A mixed formulation for physics-informed neural networks as a potential solver for engineering problems in heterogeneous domains: Comparison with finite element method

Physics informed neural networks (PINNs) are capable of finding the solution for a given boundary value problem. Here, the training of the network is equivalent to the minimization of a loss function that includes the governing (partial differential) equations (PDE) as well as initial and boundary c...

Full description

Saved in:
Bibliographic Details
Published inComputer methods in applied mechanics and engineering Vol. 401; p. 115616
Main Authors Rezaei, Shahed, Harandi, Ali, Moeineddin, Ahmad, Xu, Bai-Xiang, Reese, Stefanie
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.11.2022
Elsevier BV
Subjects
Online AccessGet full text
ISSN0045-7825
1879-2138
DOI10.1016/j.cma.2022.115616

Cover

Loading…
Abstract Physics informed neural networks (PINNs) are capable of finding the solution for a given boundary value problem. Here, the training of the network is equivalent to the minimization of a loss function that includes the governing (partial differential) equations (PDE) as well as initial and boundary conditions. We employ several ideas from the finite element method (FEM) to enhance the performance of existing PINNs in engineering problems. The main contribution of the current work is to promote using the spatial gradient of the primary variable as an output from separated neural networks. Later on, the strong form (given governing equation) which has a higher order of derivatives is applied to the spatial gradients of the primary variable as the physical constraint. In addition, the so-called energy form of the problem (which can be obtained from the weak form) is applied to the primary variable as an additional constraint for training. The proposed approach only required up to first-order derivatives to construct the physical loss functions. We discuss why this point is beneficial through various comparisons between different models. The mixed formulation-based PINNs and FE methods share some similarities. While the former minimizes the PDE and its energy form at given collocation points utilizing a complex nonlinear interpolation through a neural network, the latter does the same at element nodes with the help of shape functions. We focus on heterogeneous solids and check the performance of the proposed PINN model against the solution from FEM on two prototype problems: elasticity and the Poisson equation (steady-state diffusion problem). It is concluded that by properly designing the network architecture in PINN, the deep learning model has the potential to solve the unknowns in a heterogeneous domain without any available initial data from other sources. Finally, discussions are provided on the combination of PINN and data from physical FE simulations for a fast and accurate design of composite materials in future developments.
AbstractList Physics informed neural networks (PINNs) are capable of finding the solution for a given boundary value problem. Here, the training of the network is equivalent to the minimization of a loss function that includes the governing (partial differential) equations (PDE) as well as initial and boundary conditions. We employ several ideas from the finite element method (FEM) to enhance the performance of existing PINNs in engineering problems. The main contribution of the current work is to promote using the spatial gradient of the primary variable as an output from separated neural networks. Later on, the strong form (given governing equation) which has a higher order of derivatives is applied to the spatial gradients of the primary variable as the physical constraint. In addition, the so-called energy form of the problem (which can be obtained from the weak form) is applied to the primary variable as an additional constraint for training. The proposed approach only required up to first-order derivatives to construct the physical loss functions. We discuss why this point is beneficial through various comparisons between different models. The mixed formulation-based PINNs and FE methods share some similarities. While the former minimizes the PDE and its energy form at given collocation points utilizing a complex nonlinear interpolation through a neural network, the latter does the same at element nodes with the help of shape functions. We focus on heterogeneous solids and check the performance of the proposed PINN model against the solution from FEM on two prototype problems: elasticity and the Poisson equation (steady-state diffusion problem). It is concluded that by properly designing the network architecture in PINN, the deep learning model has the potential to solve the unknowns in a heterogeneous domain without any available initial data from other sources. Finally, discussions are provided on the combination of PINN and data from physical FE simulations for a fast and accurate design of composite materials in future developments.
ArticleNumber 115616
Author Rezaei, Shahed
Xu, Bai-Xiang
Reese, Stefanie
Harandi, Ali
Moeineddin, Ahmad
Author_xml – sequence: 1
  givenname: Shahed
  surname: Rezaei
  fullname: Rezaei, Shahed
  email: shahed.rezaei@tu-darmstadt.de
  organization: Mechanics of Functional Materials Division, Institute of Materials Science, Technical University of Darmstadt, Otto-Berndt-Str. 3, D-64287 Darmstadt, Germany
– sequence: 2
  givenname: Ali
  surname: Harandi
  fullname: Harandi, Ali
  email: ali.harandi@ifam.rwth-aachen.de
  organization: Institute of Applied Mechanics, RWTH Aachen University, Mies-van-der-Rohe-Str. 1, D-52074 Aachen, Germany
– sequence: 3
  givenname: Ahmad
  surname: Moeineddin
  fullname: Moeineddin, Ahmad
  organization: Institute of Applied Mechanics, RWTH Aachen University, Mies-van-der-Rohe-Str. 1, D-52074 Aachen, Germany
– sequence: 4
  givenname: Bai-Xiang
  surname: Xu
  fullname: Xu, Bai-Xiang
  organization: Mechanics of Functional Materials Division, Institute of Materials Science, Technical University of Darmstadt, Otto-Berndt-Str. 3, D-64287 Darmstadt, Germany
– sequence: 5
  givenname: Stefanie
  orcidid: 0000-0003-4760-8358
  surname: Reese
  fullname: Reese, Stefanie
  organization: Institute of Applied Mechanics, RWTH Aachen University, Mies-van-der-Rohe-Str. 1, D-52074 Aachen, Germany
BookMark eNp9kU1vGyEQhlGVSnGS_oDckHpeF1gw3vYUWf2SIvXSnBFmB3vcXdgCm49f1L9ZbPfUQ9BIg4b3mQHeK3IRYgBCbjlbcsZXHw5LN9qlYEIsOVcrvnpDFnytu0bwdn1BFoxJ1ei1UJfkKucDq2vNxYL8uaMjPkNPfUzjPNiCMRz3dNq_ZHS5wXA8qYIAc7JDTeUppl-Z2hp0igVCwVrPcXiEdEIh7DAAJAw7OqW4HWDMFAPdQ4EUdxAgzpn2cbQY8ke6ieNkE-Y6-AnLnnoMWIBCxWpvOkLZx_6GvPV2yPDuX74mD18-_9x8a-5_fP2-ubtvnFCqNEoIb53Vtm39FrQUfae1bG3LlZeS2y3z7Ur2Xsuu6wCsb6vKQWeV5KKXqr0m789968V_z5CLOcQ5hTrSCK1Ux5Q-qfRZ5VLMOYE3Dsvp70qyOBjOzNEVczDVFXN0xZxdqST_j5wSjja9vMp8OjNQH_6IkEx2CMFBjwlcMX3EV-i_M3KrtQ
CitedBy_id crossref_primary_10_1016_j_cma_2023_116211
crossref_primary_10_1109_TNNLS_2024_3350335
crossref_primary_10_1137_22M1520840
crossref_primary_10_1016_j_cma_2024_117104
crossref_primary_10_1139_cgj_2023_0567
crossref_primary_10_1016_j_cma_2023_116534
crossref_primary_10_1016_j_compositesa_2025_108820
crossref_primary_10_1177_03093247241293499
crossref_primary_10_3390_batteries9060301
crossref_primary_10_1002_nme_7637
crossref_primary_10_1016_j_cma_2024_117268
crossref_primary_10_1016_j_measurement_2023_113334
crossref_primary_10_1016_j_cageo_2023_105494
crossref_primary_10_1016_j_cma_2023_116290
crossref_primary_10_1016_j_cma_2024_117063
crossref_primary_10_1016_j_finel_2024_104305
crossref_primary_10_1061_JENMDT_EMENG_7463
crossref_primary_10_3390_s25051401
crossref_primary_10_1016_j_jobe_2025_111788
crossref_primary_10_1007_s00466_025_02602_8
crossref_primary_10_1007_s00707_024_04053_3
crossref_primary_10_1016_j_mechmat_2024_105141
crossref_primary_10_1016_j_knosys_2024_111831
crossref_primary_10_1615_JMachLearnModelComput_2023050011
crossref_primary_10_1016_j_engstruct_2023_117093
crossref_primary_10_1016_j_ymssp_2024_112189
crossref_primary_10_1038_s44172_024_00303_3
crossref_primary_10_1016_j_cma_2025_117755
crossref_primary_10_1360_TB_2024_0683
crossref_primary_10_1016_j_rineng_2024_103908
crossref_primary_10_1093_pnasnexus_pgae186
crossref_primary_10_1007_s11071_023_08712_3
crossref_primary_10_1016_j_finel_2023_104097
crossref_primary_10_1016_j_cma_2024_117135
crossref_primary_10_1115_1_4064449
crossref_primary_10_1007_s00707_023_03676_2
crossref_primary_10_1007_s00366_024_02090_z
crossref_primary_10_1016_j_tws_2023_111046
crossref_primary_10_1016_j_asoc_2024_111437
crossref_primary_10_1016_j_ijmecsci_2023_108900
crossref_primary_10_1016_j_istruc_2024_107361
crossref_primary_10_1515_zna_2024_0009
crossref_primary_10_1016_j_cma_2024_117406
crossref_primary_10_1007_s00466_024_02568_z
crossref_primary_10_1016_j_ijmecsci_2024_109214
crossref_primary_10_1016_j_cma_2023_116236
crossref_primary_10_1017_dce_2024_33
crossref_primary_10_1016_j_rineng_2025_103976
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124593
crossref_primary_10_1016_j_advwatres_2024_104797
crossref_primary_10_1177_10775463241248555
crossref_primary_10_1016_j_euromechsol_2024_105542
crossref_primary_10_1016_j_biosystemseng_2025_01_017
crossref_primary_10_1016_j_neunet_2024_106756
crossref_primary_10_1080_17499518_2024_2315301
crossref_primary_10_1002_nme_7146
crossref_primary_10_1002_nme_7388
crossref_primary_10_1016_j_cma_2022_115852
crossref_primary_10_1007_s10346_023_02072_0
crossref_primary_10_1007_s42493_024_00106_w
crossref_primary_10_1016_j_cma_2024_116825
crossref_primary_10_6112_kscfe_2024_29_4_217
crossref_primary_10_1016_j_neunet_2023_03_014
crossref_primary_10_1007_s00419_024_02664_9
crossref_primary_10_1016_j_cma_2024_117276
crossref_primary_10_1021_acs_iecr_3c02383
crossref_primary_10_1007_s11424_024_3418_3
crossref_primary_10_1016_j_rineng_2023_100917
crossref_primary_10_2514_1_J063243
crossref_primary_10_1007_s00466_023_02435_3
crossref_primary_10_1016_j_fluid_2023_113984
crossref_primary_10_1016_j_ijepes_2024_110172
crossref_primary_10_1016_j_ijmecsci_2025_110075
crossref_primary_10_1557_s43577_024_00797_4
crossref_primary_10_1007_s00707_022_03449_3
crossref_primary_10_1080_10255842_2025_2471504
crossref_primary_10_1016_j_enganabound_2025_106207
crossref_primary_10_1016_j_tws_2024_112495
crossref_primary_10_1190_geo2022_0599_1
crossref_primary_10_1002_nme_7377
crossref_primary_10_1016_j_advengsoft_2024_103717
crossref_primary_10_1016_j_desal_2024_117557
crossref_primary_10_1016_j_compstruc_2025_107698
crossref_primary_10_1016_j_ijmecsci_2023_108324
crossref_primary_10_1038_s41598_024_65472_9
crossref_primary_10_1016_j_isci_2024_110822
crossref_primary_10_1007_s00366_024_02033_8
crossref_primary_10_1016_j_rinp_2023_106842
Cites_doi 10.3389/fmats.2019.00110
10.1038/s41524-022-00753-3
10.1002/gamm.202100006
10.1007/s00466-020-01954-7
10.1126/sciadv.abd7416
10.1016/j.tafmec.2019.102447
10.1038/s42254-021-00314-5
10.1016/j.engappai.2021.104232
10.1016/j.jcp.2021.110754
10.1016/j.cma.2019.112790
10.1016/j.cma.2021.113741
10.1016/j.cma.2022.114823
10.1016/j.taml.2021.100220
10.1016/j.neucom.2018.06.056
10.1016/j.neunet.2014.09.003
10.1016/j.jcp.2018.10.045
10.1002/nme.6286
10.1016/j.cma.2020.113552
10.1038/s41524-021-00571-z
10.1126/sciadv.abk0644
10.1016/j.matt.2020.04.019
10.1016/j.jmps.2020.104277
10.1007/s00366-022-01633-6
10.1016/j.cma.2020.113028
10.1016/j.cma.2022.114587
10.1007/s11831-020-09405-5
10.1016/j.jcp.2020.110010
10.1038/s41524-020-0341-6
10.1016/j.jcp.2021.110839
10.1109/72.712178
10.1002/aic.690381003
10.1016/0021-9991(90)90007-N
10.1016/j.matdes.2020.109193
10.1016/j.cma.2018.01.036
10.1016/j.advwatres.2020.103610
10.1016/j.cma.2022.114790
10.1186/s40323-019-0138-7
10.1073/pnas.1911815116
10.1115/1.4050542
10.1061/(ASCE)EM.1943-7889.0001947
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright Elsevier BV Nov 1, 2022
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright Elsevier BV Nov 1, 2022
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cma.2022.115616
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2138
ExternalDocumentID 10_1016_j_cma_2022_115616
S0045782522005722
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
VH1
VOH
WUQ
ZY4
7SC
7TB
8FD
EFKBS
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c255t-522faca7a33fbe742d97743a315f441ab0f364df74999eeaf3be7ce9a5412d453
IEDL.DBID .~1
ISSN 0045-7825
IngestDate Fri Jul 25 06:04:16 EDT 2025
Tue Jul 01 04:06:17 EDT 2025
Thu Apr 24 23:01:46 EDT 2025
Fri Feb 23 02:42:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Heterogeneous solids
Unsupervised learning
Physical informed neural networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c255t-522faca7a33fbe742d97743a315f441ab0f364df74999eeaf3be7ce9a5412d453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4760-8358
PQID 2755905745
PQPubID 2045269
ParticipantIDs proquest_journals_2755905745
crossref_citationtrail_10_1016_j_cma_2022_115616
crossref_primary_10_1016_j_cma_2022_115616
elsevier_sciencedirect_doi_10_1016_j_cma_2022_115616
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
2022-11-00
20221101
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Zhang, Garikipati (b58) 2021
Psichogios, Ungar (b21) 1992; 38
Zeiler (b53) 2012
Mozaffar, Bostanabad, Chen, Ehmann, Cao, Bessa (b11) 2019; 116
Lagaris, Likas, Fotiadis (b22) 1998; 9
Henkes, Wessels, Mahnken (b19) 2022; 393
A System for
Ying (b54) 2019; 1168
Jagtap, Kharazmi, Karniadakis (b37) 2020; 365
Guo, Haghighat (b29) 2020
Linka, Hillgärtner, Abdolazizi, Aydin, Itskov, Cyron (b13) 2021; 429
Rao, Sun, Liu (b35) 2021; 147
Zobeiry, Humfeld (b27) 2021; 101
Haghighat, Raissi, Moure, Gomez, Juanes (b31) 2021; 379
Goswami, Anitescu, Chakraborty, Rabczuk (b43) 2020; 106
Gaurav Kumar Yadav, Sundararajan Natarajan, Balaji Srinivasan, Distributed PINN for Linear Elasticity — A Unified Approach for Smooth, Singular, Compressible and Incompressible Media, Int. J. Comput. Methods 2142008.
Blechschmidt, Ernst (b26) 2021; 44
Zhang, Dao, Karniadakis, Suresh (b33) 2022; 8
Goswami, Yin, Yu, Karniadakis (b44) 2022; 391
Raissi, Perdikaris, Karniadakis (b16) 2019; 378
Wang, Sun (b12) 2018; 334
Fuhg, Bouklas (b17) 2022; 451
Bayat, Rezaei, Brepols, Reese (b56) 2020; 121
Linka, Schafer, Meng, Zou, Karniadakis, Kuhl (b55) 2022
Cai, Wang, Wang, Perdikaris, Karniadakis (b30) 2021; 143
Fernández, Jamshidian, Böhlke, Kersting, Weeger (b15) 2021; 67
Mianroodi, H. Siboni, Raabe (b6) 2021; 7
Peng, Alber, Buganza Tepole, Cannon, De, Dura-Bernal, Garikipati, Karniadakis, Lytton, Perdikaris, Petzold, Kuhl (b2) 2021
Lee, Kang (b20) 1990; 91
Patel, Manickam, Trask, Wood, Lee, Tomas, Cyr (b42) 2022; 449
Bock, Aydin, Cyron, Huber, Kalidindi, Klusemann (b1) 2019; 6
Karniadakis, Kevrekidis, Lu, Perdikaris, Wang, Yang (b24) 2021; 3
Bhaduri, Gupta, Graham-Brady (b7) 2021
Yu, Lu, Meng, Karniadakis (b57) 2022; 393
Haghighat, Juanes (b46) 2021; 373
Amini, Haghighat, Juanes (b45) 2022
Berg, Nyström (b25) 2018; 317
Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, Adam Lerer, Automatic differentiation in pytorch, in: 31st Conference on Neural Information Processing Systems, 2017.
Lin, Bai, Xu (b9) 2021; 197
Nguyen, Raissi, Seshaiyer (b41) 2022
Samaniego, Anitescu, Goswami, Nguyen-Thanh, Guo, Hamdia, Zhuang, Rabczuk (b28) 2020; 362
Sibi, Jones, Siddarth (b48) 2013; 47
Hsu, Yu, Buehler (b5) 2020; 3
Wang, Planas, Chandramowlishwaran, Bostanabad (b60) 2021
Abueidda, Koric, Al-Rub, Parrott, James, Sobh (b34) 2022
Baydin, Pearlmutter, Radul, Siskind (b49) 2018; 18
He, Barajas-Solano, Tartakovsky, Tartakovsky (b40) 2020; 141
Yin, Zhang, Yu, Karniadakis (b4) 2022
Zhang, Gu (b38) 2021; 11
Cai, Mao, Wang, Yin, Karniadakis (b23) 2022
Kumar, Tan, Zheng, Kochmann (b10) 2020; 6
Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Kingma, Ba (b52) 2014
Machine Learning, in: 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 16, 2016, pp. 265–283.
Fernández, Rezaei, Mianroodi, Fritzen, Reese (b3) 2020; 7
Guo, Zhuang, Chen, Alajlan, Rabczuk (b18) 2022
Mianroodi, Rezaei, Siboni, Xu, Raabe (b8) 2022; 8
Yang, Yu, Buehler (b59) 2021; 7
Arora (b32) 2021
Schmidhuber (b47) 2015; 61
Zhang, Yin, Karniadakis (b39) 2020
Masi, Stefanou, Vannucci, Maffi-Berthier (b14) 2021; 147
Goswami (10.1016/j.cma.2022.115616_b43) 2020; 106
Mianroodi (10.1016/j.cma.2022.115616_b6) 2021; 7
Bayat (10.1016/j.cma.2022.115616_b56) 2020; 121
Baydin (10.1016/j.cma.2022.115616_b49) 2018; 18
Bock (10.1016/j.cma.2022.115616_b1) 2019; 6
Patel (10.1016/j.cma.2022.115616_b42) 2022; 449
Fernández (10.1016/j.cma.2022.115616_b3) 2020; 7
10.1016/j.cma.2022.115616_b51
Yu (10.1016/j.cma.2022.115616_b57) 2022; 393
10.1016/j.cma.2022.115616_b50
Yin (10.1016/j.cma.2022.115616_b4) 2022
Sibi (10.1016/j.cma.2022.115616_b48) 2013; 47
Zeiler (10.1016/j.cma.2022.115616_b53) 2012
Mianroodi (10.1016/j.cma.2022.115616_b8) 2022; 8
Psichogios (10.1016/j.cma.2022.115616_b21) 1992; 38
Abueidda (10.1016/j.cma.2022.115616_b34) 2022
Samaniego (10.1016/j.cma.2022.115616_b28) 2020; 362
Haghighat (10.1016/j.cma.2022.115616_b31) 2021; 379
Peng (10.1016/j.cma.2022.115616_b2) 2021
Rao (10.1016/j.cma.2022.115616_b35) 2021; 147
Zhang (10.1016/j.cma.2022.115616_b58) 2021
10.1016/j.cma.2022.115616_b36
Schmidhuber (10.1016/j.cma.2022.115616_b47) 2015; 61
Henkes (10.1016/j.cma.2022.115616_b19) 2022; 393
Masi (10.1016/j.cma.2022.115616_b14) 2021; 147
Lin (10.1016/j.cma.2022.115616_b9) 2021; 197
Zhang (10.1016/j.cma.2022.115616_b38) 2021; 11
Goswami (10.1016/j.cma.2022.115616_b44) 2022; 391
Lagaris (10.1016/j.cma.2022.115616_b22) 1998; 9
Guo (10.1016/j.cma.2022.115616_b29) 2020
Zhang (10.1016/j.cma.2022.115616_b39) 2020
Haghighat (10.1016/j.cma.2022.115616_b46) 2021; 373
Yang (10.1016/j.cma.2022.115616_b59) 2021; 7
Cai (10.1016/j.cma.2022.115616_b23) 2022
Zobeiry (10.1016/j.cma.2022.115616_b27) 2021; 101
Raissi (10.1016/j.cma.2022.115616_b16) 2019; 378
Arora (10.1016/j.cma.2022.115616_b32) 2021
He (10.1016/j.cma.2022.115616_b40) 2020; 141
Lee (10.1016/j.cma.2022.115616_b20) 1990; 91
Jagtap (10.1016/j.cma.2022.115616_b37) 2020; 365
Karniadakis (10.1016/j.cma.2022.115616_b24) 2021; 3
Ying (10.1016/j.cma.2022.115616_b54) 2019; 1168
Fernández (10.1016/j.cma.2022.115616_b15) 2021; 67
Kumar (10.1016/j.cma.2022.115616_b10) 2020; 6
Guo (10.1016/j.cma.2022.115616_b18) 2022
Berg (10.1016/j.cma.2022.115616_b25) 2018; 317
Kingma (10.1016/j.cma.2022.115616_b52) 2014
Fuhg (10.1016/j.cma.2022.115616_b17) 2022; 451
Blechschmidt (10.1016/j.cma.2022.115616_b26) 2021; 44
Mozaffar (10.1016/j.cma.2022.115616_b11) 2019; 116
Hsu (10.1016/j.cma.2022.115616_b5) 2020; 3
Bhaduri (10.1016/j.cma.2022.115616_b7) 2021
Linka (10.1016/j.cma.2022.115616_b13) 2021; 429
Linka (10.1016/j.cma.2022.115616_b55) 2022
Wang (10.1016/j.cma.2022.115616_b12) 2018; 334
Nguyen (10.1016/j.cma.2022.115616_b41) 2022
Zhang (10.1016/j.cma.2022.115616_b33) 2022; 8
Amini (10.1016/j.cma.2022.115616_b45) 2022
Cai (10.1016/j.cma.2022.115616_b30) 2021; 143
Wang (10.1016/j.cma.2022.115616_b60) 2021
References_xml – volume: 8
  start-page: 1
  year: 2022
  end-page: 12
  ident: b8
  article-title: Lossless multi-scale constitutive elastic relations with artificial intelligence
  publication-title: Npj Comput. Mater.
– volume: 143
  year: 2021
  ident: b30
  article-title: Physics-informed neural networks for heat transfer problems
  publication-title: J. Heat Transfer
– volume: 334
  start-page: 337
  year: 2018
  end-page: 380
  ident: b12
  article-title: A multiscale multi-permeability poroplasticity model linked by recursive homogenizations and deep learning
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: b47
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Netw.
– volume: 141
  year: 2020
  ident: b40
  article-title: Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport
  publication-title: Adv. Water Resour.
– volume: 7
  start-page: 1
  year: 2020
  end-page: 27
  ident: b3
  article-title: Application of artificial neural networks for the prediction of interface mechanics: A study on grain boundary constitutive behavior
  publication-title: Adv. Model. Simul. Eng. Sci.
– volume: 106
  year: 2020
  ident: b43
  article-title: Transfer learning enhanced physics informed neural network for phase-field modeling of fracture
  publication-title: Theor. Appl. Fract. Mech.
– reference: Gaurav Kumar Yadav, Sundararajan Natarajan, Balaji Srinivasan, Distributed PINN for Linear Elasticity — A Unified Approach for Smooth, Singular, Compressible and Incompressible Media, Int. J. Comput. Methods 2142008.
– volume: 365
  year: 2020
  ident: b37
  article-title: Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 101
  year: 2021
  ident: b27
  article-title: A physics-informed machine learning approach for solving heat transfer equation in advanced manufacturing and engineering applications
  publication-title: Eng. Appl. Artif. Intell.
– volume: 379
  year: 2021
  ident: b31
  article-title: A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 7
  year: 2021
  ident: b59
  article-title: Deep learning model to predict complex stress and strain fields in hierarchical composites
  publication-title: Sci. Adv.
– volume: 3
  start-page: 197
  year: 2020
  end-page: 211
  ident: b5
  article-title: Using deep learning to predict fracture patterns in crystalline solids
  publication-title: Matter
– year: 2022
  ident: b18
  article-title: Analysis of three-dimensional potential problems in non-homogeneous media with physics-informed deep collocation method using material transfer learning and sensitivity analysis
  publication-title: Eng. Comput.
– start-page: 41
  year: 2022
  end-page: 53
  ident: b41
  article-title: Efficient physics informed neural networks coupled with domain decomposition methods for solving coupled multi-physics problems
  publication-title: Advances in Computational Modeling and Simulation
– year: 2021
  ident: b60
  article-title: Train once and use forever: Solving boundary value problems in unseen domains with pre-trained deep learning models
– volume: 3
  start-page: 422
  year: 2021
  end-page: 440
  ident: b24
  article-title: Physics-informed machine learning
  publication-title: Nat. Rev. Phys.
– volume: 8
  start-page: eabk0644
  year: 2022
  ident: b33
  article-title: Analyses of internal structures and defects in materials using physics-informed neural networks
  publication-title: Sci. Adv.
– volume: 44
  year: 2021
  ident: b26
  article-title: Three ways to solve partial differential equations with neural networks — A review
  publication-title: GAMM-Mitt.
– reference: Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, Adam Lerer, Automatic differentiation in pytorch, in: 31st Conference on Neural Information Processing Systems, 2017.
– volume: 147
  year: 2021
  ident: b35
  article-title: Physics-informed deep learning for computational elastodynamics without labeled data
  publication-title: J. Eng. Mech.
– reference: : A System for
– year: 2022
  ident: b4
  article-title: Interfacing finite elements with deep neural operators for fast multiscale modeling of mechanics problems
– reference: Machine Learning, in: 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 16, 2016, pp. 265–283.
– volume: 451
  year: 2022
  ident: b17
  article-title: The mixed deep energy method for resolving concentration features in finite strain hyperelasticity
  publication-title: J. Comput. Phys.
– volume: 116
  start-page: 26414
  year: 2019
  end-page: 26420
  ident: b11
  article-title: Deep learning predicts path-dependent plasticity
  publication-title: Proc. Natl. Acad. Sci.
– volume: 147
  year: 2021
  ident: b14
  article-title: Thermodynamics-based artificial neural networks for constitutive modeling
  publication-title: J. Mech. Phys. Solids
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: b16
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– year: 2022
  ident: b23
  article-title: Physics-informed neural networks (PINNs) for fluid mechanics: A review
  publication-title: Acta Mech. Sinica
– volume: 317
  start-page: 28
  year: 2018
  end-page: 41
  ident: b25
  article-title: A unified deep artificial neural network approach to partial differential equations in complex geometries
  publication-title: Neurocomputing
– volume: 7
  start-page: 1
  year: 2021
  end-page: 10
  ident: b6
  article-title: Teaching solid mechanics to artificial intelligence—A fast solver for heterogeneous materials
  publication-title: Npj Comput. Mater.
– volume: 393
  year: 2022
  ident: b57
  article-title: Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2021
  ident: b58
  article-title: Bayesian neural networks for weak solution of PDEs with uncertainty quantification
– volume: 11
  year: 2021
  ident: b38
  article-title: Physics-informed deep learning for digital materials
  publication-title: Theor. Appl. Mech. Lett.
– volume: 6
  year: 2019
  ident: b1
  article-title: A review of the application of machine learning and data mining approaches in continuum materials mechanics
  publication-title: Front. Mater.
– volume: 393
  year: 2022
  ident: b19
  article-title: Physics informed neural networks for continuum micromechanics
  publication-title: Comput. Methods Appl. Mech. Engrg.
– reference: Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.,
– volume: 6
  start-page: 110
  year: 2020
  ident: b10
  article-title: Inverse-designed spinodoid metamaterials
  publication-title: Npj Comput. Mater.
– volume: 391
  year: 2022
  ident: b44
  article-title: A physics-informed variational DeepONet for predicting crack path in quasi-brittle materials
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2021
  ident: b2
  article-title: Multiscale modeling meets machine learning: What can we learn?
  publication-title: Arch. Comput. Methods Eng.
– year: 2020
  ident: b39
  article-title: Physics-informed neural networks for nonhomogeneous material identification in elasticity imaging
– volume: 362
  year: 2020
  ident: b28
  article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 91
  start-page: 110
  year: 1990
  end-page: 131
  ident: b20
  article-title: Neural algorithm for solving differential equations
  publication-title: J. Comput. Phys.
– volume: 373
  year: 2021
  ident: b46
  article-title: SciANN: A Keras/TensorFlow wrapper for scientific computations and physics-informed deep learning using artificial neural networks
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2012
  ident: b53
  article-title: Adadelta: An adaptive learning rate method
– volume: 9
  start-page: 987
  year: 1998
  end-page: 1000
  ident: b22
  article-title: Artificial neural networks for solving ordinary and partial differential equations
  publication-title: IEEE Trans. Neural Netw.
– year: 2022
  ident: b34
  article-title: A deep learning energy method for hyperelasticity and viscoelasticity
– year: 2014
  ident: b52
  article-title: Adam: A method for stochastic optimization
– volume: 18
  start-page: 1
  year: 2018
  end-page: 43
  ident: b49
  article-title: Automatic differentiation in machine learning: A survey
  publication-title: J. March. Learn. Res.
– year: 2022
  ident: b55
  article-title: Bayesian physics-informed neural networks for real-world nonlinear dynamical systems
– volume: 67
  start-page: 653
  year: 2021
  end-page: 677
  ident: b15
  article-title: Anisotropic hyperelastic constitutive models for finite deformations combining material theory and data-driven approaches with application to cubic lattice metamaterials
  publication-title: Comput. Mech.
– year: 2022
  ident: b45
  article-title: Physics-informed neural network solution of thermo-hydro-mechanical (THM) processes in porous media
– volume: 429
  year: 2021
  ident: b13
  article-title: Constitutive artificial neural networks: A fast and general approach to predictive data-driven constitutive modeling by deep learning
  publication-title: J. Comput. Phys.
– year: 2021
  ident: b7
  article-title: Stress field prediction in fiber-reinforced composite materials using a deep learning approach
– volume: 449
  year: 2022
  ident: b42
  article-title: Thermodynamically consistent physics-informed neural networks for hyperbolic systems
  publication-title: J. Comput. Phys.
– year: 2021
  ident: b32
  article-title: Machine learning-accelerated computational solid mechanics: Application to linear elasticity
– volume: 47
  start-page: 1264
  year: 2013
  end-page: 1268
  ident: b48
  article-title: Analysis of different activation functions using back propagation neural networks
  publication-title: J. Theor. Appl. Inf. Technol.
– year: 2020
  ident: b29
  article-title: An energy-based error bound of physics-informed neural network solutions in elasticity
– volume: 38
  start-page: 1499
  year: 1992
  end-page: 1511
  ident: b21
  article-title: A hybrid neural network-first principles approach to process modeling
  publication-title: AIChE J.
– volume: 1168
  year: 2019
  ident: b54
  article-title: An overview of overfitting and its solutions
  publication-title: J. Phys.: Conf. Ser.
– volume: 197
  year: 2021
  ident: b9
  article-title: Data-driven microstructure sensitivity study of fibrous paper materials
  publication-title: Mater. Des.
– volume: 121
  start-page: 1762
  year: 2020
  end-page: 1790
  ident: b56
  article-title: Locking-free interface failure modeling by a cohesive discontinuous Galerkin method for matching and nonmatching meshes
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 6
  year: 2019
  ident: 10.1016/j.cma.2022.115616_b1
  article-title: A review of the application of machine learning and data mining approaches in continuum materials mechanics
  publication-title: Front. Mater.
  doi: 10.3389/fmats.2019.00110
– volume: 8
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.cma.2022.115616_b8
  article-title: Lossless multi-scale constitutive elastic relations with artificial intelligence
  publication-title: Npj Comput. Mater.
  doi: 10.1038/s41524-022-00753-3
– year: 2021
  ident: 10.1016/j.cma.2022.115616_b60
– volume: 44
  year: 2021
  ident: 10.1016/j.cma.2022.115616_b26
  article-title: Three ways to solve partial differential equations with neural networks — A review
  publication-title: GAMM-Mitt.
  doi: 10.1002/gamm.202100006
– volume: 67
  start-page: 653
  year: 2021
  ident: 10.1016/j.cma.2022.115616_b15
  article-title: Anisotropic hyperelastic constitutive models for finite deformations combining material theory and data-driven approaches with application to cubic lattice metamaterials
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-020-01954-7
– year: 2022
  ident: 10.1016/j.cma.2022.115616_b23
  article-title: Physics-informed neural networks (PINNs) for fluid mechanics: A review
  publication-title: Acta Mech. Sinica
– volume: 7
  issue: 15
  year: 2021
  ident: 10.1016/j.cma.2022.115616_b59
  article-title: Deep learning model to predict complex stress and strain fields in hierarchical composites
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abd7416
– volume: 106
  year: 2020
  ident: 10.1016/j.cma.2022.115616_b43
  article-title: Transfer learning enhanced physics informed neural network for phase-field modeling of fracture
  publication-title: Theor. Appl. Fract. Mech.
  doi: 10.1016/j.tafmec.2019.102447
– volume: 3
  start-page: 422
  issue: 6
  year: 2021
  ident: 10.1016/j.cma.2022.115616_b24
  article-title: Physics-informed machine learning
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-021-00314-5
– year: 2021
  ident: 10.1016/j.cma.2022.115616_b7
– year: 2022
  ident: 10.1016/j.cma.2022.115616_b4
– volume: 101
  year: 2021
  ident: 10.1016/j.cma.2022.115616_b27
  article-title: A physics-informed machine learning approach for solving heat transfer equation in advanced manufacturing and engineering applications
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104232
– volume: 449
  year: 2022
  ident: 10.1016/j.cma.2022.115616_b42
  article-title: Thermodynamically consistent physics-informed neural networks for hyperbolic systems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2021.110754
– volume: 362
  year: 2020
  ident: 10.1016/j.cma.2022.115616_b28
  article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2019.112790
– volume: 379
  year: 2021
  ident: 10.1016/j.cma.2022.115616_b31
  article-title: A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2021.113741
– volume: 393
  year: 2022
  ident: 10.1016/j.cma.2022.115616_b57
  article-title: Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2022.114823
– volume: 11
  issue: 1
  year: 2021
  ident: 10.1016/j.cma.2022.115616_b38
  article-title: Physics-informed deep learning for digital materials
  publication-title: Theor. Appl. Mech. Lett.
  doi: 10.1016/j.taml.2021.100220
– volume: 317
  start-page: 28
  year: 2018
  ident: 10.1016/j.cma.2022.115616_b25
  article-title: A unified deep artificial neural network approach to partial differential equations in complex geometries
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.06.056
– volume: 61
  start-page: 85
  year: 2015
  ident: 10.1016/j.cma.2022.115616_b47
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– volume: 47
  start-page: 1264
  issue: 3
  year: 2013
  ident: 10.1016/j.cma.2022.115616_b48
  article-title: Analysis of different activation functions using back propagation neural networks
  publication-title: J. Theor. Appl. Inf. Technol.
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.cma.2022.115616_b16
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 121
  start-page: 1762
  issue: 8
  year: 2020
  ident: 10.1016/j.cma.2022.115616_b56
  article-title: Locking-free interface failure modeling by a cohesive discontinuous Galerkin method for matching and nonmatching meshes
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.6286
– volume: 373
  year: 2021
  ident: 10.1016/j.cma.2022.115616_b46
  article-title: SciANN: A Keras/TensorFlow wrapper for scientific computations and physics-informed deep learning using artificial neural networks
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.113552
– year: 2021
  ident: 10.1016/j.cma.2022.115616_b58
– year: 2020
  ident: 10.1016/j.cma.2022.115616_b39
– volume: 7
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.cma.2022.115616_b6
  article-title: Teaching solid mechanics to artificial intelligence—A fast solver for heterogeneous materials
  publication-title: Npj Comput. Mater.
  doi: 10.1038/s41524-021-00571-z
– ident: 10.1016/j.cma.2022.115616_b51
– volume: 8
  start-page: eabk0644
  issue: 7
  year: 2022
  ident: 10.1016/j.cma.2022.115616_b33
  article-title: Analyses of internal structures and defects in materials using physics-informed neural networks
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abk0644
– volume: 3
  start-page: 197
  issue: 1
  year: 2020
  ident: 10.1016/j.cma.2022.115616_b5
  article-title: Using deep learning to predict fracture patterns in crystalline solids
  publication-title: Matter
  doi: 10.1016/j.matt.2020.04.019
– volume: 147
  issn: 0022-5096
  year: 2021
  ident: 10.1016/j.cma.2022.115616_b14
  article-title: Thermodynamics-based artificial neural networks for constitutive modeling
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2020.104277
– year: 2022
  ident: 10.1016/j.cma.2022.115616_b18
  article-title: Analysis of three-dimensional potential problems in non-homogeneous media with physics-informed deep collocation method using material transfer learning and sensitivity analysis
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-022-01633-6
– volume: 365
  year: 2020
  ident: 10.1016/j.cma.2022.115616_b37
  article-title: Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.113028
– volume: 391
  year: 2022
  ident: 10.1016/j.cma.2022.115616_b44
  article-title: A physics-informed variational DeepONet for predicting crack path in quasi-brittle materials
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2022.114587
– year: 2021
  ident: 10.1016/j.cma.2022.115616_b2
  article-title: Multiscale modeling meets machine learning: What can we learn?
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-020-09405-5
– volume: 1168
  year: 2019
  ident: 10.1016/j.cma.2022.115616_b54
  article-title: An overview of overfitting and its solutions
  publication-title: J. Phys.: Conf. Ser.
– start-page: 41
  year: 2022
  ident: 10.1016/j.cma.2022.115616_b41
  article-title: Efficient physics informed neural networks coupled with domain decomposition methods for solving coupled multi-physics problems
– ident: 10.1016/j.cma.2022.115616_b50
– year: 2014
  ident: 10.1016/j.cma.2022.115616_b52
– volume: 429
  issn: 0021-9991
  year: 2021
  ident: 10.1016/j.cma.2022.115616_b13
  article-title: Constitutive artificial neural networks: A fast and general approach to predictive data-driven constitutive modeling by deep learning
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.110010
– volume: 6
  start-page: 110
  year: 2020
  ident: 10.1016/j.cma.2022.115616_b10
  article-title: Inverse-designed spinodoid metamaterials
  publication-title: Npj Comput. Mater.
  doi: 10.1038/s41524-020-0341-6
– volume: 451
  year: 2022
  ident: 10.1016/j.cma.2022.115616_b17
  article-title: The mixed deep energy method for resolving concentration features in finite strain hyperelasticity
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2021.110839
– year: 2012
  ident: 10.1016/j.cma.2022.115616_b53
– volume: 9
  start-page: 987
  issue: 5
  year: 1998
  ident: 10.1016/j.cma.2022.115616_b22
  article-title: Artificial neural networks for solving ordinary and partial differential equations
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.712178
– volume: 38
  start-page: 1499
  issue: 10
  year: 1992
  ident: 10.1016/j.cma.2022.115616_b21
  article-title: A hybrid neural network-first principles approach to process modeling
  publication-title: AIChE J.
  doi: 10.1002/aic.690381003
– volume: 91
  start-page: 110
  issn: 0021-9991
  issue: 1
  year: 1990
  ident: 10.1016/j.cma.2022.115616_b20
  article-title: Neural algorithm for solving differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(90)90007-N
– volume: 197
  year: 2021
  ident: 10.1016/j.cma.2022.115616_b9
  article-title: Data-driven microstructure sensitivity study of fibrous paper materials
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.109193
– volume: 334
  start-page: 337
  issn: 0045-7825
  year: 2018
  ident: 10.1016/j.cma.2022.115616_b12
  article-title: A multiscale multi-permeability poroplasticity model linked by recursive homogenizations and deep learning
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2018.01.036
– volume: 141
  year: 2020
  ident: 10.1016/j.cma.2022.115616_b40
  article-title: Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2020.103610
– year: 2022
  ident: 10.1016/j.cma.2022.115616_b34
– volume: 393
  year: 2022
  ident: 10.1016/j.cma.2022.115616_b19
  article-title: Physics informed neural networks for continuum micromechanics
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2022.114790
– volume: 7
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.cma.2022.115616_b3
  article-title: Application of artificial neural networks for the prediction of interface mechanics: A study on grain boundary constitutive behavior
  publication-title: Adv. Model. Simul. Eng. Sci.
  doi: 10.1186/s40323-019-0138-7
– volume: 18
  start-page: 1
  year: 2018
  ident: 10.1016/j.cma.2022.115616_b49
  article-title: Automatic differentiation in machine learning: A survey
  publication-title: J. March. Learn. Res.
– volume: 116
  start-page: 26414
  issue: 52
  year: 2019
  ident: 10.1016/j.cma.2022.115616_b11
  article-title: Deep learning predicts path-dependent plasticity
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1911815116
– year: 2022
  ident: 10.1016/j.cma.2022.115616_b55
– volume: 143
  issue: 6
  year: 2021
  ident: 10.1016/j.cma.2022.115616_b30
  article-title: Physics-informed neural networks for heat transfer problems
  publication-title: J. Heat Transfer
  doi: 10.1115/1.4050542
– volume: 147
  issue: 8
  year: 2021
  ident: 10.1016/j.cma.2022.115616_b35
  article-title: Physics-informed deep learning for computational elastodynamics without labeled data
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)EM.1943-7889.0001947
– year: 2021
  ident: 10.1016/j.cma.2022.115616_b32
– year: 2022
  ident: 10.1016/j.cma.2022.115616_b45
– ident: 10.1016/j.cma.2022.115616_b36
– year: 2020
  ident: 10.1016/j.cma.2022.115616_b29
SSID ssj0000812
Score 2.638921
Snippet Physics informed neural networks (PINNs) are capable of finding the solution for a given boundary value problem. Here, the training of the network is...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115616
SubjectTerms Boundary conditions
Boundary value problems
Composite materials
Computer architecture
Derivatives
Differential equations
Domains
Finite element analysis
Finite element method
Heterogeneous solids
Interpolation
Mathematical models
Neural networks
Physical informed neural networks
Poisson equation
Shape functions
Training
Unsupervised learning
Title A mixed formulation for physics-informed neural networks as a potential solver for engineering problems in heterogeneous domains: Comparison with finite element method
URI https://dx.doi.org/10.1016/j.cma.2022.115616
https://www.proquest.com/docview/2755905745
Volume 401
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXvTgj6k4nSMHT0Jd16St8zaGYyrs5GC3kDYpVrQdtgNP_jv-m77XpJsK7iD00JaXtPS9vHwvffkeIRd9GTOJNQAVD1wHCbyc68hNHOYPIjXgSntJxfY5DSYzfj_35w0yqvfCYFql9f3Gp1fe2t7p2a_ZW6Qp7vHlyMUOAAJ3VHroh5G9Dmz66mOd5gFTnmEM576D0vWfzSrHK66ohzwPHAfgiOCvuemXl66mnvE-2bWYkQ7Nax2Qhs5aZM_iR2pHZ9EiO9_IBQ_J55C-pu8ggLDUFunCc2oWMwrHcKaCAHJaQv-ZyQgvqISDLvISE4ngPlgn2HvVVK8fQG0pmoKmGX3CpJocbFHny4Kq_FWmWXFDR6sihxTXe2mSIsKl2qSsU1O9-ojMxrePo4ljyzI4McQfJYSuXiJjGUrGkkhDaK0QQzLJ-n4C4EqCqlnAVRJiMKW1TBhIxXogfd73FPfZMWlmeaZPCJUaXIIrffxbyAMtJUR_EWBSroNQKea2iVsrRMSWsxxLZ7yIOjntWYAOBepQGB22yeWqycIQdmwS5rWWxQ-rEzChbGrWqS1C2CFfCC-E4AwMkfun_-v1jGzjldno2CHN8m2pzwHxlFG3Muku2RrePUymXzHeArg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6hdgAG3og3HpiQItLYSVu2qgK1UDoVic1yYkcE0aQiReIf8Te5i53ykGBAyhA5thPlzufv7PN3AGctlXBFOQC1iHyPCLy8TuynHg-7se4KbYK0YvscR4N7cfMQPixBvz4LQ2GVzvZbm15Za1dy4f7mxSzL6IyvIC52BBB0ojJAO9wkdirRgGZveDsYfxrkTsuShovQowb15mYV5pVU7ENBgLYDoUT02_T0w1BXs8_1Bqw52Mh69ss2YcnkW7DuICRzA7TcgtUv_ILb8N5j0-wNKxAydXm66J7Z9YzSs7SpWIFoLbH_3AaFl0zhxWbFnGKJsBwVFFW-amo-X8BcNpqSZTl7pLiaAtXRFK8l08VUZXl5yfqLPIeMlnxZmhHIZcZGrTObwHoH7q-vJv2B5zIzeAm6IHP0XoNUJaqtOE9jg961JhjJFW-FKeIrhdLmkdBpm_wpY1TKsVZiuioUrUCLkO9CIy9yswdMGbQKvgppw1BERil0AGOEpcJEba25vw9-LRCZONpyyp7xLOv4tCeJMpQkQ2lluA_niyYzy9nxV2VRS1l-UzyJc8pfzY5qjZBu1JcyaKN_hroowoP_9XoKy4PJ3UiOhuPbQ1ihJ_bc4xE05i-v5hgB0Dw-cQr-AQJxBWk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+mixed+formulation+for+physics-informed+neural+networks+as+a+potential+solver+for+engineering+problems+in+heterogeneous+domains%3A+Comparison+with+finite+element+method&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Rezaei%2C+Shahed&rft.au=Harandi%2C+Ali&rft.au=Moeineddin%2C+Ahmad&rft.au=Xu%2C+Bai-Xiang&rft.date=2022-11-01&rft.pub=Elsevier+BV&rft.issn=0045-7825&rft.volume=401&rft.spage=1&rft_id=info:doi/10.1016%2Fj.cma.2022.115616&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon