Federated Learning for intrusion detection system: Concepts, challenges and future directions
The rapid development of the Internet and smart devices trigger surge in network traffic making its infrastructure more complex and heterogeneous. The predominated usage of mobile phones, wearable devices and autonomous vehicles are examples of distributed networks which generate huge amount of data...
Saved in:
Published in | Computer communications Vol. 195; pp. 346 - 361 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The rapid development of the Internet and smart devices trigger surge in network traffic making its infrastructure more complex and heterogeneous. The predominated usage of mobile phones, wearable devices and autonomous vehicles are examples of distributed networks which generate huge amount of data each and every day. The computational power of these devices have also seen steady progression which has created the need to transmit information, store data locally and drive network computations towards edge devices. Intrusion detection systems (IDS) play a significant role in ensuring security and privacy of such devices. Machine Learning (ML) and Deep Learning (DL) with Intrusion Detection Systems have gained great momentum due to their achievement of high classification accuracy. However the privacy and security aspects potentially gets jeopardized due to the need of storing and communicating data to centralized server. On the contrary, Federated Learning (FL) fits in appropriately as a privacy-preserving decentralized learning technique that does not transfer data but trains models locally and transfers the parameters to the centralized server. The present paper aims to present an extensive and exhaustive review on the use of FL in intrusion detection system. In order to establish the need for FL, various types of IDS, relevant ML approaches and its associated issues are discussed. The paper presents detailed overview of the implementation of FL in various aspects of anomaly detection. The allied challenges of FL implementations are also identified which provides idea on the scope of future direction of research. The paper finally presents the plausible solutions associated with the identified challenges in FL based intrusion detection system implementation acting as a baseline for prospective research. |
---|---|
AbstractList | The rapid development of the Internet and smart devices trigger surge in network traffic making its infrastructure more complex and heterogeneous. The predominated usage of mobile phones, wearable devices and autonomous vehicles are examples of distributed networks which generate huge amount of data each and every day. The computational power of these devices have also seen steady progression which has created the need to transmit information, store data locally and drive network computations towards edge devices. Intrusion detection systems play a significant role in ensuring security and privacy of such devices. Machine Learning and Deep Learning with Intrusion Detection Systems have gained great momentum due to their achievement of high classification accuracy. However the privacy and security aspects potentially gets jeopardised due to the need of storing and communicating data to centralized server.On the contrary, federated learning (FL) fits in appropriately as a privacy-preserving decentralized learning technique that does not transfer data but trains models locally and transfers the parameters to the centralized server. The present paper aims to present an extensive and exhaustive review on the use of FL in intrusion detection system. In order to establish the need for FL, various types of IDS, relevant ML approaches and its associated issues are discussed. The paper presents detailed overview of the implementation of FL in various aspects of anomaly detection. The allied challenges of FL implementations are also identified which provides idea on the scope of future direction of research.The paper finally presents the plausible solutions associated with the identified challenges in FL based intrusion detection system implementation acting as a baseline for prospective research. The rapid development of the Internet and smart devices trigger surge in network traffic making its infrastructure more complex and heterogeneous. The predominated usage of mobile phones, wearable devices and autonomous vehicles are examples of distributed networks which generate huge amount of data each and every day. The computational power of these devices have also seen steady progression which has created the need to transmit information, store data locally and drive network computations towards edge devices. Intrusion detection systems (IDS) play a significant role in ensuring security and privacy of such devices. Machine Learning (ML) and Deep Learning (DL) with Intrusion Detection Systems have gained great momentum due to their achievement of high classification accuracy. However the privacy and security aspects potentially gets jeopardized due to the need of storing and communicating data to centralized server. On the contrary, Federated Learning (FL) fits in appropriately as a privacy-preserving decentralized learning technique that does not transfer data but trains models locally and transfers the parameters to the centralized server. The present paper aims to present an extensive and exhaustive review on the use of FL in intrusion detection system. In order to establish the need for FL, various types of IDS, relevant ML approaches and its associated issues are discussed. The paper presents detailed overview of the implementation of FL in various aspects of anomaly detection. The allied challenges of FL implementations are also identified which provides idea on the scope of future direction of research. The paper finally presents the plausible solutions associated with the identified challenges in FL based intrusion detection system implementation acting as a baseline for prospective research. |
Author | Sarkar, Sagnik Piamrat, Kandaraj Aouedi, Ons Gadekallu, Thippa Reddy Agrawal, Shaashwat Bhattacharya, Sweta Maddikunta, Praveen Kumar Reddy Yenduri, Gokul Alazab, Mamoun |
Author_xml | – sequence: 1 givenname: Shaashwat orcidid: 0000-0002-0006-267X surname: Agrawal fullname: Agrawal, Shaashwat email: shaashwat.agrawal2018@vitstudent.ac.in organization: School of Computer Science and Engineering, VIT, Vellore, India – sequence: 2 givenname: Sagnik orcidid: 0000-0003-2030-9438 surname: Sarkar fullname: Sarkar, Sagnik email: sagnik.sarkar2018@vitstudent.ac.in organization: School of Computer Science and Engineering, VIT, Vellore, India – sequence: 3 givenname: Ons orcidid: 0000-0002-2343-0850 surname: Aouedi fullname: Aouedi, Ons email: ons.aouedi@ls2n.fr organization: University of Nantes, France – sequence: 4 givenname: Gokul surname: Yenduri fullname: Yenduri, Gokul email: gokul.yenduri@vit.ac.in organization: School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, India – sequence: 5 givenname: Kandaraj orcidid: 0000-0002-4350-0254 surname: Piamrat fullname: Piamrat, Kandaraj email: kandaraj.piamrat@ls2n.fr organization: University of Nantes, France – sequence: 6 givenname: Mamoun surname: Alazab fullname: Alazab, Mamoun email: alazab.m@ieee.org organization: Charles Darwin University, Australia – sequence: 7 givenname: Sweta surname: Bhattacharya fullname: Bhattacharya, Sweta email: sweta.b@vit.ac.in organization: School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, India – sequence: 8 givenname: Praveen Kumar Reddy surname: Maddikunta fullname: Maddikunta, Praveen Kumar Reddy email: praveenkumarreddy@vit.ac.in organization: School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, India – sequence: 9 givenname: Thippa Reddy orcidid: 0000-0003-0097-801X surname: Gadekallu fullname: Gadekallu, Thippa Reddy email: thippareddy.g@vit.ac.in organization: School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, India |
BackLink | https://hal.science/hal-03779486$$DView record in HAL |
BookMark | eNqFkFFLwzAQgIMouKn_wIe8CrZekrZpfRBkOBUGvij4IiFLrpqxpSPJhP17W6ovPigc3HHcd3d8U3LoO4-EnDPIGbDqapWbbtNHzoHzHJocGD8gE1ZLkUkQr4dkAqyATFRVcUymMa4AoJBSTMjbHC0GndDSBergnX-nbReo8ynsous8tZjQpKGK-5hwc01nnTe4TfGSmg-9XqN_x0i1t7TdpV1Aal0YiXhKjlq9jnj2nU_Iy_zuefaQLZ7uH2e3i8zwskxZubQl04i1ACyFaEwFBa8b2QjZLKXmnAlYWm4KUdYF1NgKXutGtHUFrWUaxAm5GPf2_6htcBsd9qrTTj3cLtTQAyFlU9TVJ-tnr8dZE7oYA7bKuKSHd1PQbq0YqEGqWqlRqhqkKmhUL7WHi1_wz7V_sJsRw17Cp8OgonHYWxxVKdu5vxd8AeTulZI |
CitedBy_id | crossref_primary_10_1016_j_knosys_2023_110658 crossref_primary_10_1145_3701724 crossref_primary_10_37391_ijeer_120223 crossref_primary_10_3390_s22124394 crossref_primary_10_1007_s11235_024_01216_4 crossref_primary_10_1109_TNSM_2025_3525554 crossref_primary_10_7717_peerj_cs_1947 crossref_primary_10_1109_ACCESS_2024_3437192 crossref_primary_10_1109_TCE_2024_3377550 crossref_primary_10_3390_fi15120403 crossref_primary_10_7717_peerj_cs_2400 crossref_primary_10_1016_j_engappai_2023_106771 crossref_primary_10_1109_ACCESS_2023_3327922 crossref_primary_10_1007_s42452_024_06165_w crossref_primary_10_1016_j_future_2024_107559 crossref_primary_10_1155_2023_8068038 crossref_primary_10_1007_s11277_024_11669_0 crossref_primary_10_1016_j_solener_2024_112942 crossref_primary_10_1016_j_comnet_2024_110351 crossref_primary_10_1016_j_comnet_2024_110358 crossref_primary_10_32604_cmes_2024_048932 crossref_primary_10_3390_electronics12163382 crossref_primary_10_1109_TCE_2023_3321846 crossref_primary_10_3389_fcomp_2024_1387354 crossref_primary_10_37394_232016_2023_18_37 crossref_primary_10_1109_ACCESS_2024_3369915 crossref_primary_10_1016_j_iswa_2024_200462 crossref_primary_10_1111_exsy_13318 crossref_primary_10_1016_j_future_2023_09_019 crossref_primary_10_3390_info14010041 crossref_primary_10_1016_j_compind_2023_103888 crossref_primary_10_1016_j_future_2024_107487 crossref_primary_10_1007_s10207_023_00805_9 crossref_primary_10_1109_TNSM_2024_3384942 crossref_primary_10_3390_app14198840 crossref_primary_10_1007_s11042_024_19777_6 crossref_primary_10_1016_j_apenergy_2024_124789 crossref_primary_10_1016_j_esr_2024_101602 crossref_primary_10_1038_s41598_024_78262_0 crossref_primary_10_1007_s11277_023_10773_x crossref_primary_10_1142_S0218001424390014 crossref_primary_10_1007_s11042_024_19694_8 crossref_primary_10_1007_s43926_025_00108_6 crossref_primary_10_1109_ACCESS_2024_3472907 crossref_primary_10_1016_j_compeleceng_2024_109725 crossref_primary_10_1016_j_cosrev_2024_100697 crossref_primary_10_3390_electronics13244907 crossref_primary_10_1016_j_vehcom_2022_100551 crossref_primary_10_1109_ACCESS_2024_3362347 crossref_primary_10_1109_JBHI_2022_3185673 crossref_primary_10_1007_s10586_024_04356_z crossref_primary_10_1007_s10462_024_10766_7 crossref_primary_10_3390_fi16080264 crossref_primary_10_1016_j_comnet_2024_110837 crossref_primary_10_1109_ACCESS_2024_3454211 crossref_primary_10_1038_s41598_024_70032_2 crossref_primary_10_1155_2023_2956990 crossref_primary_10_3390_diagnostics14242891 crossref_primary_10_1016_j_jpdc_2024_104976 crossref_primary_10_1007_s13042_024_02269_2 crossref_primary_10_1007_s10845_023_02298_8 crossref_primary_10_1016_j_comcom_2023_05_004 crossref_primary_10_3390_app15052416 crossref_primary_10_3390_healthcare10061110 crossref_primary_10_1016_j_future_2023_10_005 crossref_primary_10_1016_j_cose_2023_103531 crossref_primary_10_1016_j_comnet_2024_110308 crossref_primary_10_1016_j_comcom_2023_04_023 crossref_primary_10_15622_ia_22_5_4 crossref_primary_10_1007_s00521_023_08933_y crossref_primary_10_1016_j_adhoc_2023_103320 crossref_primary_10_1016_j_is_2025_102524 crossref_primary_10_1111_exsy_13066 crossref_primary_10_1016_j_eswa_2023_120715 crossref_primary_10_3390_a15070247 crossref_primary_10_1109_OJCOMS_2024_3438264 crossref_primary_10_1145_3696012 crossref_primary_10_3390_electronics14050995 crossref_primary_10_3390_s23167038 crossref_primary_10_56294_mw2024552 crossref_primary_10_1142_S0218194024500190 crossref_primary_10_1109_JAS_2024_124215 crossref_primary_10_3390_computers14030087 crossref_primary_10_1109_TCC_2024_3503358 crossref_primary_10_1016_j_future_2023_07_001 crossref_primary_10_32604_cmc_2023_043752 crossref_primary_10_3390_electronics14051019 crossref_primary_10_3390_su15020964 crossref_primary_10_3390_electronics12010158 crossref_primary_10_1109_ACCESS_2024_3494057 crossref_primary_10_1109_ACCESS_2025_3529894 crossref_primary_10_3390_sym16091151 crossref_primary_10_1007_s10586_023_04234_0 crossref_primary_10_1007_s43926_025_00117_5 crossref_primary_10_1109_OJCOMS_2024_3484228 crossref_primary_10_3390_electronics14061176 crossref_primary_10_1109_ACCESS_2024_3460468 crossref_primary_10_1109_JIOT_2024_3407584 crossref_primary_10_3390_fi14020044 crossref_primary_10_1016_j_ogla_2024_08_004 crossref_primary_10_32604_csse_2023_038085 crossref_primary_10_1109_JBHI_2022_3181823 crossref_primary_10_1109_ACCESS_2024_3420078 crossref_primary_10_1016_j_comcom_2025_108112 crossref_primary_10_1007_s10489_024_05589_6 crossref_primary_10_1016_j_vehcom_2024_100837 crossref_primary_10_1007_s12145_024_01438_9 crossref_primary_10_1016_j_enbuild_2024_115164 |
Cites_doi | 10.1109/MIS.2020.2988525 10.1016/bs.hna.2018.08.002 10.1109/TSG.2020.3010230 10.1109/ACCESS.2020.2978082 10.1016/j.future.2020.10.007 10.1109/ACCESS.2020.2994079 10.1145/3234150 10.1016/j.cmpb.2017.09.005 10.1109/ACCESS.2020.3013541 10.1109/TII.2019.2938778 10.1155/2018/7068349 10.1109/MCI.2020.2976185 10.1016/j.jnca.2021.102983 10.1109/ACCESS.2020.3041641 10.14722/diss.2020.23003 10.1016/j.jnca.2020.102631 10.1145/3368926.3369705 10.1109/ACCESS.2020.3007577 10.1109/MCE.2021.3116917 10.1109/COMST.2021.3058573 10.1109/ACCESS.2020.3000179 10.1145/3427477.3429987 10.1109/COMST.2019.2904897 10.1109/ACCESS.2021.3075203 10.1016/j.knosys.2019.105124 10.1016/j.jnca.2020.102688 10.1109/TDSC.2020.3021407 10.1109/TNNLS.2019.2919699 10.1145/3387107 10.1016/j.comnet.2021.107840 10.1109/TVT.2017.2745110 10.1109/MCOM.2018.1701227 10.1016/j.neucom.2015.09.116 10.1109/TCAD.2020.3012749 10.1109/MCOM.001.1900461 10.1109/COMST.2020.2986024 10.1016/j.cose.2016.11.004 10.1016/j.neucom.2019.11.041 10.1007/s11831-020-09496-0 10.1145/3298981 10.1109/TNSM.2020.3032618 10.1007/s12083-017-0630-0 10.1145/2046660.2046682 10.1145/3178582 10.1109/MWC.001.1900119 10.1109/ACCESS.2020.2998358 10.1109/ACCESS.2019.2919736 10.1016/j.neunet.2014.09.003 10.1109/TII.2019.2956474 10.1007/s10586-017-1117-8 10.1109/ACCESS.2020.3041793 10.1109/TSG.2011.2159818 10.3390/s21010214 10.1109/MSP.2020.2975749 10.1016/j.jnca.2021.103111 10.1109/TNSM.2020.2971776 10.3390/electronics9020219 10.1109/MNET.011.2000286 10.1016/j.knosys.2021.106775 10.1109/JIOT.2021.3079472 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC |
DOI | 10.1016/j.comcom.2022.09.012 |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1873-703X |
EndPage | 361 |
ExternalDocumentID | oai_HAL_hal_03779486v1 10_1016_j_comcom_2022_09_012 S0140366422003516 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 77K 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ RXW SDF SDG SDP SES SPC SPCBC SST SSV SSZ T5K WH7 ZMT ~G- 07C 29F AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD F0J FEDTE FGOYB HLZ HVGLF HZ~ R2- RIG SBC SEW SSH TAE UHS VH1 VOH WUQ XPP ZY4 1XC |
ID | FETCH-LOGICAL-c255t-5bd51aee830e5339c60428979379b7a22130bd2c4358408ef328a93f860fd1a03 |
IEDL.DBID | .~1 |
ISSN | 0140-3664 |
IngestDate | Fri May 09 12:24:52 EDT 2025 Tue Jul 01 02:43:08 EDT 2025 Thu Apr 24 22:52:37 EDT 2025 Fri Feb 23 02:39:46 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Federated Learning Intrusion detection system Machine Learning Deep Learning Anomaly detection |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c255t-5bd51aee830e5339c60428979379b7a22130bd2c4358408ef328a93f860fd1a03 |
ORCID | 0000-0002-2343-0850 0000-0003-0097-801X 0000-0002-4350-0254 0000-0002-0006-267X 0000-0003-2030-9438 |
PageCount | 16 |
ParticipantIDs | hal_primary_oai_HAL_hal_03779486v1 crossref_citationtrail_10_1016_j_comcom_2022_09_012 crossref_primary_10_1016_j_comcom_2022_09_012 elsevier_sciencedirect_doi_10_1016_j_comcom_2022_09_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Computer communications |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Lu, Liao, Lio, Hui (b97) 2020; 8 M. Naehrig, K. Lauter, V. Vaikuntanathan, Can homomorphic encryption be practical?, in: Proceedings of the 3rd ACM Workshop on Cloud Computing Security Workshop, 2011, pp. 113–124. Fan, Li, Zhan, Cui, Zhang (b95) 2020 Begli, Derakhshan (b92) 2021 Pang, Huang, Xie, Han, Cai (b120) 2020 Wang, Yao, Shan, Li, Viswanath, Zheng, Zhao (b74) 2019 Chen, Ning, Slawski, Rangwala (b96) 2020 Fuller, Fan, Day, Barlow (b114) 2020; 8 Mothukuri, Khare, Parizi, Pouriyeh, Dehghantanha, Srivastava (b14) 2021 Fathi-Kazerooni, Rojas-Cessa (b80) 2020; 8 Zisselman, Adler, Elad (b70) 2018 Deng (b29) 2014; 3 Ferdowsi, Saad (b76) 2019 Tian, Luo, Qiu, Du, Guizani (b48) 2020; 16 Y. Zhao, J. Chen, D. Wu, J. Teng, S. Yu, Multi-task network anomaly detection using federated learning, in: Proceedings of the Tenth International Symposium on Information and Communication Technology, 2019, pp. 273–279. Vishal, Johari (b53) 2018 Gupta, Jha, Gandotra, Jain (b94) 2017; 67 20), 2020, pp. 493–506. Zhang, Patras, Haddadi (b7) 2019; 21 C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, Y. Liu, Batchcrypt: Efficient homomorphic encryption for cross-silo federated learning, in: 2020 Zhu, Jin (b116) 2019; 31 Wang, Kaplan, Niu, Li (b118) 2020 Sun, Ochiai, Esaki (b62) 2020 Tavallaee, Bagheri, Lu, Ghorbani (b77) 2009 Asad, Moustafa, Ito, Aslam (b83) 2021 Li, Xue, Zhao, Zhu, Zhang (b72) 2020 Li, Han (b79) 2019 Cheng, Liu, Chen, Yang (b12) 2020; 63 Kwon, Kim, Kim, Suh, Kim, Kim (b23) 2019; 22 Li, Wu, Song, Lu, Li, Zhao (b57) 2020 Nguyen, Marchal, Miettinen, Fereidooni, Asokan, Sadeghi (b68) 2019 Bouacida, Mohapatra (b82) 2021 Zhang, Xie, Bai, Yu, Li, Gao (b13) 2021; 216 Rey, Sánchez, Celdrán, Bovet, Jaggi (b58) 2021 Xiao, Wu, Lin, Zhao (b4) 2018; 153 Wu, Wang, Hu, Zhang, Wu (b38) 2020; 164 Li, Ma, Jiao (b2) 2015; 9 Upadhyay, Manero, Zaman, Sampalli (b47) 2021; 18 Kukkala, Thiruloga, Pasricha (b46) 2020; 39 Lee, Mohammadi, Rashidi, Rahmani, Masdari, Hosseinzadeh (b42) 2021 Thakkar, Lohiya (b91) 2021; 28 Aburomman, Reaz (b26) 2017; 65 Sun, Sebastian Cardenas, Hahn, Liu (b45) 2021; 12 Gong, Xie, Pan, Feng, Qin (b15) 2020; 15 Chen, Lv, Liu, Fang, Chen, Pan (b55) 2020; 8 Rehman, Rehman, Khan, Alazab, Reddy (b50) 2021 Lim, Luong, Hoang, Jiao, Liang, Yang, Niyato, Miao (b21) 2020; 22 Gadekallu, Pham, Huynh-The, Bhattacharya, Maddikunta, Liyanage (b16) 2021 Tang, Mao, Fadlullah, Kato (b9) 2018; 56 Agrawal, Sarkar, Alazab, Maddikunta, Gadekallu, Pham (b117) 2021 Prabadevi, Deepa, Pham, Nguyen, Reddy, Pathirana, Dobre (b105) 2021 Gongye, Fei, Wahl (b71) 2020 Short, Leligou, Papoutsidakis, Theocharis (b113) 2020 Pham, Dev, Maddikunta, Gadekallu, Huynh-The (b33) 2021 G. Srivastava, N. Deepa, B. Prabadevi, P.K. Reddy M, An ensemble model for intrusion detection in the Internet of Softwarized Things, in: Adjunct Proceedings of the 2021 International Conference on Distributed Computing and Networking, 2021, pp. 25–30. Wahab, Mourad, Otrok, Taleb (b36) 2021 Mothukuri, Parizi, Pouriyeh, Huang, Dehghantanha, Srivastava (b35) 2021; 115 Moustafa (b112) 2019 Devi, Shitharth, Jabbar (b52) 2020 Aouedi, Tobji, Abraham (b5) 2018; 10 Kilincer, Ertam, Sengur (b43) 2021; 188 Li, Zhou, Tu, Wang, Zhang (b61) 2020; 8 Yang, Wang, Xu, Wang, Bian, Liu (b119) 2020 Zhang, Wang, Sun, Green II, Alam (b78) 2011; 2 Briggs, Fan, Andras (b65) 2020 Yang, Liu, Chen, Tong (b20) 2019; 10 Liu, Kang, Xing, Chen, Yang (b104) 2020; 35 Balakrishnan, Akdeniz, Dhakal, Himayat (b107) 2020 Xu, Ali, Yue (b115) 2021 Aldweesh, Derhab, Emam (b3) 2020; 189 Criscuolo (b81) 2000 Guo, Liu, Oerlemans, Lao, Wu, Lew (b30) 2016; 187 Voulodimos, Doulamis, Doulamis, Protopapadakis (b6) 2018; 2018 Aledhari, Razzak, Parizi, Saeed (b32) 2020; 8 Yang, Hu, Chen (b102) 2020 Hindy, Brosset, Bayne, Seeam, Tachtatzis, Atkinson, Bellekens (b41) 2020; 8 Bhattacharya, Maddikunta, Kaluri, Singh, Gadekallu, Alazab, Tariq (b39) 2020; 9 Ren, Wang, Hou, Zheng, Tang (b106) 2019; 7 Samrin, Vasumathi (b60) 2017 Liu, Dachman-Soled, Srivastava (b73) 2019 Ozfatura, Ozfatura, Gunduz (b98) 2021 Kang, Xiong, Niyato, Zou, Zhang, Guizani (b86) 2020; 27 Resende, Drummond (b24) 2018; 51 Doriguzzi-Corin, Millar, Scott-Hayward, Martí nez-del Rincon, Siracusa (b108) 2020; 17 (b103) 2019 Hodo, Bellekens, Hamilton, Tachtatzis, Atkinson (b8) 2017 Pouyanfar, Sadiq, Yan, Tian, Tao, Reyes, Shyu, Chen, Iyengar (b31) 2018; 51 Mohammadi, Rashid, Karim, Aldalwie, Tho, Bidaki, Rahmani, Hoseinzadeh (b37) 2021 Ma, Li, Ding, Wei, Chen, Poor (b87) 2021 Sun, Esaki, Ochiai (b63) 2020 Pouyanfar, Sadiq, Yan, Tian, Tao, Reyes, Shyu, Chen, Iyengar (b28) 2018; 51 Li, Meng, Au (b64) 2020; 161 Qin, Poularakis, Leung, Tassiulas (b93) 2020 Li, Sahu, Talwalkar, Smith (b34) 2020; 37 Cetin, Lazar, Kim, Sim, Wu (b56) 2019 Boulemtafes, Derhab, Challal (b69) 2020; 384 Latif, Zou, Idrees, Ahmad (b109) 2020; 8 Liu, Kang, Xing, Chen, Yang (b19) 2020; 35 Al-Marri, Ciftler, Abdallah (b75) 2020 T.D. Nguyen, P. Rieger, M. Miettinen, A.-R. Sadeghi, Poisoning attacks on federated learning-based IoT intrusion detection system, in: NDSS Workshop on Decentralized IoT Systems and Security, 2020. Annual Technical Conference Mothukuri, Parizi, Pouriyeh, Huang, Dehghantanha, Srivastava (b10) 2021; 115 Base, Mell (b1) 2001 Sultana, Chilamkurti, Peng, Alhadad (b25) 2019; 12 Alkadi, Moustafa, Turnbull, Choo (b110) 2020 Alazab, Broadhurst (b40) 2016 Wang, Garg, Lin, Hu, Kaddoum, Piran, Hossain (b54) 2021 Farivar, Haghighi, Jolfaei, Alazab (b49) 2020; 16 Schmidhuber (b27) 2015; 61 Alazab, RM, Parimala, Reddy, Gadekallu, Pham (b17) 2021 Dinh, Tran, Nguyen, Hong, Bao, Zomaya, Gramoli (b88) 2019 Hardy, Henecka, Ivey-Law, Nock, Patrini, Smith, Thorne (b100) 2017 Zhang, Chen, Wu, Chen, Yu (b84) 2019 Gao, Bu, Zhang, Li (b44) 2021 Rahman, Tout, Talhi, Mourad (b59) 2020; 34 Li, Lyu, Liu, Zhang, Lyu (b67) 2020 Warzyński, Kołaczek (b90) 2018 Wang, Fida, Lian, Yin, Pham, Gadekallu, Dev, Su (b18) 2021 Moustafa, Slay (b111) 2015 Sunny, Zhao, Li, Kanteh Sakiliba (b89) 2021; 21 Taheri, Shojafar, Alazab, Tafazolli (b11) 2020 Niknam, Dhillon, Reed (b22) 2020; 58 Balakrishnan (10.1016/j.comcom.2022.09.012_b107) 2020 Taheri (10.1016/j.comcom.2022.09.012_b11) 2020 Bhattacharya (10.1016/j.comcom.2022.09.012_b39) 2020; 9 Dinh (10.1016/j.comcom.2022.09.012_b88) 2019 Fan (10.1016/j.comcom.2022.09.012_b95) 2020 Base (10.1016/j.comcom.2022.09.012_b1) 2001 Asad (10.1016/j.comcom.2022.09.012_b83) 2021 Aldweesh (10.1016/j.comcom.2022.09.012_b3) 2020; 189 Ren (10.1016/j.comcom.2022.09.012_b106) 2019; 7 Li (10.1016/j.comcom.2022.09.012_b72) 2020 Zhu (10.1016/j.comcom.2022.09.012_b116) 2019; 31 Aburomman (10.1016/j.comcom.2022.09.012_b26) 2017; 65 Li (10.1016/j.comcom.2022.09.012_b2) 2015; 9 Tavallaee (10.1016/j.comcom.2022.09.012_b77) 2009 Xu (10.1016/j.comcom.2022.09.012_b115) 2021 Kilincer (10.1016/j.comcom.2022.09.012_b43) 2021; 188 10.1016/j.comcom.2022.09.012_b66 Pouyanfar (10.1016/j.comcom.2022.09.012_b28) 2018; 51 Schmidhuber (10.1016/j.comcom.2022.09.012_b27) 2015; 61 Upadhyay (10.1016/j.comcom.2022.09.012_b47) 2021; 18 Cetin (10.1016/j.comcom.2022.09.012_b56) 2019 Sultana (10.1016/j.comcom.2022.09.012_b25) 2019; 12 Lu (10.1016/j.comcom.2022.09.012_b97) 2020; 8 Alkadi (10.1016/j.comcom.2022.09.012_b110) 2020 Alazab (10.1016/j.comcom.2022.09.012_b17) 2021 Criscuolo (10.1016/j.comcom.2022.09.012_b81) 2000 Gong (10.1016/j.comcom.2022.09.012_b15) 2020; 15 Guo (10.1016/j.comcom.2022.09.012_b30) 2016; 187 Wu (10.1016/j.comcom.2022.09.012_b38) 2020; 164 Sun (10.1016/j.comcom.2022.09.012_b62) 2020 Li (10.1016/j.comcom.2022.09.012_b61) 2020; 8 Mohammadi (10.1016/j.comcom.2022.09.012_b37) 2021 Liu (10.1016/j.comcom.2022.09.012_b104) 2020; 35 Al-Marri (10.1016/j.comcom.2022.09.012_b75) 2020 Gupta (10.1016/j.comcom.2022.09.012_b94) 2017; 67 Chen (10.1016/j.comcom.2022.09.012_b96) 2020 Mothukuri (10.1016/j.comcom.2022.09.012_b35) 2021; 115 Wang (10.1016/j.comcom.2022.09.012_b74) 2019 Zhang (10.1016/j.comcom.2022.09.012_b7) 2019; 21 Zhang (10.1016/j.comcom.2022.09.012_b78) 2011; 2 Pham (10.1016/j.comcom.2022.09.012_b33) 2021 Ferdowsi (10.1016/j.comcom.2022.09.012_b76) 2019 Sunny (10.1016/j.comcom.2022.09.012_b89) 2021; 21 Latif (10.1016/j.comcom.2022.09.012_b109) 2020; 8 Thakkar (10.1016/j.comcom.2022.09.012_b91) 2021; 28 Li (10.1016/j.comcom.2022.09.012_b79) 2019 Li (10.1016/j.comcom.2022.09.012_b57) 2020 Moustafa (10.1016/j.comcom.2022.09.012_b112) 2019 Hardy (10.1016/j.comcom.2022.09.012_b100) 2017 Zisselman (10.1016/j.comcom.2022.09.012_b70) 2018 Agrawal (10.1016/j.comcom.2022.09.012_b117) 2021 Wang (10.1016/j.comcom.2022.09.012_b18) 2021 Resende (10.1016/j.comcom.2022.09.012_b24) 2018; 51 Li (10.1016/j.comcom.2022.09.012_b67) 2020 10.1016/j.comcom.2022.09.012_b51 Short (10.1016/j.comcom.2022.09.012_b113) 2020 Rey (10.1016/j.comcom.2022.09.012_b58) 2021 Hodo (10.1016/j.comcom.2022.09.012_b8) 2017 Kang (10.1016/j.comcom.2022.09.012_b86) 2020; 27 Wahab (10.1016/j.comcom.2022.09.012_b36) 2021 Nguyen (10.1016/j.comcom.2022.09.012_b68) 2019 Warzyński (10.1016/j.comcom.2022.09.012_b90) 2018 Yang (10.1016/j.comcom.2022.09.012_b102) 2020 Devi (10.1016/j.comcom.2022.09.012_b52) 2020 Tang (10.1016/j.comcom.2022.09.012_b9) 2018; 56 Kukkala (10.1016/j.comcom.2022.09.012_b46) 2020; 39 Prabadevi (10.1016/j.comcom.2022.09.012_b105) 2021 Liu (10.1016/j.comcom.2022.09.012_b19) 2020; 35 Wang (10.1016/j.comcom.2022.09.012_b118) 2020 Chen (10.1016/j.comcom.2022.09.012_b55) 2020; 8 Sun (10.1016/j.comcom.2022.09.012_b45) 2021; 12 Gongye (10.1016/j.comcom.2022.09.012_b71) 2020 Begli (10.1016/j.comcom.2022.09.012_b92) 2021 Pang (10.1016/j.comcom.2022.09.012_b120) 2020 Pouyanfar (10.1016/j.comcom.2022.09.012_b31) 2018; 51 Li (10.1016/j.comcom.2022.09.012_b34) 2020; 37 Alazab (10.1016/j.comcom.2022.09.012_b40) 2016 Rahman (10.1016/j.comcom.2022.09.012_b59) 2020; 34 Qin (10.1016/j.comcom.2022.09.012_b93) 2020 Bouacida (10.1016/j.comcom.2022.09.012_b82) 2021 Ma (10.1016/j.comcom.2022.09.012_b87) 2021 Samrin (10.1016/j.comcom.2022.09.012_b60) 2017 Fathi-Kazerooni (10.1016/j.comcom.2022.09.012_b80) 2020; 8 Aledhari (10.1016/j.comcom.2022.09.012_b32) 2020; 8 Yang (10.1016/j.comcom.2022.09.012_b119) 2020 Deng (10.1016/j.comcom.2022.09.012_b29) 2014; 3 Liu (10.1016/j.comcom.2022.09.012_b73) 2019 (10.1016/j.comcom.2022.09.012_b103) 2019 Xiao (10.1016/j.comcom.2022.09.012_b4) 2018; 153 Cheng (10.1016/j.comcom.2022.09.012_b12) 2020; 63 Lee (10.1016/j.comcom.2022.09.012_b42) 2021 Gao (10.1016/j.comcom.2022.09.012_b44) 2021 Rehman (10.1016/j.comcom.2022.09.012_b50) 2021 Moustafa (10.1016/j.comcom.2022.09.012_b111) 2015 Boulemtafes (10.1016/j.comcom.2022.09.012_b69) 2020; 384 10.1016/j.comcom.2022.09.012_b85 Fuller (10.1016/j.comcom.2022.09.012_b114) 2020; 8 Aouedi (10.1016/j.comcom.2022.09.012_b5) 2018; 10 Tian (10.1016/j.comcom.2022.09.012_b48) 2020; 16 Briggs (10.1016/j.comcom.2022.09.012_b65) 2020 Zhang (10.1016/j.comcom.2022.09.012_b13) 2021; 216 Niknam (10.1016/j.comcom.2022.09.012_b22) 2020; 58 Farivar (10.1016/j.comcom.2022.09.012_b49) 2020; 16 Lim (10.1016/j.comcom.2022.09.012_b21) 2020; 22 Sun (10.1016/j.comcom.2022.09.012_b63) 2020 Doriguzzi-Corin (10.1016/j.comcom.2022.09.012_b108) 2020; 17 Kwon (10.1016/j.comcom.2022.09.012_b23) 2019; 22 10.1016/j.comcom.2022.09.012_b101 Mothukuri (10.1016/j.comcom.2022.09.012_b10) 2021; 115 Vishal (10.1016/j.comcom.2022.09.012_b53) 2018 Mothukuri (10.1016/j.comcom.2022.09.012_b14) 2021 Zhang (10.1016/j.comcom.2022.09.012_b84) 2019 Gadekallu (10.1016/j.comcom.2022.09.012_b16) 2021 Hindy (10.1016/j.comcom.2022.09.012_b41) 2020; 8 Voulodimos (10.1016/j.comcom.2022.09.012_b6) 2018; 2018 Li (10.1016/j.comcom.2022.09.012_b64) 2020; 161 Ozfatura (10.1016/j.comcom.2022.09.012_b98) 2021 Wang (10.1016/j.comcom.2022.09.012_b54) 2021 10.1016/j.comcom.2022.09.012_b99 Yang (10.1016/j.comcom.2022.09.012_b20) 2019; 10 |
References_xml | – volume: 216 year: 2021 ident: b13 article-title: A survey on federated learning publication-title: Knowl.-Based Syst. – volume: 22 start-page: 2031 year: 2020 end-page: 2063 ident: b21 article-title: Federated learning in mobile edge networks: A comprehensive survey publication-title: IEEE Commun. Surv. Tutor. – year: 2020 ident: b72 article-title: Invisible backdoor attacks on deep neural networks via steganography and regularization publication-title: IEEE Trans. Dependable Secure Comput. – start-page: 15 year: 2020 end-page: 24 ident: b96 article-title: Asynchronous online federated learning for edge devices with non-IID data publication-title: 2020 IEEE International Conference on Big Data – volume: 39 start-page: 3698 year: 2020 end-page: 3710 ident: b46 article-title: INDRA: Intrusion detection using recurrent autoencoders in automotive embedded systems publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. – start-page: 1183 year: 2020 end-page: 1188 ident: b113 article-title: Using blockchain technologies to improve security in federated learning systems publication-title: 2020 IEEE 44th Annual Computers, Software, and Applications Conference – year: 2017 ident: b100 article-title: Private federated learning on vertically partitioned data via entity resolution and additively homomorphic encryption – volume: 8 start-page: 108952 year: 2020 end-page: 108971 ident: b114 article-title: Digital twin: Enabling technologies, challenges and open research publication-title: IEEE Access – year: 2021 ident: b58 article-title: Federated learning for malware detection in IoT devices – year: 2020 ident: b67 article-title: FLEAM: A federated learning empowered architecture to mitigate DDoS in industrial IoT – year: 2020 ident: b102 article-title: FPGA-based hardware accelerator of homomorphic encryption for efficient federated learning – volume: 10 start-page: 1 year: 2019 end-page: 19 ident: b20 article-title: Federated machine learning: Concept and applications publication-title: ACM Trans. Intell. Syst. Technol. (TIST) – volume: 17 start-page: 876 year: 2020 end-page: 889 ident: b108 article-title: Lucid: A practical, lightweight deep learning solution for DDoS attack detection publication-title: IEEE Trans. Netw. Serv. Manag. – volume: 56 start-page: 80 year: 2018 end-page: 86 ident: b9 article-title: On a novel deep-learning-based intelligent partially overlapping channel assignment in SDN-IoT publication-title: IEEE Commun. Mag. – year: 2021 ident: b117 article-title: Genetic CFL: Optimization of hyper-parameters in clustered federated learning – year: 2021 ident: b33 article-title: Fusion of federated learning and industrial Internet of Things: A survey – start-page: 707 year: 2019 end-page: 723 ident: b74 article-title: Neural cleanse: Identifying and mitigating backdoor attacks in neural networks publication-title: 2019 IEEE Symposium on Security and Privacy – reference: G. Srivastava, N. Deepa, B. Prabadevi, P.K. Reddy M, An ensemble model for intrusion detection in the Internet of Softwarized Things, in: Adjunct Proceedings of the 2021 International Conference on Distributed Computing and Networking, 2021, pp. 25–30. – volume: 37 start-page: 50 year: 2020 end-page: 60 ident: b34 article-title: Federated learning: Challenges, methods, and future directions publication-title: IEEE Signal Process. Mag. – year: 2021 ident: b54 article-title: Towards accurate anomaly detection in industrial Internet-of-Things using hierarchical federated learning publication-title: IEEE Internet Things J. – volume: 384 start-page: 21 year: 2020 end-page: 45 ident: b69 article-title: A review of privacy-preserving techniques for deep learning publication-title: Neurocomputing – year: 2021 ident: b87 article-title: Federated learning with unreliable clients: Performance analysis and mechanism design publication-title: IEEE Internet Things J. – start-page: 374 year: 2019 end-page: 380 ident: b84 article-title: Poisoning attack in federated learning using generative adversarial nets publication-title: 2019 18th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/13th IEEE International Conference on Big Data Science and Engineering – reference: T.D. Nguyen, P. Rieger, M. Miettinen, A.-R. Sadeghi, Poisoning attacks on federated learning-based IoT intrusion detection system, in: NDSS Workshop on Decentralized IoT Systems and Security, 2020. – volume: 8 start-page: 214852 year: 2020 end-page: 214865 ident: b61 article-title: Distributed network intrusion detection system in satellite-terrestrial integrated networks using federated learning publication-title: IEEE Access – start-page: 6004 year: 2019 end-page: 6006 ident: b56 article-title: Federated wireless network intrusion detection publication-title: 2019 IEEE International Conference on Big Data – year: 2020 ident: b120 article-title: Realizing the heterogeneity: A self-organized federated learning framework for iot publication-title: IEEE Internet Things J. – volume: 164 year: 2020 ident: b38 article-title: A network intrusion detection method based on semantic re-encoding and deep learning publication-title: J. Netw. Comput. Appl. – volume: 27 start-page: 72 year: 2020 end-page: 80 ident: b86 article-title: Reliable federated learning for mobile networks publication-title: IEEE Wirel. Commun. – volume: 8 start-page: 140699 year: 2020 end-page: 140725 ident: b32 article-title: Federated learning: A survey on enabling technologies, protocols, and applications publication-title: IEEE Access – start-page: 1698 year: 2020 end-page: 1707 ident: b118 article-title: Optimizing federated learning on non-iid data with reinforcement learning publication-title: IEEE INFOCOM 2020-IEEE Conference on Computer Communications – volume: 161 year: 2020 ident: b64 article-title: Enhancing collaborative intrusion detection via disagreement-based semi-supervised learning in IoT environments publication-title: J. Netw. Comput. Appl. – year: 2021 ident: b16 article-title: Federated learning for big data: A survey on opportunities, applications, and future directions – volume: 51 start-page: 1 year: 2018 end-page: 36 ident: b28 article-title: A survey on deep learning: Algorithms, techniques, and applications publication-title: ACM Comput. Surv. – volume: 16 start-page: 1963 year: 2020 end-page: 1971 ident: b48 article-title: A distributed deep learning system for web attack detection on edge devices publication-title: IEEE Trans. Ind. Inf. – volume: 61 start-page: 85 year: 2015 end-page: 117 ident: b27 article-title: Deep learning in neural networks: An overview publication-title: Neural Netw. – volume: 18 start-page: 1104 year: 2021 end-page: 1116 ident: b47 article-title: Gradient boosting feature selection with machine learning classifiers for intrusion detection on power grids publication-title: IEEE Trans. Netw. Serv. Manag. – volume: 21 start-page: 2224 year: 2019 end-page: 2287 ident: b7 article-title: Deep learning in mobile and wireless networking: A survey publication-title: IEEE Commun. Surv. Tutor. – year: 2020 ident: b11 article-title: FED-IIoT: A robust federated malware detection architecture in industrial IoT publication-title: IEEE Trans. Ind. Inf. – year: 2021 ident: b37 article-title: A comprehensive survey and taxonomy of the SVM-based intrusion detection systems publication-title: J. Netw. Comput. Appl. – volume: 67 start-page: 618 year: 2017 end-page: 632 ident: b94 article-title: Bandwidth spoofing and intrusion detection system for multistage 5g wireless communication network publication-title: IEEE Trans. Veh. Technol. – year: 2021 ident: b98 article-title: Time-correlated sparsification for communication-efficient federated learning – volume: 35 start-page: 70 year: 2020 end-page: 82 ident: b19 article-title: A secure federated transfer learning framework publication-title: IEEE Intell. Syst. – year: 2021 ident: b92 article-title: A multiagent based framework secured with layered SVM-based IDS for remote healthcare systems – reference: Annual Technical Conference ( – year: 2000 ident: b81 article-title: Distributed denial of service: Trin00, tribe flood network, tribe flood network 2000, and stacheldraht ciac-2319 – start-page: 88 year: 2020 end-page: 95 ident: b95 article-title: IoTdefender: A federated transfer learning intrusion detection framework for 5G IoT publication-title: 2020 IEEE 14th International Conference on Big Data Science and Engineering – start-page: 1 year: 2016 end-page: 20 ident: b40 article-title: Spam and criminal activity publication-title: Trends Issues Crime Crim. Justice – start-page: 14 year: 2018 end-page: 15 ident: b53 article-title: SOAiCE: simulation of attacks in cloud computing environment publication-title: 2018 8th International Conference on Cloud Computing, Data Science & Engineering – volume: 3 year: 2014 ident: b29 article-title: A tutorial survey of architectures, algorithms, and applications for deep learning publication-title: APSIPA Trans. Signal Inf. Process. – volume: 115 start-page: 619 year: 2021 end-page: 640 ident: b35 article-title: A survey on security and privacy of federated learning publication-title: Future Gener. Comput. Syst. – volume: 65 start-page: 135 year: 2017 end-page: 152 ident: b26 article-title: A survey of intrusion detection systems based on ensemble and hybrid classifiers publication-title: Comput. Secur. – volume: 34 start-page: 310 year: 2020 end-page: 317 ident: b59 article-title: Internet of things intrusion detection: Centralized, on-device, or federated learning? publication-title: IEEE Netw. – volume: 188 year: 2021 ident: b43 article-title: Machine learning methods for cyber security intrusion detection: Datasets and comparative study publication-title: Comput. Netw. – volume: 9 start-page: 205 year: 2015 end-page: 216 ident: b2 article-title: A hybrid malicious code detection method based on deep learning publication-title: Int. J. Secur. Appl. – volume: 7 start-page: 69194 year: 2019 end-page: 69201 ident: b106 article-title: Federated learning-based computation offloading optimization in edge computing-supported internet of things publication-title: IEEE Access – start-page: 1 year: 2021 end-page: 13 ident: b44 article-title: An intrusion detection method based on machine learning and state observer for train-ground communication systems publication-title: IEEE Trans. Intell. Transp. Syst. – year: 2021 ident: b105 article-title: Toward blockchain for edge-of-things: A new paradigm, opportunities, and future directions publication-title: IEEE Internet Things Mag. – volume: 189 year: 2020 ident: b3 article-title: Deep learning approaches for anomaly-based intrusion detection systems: A survey, taxonomy, and open issues publication-title: Knowl.-Based Syst. – volume: 153 start-page: 1 year: 2018 end-page: 9 ident: b4 article-title: A deep learning-based multi-model ensemble method for cancer prediction publication-title: Comput. Methods Programs Biomed. – volume: 9 start-page: 219 year: 2020 ident: b39 article-title: A novel PCA-firefly based xgboost classification model for intrusion detection in networks using GPU publication-title: Electronics – volume: 8 start-page: 89337 year: 2020 end-page: 89350 ident: b109 article-title: A novel attack detection scheme for the industrial internet of things using a lightweight random neural network publication-title: IEEE Access – year: 2019 ident: b103 article-title: Federated ai ecosystem – volume: 58 start-page: 46 year: 2020 end-page: 51 ident: b22 article-title: Federated learning for wireless communications: Motivation, opportunities, and challenges publication-title: IEEE Commun. Mag. – start-page: 657 year: 2019 end-page: 662 ident: b73 article-title: Mitigating reverse engineering attacks on deep neural networks publication-title: 2019 IEEE Computer Society Annual Symposium on VLSI – start-page: 205 year: 2021 end-page: 216 ident: b115 article-title: Digital twin-based anomaly detection in cyber-physical systems publication-title: 2021 14th IEEE Conference on Software Testing, Verification and Validation – volume: 187 start-page: 27 year: 2016 end-page: 48 ident: b30 article-title: Deep learning for visual understanding: A review publication-title: Neurocomputing – start-page: 352 year: 2020 end-page: 360 ident: b93 article-title: Line-speed and scalable intrusion detection at the network edge via federated learning publication-title: 2020 IFIP Networking Conference (Networking) – volume: 51 start-page: 1 year: 2018 end-page: 36 ident: b31 article-title: A survey on deep learning: Algorithms, techniques, and applications publication-title: ACM Comput. Surv. – year: 2021 ident: b42 article-title: Towards secure intrusion detection systems using deep learning techniques: Comprehensive analysis and review publication-title: J. Netw. Comput. Appl. – start-page: 1 year: 2018 end-page: 4 ident: b90 article-title: Intrusion detection systems vulnerability on adversarial examples publication-title: 2018 Innovations in Intelligent Systems and Applications – volume: 28 start-page: 3211 year: 2021 end-page: 3243 ident: b91 article-title: A review on machine learning and deep learning perspectives of IDS for IoT: recent updates, security issues, and challenges publication-title: Arch. Comput. Methods Eng. – year: 2021 ident: b50 article-title: Canintelliids: Detecting in-vehicle intrusion attacks on a controller area network using cnn and attention-based gru publication-title: IEEE Trans. Netw. Sci. Eng. – volume: 10 start-page: 261 year: 2018 end-page: 270 ident: b5 article-title: Internet of things and ambient intelligence for mobile health monitoring: A review of a decade of research publication-title: Int. J. Comput. Inf. Syst. Ind. Manag. Appl. – volume: 15 start-page: 49 year: 2020 end-page: 64 ident: b15 article-title: A survey on differentially private machine learning publication-title: IEEE Comput. Intell. Mag. – year: 2020 ident: b110 article-title: A deep blockchain framework-enabled collaborative intrusion detection for protecting iot and cloud networks publication-title: IEEE Internet Things J. – volume: 21 start-page: 214 year: 2021 ident: b89 article-title: Low-cost IoT-based sensor system: A case study on harsh environmental monitoring publication-title: Sensors – volume: 8 start-page: 48970 year: 2020 end-page: 48981 ident: b97 article-title: Privacy-preserving asynchronous federated learning mechanism for edge network computing publication-title: IEEE Access – start-page: 756 year: 2019 end-page: 767 ident: b68 article-title: DÏoT: A federated self-learning anomaly detection system for IoT publication-title: 2019 IEEE 39th International Conference on Distributed Computing Systems – year: 2021 ident: b36 article-title: Federated machine learning: Survey, multi-level classification, desirable criteria and future directions in communication and networking systems publication-title: IEEE Commun. Surv. Tutor. – start-page: 1 year: 2020 end-page: 6 ident: b71 article-title: Reverse-engineering deep neural networks using floating-point timing side-channels publication-title: 2020 57th ACM/IEEE Design Automation Conference – start-page: 552 year: 2021 end-page: 557 ident: b83 article-title: Evaluating the communication efficiency in federated learning algorithms publication-title: 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design – year: 2017 ident: b8 article-title: Shallow and deep networks intrusion detection system: A taxonomy and survey – volume: 8 start-page: 125345 year: 2020 end-page: 125359 ident: b80 article-title: GAN tunnel: Network traffic steganography by using GANs to counter internet traffic classifiers publication-title: IEEE Access – volume: 31 start-page: 1310 year: 2019 end-page: 1322 ident: b116 article-title: Multi-objective evolutionary federated learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. – reference: 20), 2020, pp. 493–506. – start-page: 141 year: 2017 end-page: 147 ident: b60 article-title: Review on anomaly based network intrusion detection system publication-title: 2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques – start-page: 1 year: 2020 end-page: 5 ident: b107 article-title: Resource management and fairness for federated learning over wireless edge networks publication-title: 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications – volume: 16 start-page: 2716 year: 2020 end-page: 2725 ident: b49 article-title: Artificial intelligence for detection, estimation, and compensation of malicious attacks in nonlinear cyber-physical systems and industrial IoT publication-title: IEEE Trans. Ind. Inf. – reference: C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, Y. Liu, Batchcrypt: Efficient homomorphic encryption for cross-silo federated learning, in: 2020 – year: 2001 ident: b1 article-title: Special publication on intrusion detection systems – volume: 2018 year: 2018 ident: b6 article-title: Deep learning for computer vision: A brief review publication-title: Comput. Intell. Neurosci. – start-page: 3 year: 2018 end-page: 17 ident: b70 article-title: Compressed learning for image classification: A deep neural network approach publication-title: Handbook of Numerical Analysis, Vol. 19 – start-page: 722 year: 2020 end-page: 727 ident: b52 article-title: An appraisal over intrusion detection systems in cloud computing security attacks publication-title: 2020 2nd International Conference on Innovative Mechanisms for Industry Applications – volume: 12 start-page: 493 year: 2019 end-page: 501 ident: b25 article-title: ”Survey on SDN based network intrusion detection system using machine learning approaches” publication-title: Peer-To-Peer Netw. Appl. – volume: 51 start-page: 1 year: 2018 end-page: 36 ident: b24 article-title: A survey of random forest based methods for intrusion detection systems publication-title: ACM Comput. Surv. – reference: M. Naehrig, K. Lauter, V. Vaikuntanathan, Can homomorphic encryption be practical?, in: Proceedings of the 3rd ACM Workshop on Cloud Computing Security Workshop, 2011, pp. 113–124. – volume: 35 start-page: 70 year: 2020 end-page: 82 ident: b104 article-title: A secure federated transfer learning framework publication-title: IEEE Intell. Syst. – volume: 63 start-page: 33 year: 2020 end-page: 36 ident: b12 article-title: Federated learning for privacy-preserving AI publication-title: Commun. ACM – volume: 12 start-page: 612 year: 2021 end-page: 622 ident: b45 article-title: Intrusion detection for cybersecurity of smart meters publication-title: IEEE Trans. Smart Grid – start-page: 1 year: 2020 end-page: 9 ident: b65 article-title: Federated learning with hierarchical clustering of local updates to improve training on non-IID data publication-title: 2020 International Joint Conference on Neural Networks – year: 2019 ident: b112 article-title: The Bot-IoT dataset – start-page: 1 year: 2009 end-page: 6 ident: b77 article-title: A detailed analysis of the KDD cup 99 data set publication-title: 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications – volume: 8 start-page: 217463 year: 2020 end-page: 217472 ident: b55 article-title: Intrusion detection for wireless edge networks based on federated learning publication-title: IEEE Access – reference: Y. Zhao, J. Chen, D. Wu, J. Teng, S. Yu, Multi-task network anomaly detection using federated learning, in: Proceedings of the Tenth International Symposium on Information and Communication Technology, 2019, pp. 273–279. – year: 2019 ident: b88 article-title: Federated learning over wireless networks: Convergence analysis and resource allocation – start-page: 1 year: 2015 end-page: 6 ident: b111 article-title: UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set) publication-title: 2015 Military Communications and Information Systems Conference – volume: 22 start-page: 949 year: 2019 end-page: 961 ident: b23 article-title: A survey of deep learning-based network anomaly detection publication-title: Cluster Comput. – volume: 115 start-page: 619 year: 2021 end-page: 640 ident: b10 article-title: A survey on security and privacy of federated learning publication-title: Future Gener. Comput. Syst. – volume: 2 start-page: 796 year: 2011 end-page: 808 ident: b78 article-title: Distributed intrusion detection system in a multi-layer network architecture of smart grids publication-title: IEEE Trans. Smart Grid – year: 2019 ident: b79 article-title: An end-to-end encrypted neural network for gradient updates transmission in federated learning – year: 2021 ident: b18 article-title: Secure-enhanced federated learning for AI-empowered electric vehicle energy prediction publication-title: IEEE Consum. Electron. Mag. – start-page: 1 year: 2020 end-page: 6 ident: b75 article-title: Federated mimic learning for privacy preserving intrusion detection publication-title: 2020 IEEE International Black Sea Conference on Communications and Networking – year: 2021 ident: b14 article-title: Federated learning-based anomaly detection for IoT security attacks publication-title: IEEE Internet Things J. – year: 2020 ident: b57 article-title: DeepFed: Federated deep learning for intrusion detection in industrial cyber-physical systems publication-title: IEEE Trans. Ind. Inf. – year: 2021 ident: b17 article-title: Federated learning for cybersecurity: Concepts, challenges and future directions publication-title: IEEE Trans. Ind. Inf. – volume: 8 start-page: 104650 year: 2020 end-page: 104675 ident: b41 article-title: A taxonomy of network threats and the effect of current datasets on intrusion detection systems publication-title: IEEE Access – year: 2021 ident: b82 article-title: Vulnerabilities in federated learning publication-title: IEEE Access – start-page: 1 year: 2020 end-page: 8 ident: b62 article-title: Intrusion detection with segmented federated learning for large-scale multiple LANs publication-title: 2020 International Joint Conference on Neural Networks – year: 2020 ident: b119 article-title: Heterogeneity-aware federated learning – start-page: 1 year: 2019 end-page: 6 ident: b76 article-title: Generative adversarial networks for distributed intrusion detection in the internet of things publication-title: 2019 IEEE Global Communications Conference – year: 2020 ident: b63 article-title: Adaptive intrusion detection in the networking of large-scale LANs with segmented federated learning publication-title: IEEE Open J. Commun. Soc. – year: 2019 ident: 10.1016/j.comcom.2022.09.012_b103 – volume: 35 start-page: 70 issue: 4 year: 2020 ident: 10.1016/j.comcom.2022.09.012_b104 article-title: A secure federated transfer learning framework publication-title: IEEE Intell. Syst. doi: 10.1109/MIS.2020.2988525 – start-page: 6004 year: 2019 ident: 10.1016/j.comcom.2022.09.012_b56 article-title: Federated wireless network intrusion detection – year: 2021 ident: 10.1016/j.comcom.2022.09.012_b92 – start-page: 3 year: 2018 ident: 10.1016/j.comcom.2022.09.012_b70 article-title: Compressed learning for image classification: A deep neural network approach doi: 10.1016/bs.hna.2018.08.002 – start-page: 1 year: 2020 ident: 10.1016/j.comcom.2022.09.012_b75 article-title: Federated mimic learning for privacy preserving intrusion detection – year: 2021 ident: 10.1016/j.comcom.2022.09.012_b16 – volume: 12 start-page: 612 issue: 1 year: 2021 ident: 10.1016/j.comcom.2022.09.012_b45 article-title: Intrusion detection for cybersecurity of smart meters publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2020.3010230 – start-page: 1 year: 2020 ident: 10.1016/j.comcom.2022.09.012_b65 article-title: Federated learning with hierarchical clustering of local updates to improve training on non-IID data – year: 2020 ident: 10.1016/j.comcom.2022.09.012_b57 article-title: DeepFed: Federated deep learning for intrusion detection in industrial cyber-physical systems publication-title: IEEE Trans. Ind. Inf. – volume: 8 start-page: 48970 year: 2020 ident: 10.1016/j.comcom.2022.09.012_b97 article-title: Privacy-preserving asynchronous federated learning mechanism for edge network computing publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2978082 – volume: 115 start-page: 619 year: 2021 ident: 10.1016/j.comcom.2022.09.012_b35 article-title: A survey on security and privacy of federated learning publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2020.10.007 – volume: 8 start-page: 89337 year: 2020 ident: 10.1016/j.comcom.2022.09.012_b109 article-title: A novel attack detection scheme for the industrial internet of things using a lightweight random neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2994079 – year: 2021 ident: 10.1016/j.comcom.2022.09.012_b17 article-title: Federated learning for cybersecurity: Concepts, challenges and future directions publication-title: IEEE Trans. Ind. Inf. – year: 2021 ident: 10.1016/j.comcom.2022.09.012_b33 – volume: 51 start-page: 1 issue: 5 year: 2018 ident: 10.1016/j.comcom.2022.09.012_b31 article-title: A survey on deep learning: Algorithms, techniques, and applications publication-title: ACM Comput. Surv. doi: 10.1145/3234150 – year: 2020 ident: 10.1016/j.comcom.2022.09.012_b110 article-title: A deep blockchain framework-enabled collaborative intrusion detection for protecting iot and cloud networks publication-title: IEEE Internet Things J. – volume: 153 start-page: 1 year: 2018 ident: 10.1016/j.comcom.2022.09.012_b4 article-title: A deep learning-based multi-model ensemble method for cancer prediction publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2017.09.005 – volume: 8 start-page: 140699 year: 2020 ident: 10.1016/j.comcom.2022.09.012_b32 article-title: Federated learning: A survey on enabling technologies, protocols, and applications publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3013541 – volume: 16 start-page: 1963 issue: 3 year: 2020 ident: 10.1016/j.comcom.2022.09.012_b48 article-title: A distributed deep learning system for web attack detection on edge devices publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2019.2938778 – start-page: 722 year: 2020 ident: 10.1016/j.comcom.2022.09.012_b52 article-title: An appraisal over intrusion detection systems in cloud computing security attacks – volume: 2018 year: 2018 ident: 10.1016/j.comcom.2022.09.012_b6 article-title: Deep learning for computer vision: A brief review publication-title: Comput. Intell. Neurosci. doi: 10.1155/2018/7068349 – start-page: 1 issue: 526 year: 2016 ident: 10.1016/j.comcom.2022.09.012_b40 article-title: Spam and criminal activity publication-title: Trends Issues Crime Crim. Justice – volume: 15 start-page: 49 issue: 2 year: 2020 ident: 10.1016/j.comcom.2022.09.012_b15 article-title: A survey on differentially private machine learning publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2020.2976185 – start-page: 205 year: 2021 ident: 10.1016/j.comcom.2022.09.012_b115 article-title: Digital twin-based anomaly detection in cyber-physical systems – start-page: 552 year: 2021 ident: 10.1016/j.comcom.2022.09.012_b83 article-title: Evaluating the communication efficiency in federated learning algorithms – year: 2021 ident: 10.1016/j.comcom.2022.09.012_b37 article-title: A comprehensive survey and taxonomy of the SVM-based intrusion detection systems publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2021.102983 – volume: 8 start-page: 214852 year: 2020 ident: 10.1016/j.comcom.2022.09.012_b61 article-title: Distributed network intrusion detection system in satellite-terrestrial integrated networks using federated learning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3041641 – ident: 10.1016/j.comcom.2022.09.012_b85 doi: 10.14722/diss.2020.23003 – year: 2020 ident: 10.1016/j.comcom.2022.09.012_b119 – volume: 161 year: 2020 ident: 10.1016/j.comcom.2022.09.012_b64 article-title: Enhancing collaborative intrusion detection via disagreement-based semi-supervised learning in IoT environments publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2020.102631 – ident: 10.1016/j.comcom.2022.09.012_b66 doi: 10.1145/3368926.3369705 – year: 2020 ident: 10.1016/j.comcom.2022.09.012_b120 article-title: Realizing the heterogeneity: A self-organized federated learning framework for iot publication-title: IEEE Internet Things J. – volume: 8 start-page: 125345 year: 2020 ident: 10.1016/j.comcom.2022.09.012_b80 article-title: GAN tunnel: Network traffic steganography by using GANs to counter internet traffic classifiers publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3007577 – start-page: 1698 year: 2020 ident: 10.1016/j.comcom.2022.09.012_b118 article-title: Optimizing federated learning on non-iid data with reinforcement learning – volume: 9 start-page: 205 issue: 5 year: 2015 ident: 10.1016/j.comcom.2022.09.012_b2 article-title: A hybrid malicious code detection method based on deep learning publication-title: Int. J. Secur. Appl. – year: 2021 ident: 10.1016/j.comcom.2022.09.012_b18 article-title: Secure-enhanced federated learning for AI-empowered electric vehicle energy prediction publication-title: IEEE Consum. Electron. Mag. doi: 10.1109/MCE.2021.3116917 – year: 2017 ident: 10.1016/j.comcom.2022.09.012_b100 – start-page: 1 year: 2018 ident: 10.1016/j.comcom.2022.09.012_b90 article-title: Intrusion detection systems vulnerability on adversarial examples – start-page: 88 year: 2020 ident: 10.1016/j.comcom.2022.09.012_b95 article-title: IoTdefender: A federated transfer learning intrusion detection framework for 5G IoT – year: 2021 ident: 10.1016/j.comcom.2022.09.012_b36 article-title: Federated machine learning: Survey, multi-level classification, desirable criteria and future directions in communication and networking systems publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2021.3058573 – ident: 10.1016/j.comcom.2022.09.012_b99 – year: 2019 ident: 10.1016/j.comcom.2022.09.012_b79 – year: 2021 ident: 10.1016/j.comcom.2022.09.012_b98 – start-page: 1 year: 2020 ident: 10.1016/j.comcom.2022.09.012_b62 article-title: Intrusion detection with segmented federated learning for large-scale multiple LANs – volume: 8 start-page: 104650 year: 2020 ident: 10.1016/j.comcom.2022.09.012_b41 article-title: A taxonomy of network threats and the effect of current datasets on intrusion detection systems publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3000179 – ident: 10.1016/j.comcom.2022.09.012_b51 doi: 10.1145/3427477.3429987 – start-page: 15 year: 2020 ident: 10.1016/j.comcom.2022.09.012_b96 article-title: Asynchronous online federated learning for edge devices with non-IID data – volume: 21 start-page: 2224 issue: 3 year: 2019 ident: 10.1016/j.comcom.2022.09.012_b7 article-title: Deep learning in mobile and wireless networking: A survey publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2019.2904897 – start-page: 352 year: 2020 ident: 10.1016/j.comcom.2022.09.012_b93 article-title: Line-speed and scalable intrusion detection at the network edge via federated learning – year: 2021 ident: 10.1016/j.comcom.2022.09.012_b82 article-title: Vulnerabilities in federated learning publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3075203 – volume: 189 year: 2020 ident: 10.1016/j.comcom.2022.09.012_b3 article-title: Deep learning approaches for anomaly-based intrusion detection systems: A survey, taxonomy, and open issues publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.105124 – volume: 164 year: 2020 ident: 10.1016/j.comcom.2022.09.012_b38 article-title: A network intrusion detection method based on semantic re-encoding and deep learning publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2020.102688 – year: 2021 ident: 10.1016/j.comcom.2022.09.012_b50 article-title: Canintelliids: Detecting in-vehicle intrusion attacks on a controller area network using cnn and attention-based gru publication-title: IEEE Trans. Netw. Sci. Eng. – year: 2020 ident: 10.1016/j.comcom.2022.09.012_b72 article-title: Invisible backdoor attacks on deep neural networks via steganography and regularization publication-title: IEEE Trans. Dependable Secure Comput. doi: 10.1109/TDSC.2020.3021407 – start-page: 1 year: 2020 ident: 10.1016/j.comcom.2022.09.012_b107 article-title: Resource management and fairness for federated learning over wireless edge networks – start-page: 14 year: 2018 ident: 10.1016/j.comcom.2022.09.012_b53 article-title: SOAiCE: simulation of attacks in cloud computing environment – year: 2020 ident: 10.1016/j.comcom.2022.09.012_b102 – volume: 31 start-page: 1310 issue: 4 year: 2019 ident: 10.1016/j.comcom.2022.09.012_b116 article-title: Multi-objective evolutionary federated learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2019.2919699 – volume: 63 start-page: 33 issue: 12 year: 2020 ident: 10.1016/j.comcom.2022.09.012_b12 article-title: Federated learning for privacy-preserving AI publication-title: Commun. ACM doi: 10.1145/3387107 – volume: 188 year: 2021 ident: 10.1016/j.comcom.2022.09.012_b43 article-title: Machine learning methods for cyber security intrusion detection: Datasets and comparative study publication-title: Comput. Netw. doi: 10.1016/j.comnet.2021.107840 – year: 2020 ident: 10.1016/j.comcom.2022.09.012_b67 – start-page: 756 year: 2019 ident: 10.1016/j.comcom.2022.09.012_b68 article-title: DÏoT: A federated self-learning anomaly detection system for IoT – volume: 67 start-page: 618 issue: 1 year: 2017 ident: 10.1016/j.comcom.2022.09.012_b94 article-title: Bandwidth spoofing and intrusion detection system for multistage 5g wireless communication network publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2017.2745110 – start-page: 1 year: 2020 ident: 10.1016/j.comcom.2022.09.012_b71 article-title: Reverse-engineering deep neural networks using floating-point timing side-channels – volume: 56 start-page: 80 issue: 9 year: 2018 ident: 10.1016/j.comcom.2022.09.012_b9 article-title: On a novel deep-learning-based intelligent partially overlapping channel assignment in SDN-IoT publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2018.1701227 – start-page: 141 year: 2017 ident: 10.1016/j.comcom.2022.09.012_b60 article-title: Review on anomaly based network intrusion detection system – start-page: 1 year: 2019 ident: 10.1016/j.comcom.2022.09.012_b76 article-title: Generative adversarial networks for distributed intrusion detection in the internet of things – volume: 187 start-page: 27 year: 2016 ident: 10.1016/j.comcom.2022.09.012_b30 article-title: Deep learning for visual understanding: A review publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.09.116 – year: 2021 ident: 10.1016/j.comcom.2022.09.012_b105 article-title: Toward blockchain for edge-of-things: A new paradigm, opportunities, and future directions publication-title: IEEE Internet Things Mag. – start-page: 1 year: 2015 ident: 10.1016/j.comcom.2022.09.012_b111 article-title: UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set) – volume: 39 start-page: 3698 issue: 11 year: 2020 ident: 10.1016/j.comcom.2022.09.012_b46 article-title: INDRA: Intrusion detection using recurrent autoencoders in automotive embedded systems publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. doi: 10.1109/TCAD.2020.3012749 – volume: 58 start-page: 46 issue: 6 year: 2020 ident: 10.1016/j.comcom.2022.09.012_b22 article-title: Federated learning for wireless communications: Motivation, opportunities, and challenges publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.001.1900461 – year: 2001 ident: 10.1016/j.comcom.2022.09.012_b1 – volume: 22 start-page: 2031 issue: 3 year: 2020 ident: 10.1016/j.comcom.2022.09.012_b21 article-title: Federated learning in mobile edge networks: A comprehensive survey publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2020.2986024 – volume: 65 start-page: 135 year: 2017 ident: 10.1016/j.comcom.2022.09.012_b26 article-title: A survey of intrusion detection systems based on ensemble and hybrid classifiers publication-title: Comput. Secur. doi: 10.1016/j.cose.2016.11.004 – volume: 10 start-page: 261 year: 2018 ident: 10.1016/j.comcom.2022.09.012_b5 article-title: Internet of things and ambient intelligence for mobile health monitoring: A review of a decade of research publication-title: Int. J. Comput. Inf. Syst. Ind. Manag. Appl. – start-page: 657 year: 2019 ident: 10.1016/j.comcom.2022.09.012_b73 article-title: Mitigating reverse engineering attacks on deep neural networks – volume: 384 start-page: 21 year: 2020 ident: 10.1016/j.comcom.2022.09.012_b69 article-title: A review of privacy-preserving techniques for deep learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.11.041 – volume: 28 start-page: 3211 issue: 4 year: 2021 ident: 10.1016/j.comcom.2022.09.012_b91 article-title: A review on machine learning and deep learning perspectives of IDS for IoT: recent updates, security issues, and challenges publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-020-09496-0 – volume: 10 start-page: 1 issue: 2 year: 2019 ident: 10.1016/j.comcom.2022.09.012_b20 article-title: Federated machine learning: Concept and applications publication-title: ACM Trans. Intell. Syst. Technol. (TIST) doi: 10.1145/3298981 – volume: 18 start-page: 1104 issue: 1 year: 2021 ident: 10.1016/j.comcom.2022.09.012_b47 article-title: Gradient boosting feature selection with machine learning classifiers for intrusion detection on power grids publication-title: IEEE Trans. Netw. Serv. Manag. doi: 10.1109/TNSM.2020.3032618 – volume: 12 start-page: 493 issue: 2 year: 2019 ident: 10.1016/j.comcom.2022.09.012_b25 article-title: ”Survey on SDN based network intrusion detection system using machine learning approaches” publication-title: Peer-To-Peer Netw. Appl. doi: 10.1007/s12083-017-0630-0 – start-page: 1 year: 2009 ident: 10.1016/j.comcom.2022.09.012_b77 article-title: A detailed analysis of the KDD cup 99 data set – ident: 10.1016/j.comcom.2022.09.012_b101 doi: 10.1145/2046660.2046682 – volume: 51 start-page: 1 issue: 3 year: 2018 ident: 10.1016/j.comcom.2022.09.012_b24 article-title: A survey of random forest based methods for intrusion detection systems publication-title: ACM Comput. Surv. doi: 10.1145/3178582 – year: 2021 ident: 10.1016/j.comcom.2022.09.012_b54 article-title: Towards accurate anomaly detection in industrial Internet-of-Things using hierarchical federated learning publication-title: IEEE Internet Things J. – start-page: 707 year: 2019 ident: 10.1016/j.comcom.2022.09.012_b74 article-title: Neural cleanse: Identifying and mitigating backdoor attacks in neural networks – start-page: 1 year: 2021 ident: 10.1016/j.comcom.2022.09.012_b44 article-title: An intrusion detection method based on machine learning and state observer for train-ground communication systems publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 27 start-page: 72 issue: 2 year: 2020 ident: 10.1016/j.comcom.2022.09.012_b86 article-title: Reliable federated learning for mobile networks publication-title: IEEE Wirel. Commun. doi: 10.1109/MWC.001.1900119 – volume: 51 start-page: 1 issue: 5 year: 2018 ident: 10.1016/j.comcom.2022.09.012_b28 article-title: A survey on deep learning: Algorithms, techniques, and applications publication-title: ACM Comput. Surv. doi: 10.1145/3234150 – year: 2019 ident: 10.1016/j.comcom.2022.09.012_b112 – volume: 8 start-page: 108952 year: 2020 ident: 10.1016/j.comcom.2022.09.012_b114 article-title: Digital twin: Enabling technologies, challenges and open research publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2998358 – volume: 7 start-page: 69194 year: 2019 ident: 10.1016/j.comcom.2022.09.012_b106 article-title: Federated learning-based computation offloading optimization in edge computing-supported internet of things publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2919736 – volume: 35 start-page: 70 issue: 4 year: 2020 ident: 10.1016/j.comcom.2022.09.012_b19 article-title: A secure federated transfer learning framework publication-title: IEEE Intell. Syst. doi: 10.1109/MIS.2020.2988525 – year: 2017 ident: 10.1016/j.comcom.2022.09.012_b8 – volume: 61 start-page: 85 year: 2015 ident: 10.1016/j.comcom.2022.09.012_b27 article-title: Deep learning in neural networks: An overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – volume: 16 start-page: 2716 issue: 4 year: 2020 ident: 10.1016/j.comcom.2022.09.012_b49 article-title: Artificial intelligence for detection, estimation, and compensation of malicious attacks in nonlinear cyber-physical systems and industrial IoT publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2019.2956474 – volume: 115 start-page: 619 year: 2021 ident: 10.1016/j.comcom.2022.09.012_b10 article-title: A survey on security and privacy of federated learning publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2020.10.007 – volume: 22 start-page: 949 issue: 1 year: 2019 ident: 10.1016/j.comcom.2022.09.012_b23 article-title: A survey of deep learning-based network anomaly detection publication-title: Cluster Comput. doi: 10.1007/s10586-017-1117-8 – volume: 3 year: 2014 ident: 10.1016/j.comcom.2022.09.012_b29 article-title: A tutorial survey of architectures, algorithms, and applications for deep learning publication-title: APSIPA Trans. Signal Inf. Process. – volume: 8 start-page: 217463 year: 2020 ident: 10.1016/j.comcom.2022.09.012_b55 article-title: Intrusion detection for wireless edge networks based on federated learning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3041793 – year: 2021 ident: 10.1016/j.comcom.2022.09.012_b58 – start-page: 374 year: 2019 ident: 10.1016/j.comcom.2022.09.012_b84 article-title: Poisoning attack in federated learning using generative adversarial nets – volume: 2 start-page: 796 issue: 4 year: 2011 ident: 10.1016/j.comcom.2022.09.012_b78 article-title: Distributed intrusion detection system in a multi-layer network architecture of smart grids publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2011.2159818 – start-page: 1183 year: 2020 ident: 10.1016/j.comcom.2022.09.012_b113 article-title: Using blockchain technologies to improve security in federated learning systems – year: 2019 ident: 10.1016/j.comcom.2022.09.012_b88 – volume: 21 start-page: 214 issue: 1 year: 2021 ident: 10.1016/j.comcom.2022.09.012_b89 article-title: Low-cost IoT-based sensor system: A case study on harsh environmental monitoring publication-title: Sensors doi: 10.3390/s21010214 – year: 2020 ident: 10.1016/j.comcom.2022.09.012_b63 article-title: Adaptive intrusion detection in the networking of large-scale LANs with segmented federated learning publication-title: IEEE Open J. Commun. Soc. – year: 2021 ident: 10.1016/j.comcom.2022.09.012_b14 article-title: Federated learning-based anomaly detection for IoT security attacks publication-title: IEEE Internet Things J. – volume: 37 start-page: 50 issue: 3 year: 2020 ident: 10.1016/j.comcom.2022.09.012_b34 article-title: Federated learning: Challenges, methods, and future directions publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2020.2975749 – year: 2021 ident: 10.1016/j.comcom.2022.09.012_b42 article-title: Towards secure intrusion detection systems using deep learning techniques: Comprehensive analysis and review publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2021.103111 – year: 2021 ident: 10.1016/j.comcom.2022.09.012_b117 – volume: 17 start-page: 876 issue: 2 year: 2020 ident: 10.1016/j.comcom.2022.09.012_b108 article-title: Lucid: A practical, lightweight deep learning solution for DDoS attack detection publication-title: IEEE Trans. Netw. Serv. Manag. doi: 10.1109/TNSM.2020.2971776 – year: 2000 ident: 10.1016/j.comcom.2022.09.012_b81 – volume: 9 start-page: 219 issue: 2 year: 2020 ident: 10.1016/j.comcom.2022.09.012_b39 article-title: A novel PCA-firefly based xgboost classification model for intrusion detection in networks using GPU publication-title: Electronics doi: 10.3390/electronics9020219 – volume: 34 start-page: 310 issue: 6 year: 2020 ident: 10.1016/j.comcom.2022.09.012_b59 article-title: Internet of things intrusion detection: Centralized, on-device, or federated learning? publication-title: IEEE Netw. doi: 10.1109/MNET.011.2000286 – volume: 216 year: 2021 ident: 10.1016/j.comcom.2022.09.012_b13 article-title: A survey on federated learning publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.106775 – year: 2020 ident: 10.1016/j.comcom.2022.09.012_b11 article-title: FED-IIoT: A robust federated malware detection architecture in industrial IoT publication-title: IEEE Trans. Ind. Inf. – year: 2021 ident: 10.1016/j.comcom.2022.09.012_b87 article-title: Federated learning with unreliable clients: Performance analysis and mechanism design publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3079472 |
SSID | ssj0004773 |
Score | 2.6303654 |
SecondaryResourceType | review_article |
Snippet | The rapid development of the Internet and smart devices trigger surge in network traffic making its infrastructure more complex and heterogeneous. The... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 346 |
SubjectTerms | Anomaly detection Computer Science Deep Learning Federated Learning Intrusion detection system Machine Learning |
Title | Federated Learning for intrusion detection system: Concepts, challenges and future directions |
URI | https://dx.doi.org/10.1016/j.comcom.2022.09.012 https://hal.science/hal-03779486 |
Volume | 195 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKWWBAPEV5VBZiJDQPJ3HYqooqvDpRqQuyHNuBIhQqtWLkt3NnJwUGVIkxlu1Eny935-S7z4ScQxg1sdHSK3WiPMY094pIMS8pM6MkloJyLE5-GCX5mN1O4kmLDJpaGKRV1r7f-XTrreuWXo1mbzad9iwtKUogf7aingHKbjOWopVffn7TPFjq_jIjjRF7N-VzluMFcyNnJIRAZtVOg_Cv8LT20nxotYFnuE226oyR9t1D7ZCWqXbJ5g8dwT3yNERJCMgaNa31Up8pJKN0WmFJBSBPtVlYzlVFnXTzFR24esX5BVXNeSpzKitNncoIdbigUe6T8fD6cZB79bkJnoINwsKLCx0H0hge-QayuUwluDHKUAkvK1IZhhC3Ch0qyJRge8dNGYUclqXkiV_qQPrRAWlX75U5JJRHrCyN1pFR6FJ5kRXglRS-9dIUMuuQqIFLqFpUHM-2eBMNe-xVOJAFgiz8TADIHeItR82cqMaK_mmzEuKXcQjw-ytGngGGy5uglnbevxfY5qPUIuPJR3D07-mPyQZeudrEE9KGRTWnkKQsiq61wi5Z79_c5aMvFcPm-Q |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB11OQAHxCrKaiGORM1eh1tVUaV0ObVSL8hKbAeKUKjUiu9nJk4KHFAlrknsRM_OzHMy7xngDtOoDrRKrEyF0vJ9xa3Uk74VZpGWCUlBOYmTx5MwnvlP82Beg16lhaGyyjL2m5heROvySLtEs71cLNpFWZIXIn8uTD2dsA5NcqcKGtDsDobx5Fse2TE_mqmSkRpUCrqizAu7p7IRF3NZYXjquH9lqPpr9a21yD39A9gvSSPrmuc6hJrOj2Dvh5XgMTz3yRUCiaNipWXqC0M-yhY5qSoQfKb0uii7yplxb35gPSNZXN0zWW2psmJJrpgxGmEGGpqXJzDrP057sVVunWBJXCOsrSBVgZNozT1bI6GLZEhro4jM8KK0k7gupq5UuRLJEq7wuM48l-PIZDy0M-UktncKjfwj12fAuOdnmVbK05KiKk-jFAOTpBc_0WkStcCr4BKy9BWn7S3eRVVA9iYMyIJAFnYkEOQWWJtWS-OrseX6TjUS4tf8EBj6t7S8RQw3NyE77bg7EnTMJrdFn4efzvm_u7-BnXg6HonRYDK8gF06Y6SKl9DAAdZXyFnW6XU5J78ABzrpqg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+Learning+for+intrusion+detection+system%3A+Concepts%2C+challenges+and+future+directions&rft.jtitle=Computer+communications&rft.au=Agrawal%2C+Shaashwat&rft.au=Sarkar%2C+Sagnik&rft.au=Aouedi%2C+Ons&rft.au=Yenduri%2C+Gokul&rft.date=2022-11-01&rft.pub=Elsevier&rft.issn=0140-3664&rft.eissn=1873-703X&rft.spage=1&rft.epage=19&rft_id=info:doi/10.1016%2Fj.comcom.2022.09.012&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03779486v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-3664&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-3664&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-3664&client=summon |