cross-silo federated learning, in: 2020
Zhu, Jin (b116) 2019; 31
Wang, Kaplan, Niu, Li (b118) 2020
Sun, Ochiai, Esaki (b62) 2020
Tavallaee, Bagheri, Lu, Ghorbani (b77) 2009
Asad, Moustafa, Ito, Aslam (b83) 2021
Li, Xue, Zhao, Zhu, Zhang (b72) 2020
Li, Han (b79) 2019
Cheng, Liu, Chen, Yang (b12) 2020; 63
Kwon, Kim, Kim, Suh, Kim, Kim (b23) 2019; 22
Li, Wu, Song, Lu, Li, Zhao (b57) 2020
Nguyen, Marchal, Miettinen, Fereidooni, Asokan, Sadeghi (b68) 2019
Bouacida, Mohapatra (b82) 2021
Zhang, Xie, Bai, Yu, Li, Gao (b13) 2021; 216
Rey, Sánchez, Celdrán, Bovet, Jaggi (b58) 2021
Xiao, Wu, Lin, Zhao (b4) 2018; 153
Wu, Wang, Hu, Zhang, Wu (b38) 2020; 164
Li, Ma, Jiao (b2) 2015; 9
Upadhyay, Manero, Zaman, Sampalli (b47) 2021; 18
Kukkala, Thiruloga, Pasricha (b46) 2020; 39
Lee, Mohammadi, Rashidi, Rahmani, Masdari, Hosseinzadeh (b42) 2021
Thakkar, Lohiya (b91) 2021; 28
Aburomman, Reaz (b26) 2017; 65
Sun, Sebastian Cardenas, Hahn, Liu (b45) 2021; 12
Gong, Xie, Pan, Feng, Qin (b15) 2020; 15
Chen, Lv, Liu, Fang, Chen, Pan (b55) 2020; 8
Rehman, Rehman, Khan, Alazab, Reddy (b50) 2021
Lim, Luong, Hoang, Jiao, Liang, Yang, Niyato, Miao (b21) 2020; 22
Gadekallu, Pham, Huynh-The, Bhattacharya, Maddikunta, Liyanage (b16) 2021
Tang, Mao, Fadlullah, Kato (b9) 2018; 56
Agrawal, Sarkar, Alazab, Maddikunta, Gadekallu, Pham (b117) 2021
Prabadevi, Deepa, Pham, Nguyen, Reddy, Pathirana, Dobre (b105) 2021
Gongye, Fei, Wahl (b71) 2020
Short, Leligou, Papoutsidakis, Theocharis (b113) 2020
Pham, Dev, Maddikunta, Gadekallu, Huynh-The (b33) 2021
G. Srivastava, N. Deepa, B. Prabadevi, P.K. Reddy M, An ensemble model for intrusion detection in the Internet of Softwarized Things, in: Adjunct Proceedings of the 2021 International Conference on Distributed Computing and Networking, 2021, pp. 25–30.
Wahab, Mourad, Otrok, Taleb (b36) 2021
Mothukuri, Parizi, Pouriyeh, Huang, Dehghantanha, Srivastava (b35) 2021; 115
Moustafa (b112) 2019
Devi, Shitharth, Jabbar (b52) 2020
Aouedi, Tobji, Abraham (b5) 2018; 10
Kilincer, Ertam, Sengur (b43) 2021; 188
Li, Zhou, Tu, Wang, Zhang (b61) 2020; 8
Yang, Wang, Xu, Wang, Bian, Liu (b119) 2020
Zhang, Wang, Sun, Green II, Alam (b78) 2011; 2
Briggs, Fan, Andras (b65) 2020
Yang, Liu, Chen, Tong (b20) 2019; 10
Liu, Kang, Xing, Chen, Yang (b104) 2020; 35
Balakrishnan, Akdeniz, Dhakal, Himayat (b107) 2020
Xu, Ali, Yue (b115) 2021
Aldweesh, Derhab, Emam (b3) 2020; 189
Criscuolo (b81) 2000
Guo, Liu, Oerlemans, Lao, Wu, Lew (b30) 2016; 187
Voulodimos, Doulamis, Doulamis, Protopapadakis (b6) 2018; 2018
Aledhari, Razzak, Parizi, Saeed (b32) 2020; 8
Yang, Hu, Chen (b102) 2020
Hindy, Brosset, Bayne, Seeam, Tachtatzis, Atkinson, Bellekens (b41) 2020; 8
Bhattacharya, Maddikunta, Kaluri, Singh, Gadekallu, Alazab, Tariq (b39) 2020; 9
Ren, Wang, Hou, Zheng, Tang (b106) 2019; 7
Samrin, Vasumathi (b60) 2017
Liu, Dachman-Soled, Srivastava (b73) 2019
Ozfatura, Ozfatura, Gunduz (b98) 2021
Kang, Xiong, Niyato, Zou, Zhang, Guizani (b86) 2020; 27
Resende, Drummond (b24) 2018; 51
Doriguzzi-Corin, Millar, Scott-Hayward, Martí nez-del Rincon, Siracusa (b108) 2020; 17
(b103) 2019
Hodo, Bellekens, Hamilton, Tachtatzis, Atkinson (b8) 2017
Pouyanfar, Sadiq, Yan, Tian, Tao, Reyes, Shyu, Chen, Iyengar (b31) 2018; 51
Mohammadi, Rashid, Karim, Aldalwie, Tho, Bidaki, Rahmani, Hoseinzadeh (b37) 2021
Ma, Li, Ding, Wei, Chen, Poor (b87) 2021
Sun, Esaki, Ochiai (b63) 2020
Pouyanfar, Sadiq, Yan, Tian, Tao, Reyes, Shyu, Chen, Iyengar (b28) 2018; 51
Li, Meng, Au (b64) 2020; 161
Qin, Poularakis, Leung, Tassiulas (b93) 2020
Li, Sahu, Talwalkar, Smith (b34) 2020; 37
Cetin, Lazar, Kim, Sim, Wu (b56) 2019
Boulemtafes, Derhab, Challal (b69) 2020; 384
Latif, Zou, Idrees, Ahmad (b109) 2020; 8
Liu, Kang, Xing, Chen, Yang (b19) 2020; 35
Al-Marri, Ciftler, Abdallah (b75) 2020
T.D. Nguyen, P. Rieger, M. Miettinen, A.-R. Sadeghi, Poisoning attacks on federated learning-based IoT intrusion detection system, in: NDSS Workshop on Decentralized IoT Systems and Security, 2020.
Annual Technical Conference
Mothukuri, Parizi, Pouriyeh, Huang, Dehghantanha, Srivastava (b10) 2021; 115
Base, Mell (b1) 2001
Sultana, Chilamkurti, Peng, Alhadad (b25) 2019; 12
Alkadi, Moustafa, Turnbull, Choo (b110) 2020
Alazab, Broadhurst (b40) 2016
Wang, Garg, Lin, Hu, Kaddoum, Piran, Hossain (b54) 2021
Farivar, Haghighi, Jolfaei, Alazab (b49) 2020; 16
Schmidhuber (b27) 2015; 61
Alazab, RM, Parimala, Reddy, Gadekallu, Pham (b17) 2021
Dinh, Tran, Nguyen, Hong, Bao, Zomaya, Gramoli (b88) 2019
Hardy, Henecka, Ivey-Law, Nock, Patrini, Smith, Thorne (b100) 2017
Zhang, Chen, Wu, Chen, Yu (b84) 2019
Gao, Bu, Zhang, Li (b44) 2021
Rahman, Tout, Talhi, Mourad (b59) 2020; 34
Li, Lyu, Liu, Zhang, Lyu (b67) 2020
Warzyński, Kołaczek (b90) 2018
Wang, Fida, Lian, Yin, Pham, Gadekallu, Dev, Su (b18) 2021
Moustafa, Slay (b111) 2015
Sunny, Zhao, Li, Kanteh Sakiliba (b89) 2021; 21
Taheri, Shojafar, Alazab, Tafazolli (b11) 2020
Niknam, Dhillon, Reed (b22) 2020; 58
Balakrishnan (10.1016/j.comcom.2022.09.012_b107) 2020
Taheri (10.1016/j.comcom.2022.09.012_b11) 2020
Bhattacharya (10.1016/j.comcom.2022.09.012_b39) 2020; 9
Dinh (10.1016/j.comcom.2022.09.012_b88) 2019
Fan (10.1016/j.comcom.2022.09.012_b95) 2020
Base (10.1016/j.comcom.2022.09.012_b1) 2001
Asad (10.1016/j.comcom.2022.09.012_b83) 2021
Aldweesh (10.1016/j.comcom.2022.09.012_b3) 2020; 189
Ren (10.1016/j.comcom.2022.09.012_b106) 2019; 7
Li (10.1016/j.comcom.2022.09.012_b72) 2020
Zhu (10.1016/j.comcom.2022.09.012_b116) 2019; 31
Aburomman (10.1016/j.comcom.2022.09.012_b26) 2017; 65
Li (10.1016/j.comcom.2022.09.012_b2) 2015; 9
Tavallaee (10.1016/j.comcom.2022.09.012_b77) 2009
Xu (10.1016/j.comcom.2022.09.012_b115) 2021
Kilincer (10.1016/j.comcom.2022.09.012_b43) 2021; 188
10.1016/j.comcom.2022.09.012_b66
Pouyanfar (10.1016/j.comcom.2022.09.012_b28) 2018; 51
Schmidhuber (10.1016/j.comcom.2022.09.012_b27) 2015; 61
Upadhyay (10.1016/j.comcom.2022.09.012_b47) 2021; 18
Cetin (10.1016/j.comcom.2022.09.012_b56) 2019
Sultana (10.1016/j.comcom.2022.09.012_b25) 2019; 12
Lu (10.1016/j.comcom.2022.09.012_b97) 2020; 8
Alkadi (10.1016/j.comcom.2022.09.012_b110) 2020
Alazab (10.1016/j.comcom.2022.09.012_b17) 2021
Criscuolo (10.1016/j.comcom.2022.09.012_b81) 2000
Gong (10.1016/j.comcom.2022.09.012_b15) 2020; 15
Guo (10.1016/j.comcom.2022.09.012_b30) 2016; 187
Wu (10.1016/j.comcom.2022.09.012_b38) 2020; 164
Sun (10.1016/j.comcom.2022.09.012_b62) 2020
Li (10.1016/j.comcom.2022.09.012_b61) 2020; 8
Mohammadi (10.1016/j.comcom.2022.09.012_b37) 2021
Liu (10.1016/j.comcom.2022.09.012_b104) 2020; 35
Al-Marri (10.1016/j.comcom.2022.09.012_b75) 2020
Gupta (10.1016/j.comcom.2022.09.012_b94) 2017; 67
Chen (10.1016/j.comcom.2022.09.012_b96) 2020
Mothukuri (10.1016/j.comcom.2022.09.012_b35) 2021; 115
Wang (10.1016/j.comcom.2022.09.012_b74) 2019
Zhang (10.1016/j.comcom.2022.09.012_b7) 2019; 21
Zhang (10.1016/j.comcom.2022.09.012_b78) 2011; 2
Pham (10.1016/j.comcom.2022.09.012_b33) 2021
Ferdowsi (10.1016/j.comcom.2022.09.012_b76) 2019
Sunny (10.1016/j.comcom.2022.09.012_b89) 2021; 21
Latif (10.1016/j.comcom.2022.09.012_b109) 2020; 8
Thakkar (10.1016/j.comcom.2022.09.012_b91) 2021; 28
Li (10.1016/j.comcom.2022.09.012_b79) 2019
Li (10.1016/j.comcom.2022.09.012_b57) 2020
Moustafa (10.1016/j.comcom.2022.09.012_b112) 2019
Hardy (10.1016/j.comcom.2022.09.012_b100) 2017
Zisselman (10.1016/j.comcom.2022.09.012_b70) 2018
Agrawal (10.1016/j.comcom.2022.09.012_b117) 2021
Wang (10.1016/j.comcom.2022.09.012_b18) 2021
Resende (10.1016/j.comcom.2022.09.012_b24) 2018; 51
Li (10.1016/j.comcom.2022.09.012_b67) 2020
10.1016/j.comcom.2022.09.012_b51
Short (10.1016/j.comcom.2022.09.012_b113) 2020
Rey (10.1016/j.comcom.2022.09.012_b58) 2021
Hodo (10.1016/j.comcom.2022.09.012_b8) 2017
Kang (10.1016/j.comcom.2022.09.012_b86) 2020; 27
Wahab (10.1016/j.comcom.2022.09.012_b36) 2021
Nguyen (10.1016/j.comcom.2022.09.012_b68) 2019
Warzyński (10.1016/j.comcom.2022.09.012_b90) 2018
Yang (10.1016/j.comcom.2022.09.012_b102) 2020
Devi (10.1016/j.comcom.2022.09.012_b52) 2020
Tang (10.1016/j.comcom.2022.09.012_b9) 2018; 56
Kukkala (10.1016/j.comcom.2022.09.012_b46) 2020; 39
Prabadevi (10.1016/j.comcom.2022.09.012_b105) 2021
Liu (10.1016/j.comcom.2022.09.012_b19) 2020; 35
Wang (10.1016/j.comcom.2022.09.012_b118) 2020
Chen (10.1016/j.comcom.2022.09.012_b55) 2020; 8
Sun (10.1016/j.comcom.2022.09.012_b45) 2021; 12
Gongye (10.1016/j.comcom.2022.09.012_b71) 2020
Begli (10.1016/j.comcom.2022.09.012_b92) 2021
Pang (10.1016/j.comcom.2022.09.012_b120) 2020
Pouyanfar (10.1016/j.comcom.2022.09.012_b31) 2018; 51
Li (10.1016/j.comcom.2022.09.012_b34) 2020; 37
Alazab (10.1016/j.comcom.2022.09.012_b40) 2016
Rahman (10.1016/j.comcom.2022.09.012_b59) 2020; 34
Qin (10.1016/j.comcom.2022.09.012_b93) 2020
Bouacida (10.1016/j.comcom.2022.09.012_b82) 2021
Ma (10.1016/j.comcom.2022.09.012_b87) 2021
Samrin (10.1016/j.comcom.2022.09.012_b60) 2017
Fathi-Kazerooni (10.1016/j.comcom.2022.09.012_b80) 2020; 8
Aledhari (10.1016/j.comcom.2022.09.012_b32) 2020; 8
Yang (10.1016/j.comcom.2022.09.012_b119) 2020
Deng (10.1016/j.comcom.2022.09.012_b29) 2014; 3
Liu (10.1016/j.comcom.2022.09.012_b73) 2019
(10.1016/j.comcom.2022.09.012_b103) 2019
Xiao (10.1016/j.comcom.2022.09.012_b4) 2018; 153
Cheng (10.1016/j.comcom.2022.09.012_b12) 2020; 63
Lee (10.1016/j.comcom.2022.09.012_b42) 2021
Gao (10.1016/j.comcom.2022.09.012_b44) 2021
Rehman (10.1016/j.comcom.2022.09.012_b50) 2021
Moustafa (10.1016/j.comcom.2022.09.012_b111) 2015
Boulemtafes (10.1016/j.comcom.2022.09.012_b69) 2020; 384
10.1016/j.comcom.2022.09.012_b85
Fuller (10.1016/j.comcom.2022.09.012_b114) 2020; 8
Aouedi (10.1016/j.comcom.2022.09.012_b5) 2018; 10
Tian (10.1016/j.comcom.2022.09.012_b48) 2020; 16
Briggs (10.1016/j.comcom.2022.09.012_b65) 2020
Zhang (10.1016/j.comcom.2022.09.012_b13) 2021; 216
Niknam (10.1016/j.comcom.2022.09.012_b22) 2020; 58
Farivar (10.1016/j.comcom.2022.09.012_b49) 2020; 16
Lim (10.1016/j.comcom.2022.09.012_b21) 2020; 22
Sun (10.1016/j.comcom.2022.09.012_b63) 2020
Doriguzzi-Corin (10.1016/j.comcom.2022.09.012_b108) 2020; 17
Kwon (10.1016/j.comcom.2022.09.012_b23) 2019; 22
10.1016/j.comcom.2022.09.012_b101
Mothukuri (10.1016/j.comcom.2022.09.012_b10) 2021; 115
Vishal (10.1016/j.comcom.2022.09.012_b53) 2018
Mothukuri (10.1016/j.comcom.2022.09.012_b14) 2021
Zhang (10.1016/j.comcom.2022.09.012_b84) 2019
Gadekallu (10.1016/j.comcom.2022.09.012_b16) 2021
Hindy (10.1016/j.comcom.2022.09.012_b41) 2020; 8
Voulodimos (10.1016/j.comcom.2022.09.012_b6) 2018; 2018
Li (10.1016/j.comcom.2022.09.012_b64) 2020; 161
Ozfatura (10.1016/j.comcom.2022.09.012_b98) 2021
Wang (10.1016/j.comcom.2022.09.012_b54) 2021
10.1016/j.comcom.2022.09.012_b99
Yang (10.1016/j.comcom.2022.09.012_b20) 2019; 10
References_xml – volume: 216
  year: 2021
  ident: b13
  article-title: A survey on federated learning
  publication-title: Knowl.-Based Syst.
– volume: 22
  start-page: 2031
  year: 2020
  end-page: 2063
  ident: b21
  article-title: Federated learning in mobile edge networks: A comprehensive survey
  publication-title: IEEE Commun. Surv. Tutor.
– year: 2020
  ident: b72
  article-title: Invisible backdoor attacks on deep neural networks via steganography and regularization
  publication-title: IEEE Trans. Dependable Secure Comput.
– start-page: 15
  year: 2020
  end-page: 24
  ident: b96
  article-title: Asynchronous online federated learning for edge devices with non-IID data
  publication-title: 2020 IEEE International Conference on Big Data
– volume: 39
  start-page: 3698
  year: 2020
  end-page: 3710
  ident: b46
  article-title: INDRA: Intrusion detection using recurrent autoencoders in automotive embedded systems
  publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
– start-page: 1183
  year: 2020
  end-page: 1188
  ident: b113
  article-title: Using blockchain technologies to improve security in federated learning systems
  publication-title: 2020 IEEE 44th Annual Computers, Software, and Applications Conference
– year: 2017
  ident: b100
  article-title: Private federated learning on vertically partitioned data via entity resolution and additively homomorphic encryption
– volume: 8
  start-page: 108952
  year: 2020
  end-page: 108971
  ident: b114
  article-title: Digital twin: Enabling technologies, challenges and open research
  publication-title: IEEE Access
– year: 2021
  ident: b58
  article-title: Federated learning for malware detection in IoT devices
– year: 2020
  ident: b67
  article-title: FLEAM: A federated learning empowered architecture to mitigate DDoS in industrial IoT
– year: 2020
  ident: b102
  article-title: FPGA-based hardware accelerator of homomorphic encryption for efficient federated learning
– volume: 10
  start-page: 1
  year: 2019
  end-page: 19
  ident: b20
  article-title: Federated machine learning: Concept and applications
  publication-title: ACM Trans. Intell. Syst. Technol. (TIST)
– volume: 17
  start-page: 876
  year: 2020
  end-page: 889
  ident: b108
  article-title: Lucid: A practical, lightweight deep learning solution for DDoS attack detection
  publication-title: IEEE Trans. Netw. Serv. Manag.
– volume: 56
  start-page: 80
  year: 2018
  end-page: 86
  ident: b9
  article-title: On a novel deep-learning-based intelligent partially overlapping channel assignment in SDN-IoT
  publication-title: IEEE Commun. Mag.
– year: 2021
  ident: b117
  article-title: Genetic CFL: Optimization of hyper-parameters in clustered federated learning
– year: 2021
  ident: b33
  article-title: Fusion of federated learning and industrial Internet of Things: A survey
– start-page: 707
  year: 2019
  end-page: 723
  ident: b74
  article-title: Neural cleanse: Identifying and mitigating backdoor attacks in neural networks
  publication-title: 2019 IEEE Symposium on Security and Privacy
– reference: G. Srivastava, N. Deepa, B. Prabadevi, P.K. Reddy M, An ensemble model for intrusion detection in the Internet of Softwarized Things, in: Adjunct Proceedings of the 2021 International Conference on Distributed Computing and Networking, 2021, pp. 25–30.
– volume: 37
  start-page: 50
  year: 2020
  end-page: 60
  ident: b34
  article-title: Federated learning: Challenges, methods, and future directions
  publication-title: IEEE Signal Process. Mag.
– year: 2021
  ident: b54
  article-title: Towards accurate anomaly detection in industrial Internet-of-Things using hierarchical federated learning
  publication-title: IEEE Internet Things J.
– volume: 384
  start-page: 21
  year: 2020
  end-page: 45
  ident: b69
  article-title: A review of privacy-preserving techniques for deep learning
  publication-title: Neurocomputing
– year: 2021
  ident: b87
  article-title: Federated learning with unreliable clients: Performance analysis and mechanism design
  publication-title: IEEE Internet Things J.
– start-page: 374
  year: 2019
  end-page: 380
  ident: b84
  article-title: Poisoning attack in federated learning using generative adversarial nets
  publication-title: 2019 18th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/13th IEEE International Conference on Big Data Science and Engineering
– reference: T.D. Nguyen, P. Rieger, M. Miettinen, A.-R. Sadeghi, Poisoning attacks on federated learning-based IoT intrusion detection system, in: NDSS Workshop on Decentralized IoT Systems and Security, 2020.
– volume: 8
  start-page: 214852
  year: 2020
  end-page: 214865
  ident: b61
  article-title: Distributed network intrusion detection system in satellite-terrestrial integrated networks using federated learning
  publication-title: IEEE Access
– start-page: 6004
  year: 2019
  end-page: 6006
  ident: b56
  article-title: Federated wireless network intrusion detection
  publication-title: 2019 IEEE International Conference on Big Data
– year: 2020
  ident: b120
  article-title: Realizing the heterogeneity: A self-organized federated learning framework for iot
  publication-title: IEEE Internet Things J.
– volume: 164
  year: 2020
  ident: b38
  article-title: A network intrusion detection method based on semantic re-encoding and deep learning
  publication-title: J. Netw. Comput. Appl.
– volume: 27
  start-page: 72
  year: 2020
  end-page: 80
  ident: b86
  article-title: Reliable federated learning for mobile networks
  publication-title: IEEE Wirel. Commun.
– volume: 8
  start-page: 140699
  year: 2020
  end-page: 140725
  ident: b32
  article-title: Federated learning: A survey on enabling technologies, protocols, and applications
  publication-title: IEEE Access
– start-page: 1698
  year: 2020
  end-page: 1707
  ident: b118
  article-title: Optimizing federated learning on non-iid data with reinforcement learning
  publication-title: IEEE INFOCOM 2020-IEEE Conference on Computer Communications
– volume: 161
  year: 2020
  ident: b64
  article-title: Enhancing collaborative intrusion detection via disagreement-based semi-supervised learning in IoT environments
  publication-title: J. Netw. Comput. Appl.
– year: 2021
  ident: b16
  article-title: Federated learning for big data: A survey on opportunities, applications, and future directions
– volume: 51
  start-page: 1
  year: 2018
  end-page: 36
  ident: b28
  article-title: A survey on deep learning: Algorithms, techniques, and applications
  publication-title: ACM Comput. Surv.
– volume: 16
  start-page: 1963
  year: 2020
  end-page: 1971
  ident: b48
  article-title: A distributed deep learning system for web attack detection on edge devices
  publication-title: IEEE Trans. Ind. Inf.
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: b27
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Netw.
– volume: 18
  start-page: 1104
  year: 2021
  end-page: 1116
  ident: b47
  article-title: Gradient boosting feature selection with machine learning classifiers for intrusion detection on power grids
  publication-title: IEEE Trans. Netw. Serv. Manag.
– volume: 21
  start-page: 2224
  year: 2019
  end-page: 2287
  ident: b7
  article-title: Deep learning in mobile and wireless networking: A survey
  publication-title: IEEE Commun. Surv. Tutor.
– year: 2020
  ident: b11
  article-title: FED-IIoT: A robust federated malware detection architecture in industrial IoT
  publication-title: IEEE Trans. Ind. Inf.
– year: 2021
  ident: b37
  article-title: A comprehensive survey and taxonomy of the SVM-based intrusion detection systems
  publication-title: J. Netw. Comput. Appl.
– volume: 67
  start-page: 618
  year: 2017
  end-page: 632
  ident: b94
  article-title: Bandwidth spoofing and intrusion detection system for multistage 5g wireless communication network
  publication-title: IEEE Trans. Veh. Technol.
– year: 2021
  ident: b98
  article-title: Time-correlated sparsification for communication-efficient federated learning
– volume: 35
  start-page: 70
  year: 2020
  end-page: 82
  ident: b19
  article-title: A secure federated transfer learning framework
  publication-title: IEEE Intell. Syst.
– year: 2021
  ident: b92
  article-title: A multiagent based framework secured with layered SVM-based IDS for remote healthcare systems
– reference: Annual Technical Conference (
– year: 2000
  ident: b81
  article-title: Distributed denial of service: Trin00, tribe flood network, tribe flood network 2000, and stacheldraht ciac-2319
– start-page: 88
  year: 2020
  end-page: 95
  ident: b95
  article-title: IoTdefender: A federated transfer learning intrusion detection framework for 5G IoT
  publication-title: 2020 IEEE 14th International Conference on Big Data Science and Engineering
– start-page: 1
  year: 2016
  end-page: 20
  ident: b40
  article-title: Spam and criminal activity
  publication-title: Trends Issues Crime Crim. Justice
– start-page: 14
  year: 2018
  end-page: 15
  ident: b53
  article-title: SOAiCE: simulation of attacks in cloud computing environment
  publication-title: 2018 8th International Conference on Cloud Computing, Data Science & Engineering
– volume: 3
  year: 2014
  ident: b29
  article-title: A tutorial survey of architectures, algorithms, and applications for deep learning
  publication-title: APSIPA Trans. Signal Inf. Process.
– volume: 115
  start-page: 619
  year: 2021
  end-page: 640
  ident: b35
  article-title: A survey on security and privacy of federated learning
  publication-title: Future Gener. Comput. Syst.
– volume: 65
  start-page: 135
  year: 2017
  end-page: 152
  ident: b26
  article-title: A survey of intrusion detection systems based on ensemble and hybrid classifiers
  publication-title: Comput. Secur.
– volume: 34
  start-page: 310
  year: 2020
  end-page: 317
  ident: b59
  article-title: Internet of things intrusion detection: Centralized, on-device, or federated learning?
  publication-title: IEEE Netw.
– volume: 188
  year: 2021
  ident: b43
  article-title: Machine learning methods for cyber security intrusion detection: Datasets and comparative study
  publication-title: Comput. Netw.
– volume: 9
  start-page: 205
  year: 2015
  end-page: 216
  ident: b2
  article-title: A hybrid malicious code detection method based on deep learning
  publication-title: Int. J. Secur. Appl.
– volume: 7
  start-page: 69194
  year: 2019
  end-page: 69201
  ident: b106
  article-title: Federated learning-based computation offloading optimization in edge computing-supported internet of things
  publication-title: IEEE Access
– start-page: 1
  year: 2021
  end-page: 13
  ident: b44
  article-title: An intrusion detection method based on machine learning and state observer for train-ground communication systems
  publication-title: IEEE Trans. Intell. Transp. Syst.
– year: 2021
  ident: b105
  article-title: Toward blockchain for edge-of-things: A new paradigm, opportunities, and future directions
  publication-title: IEEE Internet Things Mag.
– volume: 189
  year: 2020
  ident: b3
  article-title: Deep learning approaches for anomaly-based intrusion detection systems: A survey, taxonomy, and open issues
  publication-title: Knowl.-Based Syst.
– volume: 153
  start-page: 1
  year: 2018
  end-page: 9
  ident: b4
  article-title: A deep learning-based multi-model ensemble method for cancer prediction
  publication-title: Comput. Methods Programs Biomed.
– volume: 9
  start-page: 219
  year: 2020
  ident: b39
  article-title: A novel PCA-firefly based xgboost classification model for intrusion detection in networks using GPU
  publication-title: Electronics
– volume: 8
  start-page: 89337
  year: 2020
  end-page: 89350
  ident: b109
  article-title: A novel attack detection scheme for the industrial internet of things using a lightweight random neural network
  publication-title: IEEE Access
– year: 2019
  ident: b103
  article-title: Federated ai ecosystem
– volume: 58
  start-page: 46
  year: 2020
  end-page: 51
  ident: b22
  article-title: Federated learning for wireless communications: Motivation, opportunities, and challenges
  publication-title: IEEE Commun. Mag.
– start-page: 657
  year: 2019
  end-page: 662
  ident: b73
  article-title: Mitigating reverse engineering attacks on deep neural networks
  publication-title: 2019 IEEE Computer Society Annual Symposium on VLSI
– start-page: 205
  year: 2021
  end-page: 216
  ident: b115
  article-title: Digital twin-based anomaly detection in cyber-physical systems
  publication-title: 2021 14th IEEE Conference on Software Testing, Verification and Validation
– volume: 187
  start-page: 27
  year: 2016
  end-page: 48
  ident: b30
  article-title: Deep learning for visual understanding: A review
  publication-title: Neurocomputing
– start-page: 352
  year: 2020
  end-page: 360
  ident: b93
  article-title: Line-speed and scalable intrusion detection at the network edge via federated learning
  publication-title: 2020 IFIP Networking Conference (Networking)
– volume: 51
  start-page: 1
  year: 2018
  end-page: 36
  ident: b31
  article-title: A survey on deep learning: Algorithms, techniques, and applications
  publication-title: ACM Comput. Surv.
– year: 2021
  ident: b42
  article-title: Towards secure intrusion detection systems using deep learning techniques: Comprehensive analysis and review
  publication-title: J. Netw. Comput. Appl.
– start-page: 1
  year: 2018
  end-page: 4
  ident: b90
  article-title: Intrusion detection systems vulnerability on adversarial examples
  publication-title: 2018 Innovations in Intelligent Systems and Applications
– volume: 28
  start-page: 3211
  year: 2021
  end-page: 3243
  ident: b91
  article-title: A review on machine learning and deep learning perspectives of IDS for IoT: recent updates, security issues, and challenges
  publication-title: Arch. Comput. Methods Eng.
– year: 2021
  ident: b50
  article-title: Canintelliids: Detecting in-vehicle intrusion attacks on a controller area network using cnn and attention-based gru
  publication-title: IEEE Trans. Netw. Sci. Eng.
– volume: 10
  start-page: 261
  year: 2018
  end-page: 270
  ident: b5
  article-title: Internet of things and ambient intelligence for mobile health monitoring: A review of a decade of research
  publication-title: Int. J. Comput. Inf. Syst. Ind. Manag. Appl.
– volume: 15
  start-page: 49
  year: 2020
  end-page: 64
  ident: b15
  article-title: A survey on differentially private machine learning
  publication-title: IEEE Comput. Intell. Mag.
– year: 2020
  ident: b110
  article-title: A deep blockchain framework-enabled collaborative intrusion detection for protecting iot and cloud networks
  publication-title: IEEE Internet Things J.
– volume: 21
  start-page: 214
  year: 2021
  ident: b89
  article-title: Low-cost IoT-based sensor system: A case study on harsh environmental monitoring
  publication-title: Sensors
– volume: 8
  start-page: 48970
  year: 2020
  end-page: 48981
  ident: b97
  article-title: Privacy-preserving asynchronous federated learning mechanism for edge network computing
  publication-title: IEEE Access
– start-page: 756
  year: 2019
  end-page: 767
  ident: b68
  article-title: DÏoT: A federated self-learning anomaly detection system for IoT
  publication-title: 2019 IEEE 39th International Conference on Distributed Computing Systems
– year: 2021
  ident: b36
  article-title: Federated machine learning: Survey, multi-level classification, desirable criteria and future directions in communication and networking systems
  publication-title: IEEE Commun. Surv. Tutor.
– start-page: 1
  year: 2020
  end-page: 6
  ident: b71
  article-title: Reverse-engineering deep neural networks using floating-point timing side-channels
  publication-title: 2020 57th ACM/IEEE Design Automation Conference
– start-page: 552
  year: 2021
  end-page: 557
  ident: b83
  article-title: Evaluating the communication efficiency in federated learning algorithms
  publication-title: 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design
– year: 2017
  ident: b8
  article-title: Shallow and deep networks intrusion detection system: A taxonomy and survey
– volume: 8
  start-page: 125345
  year: 2020
  end-page: 125359
  ident: b80
  article-title: GAN tunnel: Network traffic steganography by using GANs to counter internet traffic classifiers
  publication-title: IEEE Access
– volume: 31
  start-page: 1310
  year: 2019
  end-page: 1322
  ident: b116
  article-title: Multi-objective evolutionary federated learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– reference: 20), 2020, pp. 493–506.
– start-page: 141
  year: 2017
  end-page: 147
  ident: b60
  article-title: Review on anomaly based network intrusion detection system
  publication-title: 2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques
– start-page: 1
  year: 2020
  end-page: 5
  ident: b107
  article-title: Resource management and fairness for federated learning over wireless edge networks
  publication-title: 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications
– volume: 16
  start-page: 2716
  year: 2020
  end-page: 2725
  ident: b49
  article-title: Artificial intelligence for detection, estimation, and compensation of malicious attacks in nonlinear cyber-physical systems and industrial IoT
  publication-title: IEEE Trans. Ind. Inf.
– reference: C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, Y. Liu, Batchcrypt: Efficient homomorphic encryption for cross-silo federated learning, in: 2020
– year: 2001
  ident: b1
  article-title: Special publication on intrusion detection systems
– volume: 2018
  year: 2018
  ident: b6
  article-title: Deep learning for computer vision: A brief review
  publication-title: Comput. Intell. Neurosci.
– start-page: 3
  year: 2018
  end-page: 17
  ident: b70
  article-title: Compressed learning for image classification: A deep neural network approach
  publication-title: Handbook of Numerical Analysis, Vol. 19
– start-page: 722
  year: 2020
  end-page: 727
  ident: b52
  article-title: An appraisal over intrusion detection systems in cloud computing security attacks
  publication-title: 2020 2nd International Conference on Innovative Mechanisms for Industry Applications
– volume: 12
  start-page: 493
  year: 2019
  end-page: 501
  ident: b25
  article-title: ”Survey on SDN based network intrusion detection system using machine learning approaches”
  publication-title: Peer-To-Peer Netw. Appl.
– volume: 51
  start-page: 1
  year: 2018
  end-page: 36
  ident: b24
  article-title: A survey of random forest based methods for intrusion detection systems
  publication-title: ACM Comput. Surv.
– reference: M. Naehrig, K. Lauter, V. Vaikuntanathan, Can homomorphic encryption be practical?, in: Proceedings of the 3rd ACM Workshop on Cloud Computing Security Workshop, 2011, pp. 113–124.
– volume: 35
  start-page: 70
  year: 2020
  end-page: 82
  ident: b104
  article-title: A secure federated transfer learning framework
  publication-title: IEEE Intell. Syst.
– volume: 63
  start-page: 33
  year: 2020
  end-page: 36
  ident: b12
  article-title: Federated learning for privacy-preserving AI
  publication-title: Commun. ACM
– volume: 12
  start-page: 612
  year: 2021
  end-page: 622
  ident: b45
  article-title: Intrusion detection for cybersecurity of smart meters
  publication-title: IEEE Trans. Smart Grid
– start-page: 1
  year: 2020
  end-page: 9
  ident: b65
  article-title: Federated learning with hierarchical clustering of local updates to improve training on non-IID data
  publication-title: 2020 International Joint Conference on Neural Networks
– year: 2019
  ident: b112
  article-title: The Bot-IoT dataset
– start-page: 1
  year: 2009
  end-page: 6
  ident: b77
  article-title: A detailed analysis of the KDD cup 99 data set
  publication-title: 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications
– volume: 8
  start-page: 217463
  year: 2020
  end-page: 217472
  ident: b55
  article-title: Intrusion detection for wireless edge networks based on federated learning
  publication-title: IEEE Access
– reference: Y. Zhao, J. Chen, D. Wu, J. Teng, S. Yu, Multi-task network anomaly detection using federated learning, in: Proceedings of the Tenth International Symposium on Information and Communication Technology, 2019, pp. 273–279.
– year: 2019
  ident: b88
  article-title: Federated learning over wireless networks: Convergence analysis and resource allocation
– start-page: 1
  year: 2015
  end-page: 6
  ident: b111
  article-title: UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set)
  publication-title: 2015 Military Communications and Information Systems Conference
– volume: 22
  start-page: 949
  year: 2019
  end-page: 961
  ident: b23
  article-title: A survey of deep learning-based network anomaly detection
  publication-title: Cluster Comput.
– volume: 115
  start-page: 619
  year: 2021
  end-page: 640
  ident: b10
  article-title: A survey on security and privacy of federated learning
  publication-title: Future Gener. Comput. Syst.
– volume: 2
  start-page: 796
  year: 2011
  end-page: 808
  ident: b78
  article-title: Distributed intrusion detection system in a multi-layer network architecture of smart grids
  publication-title: IEEE Trans. Smart Grid
– year: 2019
  ident: b79
  article-title: An end-to-end encrypted neural network for gradient updates transmission in federated learning
– year: 2021
  ident: b18
  article-title: Secure-enhanced federated learning for AI-empowered electric vehicle energy prediction
  publication-title: IEEE Consum. Electron. Mag.
– start-page: 1
  year: 2020
  end-page: 6
  ident: b75
  article-title: Federated mimic learning for privacy preserving intrusion detection
  publication-title: 2020 IEEE International Black Sea Conference on Communications and Networking
– year: 2021
  ident: b14
  article-title: Federated learning-based anomaly detection for IoT security attacks
  publication-title: IEEE Internet Things J.
– year: 2020
  ident: b57
  article-title: DeepFed: Federated deep learning for intrusion detection in industrial cyber-physical systems
  publication-title: IEEE Trans. Ind. Inf.
– year: 2021
  ident: b17
  article-title: Federated learning for cybersecurity: Concepts, challenges and future directions
  publication-title: IEEE Trans. Ind. Inf.
– volume: 8
  start-page: 104650
  year: 2020
  end-page: 104675
  ident: b41
  article-title: A taxonomy of network threats and the effect of current datasets on intrusion detection systems
  publication-title: IEEE Access
– year: 2021
  ident: b82
  article-title: Vulnerabilities in federated learning
  publication-title: IEEE Access
– start-page: 1
  year: 2020
  end-page: 8
  ident: b62
  article-title: Intrusion detection with segmented federated learning for large-scale multiple LANs
  publication-title: 2020 International Joint Conference on Neural Networks
– year: 2020
  ident: b119
  article-title: Heterogeneity-aware federated learning
– start-page: 1
  year: 2019
  end-page: 6
  ident: b76
  article-title: Generative adversarial networks for distributed intrusion detection in the internet of things
  publication-title: 2019 IEEE Global Communications Conference
– year: 2020
  ident: b63
  article-title: Adaptive intrusion detection in the networking of large-scale LANs with segmented federated learning
  publication-title: IEEE Open J. Commun. Soc.
– year: 2019
  ident: 10.1016/j.comcom.2022.09.012_b103
– volume: 35
  start-page: 70
  issue: 4
  year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b104
  article-title: A secure federated transfer learning framework
  publication-title: IEEE Intell. Syst.
  doi: 10.1109/MIS.2020.2988525
– start-page: 6004
  year: 2019
  ident: 10.1016/j.comcom.2022.09.012_b56
  article-title: Federated wireless network intrusion detection
– year: 2021
  ident: 10.1016/j.comcom.2022.09.012_b92
– start-page: 3
  year: 2018
  ident: 10.1016/j.comcom.2022.09.012_b70
  article-title: Compressed learning for image classification: A deep neural network approach
  doi: 10.1016/bs.hna.2018.08.002
– start-page: 1
  year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b75
  article-title: Federated mimic learning for privacy preserving intrusion detection
– year: 2021
  ident: 10.1016/j.comcom.2022.09.012_b16
– volume: 12
  start-page: 612
  issue: 1
  year: 2021
  ident: 10.1016/j.comcom.2022.09.012_b45
  article-title: Intrusion detection for cybersecurity of smart meters
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2020.3010230
– start-page: 1
  year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b65
  article-title: Federated learning with hierarchical clustering of local updates to improve training on non-IID data
– year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b57
  article-title: DeepFed: Federated deep learning for intrusion detection in industrial cyber-physical systems
  publication-title: IEEE Trans. Ind. Inf.
– volume: 8
  start-page: 48970
  year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b97
  article-title: Privacy-preserving asynchronous federated learning mechanism for edge network computing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2978082
– volume: 115
  start-page: 619
  year: 2021
  ident: 10.1016/j.comcom.2022.09.012_b35
  article-title: A survey on security and privacy of federated learning
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.10.007
– volume: 8
  start-page: 89337
  year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b109
  article-title: A novel attack detection scheme for the industrial internet of things using a lightweight random neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2994079
– year: 2021
  ident: 10.1016/j.comcom.2022.09.012_b17
  article-title: Federated learning for cybersecurity: Concepts, challenges and future directions
  publication-title: IEEE Trans. Ind. Inf.
– year: 2021
  ident: 10.1016/j.comcom.2022.09.012_b33
– volume: 51
  start-page: 1
  issue: 5
  year: 2018
  ident: 10.1016/j.comcom.2022.09.012_b31
  article-title: A survey on deep learning: Algorithms, techniques, and applications
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3234150
– year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b110
  article-title: A deep blockchain framework-enabled collaborative intrusion detection for protecting iot and cloud networks
  publication-title: IEEE Internet Things J.
– volume: 153
  start-page: 1
  year: 2018
  ident: 10.1016/j.comcom.2022.09.012_b4
  article-title: A deep learning-based multi-model ensemble method for cancer prediction
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2017.09.005
– volume: 8
  start-page: 140699
  year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b32
  article-title: Federated learning: A survey on enabling technologies, protocols, and applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3013541
– volume: 16
  start-page: 1963
  issue: 3
  year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b48
  article-title: A distributed deep learning system for web attack detection on edge devices
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2019.2938778
– start-page: 722
  year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b52
  article-title: An appraisal over intrusion detection systems in cloud computing security attacks
– volume: 2018
  year: 2018
  ident: 10.1016/j.comcom.2022.09.012_b6
  article-title: Deep learning for computer vision: A brief review
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2018/7068349
– start-page: 1
  issue: 526
  year: 2016
  ident: 10.1016/j.comcom.2022.09.012_b40
  article-title: Spam and criminal activity
  publication-title: Trends Issues Crime Crim. Justice
– volume: 15
  start-page: 49
  issue: 2
  year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b15
  article-title: A survey on differentially private machine learning
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2020.2976185
– start-page: 205
  year: 2021
  ident: 10.1016/j.comcom.2022.09.012_b115
  article-title: Digital twin-based anomaly detection in cyber-physical systems
– start-page: 552
  year: 2021
  ident: 10.1016/j.comcom.2022.09.012_b83
  article-title: Evaluating the communication efficiency in federated learning algorithms
– year: 2021
  ident: 10.1016/j.comcom.2022.09.012_b37
  article-title: A comprehensive survey and taxonomy of the SVM-based intrusion detection systems
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2021.102983
– volume: 8
  start-page: 214852
  year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b61
  article-title: Distributed network intrusion detection system in satellite-terrestrial integrated networks using federated learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3041641
– ident: 10.1016/j.comcom.2022.09.012_b85
  doi: 10.14722/diss.2020.23003
– year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b119
– volume: 161
  year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b64
  article-title: Enhancing collaborative intrusion detection via disagreement-based semi-supervised learning in IoT environments
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2020.102631
– ident: 10.1016/j.comcom.2022.09.012_b66
  doi: 10.1145/3368926.3369705
– year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b120
  article-title: Realizing the heterogeneity: A self-organized federated learning framework for iot
  publication-title: IEEE Internet Things J.
– volume: 8
  start-page: 125345
  year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b80
  article-title: GAN tunnel: Network traffic steganography by using GANs to counter internet traffic classifiers
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3007577
– start-page: 1698
  year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b118
  article-title: Optimizing federated learning on non-iid data with reinforcement learning
– volume: 9
  start-page: 205
  issue: 5
  year: 2015
  ident: 10.1016/j.comcom.2022.09.012_b2
  article-title: A hybrid malicious code detection method based on deep learning
  publication-title: Int. J. Secur. Appl.
– year: 2021
  ident: 10.1016/j.comcom.2022.09.012_b18
  article-title: Secure-enhanced federated learning for AI-empowered electric vehicle energy prediction
  publication-title: IEEE Consum. Electron. Mag.
  doi: 10.1109/MCE.2021.3116917
– year: 2017
  ident: 10.1016/j.comcom.2022.09.012_b100
– start-page: 1
  year: 2018
  ident: 10.1016/j.comcom.2022.09.012_b90
  article-title: Intrusion detection systems vulnerability on adversarial examples
– start-page: 88
  year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b95
  article-title: IoTdefender: A federated transfer learning intrusion detection framework for 5G IoT
– year: 2021
  ident: 10.1016/j.comcom.2022.09.012_b36
  article-title: Federated machine learning: Survey, multi-level classification, desirable criteria and future directions in communication and networking systems
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2021.3058573
– ident: 10.1016/j.comcom.2022.09.012_b99
– year: 2019
  ident: 10.1016/j.comcom.2022.09.012_b79
– year: 2021
  ident: 10.1016/j.comcom.2022.09.012_b98
– start-page: 1
  year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b62
  article-title: Intrusion detection with segmented federated learning for large-scale multiple LANs
– volume: 8
  start-page: 104650
  year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b41
  article-title: A taxonomy of network threats and the effect of current datasets on intrusion detection systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3000179
– ident: 10.1016/j.comcom.2022.09.012_b51
  doi: 10.1145/3427477.3429987
– start-page: 15
  year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b96
  article-title: Asynchronous online federated learning for edge devices with non-IID data
– volume: 21
  start-page: 2224
  issue: 3
  year: 2019
  ident: 10.1016/j.comcom.2022.09.012_b7
  article-title: Deep learning in mobile and wireless networking: A survey
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2019.2904897
– start-page: 352
  year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b93
  article-title: Line-speed and scalable intrusion detection at the network edge via federated learning
– year: 2021
  ident: 10.1016/j.comcom.2022.09.012_b82
  article-title: Vulnerabilities in federated learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3075203
– volume: 189
  year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b3
  article-title: Deep learning approaches for anomaly-based intrusion detection systems: A survey, taxonomy, and open issues
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.105124
– volume: 164
  year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b38
  article-title: A network intrusion detection method based on semantic re-encoding and deep learning
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2020.102688
– year: 2021
  ident: 10.1016/j.comcom.2022.09.012_b50
  article-title: Canintelliids: Detecting in-vehicle intrusion attacks on a controller area network using cnn and attention-based gru
  publication-title: IEEE Trans. Netw. Sci. Eng.
– year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b72
  article-title: Invisible backdoor attacks on deep neural networks via steganography and regularization
  publication-title: IEEE Trans. Dependable Secure Comput.
  doi: 10.1109/TDSC.2020.3021407
– start-page: 1
  year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b107
  article-title: Resource management and fairness for federated learning over wireless edge networks
– start-page: 14
  year: 2018
  ident: 10.1016/j.comcom.2022.09.012_b53
  article-title: SOAiCE: simulation of attacks in cloud computing environment
– year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b102
– volume: 31
  start-page: 1310
  issue: 4
  year: 2019
  ident: 10.1016/j.comcom.2022.09.012_b116
  article-title: Multi-objective evolutionary federated learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2019.2919699
– volume: 63
  start-page: 33
  issue: 12
  year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b12
  article-title: Federated learning for privacy-preserving AI
  publication-title: Commun. ACM
  doi: 10.1145/3387107
– volume: 188
  year: 2021
  ident: 10.1016/j.comcom.2022.09.012_b43
  article-title: Machine learning methods for cyber security intrusion detection: Datasets and comparative study
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2021.107840
– year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b67
– start-page: 756
  year: 2019
  ident: 10.1016/j.comcom.2022.09.012_b68
  article-title: DÏoT: A federated self-learning anomaly detection system for IoT
– volume: 67
  start-page: 618
  issue: 1
  year: 2017
  ident: 10.1016/j.comcom.2022.09.012_b94
  article-title: Bandwidth spoofing and intrusion detection system for multistage 5g wireless communication network
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2017.2745110
– start-page: 1
  year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b71
  article-title: Reverse-engineering deep neural networks using floating-point timing side-channels
– volume: 56
  start-page: 80
  issue: 9
  year: 2018
  ident: 10.1016/j.comcom.2022.09.012_b9
  article-title: On a novel deep-learning-based intelligent partially overlapping channel assignment in SDN-IoT
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2018.1701227
– start-page: 141
  year: 2017
  ident: 10.1016/j.comcom.2022.09.012_b60
  article-title: Review on anomaly based network intrusion detection system
– start-page: 1
  year: 2019
  ident: 10.1016/j.comcom.2022.09.012_b76
  article-title: Generative adversarial networks for distributed intrusion detection in the internet of things
– volume: 187
  start-page: 27
  year: 2016
  ident: 10.1016/j.comcom.2022.09.012_b30
  article-title: Deep learning for visual understanding: A review
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.09.116
– year: 2021
  ident: 10.1016/j.comcom.2022.09.012_b105
  article-title: Toward blockchain for edge-of-things: A new paradigm, opportunities, and future directions
  publication-title: IEEE Internet Things Mag.
– start-page: 1
  year: 2015
  ident: 10.1016/j.comcom.2022.09.012_b111
  article-title: UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set)
– volume: 39
  start-page: 3698
  issue: 11
  year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b46
  article-title: INDRA: Intrusion detection using recurrent autoencoders in automotive embedded systems
  publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
  doi: 10.1109/TCAD.2020.3012749
– volume: 58
  start-page: 46
  issue: 6
  year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b22
  article-title: Federated learning for wireless communications: Motivation, opportunities, and challenges
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.001.1900461
– year: 2001
  ident: 10.1016/j.comcom.2022.09.012_b1
– volume: 22
  start-page: 2031
  issue: 3
  year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b21
  article-title: Federated learning in mobile edge networks: A comprehensive survey
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2020.2986024
– volume: 65
  start-page: 135
  year: 2017
  ident: 10.1016/j.comcom.2022.09.012_b26
  article-title: A survey of intrusion detection systems based on ensemble and hybrid classifiers
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2016.11.004
– volume: 10
  start-page: 261
  year: 2018
  ident: 10.1016/j.comcom.2022.09.012_b5
  article-title: Internet of things and ambient intelligence for mobile health monitoring: A review of a decade of research
  publication-title: Int. J. Comput. Inf. Syst. Ind. Manag. Appl.
– start-page: 657
  year: 2019
  ident: 10.1016/j.comcom.2022.09.012_b73
  article-title: Mitigating reverse engineering attacks on deep neural networks
– volume: 384
  start-page: 21
  year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b69
  article-title: A review of privacy-preserving techniques for deep learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.11.041
– volume: 28
  start-page: 3211
  issue: 4
  year: 2021
  ident: 10.1016/j.comcom.2022.09.012_b91
  article-title: A review on machine learning and deep learning perspectives of IDS for IoT: recent updates, security issues, and challenges
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-020-09496-0
– volume: 10
  start-page: 1
  issue: 2
  year: 2019
  ident: 10.1016/j.comcom.2022.09.012_b20
  article-title: Federated machine learning: Concept and applications
  publication-title: ACM Trans. Intell. Syst. Technol. (TIST)
  doi: 10.1145/3298981
– volume: 18
  start-page: 1104
  issue: 1
  year: 2021
  ident: 10.1016/j.comcom.2022.09.012_b47
  article-title: Gradient boosting feature selection with machine learning classifiers for intrusion detection on power grids
  publication-title: IEEE Trans. Netw. Serv. Manag.
  doi: 10.1109/TNSM.2020.3032618
– volume: 12
  start-page: 493
  issue: 2
  year: 2019
  ident: 10.1016/j.comcom.2022.09.012_b25
  article-title: ”Survey on SDN based network intrusion detection system using machine learning approaches”
  publication-title: Peer-To-Peer Netw. Appl.
  doi: 10.1007/s12083-017-0630-0
– start-page: 1
  year: 2009
  ident: 10.1016/j.comcom.2022.09.012_b77
  article-title: A detailed analysis of the KDD cup 99 data set
– ident: 10.1016/j.comcom.2022.09.012_b101
  doi: 10.1145/2046660.2046682
– volume: 51
  start-page: 1
  issue: 3
  year: 2018
  ident: 10.1016/j.comcom.2022.09.012_b24
  article-title: A survey of random forest based methods for intrusion detection systems
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3178582
– year: 2021
  ident: 10.1016/j.comcom.2022.09.012_b54
  article-title: Towards accurate anomaly detection in industrial Internet-of-Things using hierarchical federated learning
  publication-title: IEEE Internet Things J.
– start-page: 707
  year: 2019
  ident: 10.1016/j.comcom.2022.09.012_b74
  article-title: Neural cleanse: Identifying and mitigating backdoor attacks in neural networks
– start-page: 1
  year: 2021
  ident: 10.1016/j.comcom.2022.09.012_b44
  article-title: An intrusion detection method based on machine learning and state observer for train-ground communication systems
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 27
  start-page: 72
  issue: 2
  year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b86
  article-title: Reliable federated learning for mobile networks
  publication-title: IEEE Wirel. Commun.
  doi: 10.1109/MWC.001.1900119
– volume: 51
  start-page: 1
  issue: 5
  year: 2018
  ident: 10.1016/j.comcom.2022.09.012_b28
  article-title: A survey on deep learning: Algorithms, techniques, and applications
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3234150
– year: 2019
  ident: 10.1016/j.comcom.2022.09.012_b112
– volume: 8
  start-page: 108952
  year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b114
  article-title: Digital twin: Enabling technologies, challenges and open research
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2998358
– volume: 7
  start-page: 69194
  year: 2019
  ident: 10.1016/j.comcom.2022.09.012_b106
  article-title: Federated learning-based computation offloading optimization in edge computing-supported internet of things
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2919736
– volume: 35
  start-page: 70
  issue: 4
  year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b19
  article-title: A secure federated transfer learning framework
  publication-title: IEEE Intell. Syst.
  doi: 10.1109/MIS.2020.2988525
– year: 2017
  ident: 10.1016/j.comcom.2022.09.012_b8
– volume: 61
  start-page: 85
  year: 2015
  ident: 10.1016/j.comcom.2022.09.012_b27
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– volume: 16
  start-page: 2716
  issue: 4
  year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b49
  article-title: Artificial intelligence for detection, estimation, and compensation of malicious attacks in nonlinear cyber-physical systems and industrial IoT
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2019.2956474
– volume: 115
  start-page: 619
  year: 2021
  ident: 10.1016/j.comcom.2022.09.012_b10
  article-title: A survey on security and privacy of federated learning
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.10.007
– volume: 22
  start-page: 949
  issue: 1
  year: 2019
  ident: 10.1016/j.comcom.2022.09.012_b23
  article-title: A survey of deep learning-based network anomaly detection
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-017-1117-8
– volume: 3
  year: 2014
  ident: 10.1016/j.comcom.2022.09.012_b29
  article-title: A tutorial survey of architectures, algorithms, and applications for deep learning
  publication-title: APSIPA Trans. Signal Inf. Process.
– volume: 8
  start-page: 217463
  year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b55
  article-title: Intrusion detection for wireless edge networks based on federated learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3041793
– year: 2021
  ident: 10.1016/j.comcom.2022.09.012_b58
– start-page: 374
  year: 2019
  ident: 10.1016/j.comcom.2022.09.012_b84
  article-title: Poisoning attack in federated learning using generative adversarial nets
– volume: 2
  start-page: 796
  issue: 4
  year: 2011
  ident: 10.1016/j.comcom.2022.09.012_b78
  article-title: Distributed intrusion detection system in a multi-layer network architecture of smart grids
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2011.2159818
– start-page: 1183
  year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b113
  article-title: Using blockchain technologies to improve security in federated learning systems
– year: 2019
  ident: 10.1016/j.comcom.2022.09.012_b88
– volume: 21
  start-page: 214
  issue: 1
  year: 2021
  ident: 10.1016/j.comcom.2022.09.012_b89
  article-title: Low-cost IoT-based sensor system: A case study on harsh environmental monitoring
  publication-title: Sensors
  doi: 10.3390/s21010214
– year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b63
  article-title: Adaptive intrusion detection in the networking of large-scale LANs with segmented federated learning
  publication-title: IEEE Open J. Commun. Soc.
– year: 2021
  ident: 10.1016/j.comcom.2022.09.012_b14
  article-title: Federated learning-based anomaly detection for IoT security attacks
  publication-title: IEEE Internet Things J.
– volume: 37
  start-page: 50
  issue: 3
  year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b34
  article-title: Federated learning: Challenges, methods, and future directions
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2020.2975749
– year: 2021
  ident: 10.1016/j.comcom.2022.09.012_b42
  article-title: Towards secure intrusion detection systems using deep learning techniques: Comprehensive analysis and review
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2021.103111
– year: 2021
  ident: 10.1016/j.comcom.2022.09.012_b117
– volume: 17
  start-page: 876
  issue: 2
  year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b108
  article-title: Lucid: A practical, lightweight deep learning solution for DDoS attack detection
  publication-title: IEEE Trans. Netw. Serv. Manag.
  doi: 10.1109/TNSM.2020.2971776
– year: 2000
  ident: 10.1016/j.comcom.2022.09.012_b81
– volume: 9
  start-page: 219
  issue: 2
  year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b39
  article-title: A novel PCA-firefly based xgboost classification model for intrusion detection in networks using GPU
  publication-title: Electronics
  doi: 10.3390/electronics9020219
– volume: 34
  start-page: 310
  issue: 6
  year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b59
  article-title: Internet of things intrusion detection: Centralized, on-device, or federated learning?
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.011.2000286
– volume: 216
  year: 2021
  ident: 10.1016/j.comcom.2022.09.012_b13
  article-title: A survey on federated learning
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.106775
– year: 2020
  ident: 10.1016/j.comcom.2022.09.012_b11
  article-title: FED-IIoT: A robust federated malware detection architecture in industrial IoT
  publication-title: IEEE Trans. Ind. Inf.
– year: 2021
  ident: 10.1016/j.comcom.2022.09.012_b87
  article-title: Federated learning with unreliable clients: Performance analysis and mechanism design
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3079472
SSID ssj0004773
Score 2.6303654
SecondaryResourceType review_article
Snippet The rapid development of the Internet and smart devices trigger surge in network traffic making its infrastructure more complex and heterogeneous. The...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 346
SubjectTerms Anomaly detection
Computer Science
Deep Learning
Federated Learning
Intrusion detection system
Machine Learning
Title Federated Learning for intrusion detection system: Concepts, challenges and future directions
URI https://dx.doi.org/10.1016/j.comcom.2022.09.012
https://hal.science/hal-03779486
Volume 195
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKWWBAPEV5VBZiJDQPJ3HYqooqvDpRqQuyHNuBIhQqtWLkt3NnJwUGVIkxlu1Eny935-S7z4ScQxg1sdHSK3WiPMY094pIMS8pM6MkloJyLE5-GCX5mN1O4kmLDJpaGKRV1r7f-XTrreuWXo1mbzad9iwtKUogf7aingHKbjOWopVffn7TPFjq_jIjjRF7N-VzluMFcyNnJIRAZtVOg_Cv8LT20nxotYFnuE226oyR9t1D7ZCWqXbJ5g8dwT3yNERJCMgaNa31Up8pJKN0WmFJBSBPtVlYzlVFnXTzFR24esX5BVXNeSpzKitNncoIdbigUe6T8fD6cZB79bkJnoINwsKLCx0H0hge-QayuUwluDHKUAkvK1IZhhC3Ch0qyJRge8dNGYUclqXkiV_qQPrRAWlX75U5JJRHrCyN1pFR6FJ5kRXglRS-9dIUMuuQqIFLqFpUHM-2eBMNe-xVOJAFgiz8TADIHeItR82cqMaK_mmzEuKXcQjw-ytGngGGy5uglnbevxfY5qPUIuPJR3D07-mPyQZeudrEE9KGRTWnkKQsiq61wi5Z79_c5aMvFcPm-Q
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB11OQAHxCrKaiGORM1eh1tVUaV0ObVSL8hKbAeKUKjUiu9nJk4KHFAlrknsRM_OzHMy7xngDtOoDrRKrEyF0vJ9xa3Uk74VZpGWCUlBOYmTx5MwnvlP82Beg16lhaGyyjL2m5heROvySLtEs71cLNpFWZIXIn8uTD2dsA5NcqcKGtDsDobx5Fse2TE_mqmSkRpUCrqizAu7p7IRF3NZYXjquH9lqPpr9a21yD39A9gvSSPrmuc6hJrOj2Dvh5XgMTz3yRUCiaNipWXqC0M-yhY5qSoQfKb0uii7yplxb35gPSNZXN0zWW2psmJJrpgxGmEGGpqXJzDrP057sVVunWBJXCOsrSBVgZNozT1bI6GLZEhro4jM8KK0k7gupq5UuRLJEq7wuM48l-PIZDy0M-UktncKjfwj12fAuOdnmVbK05KiKk-jFAOTpBc_0WkStcCr4BKy9BWn7S3eRVVA9iYMyIJAFnYkEOQWWJtWS-OrseX6TjUS4tf8EBj6t7S8RQw3NyE77bg7EnTMJrdFn4efzvm_u7-BnXg6HonRYDK8gF06Y6SKl9DAAdZXyFnW6XU5J78ABzrpqg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+Learning+for+intrusion+detection+system%3A+Concepts%2C+challenges+and+future+directions&rft.jtitle=Computer+communications&rft.au=Agrawal%2C+Shaashwat&rft.au=Sarkar%2C+Sagnik&rft.au=Aouedi%2C+Ons&rft.au=Yenduri%2C+Gokul&rft.date=2022-11-01&rft.pub=Elsevier&rft.issn=0140-3664&rft.eissn=1873-703X&rft.spage=1&rft.epage=19&rft_id=info:doi/10.1016%2Fj.comcom.2022.09.012&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03779486v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-3664&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-3664&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-3664&client=summon