A Spectral Extremal Problem on Non-Bipartite Triangle-Free Graphs
A theorem of Nosal and Nikiforov states that if $G$ is a triangle-free graph with $m$ edges, then $\lambda(G)\le \sqrt{m}$, equality holds if and only if $G$ is a complete bipartite graph. A well-known spectral conjecture of Bollobás and Nikiforov [J. Combin. Theory Ser. B 97 (2007)] asserts that if...
Saved in:
Published in | The Electronic journal of combinatorics Vol. 31; no. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
08.03.2024
|
Online Access | Get full text |
Cover
Loading…
Abstract | A theorem of Nosal and Nikiforov states that if $G$ is a triangle-free graph with $m$ edges, then $\lambda(G)\le \sqrt{m}$, equality holds if and only if $G$ is a complete bipartite graph. A well-known spectral conjecture of Bollobás and Nikiforov [J. Combin. Theory Ser. B 97 (2007)] asserts that if $G$ is a $K_{r+1}$-free graph with $m$ edges, then $\lambda_1^2(G) + \lambda_2^2(G) \le (1-\frac{1}{r})2m$. Recently, Lin, Ning and Wu [Combin. Probab. Comput. 30 (2021)] confirmed the conjecture in the case $r=2$. Using this base case, they proved further that $\lambda (G)\le \sqrt{m-1}$ for every non-bipartite triangle-free graph $G$, with equality if and only if $m=5$ and $G=C_5$. Moreover, Zhai and Shu [Discrete Math. 345 (2022)] presented an improvement by showing $\lambda (G) \le \beta (m)$, where $\beta(m)$ is the largest root of $Z(x):=x^3-x^2-(m-2)x+m-3$. The equality in Zhai--Shu's result holds only if $m$ is odd and $G$ is obtained from the complete bipartite graph $K_{2,\frac{m-1}{2}}$ by subdividing exactly one edge. Motivated by this observation, Zhai and Shu proposed a question to find a sharp bound when $m$ is even. We shall solve this question by using a different method and characterize three kinds of spectral extremal graphs over all triangle-free non-bipartite graphs with even size. Our proof technique is mainly based on applying Cauchy's interlacing theorem of eigenvalues of a graph, and with the aid of a triangle counting lemma in terms of both eigenvalues and the size of a graph. |
---|---|
AbstractList | A theorem of Nosal and Nikiforov states that if $G$ is a triangle-free graph with $m$ edges, then $\lambda(G)\le \sqrt{m}$, equality holds if and only if $G$ is a complete bipartite graph. A well-known spectral conjecture of Bollobás and Nikiforov [J. Combin. Theory Ser. B 97 (2007)] asserts that if $G$ is a $K_{r+1}$-free graph with $m$ edges, then $\lambda_1^2(G) + \lambda_2^2(G) \le (1-\frac{1}{r})2m$. Recently, Lin, Ning and Wu [Combin. Probab. Comput. 30 (2021)] confirmed the conjecture in the case $r=2$. Using this base case, they proved further that $\lambda (G)\le \sqrt{m-1}$ for every non-bipartite triangle-free graph $G$, with equality if and only if $m=5$ and $G=C_5$. Moreover, Zhai and Shu [Discrete Math. 345 (2022)] presented an improvement by showing $\lambda (G) \le \beta (m)$, where $\beta(m)$ is the largest root of $Z(x):=x^3-x^2-(m-2)x+m-3$. The equality in Zhai--Shu's result holds only if $m$ is odd and $G$ is obtained from the complete bipartite graph $K_{2,\frac{m-1}{2}}$ by subdividing exactly one edge. Motivated by this observation, Zhai and Shu proposed a question to find a sharp bound when $m$ is even. We shall solve this question by using a different method and characterize three kinds of spectral extremal graphs over all triangle-free non-bipartite graphs with even size. Our proof technique is mainly based on applying Cauchy's interlacing theorem of eigenvalues of a graph, and with the aid of a triangle counting lemma in terms of both eigenvalues and the size of a graph. |
Author | Li, Yongtao Peng, Yuejian Feng, Lihua |
Author_xml | – sequence: 1 givenname: Yongtao surname: Li fullname: Li, Yongtao – sequence: 2 givenname: Lihua surname: Feng fullname: Feng, Lihua – sequence: 3 givenname: Yuejian surname: Peng fullname: Peng, Yuejian |
BookMark | eNpdj7FOwzAURS1UJNoC35CJiYD9jJN4DFVbkCpAosyR4zyDUWJHtgf4e6LCgDrdMxxd3bsgM-cdEnLJ6A0vgRe3DCiVJ2TOaFnmlYRi9o_PyCLGT0oZSCnmpK6z1xF1CqrP1l8p4DDBS_Btj0PmXfbkXX5vRxWSTZjtg1Xuvcd8ExCzbVDjRzwnp0b1ES_-ckneNuv96iHfPW8fV_Uu1yBEygXTpqsMYwXTCqE1gt9piaIEhK5A0KpVoq24qSQtuGwRJMhKdICqQixLviTXv706-BgDmkbbpJL1bhpv-4bR5nC_Odyf9KsjfQx2UOH7WPwBzYVaTQ |
CitedBy_id | crossref_primary_10_1016_j_laa_2024_12_008 crossref_primary_10_1016_j_ejc_2024_103966 crossref_primary_10_1016_j_ejc_2025_104142 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.37236/12009 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1077-8926 |
ExternalDocumentID | 10_37236_12009 |
GroupedDBID | -~9 29G 2WC 5GY 5VS AAFWJ AAYXX ACGFO ACIPV ADBBV AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION E3Z EBS EJD FRP GROUPED_DOAJ H13 KWQ M~E OK1 OVT P2P REM RNS TR2 XSB |
ID | FETCH-LOGICAL-c255t-51cfd8f1161cae2bf534c9e572e2d6e2caba5b83f890639be292985d2ea8ee773 |
ISSN | 1077-8926 |
IngestDate | Thu Apr 24 22:58:26 EDT 2025 Tue Jul 01 04:24:58 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c255t-51cfd8f1161cae2bf534c9e572e2d6e2caba5b83f890639be292985d2ea8ee773 |
OpenAccessLink | https://www.combinatorics.org/ojs/index.php/eljc/article/download/v31i1p52/pdf |
ParticipantIDs | crossref_citationtrail_10_37236_12009 crossref_primary_10_37236_12009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-08 |
PublicationDateYYYYMMDD | 2024-03-08 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-08 day: 08 |
PublicationDecade | 2020 |
PublicationTitle | The Electronic journal of combinatorics |
PublicationYear | 2024 |
SSID | ssj0012995 |
Score | 2.3956401 |
Snippet | A theorem of Nosal and Nikiforov states that if $G$ is a triangle-free graph with $m$ edges, then $\lambda(G)\le \sqrt{m}$, equality holds if and only if $G$... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
Title | A Spectral Extremal Problem on Non-Bipartite Triangle-Free Graphs |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYquJQDoi2oPEp9KCe0kPXGsfcYqiBUEcQhSOEU2c4sUKW7UbKREAd-O2N7X4ki0fayWln2ytpvNPONH98Q8kMZARhYwwCUFdVmEAex4hC0jNCJkaExbkG_f9O5umv_GvJhXfjP3S7J9Zl5WXuv5H9QxTbE1d6S_Qdkq49iA74jvvhEhPH5Vxh3Xfl4u1Zx2nvOZ_AHX259hRi7CXCTpcHF09QOzOF0gBNKHyYQXM4ATcMKVc-b1NQaTK8uitOQlMCpY_6snJxIRcGv3TGA-yx9yFVWE0rvOq6fHheq9rq-8X4Bv0tjLNYZWNsdtGq6xpbAeBazQrh6TVvhTwuv3rCbVTcdCeYKyYR2a6YOROXm-0p8qk4NYr7iRo5Cf2dzk2FqYH1b_7VX7RxheOX-nKmfma8n5cadu3ENAtJgEoMdsl2kALTr8fxEPkD6mWz1K_3c-RfS7dISWVoiSwtkaZbSJWTpErLUI7tL7i57g59XQVHsIjCY1eUBD00ylkmIDNwoYDrhUdvEwAUDNu4AM0orrmWUyNiySg0Mia3kYwZKAggR7ZGNNEvhK6G8rVUsoCMicHxRy0Ryw8MxIBnstMQ-OSn_wMgUSvC2IMlktPyH98n3qt_Ua5-s9Dh4t8ch-SideIG1pyOykc8W8A1pXK6P3fLHsUPvDayWSLg |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Spectral+Extremal+Problem+on+Non-Bipartite+Triangle-Free+Graphs&rft.jtitle=The+Electronic+journal+of+combinatorics&rft.au=Li%2C+Yongtao&rft.au=Feng%2C+Lihua&rft.au=Peng%2C+Yuejian&rft.date=2024-03-08&rft.issn=1077-8926&rft.eissn=1077-8926&rft.volume=31&rft.issue=1&rft_id=info:doi/10.37236%2F12009&rft.externalDBID=n%2Fa&rft.externalDocID=10_37236_12009 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-8926&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-8926&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-8926&client=summon |