Advancing SVM classification: Parallelizing conjugate gradient for monotonicity enforcement
•We propose a new PBCCG-RMC-SVM model considering prior monotonic domain knowledge.•Conjugate gradient is used to minimize subject to linear equality constraints.•The model is applicable to large-scale and complex problems.•The experiments show the proposed method outperforms the traditional SVM. Wi...
Saved in:
Published in | Knowledge-based systems Vol. 302; p. 112388 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
25.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We propose a new PBCCG-RMC-SVM model considering prior monotonic domain knowledge.•Conjugate gradient is used to minimize subject to linear equality constraints.•The model is applicable to large-scale and complex problems.•The experiments show the proposed method outperforms the traditional SVM.
With the advent of multimedia, social media, and the Internet of Things, an unprecedented volume of data is being generated at a remarkable speed. Therefore, the application of data mining techniques has become essential for solving large-scale and increasingly complex problems. The integration of prior knowledge into data mining has also become a trending and challenging concern. This study proposed a novel support vector machine (SVM) model designed to address this concern. The model incorporates expert knowledge regarding the monotonic relations between response and predictor variables, represented through monotonicity constraints. In our approach, monotonic constraint SVMs were formulated by integrating regularization, monotonicity constraints, a box-constrained conjugate gradient, and a parallel strategy into a model to ensure solution uniqueness and boundedness. The model's ability to retain monotonicity was assessed using the frequency monotonicity rate. The experimental results highlight the feasibility and effectiveness of the proposed model, PBCCG-RMC-SVM, in addressing classification problems with monotonic prior knowledge. Additionally, the adoption of a parallel strategy accelerates the generation of analytical or prediction results, and therefore, the model can enable managers to make faster and more accurate decisions through data analysis. |
---|---|
AbstractList | •We propose a new PBCCG-RMC-SVM model considering prior monotonic domain knowledge.•Conjugate gradient is used to minimize subject to linear equality constraints.•The model is applicable to large-scale and complex problems.•The experiments show the proposed method outperforms the traditional SVM.
With the advent of multimedia, social media, and the Internet of Things, an unprecedented volume of data is being generated at a remarkable speed. Therefore, the application of data mining techniques has become essential for solving large-scale and increasingly complex problems. The integration of prior knowledge into data mining has also become a trending and challenging concern. This study proposed a novel support vector machine (SVM) model designed to address this concern. The model incorporates expert knowledge regarding the monotonic relations between response and predictor variables, represented through monotonicity constraints. In our approach, monotonic constraint SVMs were formulated by integrating regularization, monotonicity constraints, a box-constrained conjugate gradient, and a parallel strategy into a model to ensure solution uniqueness and boundedness. The model's ability to retain monotonicity was assessed using the frequency monotonicity rate. The experimental results highlight the feasibility and effectiveness of the proposed model, PBCCG-RMC-SVM, in addressing classification problems with monotonic prior knowledge. Additionally, the adoption of a parallel strategy accelerates the generation of analytical or prediction results, and therefore, the model can enable managers to make faster and more accurate decisions through data analysis. |
ArticleNumber | 112388 |
Author | Li, Sheng-Tun Chuang, Hui-Chi Chen, Chih-Chuan |
Author_xml | – sequence: 1 givenname: Hui-Chi surname: Chuang fullname: Chuang, Hui-Chi organization: Institute of Information Management, National Cheng Kung University, Taiwan, ROC – sequence: 2 givenname: Chih-Chuan surname: Chen fullname: Chen, Chih-Chuan organization: Department of Information Science and Management Systems, National Taitung University, No. 369, Sec. 2, University Road, Taitung City, Taitung County, 950, Taiwan, ROC – sequence: 3 givenname: Sheng-Tun orcidid: 0000-0003-1210-3157 surname: Li fullname: Li, Sheng-Tun email: stli@mail.ncku.edu.tw organization: Institute of Information Management, National Cheng Kung University, Taiwan, ROC |
BookMark | eNp9kM1OAyEUhVnUxLb6Bi54gRmBgRnGhUnT-JfUaOLPxgUBBhrGKRjAJvXpnWZcu7rJveec3PMtwMwHbwC4wKjECNeXffnpQzqkkiBCS4xJxfkMzFHLUNEghk_BIqUeIUQI5nPwser20mvnt_Dl_RHqQabkrNMyu-Cv4LOMchjM4H6OCh18_72V2cBtlJ0zPkMbItwFH3LwTrt8gMaPK2124_EMnFg5JHP-N5fg7fbmdX1fbJ7uHtarTaEJY7mourbGqKXEtpZYximtK64kVhQZXWvFVGMrLTG3khPVqLFQq-q2biRC0lBWLQGdcnUMKUVjxVd0OxkPAiNxhCJ6MUERRyhigjLariebGX_bOxNF0mMnbToXjc6iC-7_gF9W_3Lk |
Cites_doi | 10.1016/j.neucom.2019.10.118 10.1080/10556780512331318182 10.1023/A:1009715923555 10.1016/j.neucom.2010.05.007 10.1137/0720042 10.1016/j.engappai.2020.104015 10.1016/j.eswa.2014.05.035 10.1016/j.eswa.2005.07.041 10.1109/TSMCB.2008.2011645 10.1137/0804010 10.6028/jres.049.044 10.1007/s11063-015-9472-z 10.1016/0898-1221(95)00161-Q 10.1007/s00357-021-09392-7 10.1109/72.788640 10.1080/09720529.2020.1784535 10.1016/j.socl.2021.100014 10.1109/TKDE.2011.149 10.1109/ACCESS.2019.2959841 10.1016/j.patcog.2022.108982 10.1016/j.neucom.2019.02.024 10.1051/ro/1989230403191 10.1109/72.991432 10.1007/s10107-005-0595-2 10.2298/TSCI190419398M 10.1007/BF00994018 10.1007/s10586-018-1772-4 10.1007/s00521-019-04661-4 10.1016/S0377-0427(00)00435-0 10.1109/TFUZZ.2014.2374214 10.1080/10556780500140714 10.1016/j.neucom.2016.09.067 10.1177/0146621620977681 10.1016/j.neucom.2019.12.152 10.1162/089976602753633402 10.1002/wics.13 10.1007/s11629-018-5358-7 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.knosys.2024.112388 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_knosys_2024_112388 S0950705124010220 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L AAQXK AATTM AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ LG9 LY7 M41 R2- SBC SET SSH UHS WUQ |
ID | FETCH-LOGICAL-c255t-3d9610942f9f2f5844638ba1b40ec6cb5b7f3ca18fa82b7b3889b6967a00ae453 |
IEDL.DBID | .~1 |
ISSN | 0950-7051 |
IngestDate | Tue Jul 01 00:20:31 EDT 2025 Sat Sep 07 15:51:21 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Prior knowledge Parallel strategy Support vector machine Monotonicity classification Conjugate gradient algorithm |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c255t-3d9610942f9f2f5844638ba1b40ec6cb5b7f3ca18fa82b7b3889b6967a00ae453 |
ORCID | 0000-0003-1210-3157 |
ParticipantIDs | crossref_primary_10_1016_j_knosys_2024_112388 elsevier_sciencedirect_doi_10_1016_j_knosys_2024_112388 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-25 |
PublicationDateYYYYMMDD | 2024-10-25 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-25 day: 25 |
PublicationDecade | 2020 |
PublicationTitle | Knowledge-based systems |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | (1998). Zhou (bib0021) 2021; 97 Galántai (bib0022) 2000; 124 Friedlander, Martínez (bib0041) 1989; 23 Dong, Krzyżak, Suen (bib0046) 2003 Nazareth (bib0024) 2009; 1 Serafini, Zanghirati, Zanni (bib0043) 2005; 20 Xi (bib0007) 2017; 237 Muthukrishnan, Krishnaswamy, Thanikodi, Sundaresan, Venkatraman (bib0016) 2020; 24 C.L. Blake, UCI repository of machine learning databases Hestenes, Stiefel (bib0012) 1952; 49 Ma, Jiang (bib0029) 2021; 45 Vapnik (bib0001) 1999; 10 Li, Liu, Du (bib0025) 2014; 989 Maes (bib0037) 2010 Yu, Simoff, Jan (bib0004) 2010; 73 Chen, Yu, Jia, Gu (bib0010) 2023; 133 Li, Chen (bib0005) 2015; 23 Chen, Li (bib0006) 2014; 41 Zhang, Li, Yang (bib0031) 2005; 3 Khang, Gupta, Dixit, Somani (bib0003) 2023 Chen, Chuang, Cheng, Li (bib0035) 2016 Serafini, Zanni (bib0044) 2005; 20 Platt (bib0039) 1999 Yamaguchi, Templin (bib0028) 2022; 39 Cano, Gutiérrez, Krawczyk, Woźniak, García (bib0026) 2019; 341 Lin, Wang (bib0034) 2002; 13 Batra, Rehman (bib0002) 2019; 7 Graf, Cosatto, Bottou, Dourdanovic, Vapnik (bib0047) 2004; 17 Singh, Neethu, Madhurekaa, Harita, Mohan (bib0033) 2021; 3 Burges (bib0036) 1998; 2 Liu, Zhang, Zhu, Xiang, Wang (bib0030) 2019; 16 Altan, Karasu (bib0017) 2019; 4 Steihaug (bib0023) 1983; 20 Collobert, Bengio, Bengio (bib0045) 2002; 14 Chen, Xiong, Xu, Zuo (bib0020) 2019; 22 Hu, Che, Zhang, Zhang, Guo, Yu (bib0008) 2012; 24 Dai, Fletcher (bib0042) 2006; 106 Menon (bib0011) 2009 Friedlander, Martínez (bib0040) 1994; 4 Li, Shiue, Huang (bib0050) 2006; 30 Pisner, Schnyer (bib0015) 2020 Chuang, Chen, Li (bib0009) 2020; 32 Cervantes, Garcia-Lamont, Rodríguez-Mazahua, Lopez (bib0014) 2020; 408 Kramer, Hall, Goldgof, Remsen, Luo (bib0019) 2009; 39 Cortes, Vapnik (bib0013) 1995; 20 Guo, Alham, Liu, Li, Qi (bib0032) 2016; 44 González, García, Li, John, Herrera (bib0027) 2021; 439 Shariff (bib0038) 1995; 30 Singh (bib0018) 2020; 23 Chang, Hsieh, Chang, Ringgaard, Lin (bib0048) 2010; 11 Xi (10.1016/j.knosys.2024.112388_bib0007) 2017; 237 10.1016/j.knosys.2024.112388_bib0049 Chen (10.1016/j.knosys.2024.112388_bib0006) 2014; 41 Hu (10.1016/j.knosys.2024.112388_bib0008) 2012; 24 Galántai (10.1016/j.knosys.2024.112388_bib0022) 2000; 124 Shariff (10.1016/j.knosys.2024.112388_bib0038) 1995; 30 Chang (10.1016/j.knosys.2024.112388_bib0048) 2010; 11 Collobert (10.1016/j.knosys.2024.112388_bib0045) 2002; 14 Yu (10.1016/j.knosys.2024.112388_bib0004) 2010; 73 Menon (10.1016/j.knosys.2024.112388_bib0011) 2009 Li (10.1016/j.knosys.2024.112388_bib0005) 2015; 23 Kramer (10.1016/j.knosys.2024.112388_bib0019) 2009; 39 Hestenes (10.1016/j.knosys.2024.112388_bib0012) 1952; 49 Serafini (10.1016/j.knosys.2024.112388_bib0044) 2005; 20 Yamaguchi (10.1016/j.knosys.2024.112388_bib0028) 2022; 39 González (10.1016/j.knosys.2024.112388_bib0027) 2021; 439 Steihaug (10.1016/j.knosys.2024.112388_bib0023) 1983; 20 Muthukrishnan (10.1016/j.knosys.2024.112388_bib0016) 2020; 24 Serafini (10.1016/j.knosys.2024.112388_bib0043) 2005; 20 Altan (10.1016/j.knosys.2024.112388_bib0017) 2019; 4 Graf (10.1016/j.knosys.2024.112388_bib0047) 2004; 17 Zhang (10.1016/j.knosys.2024.112388_bib0031) 2005; 3 Dai (10.1016/j.knosys.2024.112388_bib0042) 2006; 106 Burges (10.1016/j.knosys.2024.112388_bib0036) 1998; 2 Li (10.1016/j.knosys.2024.112388_bib0025) 2014; 989 Batra (10.1016/j.knosys.2024.112388_bib0002) 2019; 7 Platt (10.1016/j.knosys.2024.112388_bib0039) 1999 Cortes (10.1016/j.knosys.2024.112388_bib0013) 1995; 20 Chen (10.1016/j.knosys.2024.112388_bib0035) 2016 Vapnik (10.1016/j.knosys.2024.112388_bib0001) 1999; 10 Chen (10.1016/j.knosys.2024.112388_bib0010) 2023; 133 Chuang (10.1016/j.knosys.2024.112388_bib0009) 2020; 32 Cano (10.1016/j.knosys.2024.112388_bib0026) 2019; 341 Dong (10.1016/j.knosys.2024.112388_bib0046) 2003 Guo (10.1016/j.knosys.2024.112388_bib0032) 2016; 44 Maes (10.1016/j.knosys.2024.112388_bib0037) 2010 Friedlander (10.1016/j.knosys.2024.112388_bib0040) 1994; 4 Ma (10.1016/j.knosys.2024.112388_bib0029) 2021; 45 Khang (10.1016/j.knosys.2024.112388_bib0003) 2023 Singh (10.1016/j.knosys.2024.112388_bib0018) 2020; 23 Lin (10.1016/j.knosys.2024.112388_bib0034) 2002; 13 Chen (10.1016/j.knosys.2024.112388_bib0020) 2019; 22 Nazareth (10.1016/j.knosys.2024.112388_bib0024) 2009; 1 Friedlander (10.1016/j.knosys.2024.112388_bib0041) 1989; 23 Cervantes (10.1016/j.knosys.2024.112388_bib0014) 2020; 408 Pisner (10.1016/j.knosys.2024.112388_bib0015) 2020 Zhou (10.1016/j.knosys.2024.112388_bib0021) 2021; 97 Singh (10.1016/j.knosys.2024.112388_bib0033) 2021; 3 Liu (10.1016/j.knosys.2024.112388_bib0030) 2019; 16 Li (10.1016/j.knosys.2024.112388_bib0050) 2006; 30 |
References_xml | – volume: 237 start-page: 145 year: 2017 end-page: 157 ident: bib0007 article-title: Breast tumor segmentation with prior knowledge learning publication-title: Neurocomputing – volume: 989 start-page: 2406 year: 2014 end-page: 2409 ident: bib0025 article-title: A Projected Conjugate Gradient Method for Box-Constrained Optimization publication-title: Advanced Materials Research – volume: 13 start-page: 464 year: 2002 end-page: 471 ident: bib0034 article-title: Fuzzy support vector machines publication-title: IEEE Trans. Neural Netw. – volume: 39 start-page: 989 year: 2009 end-page: 1001 ident: bib0019 article-title: Fast support vector machines for continuous data publication-title: IEEE Trans. Syst. Man Cybernetic Part B (Cybernetics) – volume: 10 start-page: 988 year: 1999 end-page: 999 ident: bib0001 article-title: An overview of statistical learning theory publication-title: IEEE Trans. Neural Netw. – volume: 3 year: 2021 ident: bib0033 article-title: Parallel SVM model for forest fire prediction publication-title: Soft Comput. Lett. – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bib0013 article-title: Support-vector networks publication-title: Machine Learning – volume: 41 start-page: 7235 year: 2014 end-page: 7247 ident: bib0006 article-title: Credit rating with a monotonicity-constrained support vector machine model publication-title: Expert Syst. Appl. – reference: (1998). – volume: 341 start-page: 168 year: 2019 end-page: 182 ident: bib0026 article-title: Monotonic classification: an overview on algorithms, performance measures and data sets publication-title: Neurocomputing – volume: 49 start-page: 409 year: 1952 end-page: 436 ident: bib0012 article-title: Methods of conjugate gradients for solving linear systems publication-title: J. Res. Natl. Bur. Stand. – volume: 106 start-page: 403 year: 2006 end-page: 421 ident: bib0042 article-title: New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds publication-title: Math. Program. – start-page: 96 year: 2003 end-page: 105 ident: bib0046 article-title: A fast parallel optimization for training support vector machine publication-title: International Workshop on Machine Learning and Data Mining in Pattern Recognition – volume: 24 start-page: 2052 year: 2012 end-page: 2064 ident: bib0008 article-title: Rank entropy-based decision trees for monotonic classification publication-title: IEEE Trans. Knowl. Data Eng. – volume: 22 start-page: 7435 year: 2019 end-page: 7445 ident: bib0020 article-title: A novel online incremental and decremental learning algorithm based on variable support vector machine publication-title: Cluster Comput – reference: C.L. Blake, UCI repository of machine learning databases, – volume: 45 start-page: 95 year: 2021 end-page: 111 ident: bib0029 article-title: Estimating cognitive diagnosis models in small samples: bayes modal estimation and monotonic constraints publication-title: Appl. Psychol. Measur. – volume: 20 start-page: 353 year: 2005 end-page: 378 ident: bib0043 article-title: Gradient projection methods for quadratic programs and applications in training support vector machines publication-title: Optim. Methods Softw. – year: 2010 ident: bib0037 article-title: A Regularized Active-Set Method for Sparse Convex Quadratic Programming – volume: 408 start-page: 189 year: 2020 end-page: 215 ident: bib0014 article-title: A comprehensive survey on support vector machine classification: applications, challenges and trends publication-title: Neurocomputing – volume: 1 start-page: 348 year: 2009 end-page: 353 ident: bib0024 article-title: Conjugate gradient method publication-title: Wiley Interdiscip. Rev. Comput. Stat. – volume: 73 start-page: 2614 year: 2010 end-page: 2623 ident: bib0004 article-title: VQSVM: a case study for incorporating prior domain knowledge into inductive machine learning publication-title: Neurocomputing – volume: 44 start-page: 161 year: 2016 end-page: 184 ident: bib0032 article-title: A resource aware MapReduce based parallel SVM for large scale image classifications publication-title: Neural Process. Lett. – volume: 7 start-page: 182924 year: 2019 end-page: 182936 ident: bib0002 article-title: Actionable knowledge discovery for increasing enterprise profit, using domain driven-data mining publication-title: IEEE Access – volume: 20 start-page: 626 year: 1983 end-page: 637 ident: bib0023 article-title: The conjugate gradient method and trust regions in large scale optimization publication-title: SIAM J. Numer. Anal. – volume: 30 start-page: 772 year: 2006 end-page: 782 ident: bib0050 article-title: The evaluation of consumer loans using support vector machines publication-title: Expert Syst. Appl. – volume: 97 year: 2021 ident: bib0021 article-title: Optimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rate publication-title: Eng. Appl. Artif. Intell. – volume: 4 start-page: 177 year: 1994 end-page: 192 ident: bib0040 article-title: On the maximization of a concave quadratic function with box constraints publication-title: SIAM J. Optim. – start-page: 101 year: 2020 end-page: 121 ident: bib0015 article-title: Support vector machine publication-title: Machine Learning – volume: 3 start-page: 1637 year: 2005 end-page: 1641 ident: bib0031 article-title: A parallel SVM training algorithm on large-scale classification problems publication-title: 2005 International Conference on Machine Learning and Cybernetics – volume: 4 start-page: 17 year: 2019 end-page: 21 ident: bib0017 article-title: The effect of kernel values in support vector machine to forecasting performance of financial time series publication-title: J. Cognit. Syst. – volume: 439 start-page: 106 year: 2021 end-page: 121 ident: bib0027 article-title: Fuzzy k-nearest neighbors with monotonicity constraints: moving towards the robustness of monotonic noise publication-title: Neurocomputing – volume: 14 start-page: 1105 year: 2002 end-page: 1114 ident: bib0045 article-title: A parallel mixture of SVMs for very large scale problems publication-title: Neural Comput – volume: 24 start-page: 499 year: 2020 end-page: 503 ident: bib0016 article-title: Support vector machine for modelling and simulation of Heat exchangers publication-title: Thermal Science – start-page: 105 year: 2023 end-page: 120 ident: bib0003 article-title: Data-driven application of human capital management databases, big data, and data mining publication-title: Designing Workforce Management Systems for Industry 4.0 – volume: 39 start-page: 24 year: 2022 end-page: 54 ident: bib0028 article-title: A Gibbs sampling algorithm with monotonicity constraints for diagnostic classification models publication-title: J. Classif. – start-page: 641 year: 2016 end-page: 646 ident: bib0035 article-title: Constraint Selection on monotonic support vector classifiers publication-title: 2016 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI) – volume: 23 start-page: 1583 year: 2020 end-page: 1597 ident: bib0018 article-title: Prediction of COVID-19 corona virus pandemic based on time series data using Support Vector Machine publication-title: J. Discrete Math. Sci. Cryptogr. – volume: 16 start-page: 1975 year: 2019 end-page: 1985 ident: bib0030 article-title: Fuzzy-support vector machine geotechnical risk analysis method based on Bayesian network publication-title: J. Mountain Sci. – volume: 32 start-page: 11791 year: 2020 end-page: 11805 ident: bib0009 article-title: Incorporating monotonic domain knowledge in support vector learning for data mining regression problems publication-title: Neural Comput. Appl. – volume: 2 start-page: 121 year: 1998 end-page: 167 ident: bib0036 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Min. Knowl. Discovery – volume: 124 start-page: 25 year: 2000 end-page: 44 ident: bib0022 article-title: The theory of Newton's method publication-title: J. Comput. Appl. Math. – start-page: 185 year: 1999 end-page: 208 ident: bib0039 article-title: Fast training of support vector machines using sequential minimal optimization publication-title: Advances in Kernel Methods – volume: 17 start-page: 521 year: 2004 end-page: 528 ident: bib0047 article-title: Parallel support vector machines: the cascade SVM publication-title: Adv. Neural Inf. Process. Syst. – volume: 20 start-page: 583 year: 2005 end-page: 596 ident: bib0044 article-title: On the working set selection in gradient projection-based decomposition techniques for support vector machines publication-title: Optim. Methods Softw. – volume: 30 start-page: 25 year: 1995 end-page: 37 ident: bib0038 article-title: A constrained conjugate gradient method and the solution of linear equations publication-title: Comput. Math. Appl. – volume: 11 year: 2010 ident: bib0048 article-title: Training and testing low-degree polynomial data mappings via linear SVM publication-title: J. Mach. Learn. Res. – volume: 23 start-page: 319 year: 1989 end-page: 341 ident: bib0041 article-title: On the numerical solution of bound constrained optimization problems publication-title: RAIRO-Oper. Res. – volume: 133 year: 2023 ident: bib0010 article-title: Incremental learning for transductive support vector machine publication-title: Pattern Recognit – volume: 23 start-page: 1713 year: 2015 end-page: 1727 ident: bib0005 article-title: A regularized monotonic fuzzy support vector machine model for data mining with prior knowledge publication-title: IEEE Trans. Fuzzy Syst. – start-page: 117 year: 2009 ident: bib0011 article-title: Large-Scale Support Vector Machines: Algorithms and Theory – volume: 408 start-page: 189 year: 2020 ident: 10.1016/j.knosys.2024.112388_bib0014 article-title: A comprehensive survey on support vector machine classification: applications, challenges and trends publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.10.118 – start-page: 105 year: 2023 ident: 10.1016/j.knosys.2024.112388_bib0003 article-title: Data-driven application of human capital management databases, big data, and data mining – volume: 20 start-page: 353 issue: 2–3 year: 2005 ident: 10.1016/j.knosys.2024.112388_bib0043 article-title: Gradient projection methods for quadratic programs and applications in training support vector machines publication-title: Optim. Methods Softw. doi: 10.1080/10556780512331318182 – volume: 2 start-page: 121 issue: 2 year: 1998 ident: 10.1016/j.knosys.2024.112388_bib0036 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Min. Knowl. Discovery doi: 10.1023/A:1009715923555 – volume: 73 start-page: 2614 issue: 13–15 year: 2010 ident: 10.1016/j.knosys.2024.112388_bib0004 article-title: VQSVM: a case study for incorporating prior domain knowledge into inductive machine learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.05.007 – start-page: 101 year: 2020 ident: 10.1016/j.knosys.2024.112388_bib0015 article-title: Support vector machine – volume: 20 start-page: 626 issue: 3 year: 1983 ident: 10.1016/j.knosys.2024.112388_bib0023 article-title: The conjugate gradient method and trust regions in large scale optimization publication-title: SIAM J. Numer. Anal. doi: 10.1137/0720042 – volume: 97 year: 2021 ident: 10.1016/j.knosys.2024.112388_bib0021 article-title: Optimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rate publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.104015 – volume: 41 start-page: 7235 issue: 16 year: 2014 ident: 10.1016/j.knosys.2024.112388_bib0006 article-title: Credit rating with a monotonicity-constrained support vector machine model publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.05.035 – volume: 30 start-page: 772 issue: 4 year: 2006 ident: 10.1016/j.knosys.2024.112388_bib0050 article-title: The evaluation of consumer loans using support vector machines publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2005.07.041 – volume: 39 start-page: 989 issue: 4 year: 2009 ident: 10.1016/j.knosys.2024.112388_bib0019 article-title: Fast support vector machines for continuous data publication-title: IEEE Trans. Syst. Man Cybernetic Part B (Cybernetics) doi: 10.1109/TSMCB.2008.2011645 – volume: 4 start-page: 177 issue: 1 year: 1994 ident: 10.1016/j.knosys.2024.112388_bib0040 article-title: On the maximization of a concave quadratic function with box constraints publication-title: SIAM J. Optim. doi: 10.1137/0804010 – volume: 17 start-page: 521 year: 2004 ident: 10.1016/j.knosys.2024.112388_bib0047 article-title: Parallel support vector machines: the cascade SVM publication-title: Adv. Neural Inf. Process. Syst. – volume: 49 start-page: 409 issue: 6 year: 1952 ident: 10.1016/j.knosys.2024.112388_bib0012 article-title: Methods of conjugate gradients for solving linear systems publication-title: J. Res. Natl. Bur. Stand. doi: 10.6028/jres.049.044 – volume: 44 start-page: 161 year: 2016 ident: 10.1016/j.knosys.2024.112388_bib0032 article-title: A resource aware MapReduce based parallel SVM for large scale image classifications publication-title: Neural Process. Lett. doi: 10.1007/s11063-015-9472-z – ident: 10.1016/j.knosys.2024.112388_bib0049 – volume: 30 start-page: 25 issue: 11 year: 1995 ident: 10.1016/j.knosys.2024.112388_bib0038 article-title: A constrained conjugate gradient method and the solution of linear equations publication-title: Comput. Math. Appl. doi: 10.1016/0898-1221(95)00161-Q – volume: 39 start-page: 24 issue: 1 year: 2022 ident: 10.1016/j.knosys.2024.112388_bib0028 article-title: A Gibbs sampling algorithm with monotonicity constraints for diagnostic classification models publication-title: J. Classif. doi: 10.1007/s00357-021-09392-7 – volume: 10 start-page: 988 issue: 5 year: 1999 ident: 10.1016/j.knosys.2024.112388_bib0001 article-title: An overview of statistical learning theory publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.788640 – volume: 23 start-page: 1583 issue: 8 year: 2020 ident: 10.1016/j.knosys.2024.112388_bib0018 article-title: Prediction of COVID-19 corona virus pandemic based on time series data using Support Vector Machine publication-title: J. Discrete Math. Sci. Cryptogr. doi: 10.1080/09720529.2020.1784535 – volume: 4 start-page: 17 issue: 1 year: 2019 ident: 10.1016/j.knosys.2024.112388_bib0017 article-title: The effect of kernel values in support vector machine to forecasting performance of financial time series publication-title: J. Cognit. Syst. – volume: 3 year: 2021 ident: 10.1016/j.knosys.2024.112388_bib0033 article-title: Parallel SVM model for forest fire prediction publication-title: Soft Comput. Lett. doi: 10.1016/j.socl.2021.100014 – volume: 989 start-page: 2406 year: 2014 ident: 10.1016/j.knosys.2024.112388_bib0025 article-title: A Projected Conjugate Gradient Method for Box-Constrained Optimization publication-title: Advanced Materials Research – volume: 3 start-page: 1637 year: 2005 ident: 10.1016/j.knosys.2024.112388_bib0031 article-title: A parallel SVM training algorithm on large-scale classification problems – volume: 24 start-page: 2052 issue: 11 year: 2012 ident: 10.1016/j.knosys.2024.112388_bib0008 article-title: Rank entropy-based decision trees for monotonic classification publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2011.149 – year: 2010 ident: 10.1016/j.knosys.2024.112388_bib0037 – volume: 7 start-page: 182924 year: 2019 ident: 10.1016/j.knosys.2024.112388_bib0002 article-title: Actionable knowledge discovery for increasing enterprise profit, using domain driven-data mining publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2959841 – volume: 133 year: 2023 ident: 10.1016/j.knosys.2024.112388_bib0010 article-title: Incremental learning for transductive support vector machine publication-title: Pattern Recognit doi: 10.1016/j.patcog.2022.108982 – volume: 341 start-page: 168 year: 2019 ident: 10.1016/j.knosys.2024.112388_bib0026 article-title: Monotonic classification: an overview on algorithms, performance measures and data sets publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.02.024 – volume: 23 start-page: 319 issue: 4 year: 1989 ident: 10.1016/j.knosys.2024.112388_bib0041 article-title: On the numerical solution of bound constrained optimization problems publication-title: RAIRO-Oper. Res. doi: 10.1051/ro/1989230403191 – volume: 13 start-page: 464 issue: 2 year: 2002 ident: 10.1016/j.knosys.2024.112388_bib0034 article-title: Fuzzy support vector machines publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.991432 – volume: 106 start-page: 403 issue: 3 year: 2006 ident: 10.1016/j.knosys.2024.112388_bib0042 article-title: New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds publication-title: Math. Program. doi: 10.1007/s10107-005-0595-2 – volume: 24 start-page: 499 issue: 1 Part B year: 2020 ident: 10.1016/j.knosys.2024.112388_bib0016 article-title: Support vector machine for modelling and simulation of Heat exchangers publication-title: Thermal Science doi: 10.2298/TSCI190419398M – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.knosys.2024.112388_bib0013 article-title: Support-vector networks publication-title: Machine Learning doi: 10.1007/BF00994018 – volume: 22 start-page: 7435 year: 2019 ident: 10.1016/j.knosys.2024.112388_bib0020 article-title: A novel online incremental and decremental learning algorithm based on variable support vector machine publication-title: Cluster Comput doi: 10.1007/s10586-018-1772-4 – volume: 32 start-page: 11791 year: 2020 ident: 10.1016/j.knosys.2024.112388_bib0009 article-title: Incorporating monotonic domain knowledge in support vector learning for data mining regression problems publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04661-4 – volume: 124 start-page: 25 issue: 1–2 year: 2000 ident: 10.1016/j.knosys.2024.112388_bib0022 article-title: The theory of Newton's method publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(00)00435-0 – volume: 23 start-page: 1713 issue: 5 year: 2015 ident: 10.1016/j.knosys.2024.112388_bib0005 article-title: A regularized monotonic fuzzy support vector machine model for data mining with prior knowledge publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2014.2374214 – volume: 20 start-page: 583 issue: 4–5 year: 2005 ident: 10.1016/j.knosys.2024.112388_bib0044 article-title: On the working set selection in gradient projection-based decomposition techniques for support vector machines publication-title: Optim. Methods Softw. doi: 10.1080/10556780500140714 – volume: 237 start-page: 145 year: 2017 ident: 10.1016/j.knosys.2024.112388_bib0007 article-title: Breast tumor segmentation with prior knowledge learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.09.067 – volume: 45 start-page: 95 issue: 2 year: 2021 ident: 10.1016/j.knosys.2024.112388_bib0029 article-title: Estimating cognitive diagnosis models in small samples: bayes modal estimation and monotonic constraints publication-title: Appl. Psychol. Measur. doi: 10.1177/0146621620977681 – volume: 439 start-page: 106 year: 2021 ident: 10.1016/j.knosys.2024.112388_bib0027 article-title: Fuzzy k-nearest neighbors with monotonicity constraints: moving towards the robustness of monotonic noise publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.12.152 – volume: 14 start-page: 1105 issue: 5 year: 2002 ident: 10.1016/j.knosys.2024.112388_bib0045 article-title: A parallel mixture of SVMs for very large scale problems publication-title: Neural Comput doi: 10.1162/089976602753633402 – volume: 1 start-page: 348 issue: 3 year: 2009 ident: 10.1016/j.knosys.2024.112388_bib0024 article-title: Conjugate gradient method publication-title: Wiley Interdiscip. Rev. Comput. Stat. doi: 10.1002/wics.13 – start-page: 96 year: 2003 ident: 10.1016/j.knosys.2024.112388_bib0046 article-title: A fast parallel optimization for training support vector machine – start-page: 117 year: 2009 ident: 10.1016/j.knosys.2024.112388_bib0011 – start-page: 641 year: 2016 ident: 10.1016/j.knosys.2024.112388_bib0035 article-title: Constraint Selection on monotonic support vector classifiers – start-page: 185 year: 1999 ident: 10.1016/j.knosys.2024.112388_bib0039 article-title: Fast training of support vector machines using sequential minimal optimization – volume: 11 issue: 4 year: 2010 ident: 10.1016/j.knosys.2024.112388_bib0048 article-title: Training and testing low-degree polynomial data mappings via linear SVM publication-title: J. Mach. Learn. Res. – volume: 16 start-page: 1975 issue: 8 year: 2019 ident: 10.1016/j.knosys.2024.112388_bib0030 article-title: Fuzzy-support vector machine geotechnical risk analysis method based on Bayesian network publication-title: J. Mountain Sci. doi: 10.1007/s11629-018-5358-7 |
SSID | ssj0002218 |
Score | 2.4051924 |
Snippet | •We propose a new PBCCG-RMC-SVM model considering prior monotonic domain knowledge.•Conjugate gradient is used to minimize subject to linear equality... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 112388 |
SubjectTerms | Conjugate gradient algorithm Monotonicity classification Parallel strategy Prior knowledge Support vector machine |
Title | Advancing SVM classification: Parallelizing conjugate gradient for monotonicity enforcement |
URI | https://dx.doi.org/10.1016/j.knosys.2024.112388 |
Volume | 302 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YPXtXlssom3UixVaRFqpeAh7G420ippqelBD_52ZzYJKogHjwm7kHyZzPfNMg9CzpGU0yiSjMdGMA6EzKTPA2Y86eoglCDqsMB5OAoHE34zDaYN0qtrYTCtsvL9pU-33rq606nQ7Cxns84YxAHYKxAWt33RMG7nXKCVX3x8pXl4nj3jw8UMV9flczbH6zlfvL5h026PYy2Nb-ev_EJP3yinv0O2Kq1Iu-Xj7JKGyffIdj2HgVa_5T55tKORNZAQHT8MqUZBjBlAFvRLeidXODDlZfaOKyD-na_x7Iw-rWy6V0FBt1KwxkWBbXJBlVODNUraHhwekEn_6r43YNXQBKYhOiiYn8bYQZ17WZx5GcgLDn-Ykq7ijtGhVoESma-lG2Uy8pRQ8M6xCuNQSMeRhgf-IWnmi9wcEaozLULlpK6SkvtGRBqiwTSMsKGhSuO0RViNVbIse2MkddLYPCmxTRDbpMS2RUQNaPLjGyfgvv_cefzvnSdkE6-QbbzglDSL1dqcgYwoVNvaSZtsdK9vB6NPvEfJIA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQO8DCG1GeHlitponzYqsqqpQ-hNQWVWKIbMdBLSitSjrAr-fOSRBIiIE1saXks333nXX3HSE36JSTIBCMh9pnHBwyEw53mbZFS7meAFKHBc7DkRdN-f3MnW2RTlULg2mVpe0vbLqx1uWTZolmczWfN8dADmC_gsPiRhcN4vY6qlO5NVJv9_rR6Msg27a55sPxDCdUFXQmzeslW769o263zbGcxjEtWH7xUN-8Tnef7JZ0kbaLLzogWzo7JHtVKwZanswj8mS6IyvwQ3T8OKQKOTEmARncb-mDWGPPlNf5B46AEHixwesz-rw2GV85BepKYUMuc1TKBWJONZYpKXN3eEym3btJJ2Jl3wSmIEDImZOEKKLO7TRM7RQYBodDJkVLcksrT0lX-qmjRCtIRWBLX8I_h9ILPV9YltDcdU5ILVtm-pRQlSrfk1bSkkJwR_uBgoAw8QLUNJRJmDQIq7CKV4U8RlzljS3iAtsYsY0LbBvErwCNfyxzDBb8z5ln_555TbajyXAQD3qj_jnZwTfofGz3gtTy9UZfAqvI5VW5az4BrnrL0Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advancing+SVM+classification%3A+Parallelizing+conjugate+gradient+for+monotonicity+enforcement&rft.jtitle=Knowledge-based+systems&rft.au=Chuang%2C+Hui-Chi&rft.au=Chen%2C+Chih-Chuan&rft.au=Li%2C+Sheng-Tun&rft.date=2024-10-25&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.volume=302&rft_id=info:doi/10.1016%2Fj.knosys.2024.112388&rft.externalDocID=S0950705124010220 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |