Deep keypoints adversarial attack on face recognition systems
Face recognition systems based on deep learning have recently demonstrated an outstanding success in solving complex issues. Yet they turn out to be very vulnerable to attack. Therefore, the vulnerability of such systems has to be studied. An efficient attack strategy that deceives the face recognit...
Saved in:
Published in | Neurocomputing (Amsterdam) Vol. 621; p. 129295 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
07.03.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0925-2312 |
DOI | 10.1016/j.neucom.2024.129295 |
Cover
Abstract | Face recognition systems based on deep learning have recently demonstrated an outstanding success in solving complex issues. Yet they turn out to be very vulnerable to attack. Therefore, the vulnerability of such systems has to be studied. An efficient attack strategy that deceives the face recognition system creates adversarial examples. The system may mistakenly reject a real subject as a result of such attack. Current methods for creating adversarial face images have poor perceptual quality and take too long to produce. In this paper, we introduce a novel Adversarial Attack named DKA2 that combines both geometry and intensity based attack categories. The attack consists of three main parts: keypoints detection, Geometrically keypoints Perturbation and adversarial mask Generation. Unlike other attacks which perturb every pixel in the image, our method perturbs only the salient regions of the face represented by the keypoints (2% of the image) and the automatic generated adversarial mask. Limiting the perturbed points minimizes the distortion caused by the attack and resulting images that seem natural. Besides, the suggested approach produces stronger adversarial examples that can avoid black-box face matchers with attack success rates as high as 97,03%.
•Robust attack on face recognition systems using intensity and geometry-based methods.•Perturbs over 68 landmarks for adversarial face attack production.•High success on black-box face recognition systems with LFW and CFP datasets. |
---|---|
AbstractList | Face recognition systems based on deep learning have recently demonstrated an outstanding success in solving complex issues. Yet they turn out to be very vulnerable to attack. Therefore, the vulnerability of such systems has to be studied. An efficient attack strategy that deceives the face recognition system creates adversarial examples. The system may mistakenly reject a real subject as a result of such attack. Current methods for creating adversarial face images have poor perceptual quality and take too long to produce. In this paper, we introduce a novel Adversarial Attack named DKA2 that combines both geometry and intensity based attack categories. The attack consists of three main parts: keypoints detection, Geometrically keypoints Perturbation and adversarial mask Generation. Unlike other attacks which perturb every pixel in the image, our method perturbs only the salient regions of the face represented by the keypoints (2% of the image) and the automatic generated adversarial mask. Limiting the perturbed points minimizes the distortion caused by the attack and resulting images that seem natural. Besides, the suggested approach produces stronger adversarial examples that can avoid black-box face matchers with attack success rates as high as 97,03%.
•Robust attack on face recognition systems using intensity and geometry-based methods.•Perturbs over 68 landmarks for adversarial face attack production.•High success on black-box face recognition systems with LFW and CFP datasets. |
ArticleNumber | 129295 |
Author | Jabberi, Marwa Neji, Mohamed BenSaid, Emna Alimi, Adel M. |
Author_xml | – sequence: 1 givenname: Emna orcidid: 0000-0003-0065-0559 surname: BenSaid fullname: BenSaid, Emna email: emna.bensaid@regim.usf.tn organization: REsearch Groups in Intelligent Machines (REGIM Lab, University of Sfax), National Engineering School of Sfax (ENIS), Sfax, BP 1173, 3038, Tunisia – sequence: 2 givenname: Mohamed surname: Neji fullname: Neji, Mohamed email: mohamed.neji@enetcom.usf.tn organization: National School of Electronics and Telecommunications of Sfax Technopark, BP 1163, CP 3018, Sfax, Tunisia – sequence: 3 givenname: Marwa orcidid: 0000-0001-5930-2597 surname: Jabberi fullname: Jabberi, Marwa email: marwa.jabberi@regim.usf.tn organization: University of Sousse, ISITCom, 4011, Sousse, Tunisia – sequence: 4 givenname: Adel M. orcidid: 0000-0002-0642-3384 surname: Alimi fullname: Alimi, Adel M. email: adel.alimi@regim.usf.tn organization: Department of Electrical and Electronic Engineering Science, Faculty of Engineering and the Built Environment, University of Johannesburg, South Africa |
BookMark | eNp9j89KAzEYxHOoYFt9Aw_7Art-yW72z0FBqlah4EXPIZt8kWzbpCSxsG_vlvXsaWCGGea3IgvnHRJyR6GgQOv7oXD4o_yxYMCqgrKOdXxBltAxnrOSsmuyinEAoM2ULcnDM-Ip2-N48talmEl9xhBlsPKQyZSk2mfeZUYqzAIq_-1sspMRx5jwGG_IlZGHiLd_uiZfry-fm7d897F93zztcsU4T3nJeI3U8L6psNJ1b_q-BaawlU2vWSOr6Rdv-lpq5MoAGIQGdKtAgqrampdrUs27KvgYAxpxCvYowygoiAu2GMSMLS7YYsaeao9zDadvZ4tBRGXRKdR2gklCe_v_wC9vf2ed |
Cites_doi | 10.1016/j.patrec.2023.09.003 10.1109/CVPR.2019.00482 10.1007/s40747-023-01060-0 10.1109/CVPR.2015.7298682 10.1109/CVPR.2014.220 10.1016/j.neucom.2018.09.056 10.1109/SIBGRAPI.2018.00067 10.1109/CVPR52729.2023.01973 10.1016/j.neucom.2012.10.032 10.1016/j.neucom.2020.10.081 10.1109/CVPR.2018.00957 10.1016/j.neucom.2018.05.083 10.1609/aaai.v38i4.28156 10.1109/CVPR.2018.00191 10.1109/ICCV51070.2023.00395 10.1145/3460319.3464822 10.1109/LSP.2016.2603342 10.1016/j.neucom.2020.01.023 10.1109/CVPR52733.2024.02321 10.1016/j.neucom.2016.09.015 10.1016/j.neucom.2020.12.057 10.1109/ICCVW.2017.197 10.1016/j.neucom.2022.04.127 10.1007/s00146-021-01199-9 10.1109/CVPR.2017.713 10.1016/j.neucom.2018.01.079 10.1007/s11042-020-09604-z 10.1109/WACV45572.2020.9093508 10.1016/j.neucom.2024.127517 10.1109/TEVC.2019.2890858 10.1109/ICCV.2017.74 10.1109/CVPR.2017.632 10.1109/CVPR.2015.7298907 10.1016/j.patcog.2022.108985 10.1109/ACCESS.2021.3092646 10.1109/CVPR.2018.00552 10.1109/CVPR52688.2022.01460 10.1007/BF01589116 10.1109/CVPR.2017.17 10.1109/ICCVW.2019.00257 10.1145/3581783.3612454 10.1109/CVPRW.2017.172 |
ContentType | Journal Article |
Copyright | 2025 Elsevier B.V. |
Copyright_xml | – notice: 2025 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.neucom.2024.129295 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_neucom_2024_129295 S0925231224020666 |
GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEIPS AEKER AENEX AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANKPU AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N AAQXK AATTM AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HLZ HVGLF HZ~ LG9 M41 R2- RIG SBC SSH WUQ XPP |
ID | FETCH-LOGICAL-c255t-3256e1f5b74e4d6bfbb802ce8a7bd27a431257b6ade5cf00fe070d8c0a0c48653 |
IEDL.DBID | AIKHN |
ISSN | 0925-2312 |
IngestDate | Sun Jul 06 05:07:41 EDT 2025 Sat Feb 08 15:52:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Landmarks Face keypoints Face recognition Adversarial attack |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c255t-3256e1f5b74e4d6bfbb802ce8a7bd27a431257b6ade5cf00fe070d8c0a0c48653 |
ORCID | 0000-0003-0065-0559 0000-0002-0642-3384 0000-0001-5930-2597 |
ParticipantIDs | crossref_primary_10_1016_j_neucom_2024_129295 elsevier_sciencedirect_doi_10_1016_j_neucom_2024_129295 |
PublicationCentury | 2000 |
PublicationDate | 2025-03-07 |
PublicationDateYYYYMMDD | 2025-03-07 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-07 day: 07 |
PublicationDecade | 2020 |
PublicationTitle | Neurocomputing (Amsterdam) |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Liu, Shen, Zhao, Nie (b46) 2024; 580 Goodfellow, Shlens, Szegedy (b8) 2014 Madry, Makelov, Schmidt, Tsipras, Vladu (b9) 2017 Madry, Makelov, Schmidt, Tsipras, Vladu (b35) 2017 Wu, Wang, Xia, Bailey, Ma (b64) 2020 Dong, Fu, Yang, Xiang, Pang, Su (b60) 2021 Deb, Zhang, Jain (b45) 2020 Xiao, Zhu, Li, He, Liu, Song (b48) 2018 Aydin, Temizel (b52) 2023; 174 Y. Taigman, M. Yang, M.A. Ranzato, L. Wolf, Deepface: Closing the gap to human-level performance in face verification, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 1701–1708. Zhu, Hong, Li, Tang, Wang (b55) 2023; 9 Y. Sun, X. Wang, X. Tang, Deeply learned face representations are sparse, selective, and robust, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 2892–2900. Kurakin, Goodfellow, Bengio (b67) 2018 Yang, Chen (b17) 2013; 120 Xu, Jiang, Wang, Zhou, Li, Liao (b18) 2019; 355 T. Stolik, I. Lang, S. Avidan, SAGA: Spectral Adversarial Geometric Attack on 3D Meshes, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 4284–4294. G.B. Huang, M. Mattar, T. Berg, E. Learned-Miller, Labeled faces in the wild: A database forstudying face recognition in unconstrained environments, in: Workshop on Faces in’Real-Life’Images: Detection, Alignment, and Recognition, 2008. Goodfellow, Shlens, Szegedy (b12) 2014 Su, Vargas, Sakurai (b38) 2019; 23 S.M. Iranmanesh, A. Dabouei, S. Soleymani, H. Kazemi, N. Nasrabadi, Robust facial landmark detection via aggregation on geometrically manipulated faces, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2020, pp. 330–340. Howard, Zhu, Chen, Kalenichenko, Wang, Weyand (b81) 2017 Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, J. Li, Boosting adversarial attacks with momentum, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 9185–9193. Papernot, McDaniel, Jha, Fredrikson, Celik, Swami (b37) 2016 P. Isola, J.Y. Zhu, T. Zhou, A.A. Efros, Image-to-image translation with conditional adversarial networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1125–1134. Yang, Wu, Cao, Luo, Wei (b75) 2021; 433 Wen, Chen, Cai, He (b31) 2018; 287 Z. Zhao, G. Chen, J. Wang, Y. Yang, F. Song, J. Sun, Attack as defense: Characterizing adversarial examples using robustness, in: Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis, 2021, pp. 42–55. Tashiro, Song, Ermon (b63) 2020; 33 Wang, Chen, Chen, Nepal, Rudolph, Grobler (b43) 2023 Dabouei, Soleymani, Dawson, Nasrabadi (b51) 2019 F. Liao, M. Liang, Y. Dong, T. Pang, X. Hu, J. Zhu, Defense against adversarial attacks using high-level representation guided denoiser, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1778–1787. Y. Sun, L. Yu, H. Xie, J. Li, Y. Zhang, DiffAM: Diffusion-based Adversarial Makeup Transfer for Facial Privacy Protection, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024, pp. 24584–24594. Sharif, Bhagavatula, Bauer, Reiter (b6) 2017 Z. Zhou, S. Hu, M. Li, H. Zhang, Y. Zhang, H. Jin, Advclip: Downstream-agnostic adversarial examples in multimodal contrastive learning, in: Proceedings of the 31st ACM International Conference on Multimedia, 2023, pp. 6311–6320. Cao, Shen, Xie, Parkhi, Zisserman (b80) 2018 Sengupta, Chen, Castillo, Patel, Chellappa, Jacobs (b16) 2016 S. Jandial, P. Mangla, S. Varshney, V. Balasubramanian, Advgan++: Harnessing latent layers for adversary generation, in: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2019. S.M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, P. Frossard, Universal adversarial perturbations, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1765–1773. Croce, Hein (b61) 2020 Sun, Chen, Wang, Tang (b25) 2014; 27 Yuan, Zhang, Gao, Cheng, Song (b42) 2022 Smith, Miller (b10) 2022; 37 J. Deng, J. Guo, N. Xue, S. Zafeiriou, Arcface: Additive angular margin loss for deep face recognition, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 4690–4699. Gu, Rigazio (b13) 2014 Wang, Deng (b1) 2021; 429 A. Hasnat, J. Bohné, J. Milgram, S. Gentric, L. Chen, Deepvisage: Making face recognition simple yet with powerful generalization skills, in: Proceedings of the IEEE International Conference on Computer Vision Workshops, 2017, pp. 1682–1691. Carlini, Wagner (b65) 2017 Zhang, Zhang, Li, Qiao (b82) 2016; 23 Wang, Deng (b28) 2018; 312 N. Narodytska, S.P. Kasiviswanathan, Simple Black-Box Adversarial Attacks on Deep Neural Networks, in: CVPR Workshops, Vol. 2, 2017, p. 2. Liu, Nocedal (b50) 1989; 45 Śluzek (b70) 2016 F. Schroff, D. Kalenichenko, J. Philbin, Facenet: A unified embedding for face recognition and clustering, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 815–823. J. Liu, J. Zhou, J. Zeng, J. Tian, DifAttack: Query-Efficient Black-Box Adversarial Attack via Disentangled Feature Space, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38, No. 4, 2024, pp. 3666–3674. Wen, Zhang, Li, Qiao (b32) 2016 Sun, Liang, Wang, Tang (b30) 2015 F. Shamshad, M. Naseer, K. Nandakumar, Clip2protect: Protecting facial privacy using text-guided makeup via adversarial latent search, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 20595–20605. Xiao, Li, Zhu, He, Liu, Song (b44) 2018 Yang, Song, Wu (b62) 2021; 80 Vakhshiteh, Nickabadi, Ramachandra (b11) 2021; 9 Giulivi, Jere, Rossi, Koushanfar, Ciocarlie, Hitaj, Boracchi (b41) 2023; 133 Yi, Lei, Liao, Li (b76) 2014 I. Masi, Y. Wu, T. Hassner, P. Natarajan, Deep Face Recognition: A Survey, in: 2018 31st SIBGRAPI Conference on Graphics, Patterns and Images, SIBGRAPI. You, Han, Xu, Li (b29) 2020; 388 Chen, Yang, Qian (b72) 2017; 219 Jaderberg, Simonyan, Zisserman (b49) 2015; 28 Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, Fergus (b33) 2013 Parkhi, Vedaldi, Zisserman (b20) 2015 W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, L. Song, Sphereface: Deep hypersphere embedding for face recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 212–220. Z. Cai, S. Rane, A.E. Brito, C. Song, S.V. Krishnamurthy, A.K. Roy-Chowdhury, M.S. Asif, Zero-Query Transfer Attacks on Context-Aware Object Detectors, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 15024–15034. Chopra, Hadsell, LeCun (b24) 2005 Yan, Yang, Zheng, Wang, Peng (b68) 2022 Zhang, Li, Chen, Song, Gao, He, Xue (b56) 2022 R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, Grad-cam: Visual explanations from deep networks via gradient-based localization, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 618–626. H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, et al., Cosface: Large margin cosine loss for deep face recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 5265–5274. Tian, Su, Lauria, Liu (b27) 2022 Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, Fergus (b7) 2013 Vit (b69) 2016; 9 Ghodhbani, Neji, Razzak, Alimi (b74) 2022 Cao, Shen, Xie, Parkhi, Zisserman (b4) 2018 Sun, Zhang, Chaoqun, Wang, Li, Liu (b57) 2022 Sharif (10.1016/j.neucom.2024.129295_b6) 2017 10.1016/j.neucom.2024.129295_b40 Wu (10.1016/j.neucom.2024.129295_b64) 2020 10.1016/j.neucom.2024.129295_b47 Yi (10.1016/j.neucom.2024.129295_b76) 2014 Sun (10.1016/j.neucom.2024.129295_b25) 2014; 27 Sun (10.1016/j.neucom.2024.129295_b30) 2015 Ghodhbani (10.1016/j.neucom.2024.129295_b74) 2022 10.1016/j.neucom.2024.129295_b83 Parkhi (10.1016/j.neucom.2024.129295_b20) 2015 Vit (10.1016/j.neucom.2024.129295_b69) 2016; 9 Wen (10.1016/j.neucom.2024.129295_b32) 2016 Gu (10.1016/j.neucom.2024.129295_b13) 2014 Sengupta (10.1016/j.neucom.2024.129295_b16) 2016 10.1016/j.neucom.2024.129295_b39 Xiao (10.1016/j.neucom.2024.129295_b44) 2018 Madry (10.1016/j.neucom.2024.129295_b35) 2017 Tian (10.1016/j.neucom.2024.129295_b27) 2022 10.1016/j.neucom.2024.129295_b73 10.1016/j.neucom.2024.129295_b34 Yang (10.1016/j.neucom.2024.129295_b62) 2021; 80 10.1016/j.neucom.2024.129295_b78 Yang (10.1016/j.neucom.2024.129295_b17) 2013; 120 You (10.1016/j.neucom.2024.129295_b29) 2020; 388 Wen (10.1016/j.neucom.2024.129295_b31) 2018; 287 10.1016/j.neucom.2024.129295_b77 10.1016/j.neucom.2024.129295_b2 10.1016/j.neucom.2024.129295_b36 Chen (10.1016/j.neucom.2024.129295_b72) 2017; 219 10.1016/j.neucom.2024.129295_b3 10.1016/j.neucom.2024.129295_b79 10.1016/j.neucom.2024.129295_b5 Croce (10.1016/j.neucom.2024.129295_b61) 2020 Howard (10.1016/j.neucom.2024.129295_b81) 2017 10.1016/j.neucom.2024.129295_b71 Szegedy (10.1016/j.neucom.2024.129295_b7) 2013 Wang (10.1016/j.neucom.2024.129295_b28) 2018; 312 Goodfellow (10.1016/j.neucom.2024.129295_b12) 2014 Papernot (10.1016/j.neucom.2024.129295_b37) 2016 Zhang (10.1016/j.neucom.2024.129295_b56) 2022 10.1016/j.neucom.2024.129295_b26 Deb (10.1016/j.neucom.2024.129295_b45) 2020 Sun (10.1016/j.neucom.2024.129295_b57) 2022 Vakhshiteh (10.1016/j.neucom.2024.129295_b11) 2021; 9 Zhu (10.1016/j.neucom.2024.129295_b55) 2023; 9 Tashiro (10.1016/j.neucom.2024.129295_b63) 2020; 33 Xu (10.1016/j.neucom.2024.129295_b18) 2019; 355 Zhang (10.1016/j.neucom.2024.129295_b82) 2016; 23 10.1016/j.neucom.2024.129295_b21 Chopra (10.1016/j.neucom.2024.129295_b24) 2005 Liu (10.1016/j.neucom.2024.129295_b46) 2024; 580 10.1016/j.neucom.2024.129295_b23 10.1016/j.neucom.2024.129295_b22 10.1016/j.neucom.2024.129295_b66 Wang (10.1016/j.neucom.2024.129295_b1) 2021; 429 Dong (10.1016/j.neucom.2024.129295_b60) 2021 Kurakin (10.1016/j.neucom.2024.129295_b67) 2018 Smith (10.1016/j.neucom.2024.129295_b10) 2022; 37 Madry (10.1016/j.neucom.2024.129295_b9) 2017 Giulivi (10.1016/j.neucom.2024.129295_b41) 2023; 133 10.1016/j.neucom.2024.129295_b15 10.1016/j.neucom.2024.129295_b59 Cao (10.1016/j.neucom.2024.129295_b4) 2018 Wang (10.1016/j.neucom.2024.129295_b43) 2023 10.1016/j.neucom.2024.129295_b19 Liu (10.1016/j.neucom.2024.129295_b50) 1989; 45 Yang (10.1016/j.neucom.2024.129295_b75) 2021; 433 10.1016/j.neucom.2024.129295_b54 Su (10.1016/j.neucom.2024.129295_b38) 2019; 23 10.1016/j.neucom.2024.129295_b53 Yan (10.1016/j.neucom.2024.129295_b68) 2022 10.1016/j.neucom.2024.129295_b14 10.1016/j.neucom.2024.129295_b58 Jaderberg (10.1016/j.neucom.2024.129295_b49) 2015; 28 Carlini (10.1016/j.neucom.2024.129295_b65) 2017 Szegedy (10.1016/j.neucom.2024.129295_b33) 2013 Dabouei (10.1016/j.neucom.2024.129295_b51) 2019 Aydin (10.1016/j.neucom.2024.129295_b52) 2023; 174 Yuan (10.1016/j.neucom.2024.129295_b42) 2022 Goodfellow (10.1016/j.neucom.2024.129295_b8) 2014 Xiao (10.1016/j.neucom.2024.129295_b48) 2018 Śluzek (10.1016/j.neucom.2024.129295_b70) 2016 Cao (10.1016/j.neucom.2024.129295_b80) 2018 |
References_xml | – reference: Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, J. Li, Boosting adversarial attacks with momentum, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 9185–9193. – reference: F. Schroff, D. Kalenichenko, J. Philbin, Facenet: A unified embedding for face recognition and clustering, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 815–823. – volume: 33 start-page: 4536 year: 2020 end-page: 4548 ident: b63 article-title: Diversity can be transferred: Output diversification for white-and black-box attacks publication-title: Adv. Neural Inf. Process. Syst. – volume: 388 start-page: 144 year: 2020 end-page: 156 ident: b29 article-title: Systematic evaluation of deep face recognition methods publication-title: Neurocomputing – start-page: 1 year: 2022 end-page: 26 ident: b68 article-title: Facial expression recognition based on hybrid geometry-appearance and dynamic-still feature fusion publication-title: Multimedia Tools Appl. – reference: R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, Grad-cam: Visual explanations from deep networks via gradient-based localization, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 618–626. – volume: 429 start-page: 215 year: 2021 end-page: 244 ident: b1 article-title: Deep face recognition: A survey publication-title: Neurocomputing – year: 2022 ident: b27 article-title: Recent advances on loss functions in deep learning for computer vision publication-title: Neurocomputing – volume: 133 year: 2023 ident: b41 article-title: Adversarial scratches: Deployable attacks to CNN classifiers publication-title: Pattern Recognit. – volume: 80 start-page: 855 year: 2021 end-page: 875 ident: b62 article-title: Attacks on state-of-the-art face recognition using attentional adversarial attack generative network publication-title: Multimed. Tools Appl. – volume: 355 start-page: 1 year: 2019 end-page: 12 ident: b18 article-title: Local polynomial contrast binary patterns for face recognition publication-title: Neurocomputing – volume: 37 start-page: 167 year: 2022 end-page: 175 ident: b10 article-title: The ethical application of biometric facial recognition technology publication-title: AI Soc. – start-page: 99 year: 2018 end-page: 112 ident: b67 article-title: Adversarial examples in the physical world publication-title: Artificial Intelligence Safety and Security – year: 2017 ident: b6 article-title: Adversarial generative nets: Neural network attacks on state-of-the-art face recognition – start-page: 1 year: 2016 end-page: 9 ident: b16 article-title: Frontal to profile face verification in the wild publication-title: 2016 IEEE Winter Conference on Applications of Computer Vision – volume: 45 start-page: 503 year: 1989 end-page: 528 ident: b50 article-title: On the limited memory BFGS method for large scale optimization publication-title: Math. Program. – year: 2015 ident: b30 article-title: Deepid3: Face recognition with very deep neural networks – start-page: 1979 year: 2019 end-page: 1988 ident: b51 article-title: Fast geometrically-perturbed adversarial faces publication-title: 2019 IEEE Winter Conference on Applications of Computer Vision – volume: 287 start-page: 45 year: 2018 end-page: 51 ident: b31 article-title: Improving face recognition with domain adaptation publication-title: Neurocomputing – reference: I. Masi, Y. Wu, T. Hassner, P. Natarajan, Deep Face Recognition: A Survey, in: 2018 31st SIBGRAPI Conference on Graphics, Patterns and Images, SIBGRAPI. – reference: W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, L. Song, Sphereface: Deep hypersphere embedding for face recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 212–220. – reference: T. Stolik, I. Lang, S. Avidan, SAGA: Spectral Adversarial Geometric Attack on 3D Meshes, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 4284–4294. – start-page: 2196 year: 2020 end-page: 2205 ident: b61 article-title: Minimally distorted adversarial examples with a fast adaptive boundary attack publication-title: International Conference on Machine Learning – start-page: 39 year: 2017 end-page: 57 ident: b65 article-title: Towards evaluating the robustness of neural networks publication-title: 2017 IEEE Symposium on Security and Privacy – year: 2014 ident: b12 article-title: Explaining and harnessing adversarial examples – year: 2017 ident: b9 article-title: Towards deep learning models resistant to adversarial attacks – reference: Z. Zhou, S. Hu, M. Li, H. Zhang, Y. Zhang, H. Jin, Advclip: Downstream-agnostic adversarial examples in multimodal contrastive learning, in: Proceedings of the 31st ACM International Conference on Multimedia, 2023, pp. 6311–6320. – year: 2023 ident: b43 article-title: Generating semantic adversarial examples via feature manipulation in latent space publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 312 start-page: 135 year: 2018 end-page: 153 ident: b28 article-title: Deep visual domain adaptation: A survey publication-title: Neurocomputing – reference: Z. Zhao, G. Chen, J. Wang, Y. Yang, F. Song, J. Sun, Attack as defense: Characterizing adversarial examples using robustness, in: Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis, 2021, pp. 42–55. – year: 2021 ident: b60 article-title: Adversarial attacks on ML defense models competition – reference: Y. Taigman, M. Yang, M.A. Ranzato, L. Wolf, Deepface: Closing the gap to human-level performance in face verification, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 1701–1708. – year: 2017 ident: b81 article-title: Mobilenets: Efficient convolutional neural networks for mobile vision applications – reference: G.B. Huang, M. Mattar, T. Berg, E. Learned-Miller, Labeled faces in the wild: A database forstudying face recognition in unconstrained environments, in: Workshop on Faces in’Real-Life’Images: Detection, Alignment, and Recognition, 2008. – start-page: 1 year: 2022 end-page: 32 ident: b74 article-title: You can try without visiting: a comprehensive survey on virtually try-on outfits publication-title: Multimedia Tools Appl. – year: 2020 ident: b64 article-title: Skip connections matter: On the transferability of adversarial examples generated with resnets – year: 2013 ident: b33 article-title: Intriguing properties of neural networks – year: 2018 ident: b48 article-title: Spatially transformed adversarial examples – year: 2014 ident: b76 article-title: Learning face representation from scratch – volume: 120 start-page: 365 year: 2013 end-page: 379 ident: b17 article-title: A comparative study on local binary pattern (LBP) based face recognition: LBP histogram versus LBP image publication-title: Neurocomputing – year: 2022 ident: b57 article-title: Towards lightweight black-box attacks against deep neural networks – volume: 174 start-page: 92 year: 2023 end-page: 98 ident: b52 article-title: Adversarial image generation by spatial transformation in perceptual colorspaces publication-title: Pattern Recognit. Lett. – start-page: 1 year: 2020 end-page: 10 ident: b45 article-title: Advfaces: Adversarial face synthesis publication-title: 2020 IEEE International Joint Conference on Biometrics – year: 2022 ident: b42 article-title: Natural color fool: Towards boosting black-box unrestricted attacks – reference: P. Isola, J.Y. Zhu, T. Zhou, A.A. Efros, Image-to-image translation with conditional adversarial networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1125–1134. – year: 2015 ident: b20 article-title: Deep face recognition – volume: 9 start-page: 92735 year: 2021 end-page: 92756 ident: b11 article-title: Adversarial attacks against face recognition: A comprehensive study publication-title: IEEE Access – volume: 28 year: 2015 ident: b49 article-title: Spatial transformer networks publication-title: Adv. Neural Inf. Process. Syst. – reference: F. Shamshad, M. Naseer, K. Nandakumar, Clip2protect: Protecting facial privacy using text-guided makeup via adversarial latent search, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 20595–20605. – start-page: 759 year: 2016 end-page: 770 ident: b70 article-title: Improving performances of MSER features in matching and retrieval tasks publication-title: European Conference on Computer Vision – year: 2017 ident: b35 article-title: Towards deep learning models resistant to adversarial attacks – volume: 580 year: 2024 ident: b46 article-title: EAP: An effective black-box impersonation adversarial patch attack method on face recognition in the physical world publication-title: Neurocomputing – volume: 23 start-page: 1499 year: 2016 end-page: 1503 ident: b82 article-title: Joint face detection and alignment using multitask cascaded convolutional networks publication-title: IEEE Signal Process. Lett. – reference: Y. Sun, L. Yu, H. Xie, J. Li, Y. Zhang, DiffAM: Diffusion-based Adversarial Makeup Transfer for Facial Privacy Protection, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024, pp. 24584–24594. – volume: 27 year: 2014 ident: b25 article-title: Deep learning face representation by joint identification-verification publication-title: Adv. Neural Inf. Process. Syst. – reference: S.M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, P. Frossard, Universal adversarial perturbations, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1765–1773. – volume: 23 start-page: 828 year: 2019 end-page: 841 ident: b38 article-title: One pixel attack for fooling deep neural networks publication-title: IEEE Trans. Evol. Comput. – volume: 219 start-page: 26 year: 2017 end-page: 38 ident: b72 article-title: Recurrent neural network for facial landmark detection publication-title: Neurocomputing – reference: N. Narodytska, S.P. Kasiviswanathan, Simple Black-Box Adversarial Attacks on Deep Neural Networks, in: CVPR Workshops, Vol. 2, 2017, p. 2. – volume: 9 start-page: 143 year: 2016 end-page: 158 ident: b69 article-title: Comparison of various edge detection technique publication-title: Int. J. Signal Process. Image Process. Pattern Recognit. – year: 2014 ident: b13 article-title: Towards deep neural network architectures robust to adversarial examples – start-page: 372 year: 2016 end-page: 387 ident: b37 article-title: The limitations of deep learning in adversarial settings publication-title: 2016 IEEE European Symposium on Security and Privacy – reference: Y. Sun, X. Wang, X. Tang, Deeply learned face representations are sparse, selective, and robust, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 2892–2900. – reference: S. Jandial, P. Mangla, S. Varshney, V. Balasubramanian, Advgan++: Harnessing latent layers for adversary generation, in: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2019. – volume: 433 start-page: 83 year: 2021 end-page: 95 ident: b75 article-title: A lowlight image enhancement method learning from both paired and unpaired data by adversarial training publication-title: Neurocomputing – reference: J. Liu, J. Zhou, J. Zeng, J. Tian, DifAttack: Query-Efficient Black-Box Adversarial Attack via Disentangled Feature Space, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38, No. 4, 2024, pp. 3666–3674. – start-page: 499 year: 2016 end-page: 515 ident: b32 article-title: A discriminative feature learning approach for deep face recognition publication-title: European Conference on Computer Vision – year: 2018 ident: b44 article-title: Generating adversarial examples with adversarial networks – volume: 9 start-page: 6051 year: 2023 end-page: 6063 ident: b55 article-title: SGMA: a novel adversarial attack approach with improved transferability publication-title: Complex Intell. Syst. – reference: H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, et al., Cosface: Large margin cosine loss for deep face recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 5265–5274. – year: 2014 ident: b8 article-title: Explaining and harnessing adversarial examples – reference: J. Deng, J. Guo, N. Xue, S. Zafeiriou, Arcface: Additive angular margin loss for deep face recognition, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 4690–4699. – year: 2022 ident: b56 article-title: Beyond imagenet attack: Towards crafting adversarial examples for black-box domains – reference: F. Liao, M. Liang, Y. Dong, T. Pang, X. Hu, J. Zhu, Defense against adversarial attacks using high-level representation guided denoiser, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1778–1787. – reference: A. Hasnat, J. Bohné, J. Milgram, S. Gentric, L. Chen, Deepvisage: Making face recognition simple yet with powerful generalization skills, in: Proceedings of the IEEE International Conference on Computer Vision Workshops, 2017, pp. 1682–1691. – year: 2013 ident: b7 article-title: Intriguing properties of neural networks – reference: Z. Cai, S. Rane, A.E. Brito, C. Song, S.V. Krishnamurthy, A.K. Roy-Chowdhury, M.S. Asif, Zero-Query Transfer Attacks on Context-Aware Object Detectors, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 15024–15034. – start-page: 539 year: 2005 end-page: 546 ident: b24 article-title: Learning a similarity metric discriminatively, with application to face verification publication-title: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1 – start-page: 67 year: 2018 end-page: 74 ident: b4 article-title: Vggface2: A dataset for recognising faces across pose and age publication-title: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition – reference: S.M. Iranmanesh, A. Dabouei, S. Soleymani, H. Kazemi, N. Nasrabadi, Robust facial landmark detection via aggregation on geometrically manipulated faces, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2020, pp. 330–340. – start-page: 67 year: 2018 end-page: 74 ident: b80 article-title: Vggface2: A dataset for recognising faces across pose and age publication-title: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition – volume: 174 start-page: 92 year: 2023 ident: 10.1016/j.neucom.2024.129295_b52 article-title: Adversarial image generation by spatial transformation in perceptual colorspaces publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2023.09.003 – ident: 10.1016/j.neucom.2024.129295_b19 doi: 10.1109/CVPR.2019.00482 – volume: 9 start-page: 6051 issue: 5 year: 2023 ident: 10.1016/j.neucom.2024.129295_b55 article-title: SGMA: a novel adversarial attack approach with improved transferability publication-title: Complex Intell. Syst. doi: 10.1007/s40747-023-01060-0 – ident: 10.1016/j.neucom.2024.129295_b77 doi: 10.1109/CVPR.2015.7298682 – ident: 10.1016/j.neucom.2024.129295_b3 doi: 10.1109/CVPR.2014.220 – start-page: 99 year: 2018 ident: 10.1016/j.neucom.2024.129295_b67 article-title: Adversarial examples in the physical world – volume: 355 start-page: 1 year: 2019 ident: 10.1016/j.neucom.2024.129295_b18 article-title: Local polynomial contrast binary patterns for face recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.056 – start-page: 499 year: 2016 ident: 10.1016/j.neucom.2024.129295_b32 article-title: A discriminative feature learning approach for deep face recognition – ident: 10.1016/j.neucom.2024.129295_b2 doi: 10.1109/SIBGRAPI.2018.00067 – ident: 10.1016/j.neucom.2024.129295_b39 doi: 10.1109/CVPR52729.2023.01973 – volume: 120 start-page: 365 year: 2013 ident: 10.1016/j.neucom.2024.129295_b17 article-title: A comparative study on local binary pattern (LBP) based face recognition: LBP histogram versus LBP image publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.10.032 – volume: 429 start-page: 215 year: 2021 ident: 10.1016/j.neucom.2024.129295_b1 article-title: Deep face recognition: A survey publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.10.081 – volume: 27 year: 2014 ident: 10.1016/j.neucom.2024.129295_b25 article-title: Deep learning face representation by joint identification-verification publication-title: Adv. Neural Inf. Process. Syst. – year: 2015 ident: 10.1016/j.neucom.2024.129295_b20 – ident: 10.1016/j.neucom.2024.129295_b36 doi: 10.1109/CVPR.2018.00957 – volume: 312 start-page: 135 year: 2018 ident: 10.1016/j.neucom.2024.129295_b28 article-title: Deep visual domain adaptation: A survey publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.083 – ident: 10.1016/j.neucom.2024.129295_b54 doi: 10.1609/aaai.v38i4.28156 – ident: 10.1016/j.neucom.2024.129295_b79 doi: 10.1109/CVPR.2019.00482 – ident: 10.1016/j.neucom.2024.129295_b14 doi: 10.1109/CVPR.2018.00191 – volume: 33 start-page: 4536 year: 2020 ident: 10.1016/j.neucom.2024.129295_b63 article-title: Diversity can be transferred: Output diversification for white-and black-box attacks publication-title: Adv. Neural Inf. Process. Syst. – ident: 10.1016/j.neucom.2024.129295_b53 doi: 10.1109/ICCV51070.2023.00395 – start-page: 759 year: 2016 ident: 10.1016/j.neucom.2024.129295_b70 article-title: Improving performances of MSER features in matching and retrieval tasks – start-page: 67 year: 2018 ident: 10.1016/j.neucom.2024.129295_b4 article-title: Vggface2: A dataset for recognising faces across pose and age – year: 2021 ident: 10.1016/j.neucom.2024.129295_b60 – start-page: 372 year: 2016 ident: 10.1016/j.neucom.2024.129295_b37 article-title: The limitations of deep learning in adversarial settings – ident: 10.1016/j.neucom.2024.129295_b59 doi: 10.1145/3460319.3464822 – volume: 23 start-page: 1499 issue: 10 year: 2016 ident: 10.1016/j.neucom.2024.129295_b82 article-title: Joint face detection and alignment using multitask cascaded convolutional networks publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2016.2603342 – start-page: 1 year: 2020 ident: 10.1016/j.neucom.2024.129295_b45 article-title: Advfaces: Adversarial face synthesis – year: 2017 ident: 10.1016/j.neucom.2024.129295_b35 – start-page: 1 year: 2016 ident: 10.1016/j.neucom.2024.129295_b16 article-title: Frontal to profile face verification in the wild – year: 2017 ident: 10.1016/j.neucom.2024.129295_b81 – volume: 388 start-page: 144 year: 2020 ident: 10.1016/j.neucom.2024.129295_b29 article-title: Systematic evaluation of deep face recognition methods publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.01.023 – ident: 10.1016/j.neucom.2024.129295_b40 doi: 10.1109/CVPR52733.2024.02321 – volume: 219 start-page: 26 year: 2017 ident: 10.1016/j.neucom.2024.129295_b72 article-title: Recurrent neural network for facial landmark detection publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.09.015 – volume: 433 start-page: 83 year: 2021 ident: 10.1016/j.neucom.2024.129295_b75 article-title: A lowlight image enhancement method learning from both paired and unpaired data by adversarial training publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.12.057 – year: 2018 ident: 10.1016/j.neucom.2024.129295_b48 – ident: 10.1016/j.neucom.2024.129295_b22 doi: 10.1109/ICCVW.2017.197 – year: 2022 ident: 10.1016/j.neucom.2024.129295_b27 article-title: Recent advances on loss functions in deep learning for computer vision publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.04.127 – volume: 37 start-page: 167 issue: 1 year: 2022 ident: 10.1016/j.neucom.2024.129295_b10 article-title: The ethical application of biometric facial recognition technology publication-title: AI Soc. doi: 10.1007/s00146-021-01199-9 – year: 2018 ident: 10.1016/j.neucom.2024.129295_b44 – start-page: 2196 year: 2020 ident: 10.1016/j.neucom.2024.129295_b61 article-title: Minimally distorted adversarial examples with a fast adaptive boundary attack – year: 2014 ident: 10.1016/j.neucom.2024.129295_b8 – year: 2013 ident: 10.1016/j.neucom.2024.129295_b33 – ident: 10.1016/j.neucom.2024.129295_b78 doi: 10.1109/CVPR.2017.713 – volume: 287 start-page: 45 year: 2018 ident: 10.1016/j.neucom.2024.129295_b31 article-title: Improving face recognition with domain adaptation publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.01.079 – start-page: 1979 year: 2019 ident: 10.1016/j.neucom.2024.129295_b51 article-title: Fast geometrically-perturbed adversarial faces – volume: 80 start-page: 855 issue: 1 year: 2021 ident: 10.1016/j.neucom.2024.129295_b62 article-title: Attacks on state-of-the-art face recognition using attentional adversarial attack generative network publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-020-09604-z – year: 2014 ident: 10.1016/j.neucom.2024.129295_b13 – start-page: 39 year: 2017 ident: 10.1016/j.neucom.2024.129295_b65 article-title: Towards evaluating the robustness of neural networks – year: 2022 ident: 10.1016/j.neucom.2024.129295_b57 – ident: 10.1016/j.neucom.2024.129295_b71 doi: 10.1109/WACV45572.2020.9093508 – year: 2023 ident: 10.1016/j.neucom.2024.129295_b43 article-title: Generating semantic adversarial examples via feature manipulation in latent space publication-title: IEEE Trans. Neural Netw. Learn. Syst. – year: 2017 ident: 10.1016/j.neucom.2024.129295_b6 – volume: 580 year: 2024 ident: 10.1016/j.neucom.2024.129295_b46 article-title: EAP: An effective black-box impersonation adversarial patch attack method on face recognition in the physical world publication-title: Neurocomputing doi: 10.1016/j.neucom.2024.127517 – volume: 23 start-page: 828 issue: 5 year: 2019 ident: 10.1016/j.neucom.2024.129295_b38 article-title: One pixel attack for fooling deep neural networks publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2019.2890858 – start-page: 67 year: 2018 ident: 10.1016/j.neucom.2024.129295_b80 article-title: Vggface2: A dataset for recognising faces across pose and age – volume: 9 start-page: 143 year: 2016 ident: 10.1016/j.neucom.2024.129295_b69 article-title: Comparison of various edge detection technique publication-title: Int. J. Signal Process. Image Process. Pattern Recognit. – volume: 28 year: 2015 ident: 10.1016/j.neucom.2024.129295_b49 article-title: Spatial transformer networks publication-title: Adv. Neural Inf. Process. Syst. – year: 2020 ident: 10.1016/j.neucom.2024.129295_b64 – ident: 10.1016/j.neucom.2024.129295_b83 doi: 10.1109/ICCV.2017.74 – ident: 10.1016/j.neucom.2024.129295_b73 doi: 10.1109/CVPR.2017.632 – ident: 10.1016/j.neucom.2024.129295_b26 doi: 10.1109/CVPR.2015.7298907 – volume: 133 year: 2023 ident: 10.1016/j.neucom.2024.129295_b41 article-title: Adversarial scratches: Deployable attacks to CNN classifiers publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2022.108985 – year: 2013 ident: 10.1016/j.neucom.2024.129295_b7 – volume: 9 start-page: 92735 year: 2021 ident: 10.1016/j.neucom.2024.129295_b11 article-title: Adversarial attacks against face recognition: A comprehensive study publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3092646 – ident: 10.1016/j.neucom.2024.129295_b5 doi: 10.1109/CVPR.2017.713 – ident: 10.1016/j.neucom.2024.129295_b23 doi: 10.1109/CVPR.2018.00552 – start-page: 1 year: 2022 ident: 10.1016/j.neucom.2024.129295_b68 article-title: Facial expression recognition based on hybrid geometry-appearance and dynamic-still feature fusion publication-title: Multimedia Tools Appl. – year: 2014 ident: 10.1016/j.neucom.2024.129295_b12 – year: 2015 ident: 10.1016/j.neucom.2024.129295_b30 – ident: 10.1016/j.neucom.2024.129295_b58 doi: 10.1109/CVPR52688.2022.01460 – year: 2014 ident: 10.1016/j.neucom.2024.129295_b76 – volume: 45 start-page: 503 issue: 1 year: 1989 ident: 10.1016/j.neucom.2024.129295_b50 article-title: On the limited memory BFGS method for large scale optimization publication-title: Math. Program. doi: 10.1007/BF01589116 – year: 2022 ident: 10.1016/j.neucom.2024.129295_b56 – start-page: 1 year: 2022 ident: 10.1016/j.neucom.2024.129295_b74 article-title: You can try without visiting: a comprehensive survey on virtually try-on outfits publication-title: Multimedia Tools Appl. – ident: 10.1016/j.neucom.2024.129295_b34 doi: 10.1109/CVPR.2017.17 – start-page: 539 year: 2005 ident: 10.1016/j.neucom.2024.129295_b24 article-title: Learning a similarity metric discriminatively, with application to face verification – year: 2017 ident: 10.1016/j.neucom.2024.129295_b9 – year: 2022 ident: 10.1016/j.neucom.2024.129295_b42 – ident: 10.1016/j.neucom.2024.129295_b15 – ident: 10.1016/j.neucom.2024.129295_b21 doi: 10.1109/ICCVW.2019.00257 – ident: 10.1016/j.neucom.2024.129295_b47 doi: 10.1145/3581783.3612454 – ident: 10.1016/j.neucom.2024.129295_b66 doi: 10.1109/CVPRW.2017.172 |
SSID | ssj0017129 |
Score | 2.4457703 |
Snippet | Face recognition systems based on deep learning have recently demonstrated an outstanding success in solving complex issues. Yet they turn out to be very... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 129295 |
SubjectTerms | Adversarial attack Face keypoints Face recognition Landmarks |
Title | Deep keypoints adversarial attack on face recognition systems |
URI | https://dx.doi.org/10.1016/j.neucom.2024.129295 |
Volume | 621 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED71sbDwRpRH5YHVreM4r4GhKlQFRBeo1C3yK1JBSiOarvx2zk1SgYQYWK1Ysr747r7Tfb4DuEmMK2dZQQ23PhUZ5imSSU65jZlFhpLZbXf951k4nYvHRbBowbh5C-NklbXvr3z61lvXK8MazWGxXA5fWMIxi3KVIeZ6kodt6HI_CYMOdEcPT9PZrpgQebxquccD6jY0L-i2Mq_cbpxshGOsGuB33A2a-C1CfYs6k0PYr-kiGVUnOoKWzY_hoBnFQGrLPIHbO2sLggZZrJZ5uSbSzVleS3e7iCxLqd_JKieZ1JbsJEO4UPVxXp_CfHL_Op7SejIC1ZgClNRHomK9LFCRsMKEKlMqZlzbWEbK8EgiK0BTVKE0NtAZQ8TRsk2smWRaxGHgn0EnX-X2HIgRyku0ChOZZEIpmfien6EXZL7hSCdUD2iDRlpUDTDSRhn2llbopQ69tEKvB1EDWfrjR6boo__cefHvnZewx91YXicNi66gU35s7DVyhVL1oT349Pr1jfgCK9a-gw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61HvTiW6zPHLymzWazr4MHqZaqbS-20FvIa6EK28Vur_52J_soCuLBa0ggfMnMfEO-zCB0mxj3nGU5Mcz6hKeQp0gqGWE2phYYSmrL6vrjSTic8ed5MG-hfvMXxskqa99f-fTSW9cjvRrNXr5Y9F5pwiCLci9D1NUkD7fQNg_8yOn6up8bnYcXeawquMcC4qY3_-dKkVdm1040wiBSdWEec20mfotP32LO4ADt1WQR31f7OUQtmx2h_aYRA67t8hjdPVibYzDHfLnIihWWrsvySrq7hWVRSP2OlxlOpbZ4IxiCgaqK8-oEzQaP0_6Q1H0RiIYEoCA-0BTrpYGKuOUmVKlSMWXaxjJShkUSOAEYogqlsYFOKeANdm1iTSXVPA4D_xS1s2VmzxA2XHmJVmEik5QrJRPf81PwgdQ3DMiE6iDSoCHyqvyFaHRhb6JCTzj0RIVeB0UNZOLHMQrw0H-uPP_3yhu0M5yOR2L0NHm5QLvMNeh1IrHoErWLj7W9AtZQqOvyVnwBwhq_Tg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+keypoints+adversarial+attack+on+face+recognition+systems&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=BenSaid%2C+Emna&rft.au=Neji%2C+Mohamed&rft.au=Jabberi%2C+Marwa&rft.au=Alimi%2C+Adel+M.&rft.date=2025-03-07&rft.issn=0925-2312&rft.volume=621&rft.spage=129295&rft_id=info:doi/10.1016%2Fj.neucom.2024.129295&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2024_129295 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |