A Spectral Extremal Problem on Non-Bipartite Triangle-Free Graphs

A theorem of Nosal and Nikiforov states that if $G$ is a triangle-free graph with $m$ edges, then $\lambda(G)\le \sqrt{m}$, equality holds if and only if $G$ is a complete bipartite graph. A well-known spectral conjecture of Bollobás and Nikiforov [J. Combin. Theory Ser. B 97 (2007)] asserts that if...

Full description

Saved in:
Bibliographic Details
Published inThe Electronic journal of combinatorics Vol. 31; no. 1
Main Authors Li, Yongtao, Feng, Lihua, Peng, Yuejian
Format Journal Article
LanguageEnglish
Published 08.03.2024
Online AccessGet full text

Cover

Loading…
Abstract A theorem of Nosal and Nikiforov states that if $G$ is a triangle-free graph with $m$ edges, then $\lambda(G)\le \sqrt{m}$, equality holds if and only if $G$ is a complete bipartite graph. A well-known spectral conjecture of Bollobás and Nikiforov [J. Combin. Theory Ser. B 97 (2007)] asserts that if $G$ is a $K_{r+1}$-free graph with $m$ edges, then $\lambda_1^2(G) + \lambda_2^2(G) \le (1-\frac{1}{r})2m$. Recently, Lin, Ning and Wu [Combin. Probab. Comput. 30 (2021)] confirmed the conjecture in the case $r=2$. Using this base case, they proved further that $\lambda (G)\le \sqrt{m-1}$ for every non-bipartite triangle-free graph $G$, with equality if and only if $m=5$ and $G=C_5$. Moreover, Zhai and Shu [Discrete Math. 345 (2022)] presented an improvement by showing $\lambda (G) \le \beta (m)$, where $\beta(m)$ is the largest root of $Z(x):=x^3-x^2-(m-2)x+m-3$. The equality in Zhai--Shu's result holds only if $m$ is odd and $G$ is obtained from the complete bipartite graph $K_{2,\frac{m-1}{2}}$ by subdividing exactly one edge. Motivated by this observation, Zhai and Shu proposed a question to find a sharp bound when $m$ is even. We shall solve this question by using a different method and characterize three kinds of spectral extremal graphs over all triangle-free non-bipartite graphs with even size. Our proof technique is mainly based on applying Cauchy's interlacing theorem of eigenvalues of a graph, and with the aid of a triangle counting lemma in terms of both eigenvalues and the size of a graph.
AbstractList A theorem of Nosal and Nikiforov states that if $G$ is a triangle-free graph with $m$ edges, then $\lambda(G)\le \sqrt{m}$, equality holds if and only if $G$ is a complete bipartite graph. A well-known spectral conjecture of Bollobás and Nikiforov [J. Combin. Theory Ser. B 97 (2007)] asserts that if $G$ is a $K_{r+1}$-free graph with $m$ edges, then $\lambda_1^2(G) + \lambda_2^2(G) \le (1-\frac{1}{r})2m$. Recently, Lin, Ning and Wu [Combin. Probab. Comput. 30 (2021)] confirmed the conjecture in the case $r=2$. Using this base case, they proved further that $\lambda (G)\le \sqrt{m-1}$ for every non-bipartite triangle-free graph $G$, with equality if and only if $m=5$ and $G=C_5$. Moreover, Zhai and Shu [Discrete Math. 345 (2022)] presented an improvement by showing $\lambda (G) \le \beta (m)$, where $\beta(m)$ is the largest root of $Z(x):=x^3-x^2-(m-2)x+m-3$. The equality in Zhai--Shu's result holds only if $m$ is odd and $G$ is obtained from the complete bipartite graph $K_{2,\frac{m-1}{2}}$ by subdividing exactly one edge. Motivated by this observation, Zhai and Shu proposed a question to find a sharp bound when $m$ is even. We shall solve this question by using a different method and characterize three kinds of spectral extremal graphs over all triangle-free non-bipartite graphs with even size. Our proof technique is mainly based on applying Cauchy's interlacing theorem of eigenvalues of a graph, and with the aid of a triangle counting lemma in terms of both eigenvalues and the size of a graph.
Author Li, Yongtao
Peng, Yuejian
Feng, Lihua
Author_xml – sequence: 1
  givenname: Yongtao
  surname: Li
  fullname: Li, Yongtao
– sequence: 2
  givenname: Lihua
  surname: Feng
  fullname: Feng, Lihua
– sequence: 3
  givenname: Yuejian
  surname: Peng
  fullname: Peng, Yuejian
BookMark eNpdj7FOwzAURS1UJNoC35CJiYD9jJN4DFVbkCpAosyR4zyDUWJHtgf4e6LCgDrdMxxd3bsgM-cdEnLJ6A0vgRe3DCiVJ2TOaFnmlYRi9o_PyCLGT0oZSCnmpK6z1xF1CqrP1l8p4DDBS_Btj0PmXfbkXX5vRxWSTZjtg1Xuvcd8ExCzbVDjRzwnp0b1ES_-ckneNuv96iHfPW8fV_Uu1yBEygXTpqsMYwXTCqE1gt9piaIEhK5A0KpVoq24qSQtuGwRJMhKdICqQixLviTXv706-BgDmkbbpJL1bhpv-4bR5nC_Odyf9KsjfQx2UOH7WPwBzYVaTQ
CitedBy_id crossref_primary_10_1016_j_laa_2024_12_008
crossref_primary_10_1016_j_ejc_2024_103966
crossref_primary_10_1016_j_ejc_2025_104142
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.37236/12009
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1077-8926
ExternalDocumentID 10_37236_12009
GroupedDBID -~9
29G
2WC
5GY
5VS
AAFWJ
AAYXX
ACGFO
ACIPV
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
E3Z
EBS
EJD
FRP
GROUPED_DOAJ
H13
KWQ
M~E
OK1
OVT
P2P
REM
RNS
TR2
XSB
ID FETCH-LOGICAL-c255t-51cfd8f1161cae2bf534c9e572e2d6e2caba5b83f890639be292985d2ea8ee773
ISSN 1077-8926
IngestDate Thu Apr 24 22:58:26 EDT 2025
Tue Jul 01 04:24:58 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c255t-51cfd8f1161cae2bf534c9e572e2d6e2caba5b83f890639be292985d2ea8ee773
OpenAccessLink https://www.combinatorics.org/ojs/index.php/eljc/article/download/v31i1p52/pdf
ParticipantIDs crossref_citationtrail_10_37236_12009
crossref_primary_10_37236_12009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-08
PublicationDateYYYYMMDD 2024-03-08
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-08
  day: 08
PublicationDecade 2020
PublicationTitle The Electronic journal of combinatorics
PublicationYear 2024
SSID ssj0012995
Score 2.3956401
Snippet A theorem of Nosal and Nikiforov states that if $G$ is a triangle-free graph with $m$ edges, then $\lambda(G)\le \sqrt{m}$, equality holds if and only if $G$...
SourceID crossref
SourceType Enrichment Source
Index Database
Title A Spectral Extremal Problem on Non-Bipartite Triangle-Free Graphs
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYquJQDoi2oPEp9KCe0kPXGsfcYqiBUEcQhSOEU2c4sUKW7UbKREAd-O2N7X4ki0fayWln2ytpvNPONH98Q8kMZARhYwwCUFdVmEAex4hC0jNCJkaExbkG_f9O5umv_GvJhXfjP3S7J9Zl5WXuv5H9QxTbE1d6S_Qdkq49iA74jvvhEhPH5Vxh3Xfl4u1Zx2nvOZ_AHX259hRi7CXCTpcHF09QOzOF0gBNKHyYQXM4ATcMKVc-b1NQaTK8uitOQlMCpY_6snJxIRcGv3TGA-yx9yFVWE0rvOq6fHheq9rq-8X4Bv0tjLNYZWNsdtGq6xpbAeBazQrh6TVvhTwuv3rCbVTcdCeYKyYR2a6YOROXm-0p8qk4NYr7iRo5Cf2dzk2FqYH1b_7VX7RxheOX-nKmfma8n5cadu3ENAtJgEoMdsl2kALTr8fxEPkD6mWz1K_3c-RfS7dISWVoiSwtkaZbSJWTpErLUI7tL7i57g59XQVHsIjCY1eUBD00ylkmIDNwoYDrhUdvEwAUDNu4AM0orrmWUyNiySg0Mia3kYwZKAggR7ZGNNEvhK6G8rVUsoCMicHxRy0Ryw8MxIBnstMQ-OSn_wMgUSvC2IMlktPyH98n3qt_Ua5-s9Dh4t8ch-SideIG1pyOykc8W8A1pXK6P3fLHsUPvDayWSLg
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Spectral+Extremal+Problem+on+Non-Bipartite+Triangle-Free+Graphs&rft.jtitle=The+Electronic+journal+of+combinatorics&rft.au=Li%2C+Yongtao&rft.au=Feng%2C+Lihua&rft.au=Peng%2C+Yuejian&rft.date=2024-03-08&rft.issn=1077-8926&rft.eissn=1077-8926&rft.volume=31&rft.issue=1&rft_id=info:doi/10.37236%2F12009&rft.externalDBID=n%2Fa&rft.externalDocID=10_37236_12009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-8926&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-8926&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-8926&client=summon