Multi-sensor multi-mode fault diagnosis for lithium-ion battery packs with time series and discriminative features

Sensor fault diagnosis is essential to guaranteeing the safety of lithium-ion batteries. To address the general drawbacks of the existing diagnosis methods, including the difficulty in determining the threshold, inability to handle multiple faulty sensors concurrently, and limited capacity in identi...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 290; p. 130151
Main Authors Shen, Dongxu, Yang, Dazhi, Lyu, Chao, Ma, Jingyan, Hinds, Gareth, Sun, Qingmin, Du, Limei, Wang, Lixin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sensor fault diagnosis is essential to guaranteeing the safety of lithium-ion batteries. To address the general drawbacks of the existing diagnosis methods, including the difficulty in determining the threshold, inability to handle multiple faulty sensors concurrently, and limited capacity in identifying fault modes, a multi-sensor multi-mode fault diagnosis method for lithium-ion battery packs is proposed. The proposed method utilizes time series and discriminative features to accomplish sensor-specific fault detection and fault mode identification. First, a total of 18 general time series features are extracted to characterize the measurements of each sensor during each charge–discharge cycle. Principal component analysis is then used to reduce the high-dimensional feature space to a two-dimensional space, such that fault detection can be carried out with the α-hull algorithm. For the detected faulty samples, a two-layer identification algorithm is designed based on three discriminative features, namely, correlation coefficient, impulse factor, and Hurst coefficient, to identify the specific fault modes. The diagnostics can decouple the information from different types of sensors so that the proposed method can effortlessly isolate current, voltage, and temperature sensors that are concurrently experiencing faults. Ultimately, experimental results from three scenarios, including simultaneous failure of multiple sensors, substantiate the effectiveness and feasibility of the proposed method. [Display omitted] •Sensor faults are detected without establishing models and setting thresholds.•Different types of sensors that malfunction simultaneously are effortlessly isolated.•The fault modes of the faulty samples can be accurately identified.•The proposed method can handle scenarios where multiple sensors fail simultaneously.•The diagnosis results in three scenarios prove the validity of the proposed method.
AbstractList Sensor fault diagnosis is essential to guaranteeing the safety of lithium-ion batteries. To address the general drawbacks of the existing diagnosis methods, including the difficulty in determining the threshold, inability to handle multiple faulty sensors concurrently, and limited capacity in identifying fault modes, a multi-sensor multi-mode fault diagnosis method for lithium-ion battery packs is proposed. The proposed method utilizes time series and discriminative features to accomplish sensor-specific fault detection and fault mode identification. First, a total of 18 general time series features are extracted to characterize the measurements of each sensor during each charge–discharge cycle. Principal component analysis is then used to reduce the high-dimensional feature space to a two-dimensional space, such that fault detection can be carried out with the α-hull algorithm. For the detected faulty samples, a two-layer identification algorithm is designed based on three discriminative features, namely, correlation coefficient, impulse factor, and Hurst coefficient, to identify the specific fault modes. The diagnostics can decouple the information from different types of sensors so that the proposed method can effortlessly isolate current, voltage, and temperature sensors that are concurrently experiencing faults. Ultimately, experimental results from three scenarios, including simultaneous failure of multiple sensors, substantiate the effectiveness and feasibility of the proposed method. [Display omitted] •Sensor faults are detected without establishing models and setting thresholds.•Different types of sensors that malfunction simultaneously are effortlessly isolated.•The fault modes of the faulty samples can be accurately identified.•The proposed method can handle scenarios where multiple sensors fail simultaneously.•The diagnosis results in three scenarios prove the validity of the proposed method.
ArticleNumber 130151
Author Wang, Lixin
Shen, Dongxu
Sun, Qingmin
Yang, Dazhi
Ma, Jingyan
Hinds, Gareth
Du, Limei
Lyu, Chao
Author_xml – sequence: 1
  givenname: Dongxu
  surname: Shen
  fullname: Shen, Dongxu
  organization: School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, 150001, China
– sequence: 2
  givenname: Dazhi
  orcidid: 0000-0003-2162-6873
  surname: Yang
  fullname: Yang, Dazhi
  organization: School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, 150001, China
– sequence: 3
  givenname: Chao
  surname: Lyu
  fullname: Lyu, Chao
  email: lu_chao@hit.edu.cn
  organization: School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, 150001, China
– sequence: 4
  givenname: Jingyan
  surname: Ma
  fullname: Ma, Jingyan
  organization: State Grid Heilongjiang Electric Power Co., Ltd, Electric Power Science Research Institute, Harbin, 150030, China
– sequence: 5
  givenname: Gareth
  surname: Hinds
  fullname: Hinds, Gareth
  organization: National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom
– sequence: 6
  givenname: Qingmin
  surname: Sun
  fullname: Sun, Qingmin
  organization: State Grid Heilongjiang Electric Power Co., Ltd, Electric Power Science Research Institute, Harbin, 150030, China
– sequence: 7
  givenname: Limei
  surname: Du
  fullname: Du, Limei
  organization: State Grid Heilongjiang Electric Power Co., Ltd, Electric Power Science Research Institute, Harbin, 150030, China
– sequence: 8
  givenname: Lixin
  surname: Wang
  fullname: Wang, Lixin
  organization: School of Mechanical Engineering and Automation, Harbin Institute of Technology (Shenzhen), Shenzhen, 518000, China
BookMark eNp9kMtOwzAURL0oEm3hD1j4BxL8TJMNEqp4SUVsYG259nVxaZzKdov697iENas7V6MZjc4MTcIQAKEbSmpKaHO7rSFA3JxqRhivKSdU0gmaEt6QSgrBLtEspS0hRLZdN0Xx9bDLvkoQ0hBx__v0gwXsdNHYer0JQ_IJu2LvfP70h77yQ8BrnTPEE95r85Xwd3Fw9j3gBNFDwjrYEk4m-t4Hnf2xNILOhwjpCl04vUtw_Xfn6OPx4X35XK3enl6W96vKMClzJRtm2LrVDqzVVqwJtdpxZ4lrjW4YXwCjsOhaS53lWjDaEQGCMSqdFBIInyMx9po4pBTBqX1Zo-NJUaLOrNRWjazUmZUaWZXY3RiDsu3oIapkPAQD1kcwWdnB_1_wAwmue7I
Cites_doi 10.1016/j.ijepes.2020.106087
10.1109/JESTPE.2021.3131696
10.1016/j.apenergy.2020.115855
10.1016/j.apenergy.2022.118588
10.1016/j.solener.2017.05.072
10.1016/j.apenergy.2015.10.168
10.1016/j.geits.2023.100068
10.1109/TTE.2020.3006064
10.1016/j.apenergy.2022.119541
10.1109/TVT.2023.3247722
10.1016/j.conengprac.2016.03.015
10.1016/j.geits.2023.100067
10.1016/j.rser.2022.112584
10.1016/j.energy.2023.127231
10.1016/j.energy.2018.09.047
10.18637/jss.v034.i05
10.1016/j.energy.2019.116504
10.1016/j.ijforecast.2019.05.011
10.1016/j.jpowsour.2019.227275
10.1109/TCST.2016.2538200
10.1016/j.geits.2023.100082
10.1016/j.est.2022.105555
10.1016/j.energy.2023.127291
10.1016/j.rser.2022.112474
10.1016/j.jclepro.2022.130358
10.1016/j.ijforecast.2019.02.011
10.1016/j.etran.2022.100172
10.1016/j.ijforecast.2022.05.001
10.1109/TPEL.2019.2893622
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.energy.2023.130151
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 10_1016_j_energy_2023_130151
S0360544223035454
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAQXK
AAXKI
AAYXX
ABFNM
ABXDB
ADMUD
AFJKZ
AHHHB
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
G8K
HVGLF
HZ~
R2-
SAC
WUQ
ID FETCH-LOGICAL-c255t-562c2b8afeddad4b01daf3fd0f8ca6237e21e798d1fd3a421904e42215f545e03
IEDL.DBID AIKHN
ISSN 0360-5442
IngestDate Thu Sep 26 21:24:19 EDT 2024
Sat Jul 06 15:31:28 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Lithium-ion battery pack
Sensor fault
Fault identification
Principal component analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c255t-562c2b8afeddad4b01daf3fd0f8ca6237e21e798d1fd3a421904e42215f545e03
ORCID 0000-0003-2162-6873
ParticipantIDs crossref_primary_10_1016_j_energy_2023_130151
elsevier_sciencedirect_doi_10_1016_j_energy_2023_130151
PublicationCentury 2000
PublicationDate 2024-03-01
2024-03-00
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yang, Dong, Lim, Liu (b26) 2017; 153
Tian, Wang, Chen (b23) 2020; 121
Montero-Manso, Athanasopoulos, Hyndman, Talagala (b27) 2020; 36
Takyi-Aninakwa, Wang, Zhang, Yang, Fernandez (b1) 2023; 273
Zhang, Li, Li, Zhang (b17) 2022; 55
Qiu, Zeng, Zhang, Wang, Wang, Hu, Meng Yan, Wei (b10) 2023; 2
Pateiro-López, Rodríguez-Casal (b30) 2010; 34
Xiong, Yu, Shen, Lin, Sun (b19) 2019; 34
Shang, Lu, Kang, Zhou, Duan, Zhang (b8) 2020; 446
Xiong, Sun, Yu, Sun (b13) 2020; 279
Fang, Wu, Li, Yuan, Liu, Dai, Wang, Zhao (b4) 2023; 2
Zhang, Jiang, Wang, Zhang (b16) 2022; 322
Zheng, Chen, Huang (b18) 2020; 191
Fu, Wang, Li, Peng (b5) 2023; 2
Ma, Wang, Duan, Wu, Sun, Wang (b7) 2018; 164
Wang, Kang, Hyndman, Li (b28) 2023; 39
Lin, Chen, Zhou (b9) 2022; 336
Dey, Mohon, Pisu, Ayalew (b25) 2016; 24
Xu, Li, Xu, Han, Zheng (b12) 2022; 12
Gao, Wu, Liu, Chen, Huang, Xie, He (b6) 2022; 35
Liu, He (b15) 2017; 185
Makridakis, Hyndman, Petropoulos (b29) 2020; 36
Yu, Dai, Xiong, Chen, Zhang, Shen (b14) 2022; 310
Hu, Bian, Wei, Li, He (b24) 2022; 10
Vykhodtsev, Jang, Wang, Rosehart, Zareipour (b3) 2022; 166
Lin, Chen, Zheng, Huang, Zhou (b21) 2021; 7
Held, Tuchschmid, Zennegg, Figi, Schreiner, Mellert, Welte, Kompatscher, Hermann, Nachef (b2) 2022; 165
Shen, Lyu, Yang, Hinds, Wang (b11) 2023; 274
Xu, Ge, Shen (b20) 2023; 72
Liu, Ahmed, Zhang, Rizzoni, He (b22) 2016; 52
Liu (10.1016/j.energy.2023.130151_b15) 2017; 185
Montero-Manso (10.1016/j.energy.2023.130151_b27) 2020; 36
Dey (10.1016/j.energy.2023.130151_b25) 2016; 24
Shang (10.1016/j.energy.2023.130151_b8) 2020; 446
Lin (10.1016/j.energy.2023.130151_b9) 2022; 336
Makridakis (10.1016/j.energy.2023.130151_b29) 2020; 36
Takyi-Aninakwa (10.1016/j.energy.2023.130151_b1) 2023; 273
Hu (10.1016/j.energy.2023.130151_b24) 2022; 10
Held (10.1016/j.energy.2023.130151_b2) 2022; 165
Wang (10.1016/j.energy.2023.130151_b28) 2023; 39
Shen (10.1016/j.energy.2023.130151_b11) 2023; 274
Fang (10.1016/j.energy.2023.130151_b4) 2023; 2
Ma (10.1016/j.energy.2023.130151_b7) 2018; 164
Qiu (10.1016/j.energy.2023.130151_b10) 2023; 2
Pateiro-López (10.1016/j.energy.2023.130151_b30) 2010; 34
Xu (10.1016/j.energy.2023.130151_b12) 2022; 12
Xiong (10.1016/j.energy.2023.130151_b13) 2020; 279
Liu (10.1016/j.energy.2023.130151_b22) 2016; 52
Zhang (10.1016/j.energy.2023.130151_b17) 2022; 55
Xu (10.1016/j.energy.2023.130151_b20) 2023; 72
Zheng (10.1016/j.energy.2023.130151_b18) 2020; 191
Lin (10.1016/j.energy.2023.130151_b21) 2021; 7
Vykhodtsev (10.1016/j.energy.2023.130151_b3) 2022; 166
Tian (10.1016/j.energy.2023.130151_b23) 2020; 121
Yang (10.1016/j.energy.2023.130151_b26) 2017; 153
Fu (10.1016/j.energy.2023.130151_b5) 2023; 2
Yu (10.1016/j.energy.2023.130151_b14) 2022; 310
Zhang (10.1016/j.energy.2023.130151_b16) 2022; 322
Gao (10.1016/j.energy.2023.130151_b6) 2022; 35
Xiong (10.1016/j.energy.2023.130151_b19) 2019; 34
References_xml – volume: 36
  start-page: 15
  year: 2020
  end-page: 28
  ident: b29
  article-title: Forecasting in social settings: The state of the art
  publication-title: Int J Forecast
  contributor:
    fullname: Petropoulos
– volume: 2
  year: 2023
  ident: b5
  article-title: An improved neural network model for battery smarter state-of-charge estimation of energy-transportation system
  publication-title: Green Energy Intell Transp
  contributor:
    fullname: Peng
– volume: 279
  year: 2020
  ident: b13
  article-title: Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles
  publication-title: Appl Energy
  contributor:
    fullname: Sun
– volume: 52
  start-page: 46
  year: 2016
  end-page: 58
  ident: b22
  article-title: Structural analysis based sensors fault detection and isolation of cylindrical lithium-ion batteries in automotive applications
  publication-title: Control Eng Pract
  contributor:
    fullname: He
– volume: 322
  year: 2022
  ident: b16
  article-title: A novel dual time-scale voltage sensor fault detection and isolation method for series-connected lithium-ion battery pack
  publication-title: Appl Energy
  contributor:
    fullname: Zhang
– volume: 34
  start-page: 9709
  year: 2019
  end-page: 9718
  ident: b19
  article-title: A sensor fault diagnosis method for a lithium-ion battery pack in electric vehicles
  publication-title: IEEE Trans Power Electron
  contributor:
    fullname: Sun
– volume: 7
  start-page: 26
  year: 2021
  end-page: 36
  ident: b21
  article-title: Fault diagnosis of lithium-ion battery pack based on hybrid system and dual extended Kalman filter algorithm
  publication-title: IEEE Trans Transp Electrif
  contributor:
    fullname: Zhou
– volume: 55
  year: 2022
  ident: b17
  article-title: Voltage sensor fault detection, isolation and estimation for lithium-ion battery used in electric vehicles via a simple and practical method
  publication-title: J Energy Storage
  contributor:
    fullname: Zhang
– volume: 153
  start-page: 317
  year: 2017
  end-page: 328
  ident: b26
  article-title: Analyzing big time series data in solar engineering using features and PCA
  publication-title: Sol Energy
  contributor:
    fullname: Liu
– volume: 446
  year: 2020
  ident: b8
  article-title: A multi-fault diagnosis method based on modified sample entropy for lithium-ion battery strings
  publication-title: J Power Sources
  contributor:
    fullname: Zhang
– volume: 274
  year: 2023
  ident: b11
  article-title: Connection fault diagnosis for lithium-ion battery packs in electric vehicles based on mechanical vibration signals and broad belief network
  publication-title: Energy
  contributor:
    fullname: Wang
– volume: 12
  year: 2022
  ident: b12
  article-title: A vehicle-cloud collaborative method for multi-type fault diagnosis of lithium-ion batteries
  publication-title: eTransportation
  contributor:
    fullname: Zheng
– volume: 164
  start-page: 745
  year: 2018
  end-page: 756
  ident: b7
  article-title: Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis
  publication-title: Energy
  contributor:
    fullname: Wang
– volume: 165
  year: 2022
  ident: b2
  article-title: Thermal runaway and fire of electric vehicle lithium-ion battery and contamination of infrastructure facility
  publication-title: Renew Sustain Energy Rev
  contributor:
    fullname: Nachef
– volume: 24
  start-page: 2141
  year: 2016
  end-page: 2149
  ident: b25
  article-title: Sensor fault detection, isolation, and estimation in lithium-ion batteries
  publication-title: IEEE Trans Control Syst Technol
  contributor:
    fullname: Ayalew
– volume: 2
  year: 2023
  ident: b10
  article-title: Progress and challenges in multi-stack fuel cell system for high power applications: Architecture and energy management
  publication-title: Green Energy Intell Transp
  contributor:
    fullname: Wei
– volume: 72
  start-page: 8661
  year: 2023
  end-page: 8671
  ident: b20
  article-title: A novel set-valued sensor fault diagnosis method for lithium-ion battery packs in electric vehicles
  publication-title: IEEE Trans Veh Technol
  contributor:
    fullname: Shen
– volume: 166
  year: 2022
  ident: b3
  article-title: A review of modelling approaches to characterize lithium-ion battery energy storage systems in techno-economic analyses of power systems
  publication-title: Renew Sustain Energy Rev
  contributor:
    fullname: Zareipour
– volume: 185
  start-page: 2033
  year: 2017
  end-page: 2044
  ident: b15
  article-title: Sensor fault detection and isolation for a lithium-ion battery pack in electric vehicles using adaptive extended Kalman filter
  publication-title: Appl Energy
  contributor:
    fullname: He
– volume: 10
  start-page: 2435
  year: 2022
  end-page: 2444
  ident: b24
  article-title: Residual statistics-based current sensor fault diagnosis for smart battery management
  publication-title: IEEE J Emerg Select Top Power Electron
  contributor:
    fullname: He
– volume: 191
  year: 2020
  ident: b18
  article-title: Fault diagnosis of voltage sensor and current sensor for lithium-ion battery pack using hybrid system modeling and unscented particle filter
  publication-title: Energy
  contributor:
    fullname: Huang
– volume: 36
  start-page: 86
  year: 2020
  end-page: 92
  ident: b27
  article-title: FFORMA: Feature-based forecast model averaging
  publication-title: Int J Forecast
  contributor:
    fullname: Talagala
– volume: 273
  year: 2023
  ident: b1
  article-title: A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures
  publication-title: Energy
  contributor:
    fullname: Fernandez
– volume: 35
  start-page: 1
  year: 2022
  end-page: 9
  ident: b6
  article-title: Multi-zone double-layer trading mechanism of renewable energy excess consumption
  publication-title: Guangdong Electr Power
  contributor:
    fullname: He
– volume: 121
  year: 2020
  ident: b23
  article-title: Sensor fault diagnosis for lithium-ion battery packs based on thermal and electrical models
  publication-title: Int J Electr Power Energy Syst
  contributor:
    fullname: Chen
– volume: 336
  year: 2022
  ident: b9
  article-title: Voltage-correlation based multi-fault diagnosis of lithium-ion battery packs considering inconsistency
  publication-title: J Clean Prod
  contributor:
    fullname: Zhou
– volume: 39
  start-page: 1163
  year: 2023
  end-page: 1184
  ident: b28
  article-title: Distributed ARIMA models for ultra-long time series
  publication-title: Int J Forecast
  contributor:
    fullname: Li
– volume: 2
  year: 2023
  ident: b4
  article-title: Performance simulation method and state of health estimation for lithium-ion batteries based on aging-effect coupling model
  publication-title: Green Energy Intell Transp
  contributor:
    fullname: Zhao
– volume: 34
  start-page: 1
  year: 2010
  end-page: 28
  ident: b30
  article-title: Generalizing the convex hull of a sample: The r package alphahull
  publication-title: J Stat Softw
  contributor:
    fullname: Rodríguez-Casal
– volume: 310
  year: 2022
  ident: b14
  article-title: Current sensor fault diagnosis method based on an improved equivalent circuit battery model
  publication-title: Appl Energy
  contributor:
    fullname: Shen
– volume: 121
  year: 2020
  ident: 10.1016/j.energy.2023.130151_b23
  article-title: Sensor fault diagnosis for lithium-ion battery packs based on thermal and electrical models
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2020.106087
  contributor:
    fullname: Tian
– volume: 10
  start-page: 2435
  issue: 2
  year: 2022
  ident: 10.1016/j.energy.2023.130151_b24
  article-title: Residual statistics-based current sensor fault diagnosis for smart battery management
  publication-title: IEEE J Emerg Select Top Power Electron
  doi: 10.1109/JESTPE.2021.3131696
  contributor:
    fullname: Hu
– volume: 279
  year: 2020
  ident: 10.1016/j.energy.2023.130151_b13
  article-title: Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115855
  contributor:
    fullname: Xiong
– volume: 310
  year: 2022
  ident: 10.1016/j.energy.2023.130151_b14
  article-title: Current sensor fault diagnosis method based on an improved equivalent circuit battery model
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.118588
  contributor:
    fullname: Yu
– volume: 153
  start-page: 317
  year: 2017
  ident: 10.1016/j.energy.2023.130151_b26
  article-title: Analyzing big time series data in solar engineering using features and PCA
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2017.05.072
  contributor:
    fullname: Yang
– volume: 185
  start-page: 2033
  year: 2017
  ident: 10.1016/j.energy.2023.130151_b15
  article-title: Sensor fault detection and isolation for a lithium-ion battery pack in electric vehicles using adaptive extended Kalman filter
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.10.168
  contributor:
    fullname: Liu
– volume: 2
  issue: 2
  year: 2023
  ident: 10.1016/j.energy.2023.130151_b10
  article-title: Progress and challenges in multi-stack fuel cell system for high power applications: Architecture and energy management
  publication-title: Green Energy Intell Transp
  doi: 10.1016/j.geits.2023.100068
  contributor:
    fullname: Qiu
– volume: 7
  start-page: 26
  issue: 1
  year: 2021
  ident: 10.1016/j.energy.2023.130151_b21
  article-title: Fault diagnosis of lithium-ion battery pack based on hybrid system and dual extended Kalman filter algorithm
  publication-title: IEEE Trans Transp Electrif
  doi: 10.1109/TTE.2020.3006064
  contributor:
    fullname: Lin
– volume: 322
  year: 2022
  ident: 10.1016/j.energy.2023.130151_b16
  article-title: A novel dual time-scale voltage sensor fault detection and isolation method for series-connected lithium-ion battery pack
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.119541
  contributor:
    fullname: Zhang
– volume: 72
  start-page: 8661
  issue: 7
  year: 2023
  ident: 10.1016/j.energy.2023.130151_b20
  article-title: A novel set-valued sensor fault diagnosis method for lithium-ion battery packs in electric vehicles
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2023.3247722
  contributor:
    fullname: Xu
– volume: 52
  start-page: 46
  year: 2016
  ident: 10.1016/j.energy.2023.130151_b22
  article-title: Structural analysis based sensors fault detection and isolation of cylindrical lithium-ion batteries in automotive applications
  publication-title: Control Eng Pract
  doi: 10.1016/j.conengprac.2016.03.015
  contributor:
    fullname: Liu
– volume: 2
  issue: 2
  year: 2023
  ident: 10.1016/j.energy.2023.130151_b5
  article-title: An improved neural network model for battery smarter state-of-charge estimation of energy-transportation system
  publication-title: Green Energy Intell Transp
  doi: 10.1016/j.geits.2023.100067
  contributor:
    fullname: Fu
– volume: 166
  year: 2022
  ident: 10.1016/j.energy.2023.130151_b3
  article-title: A review of modelling approaches to characterize lithium-ion battery energy storage systems in techno-economic analyses of power systems
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2022.112584
  contributor:
    fullname: Vykhodtsev
– volume: 273
  year: 2023
  ident: 10.1016/j.energy.2023.130151_b1
  article-title: A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127231
  contributor:
    fullname: Takyi-Aninakwa
– volume: 164
  start-page: 745
  year: 2018
  ident: 10.1016/j.energy.2023.130151_b7
  article-title: Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis
  publication-title: Energy
  doi: 10.1016/j.energy.2018.09.047
  contributor:
    fullname: Ma
– volume: 34
  start-page: 1
  year: 2010
  ident: 10.1016/j.energy.2023.130151_b30
  article-title: Generalizing the convex hull of a sample: The r package alphahull
  publication-title: J Stat Softw
  doi: 10.18637/jss.v034.i05
  contributor:
    fullname: Pateiro-López
– volume: 191
  year: 2020
  ident: 10.1016/j.energy.2023.130151_b18
  article-title: Fault diagnosis of voltage sensor and current sensor for lithium-ion battery pack using hybrid system modeling and unscented particle filter
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116504
  contributor:
    fullname: Zheng
– volume: 35
  start-page: 1
  issue: 11
  year: 2022
  ident: 10.1016/j.energy.2023.130151_b6
  article-title: Multi-zone double-layer trading mechanism of renewable energy excess consumption
  publication-title: Guangdong Electr Power
  contributor:
    fullname: Gao
– volume: 36
  start-page: 15
  issue: 1
  year: 2020
  ident: 10.1016/j.energy.2023.130151_b29
  article-title: Forecasting in social settings: The state of the art
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2019.05.011
  contributor:
    fullname: Makridakis
– volume: 446
  year: 2020
  ident: 10.1016/j.energy.2023.130151_b8
  article-title: A multi-fault diagnosis method based on modified sample entropy for lithium-ion battery strings
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2019.227275
  contributor:
    fullname: Shang
– volume: 24
  start-page: 2141
  issue: 6
  year: 2016
  ident: 10.1016/j.energy.2023.130151_b25
  article-title: Sensor fault detection, isolation, and estimation in lithium-ion batteries
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2016.2538200
  contributor:
    fullname: Dey
– volume: 2
  issue: 3
  year: 2023
  ident: 10.1016/j.energy.2023.130151_b4
  article-title: Performance simulation method and state of health estimation for lithium-ion batteries based on aging-effect coupling model
  publication-title: Green Energy Intell Transp
  doi: 10.1016/j.geits.2023.100082
  contributor:
    fullname: Fang
– volume: 55
  year: 2022
  ident: 10.1016/j.energy.2023.130151_b17
  article-title: Voltage sensor fault detection, isolation and estimation for lithium-ion battery used in electric vehicles via a simple and practical method
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.105555
  contributor:
    fullname: Zhang
– volume: 274
  year: 2023
  ident: 10.1016/j.energy.2023.130151_b11
  article-title: Connection fault diagnosis for lithium-ion battery packs in electric vehicles based on mechanical vibration signals and broad belief network
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127291
  contributor:
    fullname: Shen
– volume: 165
  year: 2022
  ident: 10.1016/j.energy.2023.130151_b2
  article-title: Thermal runaway and fire of electric vehicle lithium-ion battery and contamination of infrastructure facility
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2022.112474
  contributor:
    fullname: Held
– volume: 336
  year: 2022
  ident: 10.1016/j.energy.2023.130151_b9
  article-title: Voltage-correlation based multi-fault diagnosis of lithium-ion battery packs considering inconsistency
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2022.130358
  contributor:
    fullname: Lin
– volume: 36
  start-page: 86
  issue: 1
  year: 2020
  ident: 10.1016/j.energy.2023.130151_b27
  article-title: FFORMA: Feature-based forecast model averaging
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2019.02.011
  contributor:
    fullname: Montero-Manso
– volume: 12
  year: 2022
  ident: 10.1016/j.energy.2023.130151_b12
  article-title: A vehicle-cloud collaborative method for multi-type fault diagnosis of lithium-ion batteries
  publication-title: eTransportation
  doi: 10.1016/j.etran.2022.100172
  contributor:
    fullname: Xu
– volume: 39
  start-page: 1163
  issue: 3
  year: 2023
  ident: 10.1016/j.energy.2023.130151_b28
  article-title: Distributed ARIMA models for ultra-long time series
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2022.05.001
  contributor:
    fullname: Wang
– volume: 34
  start-page: 9709
  issue: 10
  year: 2019
  ident: 10.1016/j.energy.2023.130151_b19
  article-title: A sensor fault diagnosis method for a lithium-ion battery pack in electric vehicles
  publication-title: IEEE Trans Power Electron
  doi: 10.1109/TPEL.2019.2893622
  contributor:
    fullname: Xiong
SSID ssj0005899
Score 2.496797
Snippet Sensor fault diagnosis is essential to guaranteeing the safety of lithium-ion batteries. To address the general drawbacks of the existing diagnosis methods,...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 130151
SubjectTerms Fault identification
Lithium-ion battery pack
Principal component analysis
Sensor fault
Title Multi-sensor multi-mode fault diagnosis for lithium-ion battery packs with time series and discriminative features
URI https://dx.doi.org/10.1016/j.energy.2023.130151
Volume 290
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEJ4gHPRiFCXig_TgtbDd7S7lSAgEJXJQidw27baNmAiEhYMXf7vTfQRNjAdP-0ibbGamM1838_UDuJUsiXweJdQ3fugkzDQVMgip0owpKxTzAkdwfphG4xm_n4fzCgxKLoxrqyxyf57Ts2xdvOkU1uysF4vOE-ZexBsc65sXIA7gB1DDcuRjaNf6d5PxdN_pITIZSTeeugklgy5r8zIZxa7tVMSdMjIL2e8V6lvVGZ3AcQEXST__olOomGUdDks2cVqHxnDPVMOBxVJNz2CTUWtpitvU1YZkfYPUyd4QK_Ge6LzFbpESRK0EsfjrYvdO0UlEZSdufpC1Y98T95-WOAF64mLVpEQuNXFU3lwOzCVLYk12Omh6DrPR8HkwpoXAAk1wJ7GliH0SXwlpjdZSc-UxLW1gtWdFIhEXdY3PTLcnNLM6kByTm8cNGpyFFg1uvKAB1eVqaS6A2C5u_NC5nhIRF1xLZnrKhrio0ZE2Ek2gpVHjdX6ORlw2mL3FuRNi54Q4d0ITuqXl4x_xEGOq_3Pm5b9nXsERPvG8w-waqtvNztwg5NiqFhy0P1mrCCx3nTy-TL4As1Ha8Q
link.rule.ids 315,783,787,4510,24129,27937,27938,45598,45692
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGcqCeFWUpwdW0zhxEndEVavyXKASW2THtigSadW0Awu_nbOTiCIhBrbIsaXo7nz-HN13H8ClZHkS8iSnoQljJ2GmqZBRTJVmTFmhWBA5gvPDYzKe8NuX-GUDBg0XxpVV1rm_yuk-W9cjvdqavfl02nvC3It4g-P5FkSIA_gmbHHXbhyD-upzrc5DeBFJN5u66Q1_zhd5GU-wu3Ia4k4XmcXs9_Np7cwZ7cJODRbJdfU9e7Bhin1oN1zich86w2-eGk6sN2p5AAtPrKUlXlJnC-KrBqkTvSFW4jPRVYHdtCSIWQki8dfp6p2ii4jy_TY_yNxx74n7S0uc_DxxkWpKIgtNHJG3EgNzqZJY43uDlocwGQ2fB2NayyvQHO8RS4rIJw-VkNZoLTVXAdPSRlYHVuQSUVFqQmbSvtDM6khyTG0BN2huFls0twmiDrSKWWGOgNgUr33o2kCJhAuuJTN9ZWPc0uhGm4gu0Mao2bzqopE15WVvWeWEzDkhq5zQhbSxfPYjGjJM9H-uPP73ygtoj58f7rP7m8e7E9jGN7yqNTuF1nKxMmcIPpbq3AfXF94H2ic
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-sensor+multi-mode+fault+diagnosis+for+lithium-ion+battery+packs+with+time+series+and+discriminative+features&rft.jtitle=Energy+%28Oxford%29&rft.au=Shen%2C+Dongxu&rft.au=Yang%2C+Dazhi&rft.au=Lyu%2C+Chao&rft.au=Ma%2C+Jingyan&rft.date=2024-03-01&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=290&rft_id=info:doi/10.1016%2Fj.energy.2023.130151&rft.externalDocID=S0360544223035454
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon