A mixed formulation for physics-informed neural networks as a potential solver for engineering problems in heterogeneous domains: Comparison with finite element method
Physics informed neural networks (PINNs) are capable of finding the solution for a given boundary value problem. Here, the training of the network is equivalent to the minimization of a loss function that includes the governing (partial differential) equations (PDE) as well as initial and boundary c...
Saved in:
Published in | Computer methods in applied mechanics and engineering Vol. 401; p. 115616 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.11.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0045-7825 1879-2138 |
DOI | 10.1016/j.cma.2022.115616 |
Cover
Loading…
Abstract | Physics informed neural networks (PINNs) are capable of finding the solution for a given boundary value problem. Here, the training of the network is equivalent to the minimization of a loss function that includes the governing (partial differential) equations (PDE) as well as initial and boundary conditions. We employ several ideas from the finite element method (FEM) to enhance the performance of existing PINNs in engineering problems. The main contribution of the current work is to promote using the spatial gradient of the primary variable as an output from separated neural networks. Later on, the strong form (given governing equation) which has a higher order of derivatives is applied to the spatial gradients of the primary variable as the physical constraint. In addition, the so-called energy form of the problem (which can be obtained from the weak form) is applied to the primary variable as an additional constraint for training. The proposed approach only required up to first-order derivatives to construct the physical loss functions. We discuss why this point is beneficial through various comparisons between different models. The mixed formulation-based PINNs and FE methods share some similarities. While the former minimizes the PDE and its energy form at given collocation points utilizing a complex nonlinear interpolation through a neural network, the latter does the same at element nodes with the help of shape functions. We focus on heterogeneous solids and check the performance of the proposed PINN model against the solution from FEM on two prototype problems: elasticity and the Poisson equation (steady-state diffusion problem). It is concluded that by properly designing the network architecture in PINN, the deep learning model has the potential to solve the unknowns in a heterogeneous domain without any available initial data from other sources. Finally, discussions are provided on the combination of PINN and data from physical FE simulations for a fast and accurate design of composite materials in future developments. |
---|---|
AbstractList | Physics informed neural networks (PINNs) are capable of finding the solution for a given boundary value problem. Here, the training of the network is equivalent to the minimization of a loss function that includes the governing (partial differential) equations (PDE) as well as initial and boundary conditions. We employ several ideas from the finite element method (FEM) to enhance the performance of existing PINNs in engineering problems. The main contribution of the current work is to promote using the spatial gradient of the primary variable as an output from separated neural networks. Later on, the strong form (given governing equation) which has a higher order of derivatives is applied to the spatial gradients of the primary variable as the physical constraint. In addition, the so-called energy form of the problem (which can be obtained from the weak form) is applied to the primary variable as an additional constraint for training. The proposed approach only required up to first-order derivatives to construct the physical loss functions. We discuss why this point is beneficial through various comparisons between different models. The mixed formulation-based PINNs and FE methods share some similarities. While the former minimizes the PDE and its energy form at given collocation points utilizing a complex nonlinear interpolation through a neural network, the latter does the same at element nodes with the help of shape functions. We focus on heterogeneous solids and check the performance of the proposed PINN model against the solution from FEM on two prototype problems: elasticity and the Poisson equation (steady-state diffusion problem). It is concluded that by properly designing the network architecture in PINN, the deep learning model has the potential to solve the unknowns in a heterogeneous domain without any available initial data from other sources. Finally, discussions are provided on the combination of PINN and data from physical FE simulations for a fast and accurate design of composite materials in future developments. |
ArticleNumber | 115616 |
Author | Rezaei, Shahed Xu, Bai-Xiang Reese, Stefanie Harandi, Ali Moeineddin, Ahmad |
Author_xml | – sequence: 1 givenname: Shahed surname: Rezaei fullname: Rezaei, Shahed email: shahed.rezaei@tu-darmstadt.de organization: Mechanics of Functional Materials Division, Institute of Materials Science, Technical University of Darmstadt, Otto-Berndt-Str. 3, D-64287 Darmstadt, Germany – sequence: 2 givenname: Ali surname: Harandi fullname: Harandi, Ali email: ali.harandi@ifam.rwth-aachen.de organization: Institute of Applied Mechanics, RWTH Aachen University, Mies-van-der-Rohe-Str. 1, D-52074 Aachen, Germany – sequence: 3 givenname: Ahmad surname: Moeineddin fullname: Moeineddin, Ahmad organization: Institute of Applied Mechanics, RWTH Aachen University, Mies-van-der-Rohe-Str. 1, D-52074 Aachen, Germany – sequence: 4 givenname: Bai-Xiang surname: Xu fullname: Xu, Bai-Xiang organization: Mechanics of Functional Materials Division, Institute of Materials Science, Technical University of Darmstadt, Otto-Berndt-Str. 3, D-64287 Darmstadt, Germany – sequence: 5 givenname: Stefanie orcidid: 0000-0003-4760-8358 surname: Reese fullname: Reese, Stefanie organization: Institute of Applied Mechanics, RWTH Aachen University, Mies-van-der-Rohe-Str. 1, D-52074 Aachen, Germany |
BookMark | eNp9kU1vGyEQhlGVSnGS_oDckHpeF1gw3vYUWf2SIvXSnBFmB3vcXdgCm49f1L9ZbPfUQ9BIg4b3mQHeK3IRYgBCbjlbcsZXHw5LN9qlYEIsOVcrvnpDFnytu0bwdn1BFoxJ1ei1UJfkKucDq2vNxYL8uaMjPkNPfUzjPNiCMRz3dNq_ZHS5wXA8qYIAc7JDTeUppl-Z2hp0igVCwVrPcXiEdEIh7DAAJAw7OqW4HWDMFAPdQ4EUdxAgzpn2cbQY8ke6ieNkE-Y6-AnLnnoMWIBCxWpvOkLZx_6GvPV2yPDuX74mD18-_9x8a-5_fP2-ubtvnFCqNEoIb53Vtm39FrQUfae1bG3LlZeS2y3z7Ur2Xsuu6wCsb6vKQWeV5KKXqr0m789968V_z5CLOcQ5hTrSCK1Ux5Q-qfRZ5VLMOYE3Dsvp70qyOBjOzNEVczDVFXN0xZxdqST_j5wSjja9vMp8OjNQH_6IkEx2CMFBjwlcMX3EV-i_M3KrtQ |
CitedBy_id | crossref_primary_10_1016_j_cma_2023_116211 crossref_primary_10_1109_TNNLS_2024_3350335 crossref_primary_10_1137_22M1520840 crossref_primary_10_1016_j_cma_2024_117104 crossref_primary_10_1139_cgj_2023_0567 crossref_primary_10_1016_j_cma_2023_116534 crossref_primary_10_1016_j_compositesa_2025_108820 crossref_primary_10_1177_03093247241293499 crossref_primary_10_3390_batteries9060301 crossref_primary_10_1002_nme_7637 crossref_primary_10_1016_j_cma_2024_117268 crossref_primary_10_1016_j_measurement_2023_113334 crossref_primary_10_1016_j_cageo_2023_105494 crossref_primary_10_1016_j_cma_2023_116290 crossref_primary_10_1016_j_cma_2024_117063 crossref_primary_10_1016_j_finel_2024_104305 crossref_primary_10_1061_JENMDT_EMENG_7463 crossref_primary_10_3390_s25051401 crossref_primary_10_1016_j_jobe_2025_111788 crossref_primary_10_1007_s00466_025_02602_8 crossref_primary_10_1007_s00707_024_04053_3 crossref_primary_10_1016_j_mechmat_2024_105141 crossref_primary_10_1016_j_knosys_2024_111831 crossref_primary_10_1615_JMachLearnModelComput_2023050011 crossref_primary_10_1016_j_engstruct_2023_117093 crossref_primary_10_1016_j_ymssp_2024_112189 crossref_primary_10_1038_s44172_024_00303_3 crossref_primary_10_1016_j_cma_2025_117755 crossref_primary_10_1360_TB_2024_0683 crossref_primary_10_1016_j_rineng_2024_103908 crossref_primary_10_1093_pnasnexus_pgae186 crossref_primary_10_1007_s11071_023_08712_3 crossref_primary_10_1016_j_finel_2023_104097 crossref_primary_10_1016_j_cma_2024_117135 crossref_primary_10_1115_1_4064449 crossref_primary_10_1007_s00707_023_03676_2 crossref_primary_10_1007_s00366_024_02090_z crossref_primary_10_1016_j_tws_2023_111046 crossref_primary_10_1016_j_asoc_2024_111437 crossref_primary_10_1016_j_ijmecsci_2023_108900 crossref_primary_10_1016_j_istruc_2024_107361 crossref_primary_10_1515_zna_2024_0009 crossref_primary_10_1016_j_cma_2024_117406 crossref_primary_10_1007_s00466_024_02568_z crossref_primary_10_1016_j_ijmecsci_2024_109214 crossref_primary_10_1016_j_cma_2023_116236 crossref_primary_10_1017_dce_2024_33 crossref_primary_10_1016_j_rineng_2025_103976 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124593 crossref_primary_10_1016_j_advwatres_2024_104797 crossref_primary_10_1177_10775463241248555 crossref_primary_10_1016_j_euromechsol_2024_105542 crossref_primary_10_1016_j_biosystemseng_2025_01_017 crossref_primary_10_1016_j_neunet_2024_106756 crossref_primary_10_1080_17499518_2024_2315301 crossref_primary_10_1002_nme_7146 crossref_primary_10_1002_nme_7388 crossref_primary_10_1016_j_cma_2022_115852 crossref_primary_10_1007_s10346_023_02072_0 crossref_primary_10_1007_s42493_024_00106_w crossref_primary_10_1016_j_cma_2024_116825 crossref_primary_10_6112_kscfe_2024_29_4_217 crossref_primary_10_1016_j_neunet_2023_03_014 crossref_primary_10_1007_s00419_024_02664_9 crossref_primary_10_1016_j_cma_2024_117276 crossref_primary_10_1021_acs_iecr_3c02383 crossref_primary_10_1007_s11424_024_3418_3 crossref_primary_10_1016_j_rineng_2023_100917 crossref_primary_10_2514_1_J063243 crossref_primary_10_1007_s00466_023_02435_3 crossref_primary_10_1016_j_fluid_2023_113984 crossref_primary_10_1016_j_ijepes_2024_110172 crossref_primary_10_1016_j_ijmecsci_2025_110075 crossref_primary_10_1557_s43577_024_00797_4 crossref_primary_10_1007_s00707_022_03449_3 crossref_primary_10_1080_10255842_2025_2471504 crossref_primary_10_1016_j_enganabound_2025_106207 crossref_primary_10_1016_j_tws_2024_112495 crossref_primary_10_1190_geo2022_0599_1 crossref_primary_10_1002_nme_7377 crossref_primary_10_1016_j_advengsoft_2024_103717 crossref_primary_10_1016_j_desal_2024_117557 crossref_primary_10_1016_j_compstruc_2025_107698 crossref_primary_10_1016_j_ijmecsci_2023_108324 crossref_primary_10_1038_s41598_024_65472_9 crossref_primary_10_1016_j_isci_2024_110822 crossref_primary_10_1007_s00366_024_02033_8 crossref_primary_10_1016_j_rinp_2023_106842 |
Cites_doi | 10.3389/fmats.2019.00110 10.1038/s41524-022-00753-3 10.1002/gamm.202100006 10.1007/s00466-020-01954-7 10.1126/sciadv.abd7416 10.1016/j.tafmec.2019.102447 10.1038/s42254-021-00314-5 10.1016/j.engappai.2021.104232 10.1016/j.jcp.2021.110754 10.1016/j.cma.2019.112790 10.1016/j.cma.2021.113741 10.1016/j.cma.2022.114823 10.1016/j.taml.2021.100220 10.1016/j.neucom.2018.06.056 10.1016/j.neunet.2014.09.003 10.1016/j.jcp.2018.10.045 10.1002/nme.6286 10.1016/j.cma.2020.113552 10.1038/s41524-021-00571-z 10.1126/sciadv.abk0644 10.1016/j.matt.2020.04.019 10.1016/j.jmps.2020.104277 10.1007/s00366-022-01633-6 10.1016/j.cma.2020.113028 10.1016/j.cma.2022.114587 10.1007/s11831-020-09405-5 10.1016/j.jcp.2020.110010 10.1038/s41524-020-0341-6 10.1016/j.jcp.2021.110839 10.1109/72.712178 10.1002/aic.690381003 10.1016/0021-9991(90)90007-N 10.1016/j.matdes.2020.109193 10.1016/j.cma.2018.01.036 10.1016/j.advwatres.2020.103610 10.1016/j.cma.2022.114790 10.1186/s40323-019-0138-7 10.1073/pnas.1911815116 10.1115/1.4050542 10.1061/(ASCE)EM.1943-7889.0001947 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright Elsevier BV Nov 1, 2022 |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright Elsevier BV Nov 1, 2022 |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.cma.2022.115616 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1879-2138 |
ExternalDocumentID | 10_1016_j_cma_2022_115616 S0045782522005722 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- 29F AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH VH1 VOH WUQ ZY4 7SC 7TB 8FD EFKBS FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c255t-522faca7a33fbe742d97743a315f441ab0f364df74999eeaf3be7ce9a5412d453 |
IEDL.DBID | .~1 |
ISSN | 0045-7825 |
IngestDate | Fri Jul 25 06:04:16 EDT 2025 Tue Jul 01 04:06:17 EDT 2025 Thu Apr 24 23:01:46 EDT 2025 Fri Feb 23 02:42:20 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Heterogeneous solids Unsupervised learning Physical informed neural networks |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c255t-522faca7a33fbe742d97743a315f441ab0f364df74999eeaf3be7ce9a5412d453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4760-8358 |
PQID | 2755905745 |
PQPubID | 2045269 |
ParticipantIDs | proquest_journals_2755905745 crossref_citationtrail_10_1016_j_cma_2022_115616 crossref_primary_10_1016_j_cma_2022_115616 elsevier_sciencedirect_doi_10_1016_j_cma_2022_115616 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 2022-11-00 20221101 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computer methods in applied mechanics and engineering |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Zhang, Garikipati (b58) 2021 Psichogios, Ungar (b21) 1992; 38 Zeiler (b53) 2012 Mozaffar, Bostanabad, Chen, Ehmann, Cao, Bessa (b11) 2019; 116 Lagaris, Likas, Fotiadis (b22) 1998; 9 Henkes, Wessels, Mahnken (b19) 2022; 393 A System for Ying (b54) 2019; 1168 Jagtap, Kharazmi, Karniadakis (b37) 2020; 365 Guo, Haghighat (b29) 2020 Linka, Hillgärtner, Abdolazizi, Aydin, Itskov, Cyron (b13) 2021; 429 Rao, Sun, Liu (b35) 2021; 147 Zobeiry, Humfeld (b27) 2021; 101 Haghighat, Raissi, Moure, Gomez, Juanes (b31) 2021; 379 Goswami, Anitescu, Chakraborty, Rabczuk (b43) 2020; 106 Gaurav Kumar Yadav, Sundararajan Natarajan, Balaji Srinivasan, Distributed PINN for Linear Elasticity — A Unified Approach for Smooth, Singular, Compressible and Incompressible Media, Int. J. Comput. Methods 2142008. Blechschmidt, Ernst (b26) 2021; 44 Zhang, Dao, Karniadakis, Suresh (b33) 2022; 8 Goswami, Yin, Yu, Karniadakis (b44) 2022; 391 Raissi, Perdikaris, Karniadakis (b16) 2019; 378 Wang, Sun (b12) 2018; 334 Fuhg, Bouklas (b17) 2022; 451 Bayat, Rezaei, Brepols, Reese (b56) 2020; 121 Linka, Schafer, Meng, Zou, Karniadakis, Kuhl (b55) 2022 Cai, Wang, Wang, Perdikaris, Karniadakis (b30) 2021; 143 Fernández, Jamshidian, Böhlke, Kersting, Weeger (b15) 2021; 67 Mianroodi, H. Siboni, Raabe (b6) 2021; 7 Peng, Alber, Buganza Tepole, Cannon, De, Dura-Bernal, Garikipati, Karniadakis, Lytton, Perdikaris, Petzold, Kuhl (b2) 2021 Lee, Kang (b20) 1990; 91 Patel, Manickam, Trask, Wood, Lee, Tomas, Cyr (b42) 2022; 449 Bock, Aydin, Cyron, Huber, Kalidindi, Klusemann (b1) 2019; 6 Karniadakis, Kevrekidis, Lu, Perdikaris, Wang, Yang (b24) 2021; 3 Bhaduri, Gupta, Graham-Brady (b7) 2021 Yu, Lu, Meng, Karniadakis (b57) 2022; 393 Haghighat, Juanes (b46) 2021; 373 Amini, Haghighat, Juanes (b45) 2022 Berg, Nyström (b25) 2018; 317 Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, Adam Lerer, Automatic differentiation in pytorch, in: 31st Conference on Neural Information Processing Systems, 2017. Lin, Bai, Xu (b9) 2021; 197 Nguyen, Raissi, Seshaiyer (b41) 2022 Samaniego, Anitescu, Goswami, Nguyen-Thanh, Guo, Hamdia, Zhuang, Rabczuk (b28) 2020; 362 Sibi, Jones, Siddarth (b48) 2013; 47 Hsu, Yu, Buehler (b5) 2020; 3 Wang, Planas, Chandramowlishwaran, Bostanabad (b60) 2021 Abueidda, Koric, Al-Rub, Parrott, James, Sobh (b34) 2022 Baydin, Pearlmutter, Radul, Siskind (b49) 2018; 18 He, Barajas-Solano, Tartakovsky, Tartakovsky (b40) 2020; 141 Yin, Zhang, Yu, Karniadakis (b4) 2022 Zhang, Gu (b38) 2021; 11 Cai, Mao, Wang, Yin, Karniadakis (b23) 2022 Kumar, Tan, Zheng, Kochmann (b10) 2020; 6 Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Kingma, Ba (b52) 2014 Machine Learning, in: 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 16, 2016, pp. 265–283. Fernández, Rezaei, Mianroodi, Fritzen, Reese (b3) 2020; 7 Guo, Zhuang, Chen, Alajlan, Rabczuk (b18) 2022 Mianroodi, Rezaei, Siboni, Xu, Raabe (b8) 2022; 8 Yang, Yu, Buehler (b59) 2021; 7 Arora (b32) 2021 Schmidhuber (b47) 2015; 61 Zhang, Yin, Karniadakis (b39) 2020 Masi, Stefanou, Vannucci, Maffi-Berthier (b14) 2021; 147 Goswami (10.1016/j.cma.2022.115616_b43) 2020; 106 Mianroodi (10.1016/j.cma.2022.115616_b6) 2021; 7 Bayat (10.1016/j.cma.2022.115616_b56) 2020; 121 Baydin (10.1016/j.cma.2022.115616_b49) 2018; 18 Bock (10.1016/j.cma.2022.115616_b1) 2019; 6 Patel (10.1016/j.cma.2022.115616_b42) 2022; 449 Fernández (10.1016/j.cma.2022.115616_b3) 2020; 7 10.1016/j.cma.2022.115616_b51 Yu (10.1016/j.cma.2022.115616_b57) 2022; 393 10.1016/j.cma.2022.115616_b50 Yin (10.1016/j.cma.2022.115616_b4) 2022 Sibi (10.1016/j.cma.2022.115616_b48) 2013; 47 Zeiler (10.1016/j.cma.2022.115616_b53) 2012 Mianroodi (10.1016/j.cma.2022.115616_b8) 2022; 8 Psichogios (10.1016/j.cma.2022.115616_b21) 1992; 38 Abueidda (10.1016/j.cma.2022.115616_b34) 2022 Samaniego (10.1016/j.cma.2022.115616_b28) 2020; 362 Haghighat (10.1016/j.cma.2022.115616_b31) 2021; 379 Peng (10.1016/j.cma.2022.115616_b2) 2021 Rao (10.1016/j.cma.2022.115616_b35) 2021; 147 Zhang (10.1016/j.cma.2022.115616_b58) 2021 10.1016/j.cma.2022.115616_b36 Schmidhuber (10.1016/j.cma.2022.115616_b47) 2015; 61 Henkes (10.1016/j.cma.2022.115616_b19) 2022; 393 Masi (10.1016/j.cma.2022.115616_b14) 2021; 147 Lin (10.1016/j.cma.2022.115616_b9) 2021; 197 Zhang (10.1016/j.cma.2022.115616_b38) 2021; 11 Goswami (10.1016/j.cma.2022.115616_b44) 2022; 391 Lagaris (10.1016/j.cma.2022.115616_b22) 1998; 9 Guo (10.1016/j.cma.2022.115616_b29) 2020 Zhang (10.1016/j.cma.2022.115616_b39) 2020 Haghighat (10.1016/j.cma.2022.115616_b46) 2021; 373 Yang (10.1016/j.cma.2022.115616_b59) 2021; 7 Cai (10.1016/j.cma.2022.115616_b23) 2022 Zobeiry (10.1016/j.cma.2022.115616_b27) 2021; 101 Raissi (10.1016/j.cma.2022.115616_b16) 2019; 378 Arora (10.1016/j.cma.2022.115616_b32) 2021 He (10.1016/j.cma.2022.115616_b40) 2020; 141 Lee (10.1016/j.cma.2022.115616_b20) 1990; 91 Jagtap (10.1016/j.cma.2022.115616_b37) 2020; 365 Karniadakis (10.1016/j.cma.2022.115616_b24) 2021; 3 Ying (10.1016/j.cma.2022.115616_b54) 2019; 1168 Fernández (10.1016/j.cma.2022.115616_b15) 2021; 67 Kumar (10.1016/j.cma.2022.115616_b10) 2020; 6 Guo (10.1016/j.cma.2022.115616_b18) 2022 Berg (10.1016/j.cma.2022.115616_b25) 2018; 317 Kingma (10.1016/j.cma.2022.115616_b52) 2014 Fuhg (10.1016/j.cma.2022.115616_b17) 2022; 451 Blechschmidt (10.1016/j.cma.2022.115616_b26) 2021; 44 Mozaffar (10.1016/j.cma.2022.115616_b11) 2019; 116 Hsu (10.1016/j.cma.2022.115616_b5) 2020; 3 Bhaduri (10.1016/j.cma.2022.115616_b7) 2021 Linka (10.1016/j.cma.2022.115616_b13) 2021; 429 Linka (10.1016/j.cma.2022.115616_b55) 2022 Wang (10.1016/j.cma.2022.115616_b12) 2018; 334 Nguyen (10.1016/j.cma.2022.115616_b41) 2022 Zhang (10.1016/j.cma.2022.115616_b33) 2022; 8 Amini (10.1016/j.cma.2022.115616_b45) 2022 Cai (10.1016/j.cma.2022.115616_b30) 2021; 143 Wang (10.1016/j.cma.2022.115616_b60) 2021 |
References_xml | – volume: 8 start-page: 1 year: 2022 end-page: 12 ident: b8 article-title: Lossless multi-scale constitutive elastic relations with artificial intelligence publication-title: Npj Comput. Mater. – volume: 143 year: 2021 ident: b30 article-title: Physics-informed neural networks for heat transfer problems publication-title: J. Heat Transfer – volume: 334 start-page: 337 year: 2018 end-page: 380 ident: b12 article-title: A multiscale multi-permeability poroplasticity model linked by recursive homogenizations and deep learning publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 61 start-page: 85 year: 2015 end-page: 117 ident: b47 article-title: Deep learning in neural networks: An overview publication-title: Neural Netw. – volume: 141 year: 2020 ident: b40 article-title: Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport publication-title: Adv. Water Resour. – volume: 7 start-page: 1 year: 2020 end-page: 27 ident: b3 article-title: Application of artificial neural networks for the prediction of interface mechanics: A study on grain boundary constitutive behavior publication-title: Adv. Model. Simul. Eng. Sci. – volume: 106 year: 2020 ident: b43 article-title: Transfer learning enhanced physics informed neural network for phase-field modeling of fracture publication-title: Theor. Appl. Fract. Mech. – reference: Gaurav Kumar Yadav, Sundararajan Natarajan, Balaji Srinivasan, Distributed PINN for Linear Elasticity — A Unified Approach for Smooth, Singular, Compressible and Incompressible Media, Int. J. Comput. Methods 2142008. – volume: 365 year: 2020 ident: b37 article-title: Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 101 year: 2021 ident: b27 article-title: A physics-informed machine learning approach for solving heat transfer equation in advanced manufacturing and engineering applications publication-title: Eng. Appl. Artif. Intell. – volume: 379 year: 2021 ident: b31 article-title: A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 7 year: 2021 ident: b59 article-title: Deep learning model to predict complex stress and strain fields in hierarchical composites publication-title: Sci. Adv. – volume: 3 start-page: 197 year: 2020 end-page: 211 ident: b5 article-title: Using deep learning to predict fracture patterns in crystalline solids publication-title: Matter – year: 2022 ident: b18 article-title: Analysis of three-dimensional potential problems in non-homogeneous media with physics-informed deep collocation method using material transfer learning and sensitivity analysis publication-title: Eng. Comput. – start-page: 41 year: 2022 end-page: 53 ident: b41 article-title: Efficient physics informed neural networks coupled with domain decomposition methods for solving coupled multi-physics problems publication-title: Advances in Computational Modeling and Simulation – year: 2021 ident: b60 article-title: Train once and use forever: Solving boundary value problems in unseen domains with pre-trained deep learning models – volume: 3 start-page: 422 year: 2021 end-page: 440 ident: b24 article-title: Physics-informed machine learning publication-title: Nat. Rev. Phys. – volume: 8 start-page: eabk0644 year: 2022 ident: b33 article-title: Analyses of internal structures and defects in materials using physics-informed neural networks publication-title: Sci. Adv. – volume: 44 year: 2021 ident: b26 article-title: Three ways to solve partial differential equations with neural networks — A review publication-title: GAMM-Mitt. – reference: Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, Adam Lerer, Automatic differentiation in pytorch, in: 31st Conference on Neural Information Processing Systems, 2017. – volume: 147 year: 2021 ident: b35 article-title: Physics-informed deep learning for computational elastodynamics without labeled data publication-title: J. Eng. Mech. – reference: : A System for – year: 2022 ident: b4 article-title: Interfacing finite elements with deep neural operators for fast multiscale modeling of mechanics problems – reference: Machine Learning, in: 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 16, 2016, pp. 265–283. – volume: 451 year: 2022 ident: b17 article-title: The mixed deep energy method for resolving concentration features in finite strain hyperelasticity publication-title: J. Comput. Phys. – volume: 116 start-page: 26414 year: 2019 end-page: 26420 ident: b11 article-title: Deep learning predicts path-dependent plasticity publication-title: Proc. Natl. Acad. Sci. – volume: 147 year: 2021 ident: b14 article-title: Thermodynamics-based artificial neural networks for constitutive modeling publication-title: J. Mech. Phys. Solids – volume: 378 start-page: 686 year: 2019 end-page: 707 ident: b16 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. – year: 2022 ident: b23 article-title: Physics-informed neural networks (PINNs) for fluid mechanics: A review publication-title: Acta Mech. Sinica – volume: 317 start-page: 28 year: 2018 end-page: 41 ident: b25 article-title: A unified deep artificial neural network approach to partial differential equations in complex geometries publication-title: Neurocomputing – volume: 7 start-page: 1 year: 2021 end-page: 10 ident: b6 article-title: Teaching solid mechanics to artificial intelligence—A fast solver for heterogeneous materials publication-title: Npj Comput. Mater. – volume: 393 year: 2022 ident: b57 article-title: Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems publication-title: Comput. Methods Appl. Mech. Engrg. – year: 2021 ident: b58 article-title: Bayesian neural networks for weak solution of PDEs with uncertainty quantification – volume: 11 year: 2021 ident: b38 article-title: Physics-informed deep learning for digital materials publication-title: Theor. Appl. Mech. Lett. – volume: 6 year: 2019 ident: b1 article-title: A review of the application of machine learning and data mining approaches in continuum materials mechanics publication-title: Front. Mater. – volume: 393 year: 2022 ident: b19 article-title: Physics informed neural networks for continuum micromechanics publication-title: Comput. Methods Appl. Mech. Engrg. – reference: Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al., – volume: 6 start-page: 110 year: 2020 ident: b10 article-title: Inverse-designed spinodoid metamaterials publication-title: Npj Comput. Mater. – volume: 391 year: 2022 ident: b44 article-title: A physics-informed variational DeepONet for predicting crack path in quasi-brittle materials publication-title: Comput. Methods Appl. Mech. Engrg. – year: 2021 ident: b2 article-title: Multiscale modeling meets machine learning: What can we learn? publication-title: Arch. Comput. Methods Eng. – year: 2020 ident: b39 article-title: Physics-informed neural networks for nonhomogeneous material identification in elasticity imaging – volume: 362 year: 2020 ident: b28 article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 91 start-page: 110 year: 1990 end-page: 131 ident: b20 article-title: Neural algorithm for solving differential equations publication-title: J. Comput. Phys. – volume: 373 year: 2021 ident: b46 article-title: SciANN: A Keras/TensorFlow wrapper for scientific computations and physics-informed deep learning using artificial neural networks publication-title: Comput. Methods Appl. Mech. Engrg. – year: 2012 ident: b53 article-title: Adadelta: An adaptive learning rate method – volume: 9 start-page: 987 year: 1998 end-page: 1000 ident: b22 article-title: Artificial neural networks for solving ordinary and partial differential equations publication-title: IEEE Trans. Neural Netw. – year: 2022 ident: b34 article-title: A deep learning energy method for hyperelasticity and viscoelasticity – year: 2014 ident: b52 article-title: Adam: A method for stochastic optimization – volume: 18 start-page: 1 year: 2018 end-page: 43 ident: b49 article-title: Automatic differentiation in machine learning: A survey publication-title: J. March. Learn. Res. – year: 2022 ident: b55 article-title: Bayesian physics-informed neural networks for real-world nonlinear dynamical systems – volume: 67 start-page: 653 year: 2021 end-page: 677 ident: b15 article-title: Anisotropic hyperelastic constitutive models for finite deformations combining material theory and data-driven approaches with application to cubic lattice metamaterials publication-title: Comput. Mech. – year: 2022 ident: b45 article-title: Physics-informed neural network solution of thermo-hydro-mechanical (THM) processes in porous media – volume: 429 year: 2021 ident: b13 article-title: Constitutive artificial neural networks: A fast and general approach to predictive data-driven constitutive modeling by deep learning publication-title: J. Comput. Phys. – year: 2021 ident: b7 article-title: Stress field prediction in fiber-reinforced composite materials using a deep learning approach – volume: 449 year: 2022 ident: b42 article-title: Thermodynamically consistent physics-informed neural networks for hyperbolic systems publication-title: J. Comput. Phys. – year: 2021 ident: b32 article-title: Machine learning-accelerated computational solid mechanics: Application to linear elasticity – volume: 47 start-page: 1264 year: 2013 end-page: 1268 ident: b48 article-title: Analysis of different activation functions using back propagation neural networks publication-title: J. Theor. Appl. Inf. Technol. – year: 2020 ident: b29 article-title: An energy-based error bound of physics-informed neural network solutions in elasticity – volume: 38 start-page: 1499 year: 1992 end-page: 1511 ident: b21 article-title: A hybrid neural network-first principles approach to process modeling publication-title: AIChE J. – volume: 1168 year: 2019 ident: b54 article-title: An overview of overfitting and its solutions publication-title: J. Phys.: Conf. Ser. – volume: 197 year: 2021 ident: b9 article-title: Data-driven microstructure sensitivity study of fibrous paper materials publication-title: Mater. Des. – volume: 121 start-page: 1762 year: 2020 end-page: 1790 ident: b56 article-title: Locking-free interface failure modeling by a cohesive discontinuous Galerkin method for matching and nonmatching meshes publication-title: Internat. J. Numer. Methods Engrg. – volume: 6 year: 2019 ident: 10.1016/j.cma.2022.115616_b1 article-title: A review of the application of machine learning and data mining approaches in continuum materials mechanics publication-title: Front. Mater. doi: 10.3389/fmats.2019.00110 – volume: 8 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.cma.2022.115616_b8 article-title: Lossless multi-scale constitutive elastic relations with artificial intelligence publication-title: Npj Comput. Mater. doi: 10.1038/s41524-022-00753-3 – year: 2021 ident: 10.1016/j.cma.2022.115616_b60 – volume: 44 year: 2021 ident: 10.1016/j.cma.2022.115616_b26 article-title: Three ways to solve partial differential equations with neural networks — A review publication-title: GAMM-Mitt. doi: 10.1002/gamm.202100006 – volume: 67 start-page: 653 year: 2021 ident: 10.1016/j.cma.2022.115616_b15 article-title: Anisotropic hyperelastic constitutive models for finite deformations combining material theory and data-driven approaches with application to cubic lattice metamaterials publication-title: Comput. Mech. doi: 10.1007/s00466-020-01954-7 – year: 2022 ident: 10.1016/j.cma.2022.115616_b23 article-title: Physics-informed neural networks (PINNs) for fluid mechanics: A review publication-title: Acta Mech. Sinica – volume: 7 issue: 15 year: 2021 ident: 10.1016/j.cma.2022.115616_b59 article-title: Deep learning model to predict complex stress and strain fields in hierarchical composites publication-title: Sci. Adv. doi: 10.1126/sciadv.abd7416 – volume: 106 year: 2020 ident: 10.1016/j.cma.2022.115616_b43 article-title: Transfer learning enhanced physics informed neural network for phase-field modeling of fracture publication-title: Theor. Appl. Fract. Mech. doi: 10.1016/j.tafmec.2019.102447 – volume: 3 start-page: 422 issue: 6 year: 2021 ident: 10.1016/j.cma.2022.115616_b24 article-title: Physics-informed machine learning publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-021-00314-5 – year: 2021 ident: 10.1016/j.cma.2022.115616_b7 – year: 2022 ident: 10.1016/j.cma.2022.115616_b4 – volume: 101 year: 2021 ident: 10.1016/j.cma.2022.115616_b27 article-title: A physics-informed machine learning approach for solving heat transfer equation in advanced manufacturing and engineering applications publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2021.104232 – volume: 449 year: 2022 ident: 10.1016/j.cma.2022.115616_b42 article-title: Thermodynamically consistent physics-informed neural networks for hyperbolic systems publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2021.110754 – volume: 362 year: 2020 ident: 10.1016/j.cma.2022.115616_b28 article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2019.112790 – volume: 379 year: 2021 ident: 10.1016/j.cma.2022.115616_b31 article-title: A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2021.113741 – volume: 393 year: 2022 ident: 10.1016/j.cma.2022.115616_b57 article-title: Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2022.114823 – volume: 11 issue: 1 year: 2021 ident: 10.1016/j.cma.2022.115616_b38 article-title: Physics-informed deep learning for digital materials publication-title: Theor. Appl. Mech. Lett. doi: 10.1016/j.taml.2021.100220 – volume: 317 start-page: 28 year: 2018 ident: 10.1016/j.cma.2022.115616_b25 article-title: A unified deep artificial neural network approach to partial differential equations in complex geometries publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.06.056 – volume: 61 start-page: 85 year: 2015 ident: 10.1016/j.cma.2022.115616_b47 article-title: Deep learning in neural networks: An overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – volume: 47 start-page: 1264 issue: 3 year: 2013 ident: 10.1016/j.cma.2022.115616_b48 article-title: Analysis of different activation functions using back propagation neural networks publication-title: J. Theor. Appl. Inf. Technol. – volume: 378 start-page: 686 year: 2019 ident: 10.1016/j.cma.2022.115616_b16 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume: 121 start-page: 1762 issue: 8 year: 2020 ident: 10.1016/j.cma.2022.115616_b56 article-title: Locking-free interface failure modeling by a cohesive discontinuous Galerkin method for matching and nonmatching meshes publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.6286 – volume: 373 year: 2021 ident: 10.1016/j.cma.2022.115616_b46 article-title: SciANN: A Keras/TensorFlow wrapper for scientific computations and physics-informed deep learning using artificial neural networks publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.113552 – year: 2021 ident: 10.1016/j.cma.2022.115616_b58 – year: 2020 ident: 10.1016/j.cma.2022.115616_b39 – volume: 7 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.cma.2022.115616_b6 article-title: Teaching solid mechanics to artificial intelligence—A fast solver for heterogeneous materials publication-title: Npj Comput. Mater. doi: 10.1038/s41524-021-00571-z – ident: 10.1016/j.cma.2022.115616_b51 – volume: 8 start-page: eabk0644 issue: 7 year: 2022 ident: 10.1016/j.cma.2022.115616_b33 article-title: Analyses of internal structures and defects in materials using physics-informed neural networks publication-title: Sci. Adv. doi: 10.1126/sciadv.abk0644 – volume: 3 start-page: 197 issue: 1 year: 2020 ident: 10.1016/j.cma.2022.115616_b5 article-title: Using deep learning to predict fracture patterns in crystalline solids publication-title: Matter doi: 10.1016/j.matt.2020.04.019 – volume: 147 issn: 0022-5096 year: 2021 ident: 10.1016/j.cma.2022.115616_b14 article-title: Thermodynamics-based artificial neural networks for constitutive modeling publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2020.104277 – year: 2022 ident: 10.1016/j.cma.2022.115616_b18 article-title: Analysis of three-dimensional potential problems in non-homogeneous media with physics-informed deep collocation method using material transfer learning and sensitivity analysis publication-title: Eng. Comput. doi: 10.1007/s00366-022-01633-6 – volume: 365 year: 2020 ident: 10.1016/j.cma.2022.115616_b37 article-title: Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.113028 – volume: 391 year: 2022 ident: 10.1016/j.cma.2022.115616_b44 article-title: A physics-informed variational DeepONet for predicting crack path in quasi-brittle materials publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2022.114587 – year: 2021 ident: 10.1016/j.cma.2022.115616_b2 article-title: Multiscale modeling meets machine learning: What can we learn? publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-020-09405-5 – volume: 1168 year: 2019 ident: 10.1016/j.cma.2022.115616_b54 article-title: An overview of overfitting and its solutions publication-title: J. Phys.: Conf. Ser. – start-page: 41 year: 2022 ident: 10.1016/j.cma.2022.115616_b41 article-title: Efficient physics informed neural networks coupled with domain decomposition methods for solving coupled multi-physics problems – ident: 10.1016/j.cma.2022.115616_b50 – year: 2014 ident: 10.1016/j.cma.2022.115616_b52 – volume: 429 issn: 0021-9991 year: 2021 ident: 10.1016/j.cma.2022.115616_b13 article-title: Constitutive artificial neural networks: A fast and general approach to predictive data-driven constitutive modeling by deep learning publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.110010 – volume: 6 start-page: 110 year: 2020 ident: 10.1016/j.cma.2022.115616_b10 article-title: Inverse-designed spinodoid metamaterials publication-title: Npj Comput. Mater. doi: 10.1038/s41524-020-0341-6 – volume: 451 year: 2022 ident: 10.1016/j.cma.2022.115616_b17 article-title: The mixed deep energy method for resolving concentration features in finite strain hyperelasticity publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2021.110839 – year: 2012 ident: 10.1016/j.cma.2022.115616_b53 – volume: 9 start-page: 987 issue: 5 year: 1998 ident: 10.1016/j.cma.2022.115616_b22 article-title: Artificial neural networks for solving ordinary and partial differential equations publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.712178 – volume: 38 start-page: 1499 issue: 10 year: 1992 ident: 10.1016/j.cma.2022.115616_b21 article-title: A hybrid neural network-first principles approach to process modeling publication-title: AIChE J. doi: 10.1002/aic.690381003 – volume: 91 start-page: 110 issn: 0021-9991 issue: 1 year: 1990 ident: 10.1016/j.cma.2022.115616_b20 article-title: Neural algorithm for solving differential equations publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(90)90007-N – volume: 197 year: 2021 ident: 10.1016/j.cma.2022.115616_b9 article-title: Data-driven microstructure sensitivity study of fibrous paper materials publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.109193 – volume: 334 start-page: 337 issn: 0045-7825 year: 2018 ident: 10.1016/j.cma.2022.115616_b12 article-title: A multiscale multi-permeability poroplasticity model linked by recursive homogenizations and deep learning publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2018.01.036 – volume: 141 year: 2020 ident: 10.1016/j.cma.2022.115616_b40 article-title: Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2020.103610 – year: 2022 ident: 10.1016/j.cma.2022.115616_b34 – volume: 393 year: 2022 ident: 10.1016/j.cma.2022.115616_b19 article-title: Physics informed neural networks for continuum micromechanics publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2022.114790 – volume: 7 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.cma.2022.115616_b3 article-title: Application of artificial neural networks for the prediction of interface mechanics: A study on grain boundary constitutive behavior publication-title: Adv. Model. Simul. Eng. Sci. doi: 10.1186/s40323-019-0138-7 – volume: 18 start-page: 1 year: 2018 ident: 10.1016/j.cma.2022.115616_b49 article-title: Automatic differentiation in machine learning: A survey publication-title: J. March. Learn. Res. – volume: 116 start-page: 26414 issue: 52 year: 2019 ident: 10.1016/j.cma.2022.115616_b11 article-title: Deep learning predicts path-dependent plasticity publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1911815116 – year: 2022 ident: 10.1016/j.cma.2022.115616_b55 – volume: 143 issue: 6 year: 2021 ident: 10.1016/j.cma.2022.115616_b30 article-title: Physics-informed neural networks for heat transfer problems publication-title: J. Heat Transfer doi: 10.1115/1.4050542 – volume: 147 issue: 8 year: 2021 ident: 10.1016/j.cma.2022.115616_b35 article-title: Physics-informed deep learning for computational elastodynamics without labeled data publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)EM.1943-7889.0001947 – year: 2021 ident: 10.1016/j.cma.2022.115616_b32 – year: 2022 ident: 10.1016/j.cma.2022.115616_b45 – ident: 10.1016/j.cma.2022.115616_b36 – year: 2020 ident: 10.1016/j.cma.2022.115616_b29 |
SSID | ssj0000812 |
Score | 2.638921 |
Snippet | Physics informed neural networks (PINNs) are capable of finding the solution for a given boundary value problem. Here, the training of the network is... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 115616 |
SubjectTerms | Boundary conditions Boundary value problems Composite materials Computer architecture Derivatives Differential equations Domains Finite element analysis Finite element method Heterogeneous solids Interpolation Mathematical models Neural networks Physical informed neural networks Poisson equation Shape functions Training Unsupervised learning |
Title | A mixed formulation for physics-informed neural networks as a potential solver for engineering problems in heterogeneous domains: Comparison with finite element method |
URI | https://dx.doi.org/10.1016/j.cma.2022.115616 https://www.proquest.com/docview/2755905745 |
Volume | 401 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXvTgj6k4nSMHT0Jd16St8zaGYyrs5GC3kDYpVrQdtgNP_jv-m77XpJsK7iD00JaXtPS9vHwvffkeIRd9GTOJNQAVD1wHCbyc68hNHOYPIjXgSntJxfY5DSYzfj_35w0yqvfCYFql9f3Gp1fe2t7p2a_ZW6Qp7vHlyMUOAAJ3VHroh5G9Dmz66mOd5gFTnmEM576D0vWfzSrHK66ohzwPHAfgiOCvuemXl66mnvE-2bWYkQ7Nax2Qhs5aZM_iR2pHZ9EiO9_IBQ_J55C-pu8ggLDUFunCc2oWMwrHcKaCAHJaQv-ZyQgvqISDLvISE4ngPlgn2HvVVK8fQG0pmoKmGX3CpJocbFHny4Kq_FWmWXFDR6sihxTXe2mSIsKl2qSsU1O9-ojMxrePo4ljyzI4McQfJYSuXiJjGUrGkkhDaK0QQzLJ-n4C4EqCqlnAVRJiMKW1TBhIxXogfd73FPfZMWlmeaZPCJUaXIIrffxbyAMtJUR_EWBSroNQKea2iVsrRMSWsxxLZ7yIOjntWYAOBepQGB22yeWqycIQdmwS5rWWxQ-rEzChbGrWqS1C2CFfCC-E4AwMkfun_-v1jGzjldno2CHN8m2pzwHxlFG3Muku2RrePUymXzHeArg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6hdgAG3og3HpiQItLYSVu2qgK1UDoVic1yYkcE0aQiReIf8Te5i53ykGBAyhA5thPlzufv7PN3AGctlXBFOQC1iHyPCLy8TuynHg-7se4KbYK0YvscR4N7cfMQPixBvz4LQ2GVzvZbm15Za1dy4f7mxSzL6IyvIC52BBB0ojJAO9wkdirRgGZveDsYfxrkTsuShovQowb15mYV5pVU7ENBgLYDoUT02_T0w1BXs8_1Bqw52Mh69ss2YcnkW7DuICRzA7TcgtUv_ILb8N5j0-wNKxAydXm66J7Z9YzSs7SpWIFoLbH_3AaFl0zhxWbFnGKJsBwVFFW-amo-X8BcNpqSZTl7pLiaAtXRFK8l08VUZXl5yfqLPIeMlnxZmhHIZcZGrTObwHoH7q-vJv2B5zIzeAm6IHP0XoNUJaqtOE9jg961JhjJFW-FKeIrhdLmkdBpm_wpY1TKsVZiuioUrUCLkO9CIy9yswdMGbQKvgppw1BERil0AGOEpcJEba25vw9-LRCZONpyyp7xLOv4tCeJMpQkQ2lluA_niyYzy9nxV2VRS1l-UzyJc8pfzY5qjZBu1JcyaKN_hroowoP_9XoKy4PJ3UiOhuPbQ1ihJ_bc4xE05i-v5hgB0Dw-cQr-AQJxBWk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+mixed+formulation+for+physics-informed+neural+networks+as+a+potential+solver+for+engineering+problems+in+heterogeneous+domains%3A+Comparison+with+finite+element+method&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Rezaei%2C+Shahed&rft.au=Harandi%2C+Ali&rft.au=Moeineddin%2C+Ahmad&rft.au=Xu%2C+Bai-Xiang&rft.date=2022-11-01&rft.pub=Elsevier+BV&rft.issn=0045-7825&rft.volume=401&rft.spage=1&rft_id=info:doi/10.1016%2Fj.cma.2022.115616&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon |