Deep keypoints adversarial attack on face recognition systems

Face recognition systems based on deep learning have recently demonstrated an outstanding success in solving complex issues. Yet they turn out to be very vulnerable to attack. Therefore, the vulnerability of such systems has to be studied. An efficient attack strategy that deceives the face recognit...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 621; p. 129295
Main Authors BenSaid, Emna, Neji, Mohamed, Jabberi, Marwa, Alimi, Adel M.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 07.03.2025
Subjects
Online AccessGet full text
ISSN0925-2312
DOI10.1016/j.neucom.2024.129295

Cover

Abstract Face recognition systems based on deep learning have recently demonstrated an outstanding success in solving complex issues. Yet they turn out to be very vulnerable to attack. Therefore, the vulnerability of such systems has to be studied. An efficient attack strategy that deceives the face recognition system creates adversarial examples. The system may mistakenly reject a real subject as a result of such attack. Current methods for creating adversarial face images have poor perceptual quality and take too long to produce. In this paper, we introduce a novel Adversarial Attack named DKA2 that combines both geometry and intensity based attack categories. The attack consists of three main parts: keypoints detection, Geometrically keypoints Perturbation and adversarial mask Generation. Unlike other attacks which perturb every pixel in the image, our method perturbs only the salient regions of the face represented by the keypoints (2% of the image) and the automatic generated adversarial mask. Limiting the perturbed points minimizes the distortion caused by the attack and resulting images that seem natural. Besides, the suggested approach produces stronger adversarial examples that can avoid black-box face matchers with attack success rates as high as 97,03%. •Robust attack on face recognition systems using intensity and geometry-based methods.•Perturbs over 68 landmarks for adversarial face attack production.•High success on black-box face recognition systems with LFW and CFP datasets.
AbstractList Face recognition systems based on deep learning have recently demonstrated an outstanding success in solving complex issues. Yet they turn out to be very vulnerable to attack. Therefore, the vulnerability of such systems has to be studied. An efficient attack strategy that deceives the face recognition system creates adversarial examples. The system may mistakenly reject a real subject as a result of such attack. Current methods for creating adversarial face images have poor perceptual quality and take too long to produce. In this paper, we introduce a novel Adversarial Attack named DKA2 that combines both geometry and intensity based attack categories. The attack consists of three main parts: keypoints detection, Geometrically keypoints Perturbation and adversarial mask Generation. Unlike other attacks which perturb every pixel in the image, our method perturbs only the salient regions of the face represented by the keypoints (2% of the image) and the automatic generated adversarial mask. Limiting the perturbed points minimizes the distortion caused by the attack and resulting images that seem natural. Besides, the suggested approach produces stronger adversarial examples that can avoid black-box face matchers with attack success rates as high as 97,03%. •Robust attack on face recognition systems using intensity and geometry-based methods.•Perturbs over 68 landmarks for adversarial face attack production.•High success on black-box face recognition systems with LFW and CFP datasets.
ArticleNumber 129295
Author Jabberi, Marwa
Neji, Mohamed
BenSaid, Emna
Alimi, Adel M.
Author_xml – sequence: 1
  givenname: Emna
  orcidid: 0000-0003-0065-0559
  surname: BenSaid
  fullname: BenSaid, Emna
  email: emna.bensaid@regim.usf.tn
  organization: REsearch Groups in Intelligent Machines (REGIM Lab, University of Sfax), National Engineering School of Sfax (ENIS), Sfax, BP 1173, 3038, Tunisia
– sequence: 2
  givenname: Mohamed
  surname: Neji
  fullname: Neji, Mohamed
  email: mohamed.neji@enetcom.usf.tn
  organization: National School of Electronics and Telecommunications of Sfax Technopark, BP 1163, CP 3018, Sfax, Tunisia
– sequence: 3
  givenname: Marwa
  orcidid: 0000-0001-5930-2597
  surname: Jabberi
  fullname: Jabberi, Marwa
  email: marwa.jabberi@regim.usf.tn
  organization: University of Sousse, ISITCom, 4011, Sousse, Tunisia
– sequence: 4
  givenname: Adel M.
  orcidid: 0000-0002-0642-3384
  surname: Alimi
  fullname: Alimi, Adel M.
  email: adel.alimi@regim.usf.tn
  organization: Department of Electrical and Electronic Engineering Science, Faculty of Engineering and the Built Environment, University of Johannesburg, South Africa
BookMark eNp9j89KAzEYxHOoYFt9Aw_7Art-yW72z0FBqlah4EXPIZt8kWzbpCSxsG_vlvXsaWCGGea3IgvnHRJyR6GgQOv7oXD4o_yxYMCqgrKOdXxBltAxnrOSsmuyinEAoM2ULcnDM-Ip2-N48talmEl9xhBlsPKQyZSk2mfeZUYqzAIq_-1sspMRx5jwGG_IlZGHiLd_uiZfry-fm7d897F93zztcsU4T3nJeI3U8L6psNJ1b_q-BaawlU2vWSOr6Rdv-lpq5MoAGIQGdKtAgqrampdrUs27KvgYAxpxCvYowygoiAu2GMSMLS7YYsaeao9zDadvZ4tBRGXRKdR2gklCe_v_wC9vf2ed
Cites_doi 10.1016/j.patrec.2023.09.003
10.1109/CVPR.2019.00482
10.1007/s40747-023-01060-0
10.1109/CVPR.2015.7298682
10.1109/CVPR.2014.220
10.1016/j.neucom.2018.09.056
10.1109/SIBGRAPI.2018.00067
10.1109/CVPR52729.2023.01973
10.1016/j.neucom.2012.10.032
10.1016/j.neucom.2020.10.081
10.1109/CVPR.2018.00957
10.1016/j.neucom.2018.05.083
10.1609/aaai.v38i4.28156
10.1109/CVPR.2018.00191
10.1109/ICCV51070.2023.00395
10.1145/3460319.3464822
10.1109/LSP.2016.2603342
10.1016/j.neucom.2020.01.023
10.1109/CVPR52733.2024.02321
10.1016/j.neucom.2016.09.015
10.1016/j.neucom.2020.12.057
10.1109/ICCVW.2017.197
10.1016/j.neucom.2022.04.127
10.1007/s00146-021-01199-9
10.1109/CVPR.2017.713
10.1016/j.neucom.2018.01.079
10.1007/s11042-020-09604-z
10.1109/WACV45572.2020.9093508
10.1016/j.neucom.2024.127517
10.1109/TEVC.2019.2890858
10.1109/ICCV.2017.74
10.1109/CVPR.2017.632
10.1109/CVPR.2015.7298907
10.1016/j.patcog.2022.108985
10.1109/ACCESS.2021.3092646
10.1109/CVPR.2018.00552
10.1109/CVPR52688.2022.01460
10.1007/BF01589116
10.1109/CVPR.2017.17
10.1109/ICCVW.2019.00257
10.1145/3581783.3612454
10.1109/CVPRW.2017.172
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2024.129295
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_neucom_2024_129295
S0925231224020666
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
LG9
M41
R2-
RIG
SBC
SSH
WUQ
XPP
ID FETCH-LOGICAL-c255t-3256e1f5b74e4d6bfbb802ce8a7bd27a431257b6ade5cf00fe070d8c0a0c48653
IEDL.DBID AIKHN
ISSN 0925-2312
IngestDate Sun Jul 06 05:07:41 EDT 2025
Sat Feb 08 15:52:12 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Landmarks
Face keypoints
Face recognition
Adversarial attack
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c255t-3256e1f5b74e4d6bfbb802ce8a7bd27a431257b6ade5cf00fe070d8c0a0c48653
ORCID 0000-0003-0065-0559
0000-0002-0642-3384
0000-0001-5930-2597
ParticipantIDs crossref_primary_10_1016_j_neucom_2024_129295
elsevier_sciencedirect_doi_10_1016_j_neucom_2024_129295
PublicationCentury 2000
PublicationDate 2025-03-07
PublicationDateYYYYMMDD 2025-03-07
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-07
  day: 07
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Liu, Shen, Zhao, Nie (b46) 2024; 580
Goodfellow, Shlens, Szegedy (b8) 2014
Madry, Makelov, Schmidt, Tsipras, Vladu (b9) 2017
Madry, Makelov, Schmidt, Tsipras, Vladu (b35) 2017
Wu, Wang, Xia, Bailey, Ma (b64) 2020
Dong, Fu, Yang, Xiang, Pang, Su (b60) 2021
Deb, Zhang, Jain (b45) 2020
Xiao, Zhu, Li, He, Liu, Song (b48) 2018
Aydin, Temizel (b52) 2023; 174
Y. Taigman, M. Yang, M.A. Ranzato, L. Wolf, Deepface: Closing the gap to human-level performance in face verification, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 1701–1708.
Zhu, Hong, Li, Tang, Wang (b55) 2023; 9
Y. Sun, X. Wang, X. Tang, Deeply learned face representations are sparse, selective, and robust, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 2892–2900.
Kurakin, Goodfellow, Bengio (b67) 2018
Yang, Chen (b17) 2013; 120
Xu, Jiang, Wang, Zhou, Li, Liao (b18) 2019; 355
T. Stolik, I. Lang, S. Avidan, SAGA: Spectral Adversarial Geometric Attack on 3D Meshes, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 4284–4294.
G.B. Huang, M. Mattar, T. Berg, E. Learned-Miller, Labeled faces in the wild: A database forstudying face recognition in unconstrained environments, in: Workshop on Faces in’Real-Life’Images: Detection, Alignment, and Recognition, 2008.
Goodfellow, Shlens, Szegedy (b12) 2014
Su, Vargas, Sakurai (b38) 2019; 23
S.M. Iranmanesh, A. Dabouei, S. Soleymani, H. Kazemi, N. Nasrabadi, Robust facial landmark detection via aggregation on geometrically manipulated faces, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2020, pp. 330–340.
Howard, Zhu, Chen, Kalenichenko, Wang, Weyand (b81) 2017
Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, J. Li, Boosting adversarial attacks with momentum, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 9185–9193.
Papernot, McDaniel, Jha, Fredrikson, Celik, Swami (b37) 2016
P. Isola, J.Y. Zhu, T. Zhou, A.A. Efros, Image-to-image translation with conditional adversarial networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1125–1134.
Yang, Wu, Cao, Luo, Wei (b75) 2021; 433
Wen, Chen, Cai, He (b31) 2018; 287
Z. Zhao, G. Chen, J. Wang, Y. Yang, F. Song, J. Sun, Attack as defense: Characterizing adversarial examples using robustness, in: Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis, 2021, pp. 42–55.
Tashiro, Song, Ermon (b63) 2020; 33
Wang, Chen, Chen, Nepal, Rudolph, Grobler (b43) 2023
Dabouei, Soleymani, Dawson, Nasrabadi (b51) 2019
F. Liao, M. Liang, Y. Dong, T. Pang, X. Hu, J. Zhu, Defense against adversarial attacks using high-level representation guided denoiser, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1778–1787.
Y. Sun, L. Yu, H. Xie, J. Li, Y. Zhang, DiffAM: Diffusion-based Adversarial Makeup Transfer for Facial Privacy Protection, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024, pp. 24584–24594.
Sharif, Bhagavatula, Bauer, Reiter (b6) 2017
Z. Zhou, S. Hu, M. Li, H. Zhang, Y. Zhang, H. Jin, Advclip: Downstream-agnostic adversarial examples in multimodal contrastive learning, in: Proceedings of the 31st ACM International Conference on Multimedia, 2023, pp. 6311–6320.
Cao, Shen, Xie, Parkhi, Zisserman (b80) 2018
Sengupta, Chen, Castillo, Patel, Chellappa, Jacobs (b16) 2016
S. Jandial, P. Mangla, S. Varshney, V. Balasubramanian, Advgan++: Harnessing latent layers for adversary generation, in: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2019.
S.M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, P. Frossard, Universal adversarial perturbations, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1765–1773.
Croce, Hein (b61) 2020
Sun, Chen, Wang, Tang (b25) 2014; 27
Yuan, Zhang, Gao, Cheng, Song (b42) 2022
Smith, Miller (b10) 2022; 37
J. Deng, J. Guo, N. Xue, S. Zafeiriou, Arcface: Additive angular margin loss for deep face recognition, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 4690–4699.
Gu, Rigazio (b13) 2014
Wang, Deng (b1) 2021; 429
A. Hasnat, J. Bohné, J. Milgram, S. Gentric, L. Chen, Deepvisage: Making face recognition simple yet with powerful generalization skills, in: Proceedings of the IEEE International Conference on Computer Vision Workshops, 2017, pp. 1682–1691.
Carlini, Wagner (b65) 2017
Zhang, Zhang, Li, Qiao (b82) 2016; 23
Wang, Deng (b28) 2018; 312
N. Narodytska, S.P. Kasiviswanathan, Simple Black-Box Adversarial Attacks on Deep Neural Networks, in: CVPR Workshops, Vol. 2, 2017, p. 2.
Liu, Nocedal (b50) 1989; 45
Śluzek (b70) 2016
F. Schroff, D. Kalenichenko, J. Philbin, Facenet: A unified embedding for face recognition and clustering, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 815–823.
J. Liu, J. Zhou, J. Zeng, J. Tian, DifAttack: Query-Efficient Black-Box Adversarial Attack via Disentangled Feature Space, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38, No. 4, 2024, pp. 3666–3674.
Wen, Zhang, Li, Qiao (b32) 2016
Sun, Liang, Wang, Tang (b30) 2015
F. Shamshad, M. Naseer, K. Nandakumar, Clip2protect: Protecting facial privacy using text-guided makeup via adversarial latent search, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 20595–20605.
Xiao, Li, Zhu, He, Liu, Song (b44) 2018
Yang, Song, Wu (b62) 2021; 80
Vakhshiteh, Nickabadi, Ramachandra (b11) 2021; 9
Giulivi, Jere, Rossi, Koushanfar, Ciocarlie, Hitaj, Boracchi (b41) 2023; 133
Yi, Lei, Liao, Li (b76) 2014
I. Masi, Y. Wu, T. Hassner, P. Natarajan, Deep Face Recognition: A Survey, in: 2018 31st SIBGRAPI Conference on Graphics, Patterns and Images, SIBGRAPI.
You, Han, Xu, Li (b29) 2020; 388
Chen, Yang, Qian (b72) 2017; 219
Jaderberg, Simonyan, Zisserman (b49) 2015; 28
Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, Fergus (b33) 2013
Parkhi, Vedaldi, Zisserman (b20) 2015
W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, L. Song, Sphereface: Deep hypersphere embedding for face recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 212–220.
Z. Cai, S. Rane, A.E. Brito, C. Song, S.V. Krishnamurthy, A.K. Roy-Chowdhury, M.S. Asif, Zero-Query Transfer Attacks on Context-Aware Object Detectors, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 15024–15034.
Chopra, Hadsell, LeCun (b24) 2005
Yan, Yang, Zheng, Wang, Peng (b68) 2022
Zhang, Li, Chen, Song, Gao, He, Xue (b56) 2022
R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, Grad-cam: Visual explanations from deep networks via gradient-based localization, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 618–626.
H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, et al., Cosface: Large margin cosine loss for deep face recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 5265–5274.
Tian, Su, Lauria, Liu (b27) 2022
Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, Fergus (b7) 2013
Vit (b69) 2016; 9
Ghodhbani, Neji, Razzak, Alimi (b74) 2022
Cao, Shen, Xie, Parkhi, Zisserman (b4) 2018
Sun, Zhang, Chaoqun, Wang, Li, Liu (b57) 2022
Sharif (10.1016/j.neucom.2024.129295_b6) 2017
10.1016/j.neucom.2024.129295_b40
Wu (10.1016/j.neucom.2024.129295_b64) 2020
10.1016/j.neucom.2024.129295_b47
Yi (10.1016/j.neucom.2024.129295_b76) 2014
Sun (10.1016/j.neucom.2024.129295_b25) 2014; 27
Sun (10.1016/j.neucom.2024.129295_b30) 2015
Ghodhbani (10.1016/j.neucom.2024.129295_b74) 2022
10.1016/j.neucom.2024.129295_b83
Parkhi (10.1016/j.neucom.2024.129295_b20) 2015
Vit (10.1016/j.neucom.2024.129295_b69) 2016; 9
Wen (10.1016/j.neucom.2024.129295_b32) 2016
Gu (10.1016/j.neucom.2024.129295_b13) 2014
Sengupta (10.1016/j.neucom.2024.129295_b16) 2016
10.1016/j.neucom.2024.129295_b39
Xiao (10.1016/j.neucom.2024.129295_b44) 2018
Madry (10.1016/j.neucom.2024.129295_b35) 2017
Tian (10.1016/j.neucom.2024.129295_b27) 2022
10.1016/j.neucom.2024.129295_b73
10.1016/j.neucom.2024.129295_b34
Yang (10.1016/j.neucom.2024.129295_b62) 2021; 80
10.1016/j.neucom.2024.129295_b78
Yang (10.1016/j.neucom.2024.129295_b17) 2013; 120
You (10.1016/j.neucom.2024.129295_b29) 2020; 388
Wen (10.1016/j.neucom.2024.129295_b31) 2018; 287
10.1016/j.neucom.2024.129295_b77
10.1016/j.neucom.2024.129295_b2
10.1016/j.neucom.2024.129295_b36
Chen (10.1016/j.neucom.2024.129295_b72) 2017; 219
10.1016/j.neucom.2024.129295_b3
10.1016/j.neucom.2024.129295_b79
10.1016/j.neucom.2024.129295_b5
Croce (10.1016/j.neucom.2024.129295_b61) 2020
Howard (10.1016/j.neucom.2024.129295_b81) 2017
10.1016/j.neucom.2024.129295_b71
Szegedy (10.1016/j.neucom.2024.129295_b7) 2013
Wang (10.1016/j.neucom.2024.129295_b28) 2018; 312
Goodfellow (10.1016/j.neucom.2024.129295_b12) 2014
Papernot (10.1016/j.neucom.2024.129295_b37) 2016
Zhang (10.1016/j.neucom.2024.129295_b56) 2022
10.1016/j.neucom.2024.129295_b26
Deb (10.1016/j.neucom.2024.129295_b45) 2020
Sun (10.1016/j.neucom.2024.129295_b57) 2022
Vakhshiteh (10.1016/j.neucom.2024.129295_b11) 2021; 9
Zhu (10.1016/j.neucom.2024.129295_b55) 2023; 9
Tashiro (10.1016/j.neucom.2024.129295_b63) 2020; 33
Xu (10.1016/j.neucom.2024.129295_b18) 2019; 355
Zhang (10.1016/j.neucom.2024.129295_b82) 2016; 23
10.1016/j.neucom.2024.129295_b21
Chopra (10.1016/j.neucom.2024.129295_b24) 2005
Liu (10.1016/j.neucom.2024.129295_b46) 2024; 580
10.1016/j.neucom.2024.129295_b23
10.1016/j.neucom.2024.129295_b22
10.1016/j.neucom.2024.129295_b66
Wang (10.1016/j.neucom.2024.129295_b1) 2021; 429
Dong (10.1016/j.neucom.2024.129295_b60) 2021
Kurakin (10.1016/j.neucom.2024.129295_b67) 2018
Smith (10.1016/j.neucom.2024.129295_b10) 2022; 37
Madry (10.1016/j.neucom.2024.129295_b9) 2017
Giulivi (10.1016/j.neucom.2024.129295_b41) 2023; 133
10.1016/j.neucom.2024.129295_b15
10.1016/j.neucom.2024.129295_b59
Cao (10.1016/j.neucom.2024.129295_b4) 2018
Wang (10.1016/j.neucom.2024.129295_b43) 2023
10.1016/j.neucom.2024.129295_b19
Liu (10.1016/j.neucom.2024.129295_b50) 1989; 45
Yang (10.1016/j.neucom.2024.129295_b75) 2021; 433
10.1016/j.neucom.2024.129295_b54
Su (10.1016/j.neucom.2024.129295_b38) 2019; 23
10.1016/j.neucom.2024.129295_b53
Yan (10.1016/j.neucom.2024.129295_b68) 2022
10.1016/j.neucom.2024.129295_b14
10.1016/j.neucom.2024.129295_b58
Jaderberg (10.1016/j.neucom.2024.129295_b49) 2015; 28
Carlini (10.1016/j.neucom.2024.129295_b65) 2017
Szegedy (10.1016/j.neucom.2024.129295_b33) 2013
Dabouei (10.1016/j.neucom.2024.129295_b51) 2019
Aydin (10.1016/j.neucom.2024.129295_b52) 2023; 174
Yuan (10.1016/j.neucom.2024.129295_b42) 2022
Goodfellow (10.1016/j.neucom.2024.129295_b8) 2014
Xiao (10.1016/j.neucom.2024.129295_b48) 2018
Śluzek (10.1016/j.neucom.2024.129295_b70) 2016
Cao (10.1016/j.neucom.2024.129295_b80) 2018
References_xml – reference: Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, J. Li, Boosting adversarial attacks with momentum, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 9185–9193.
– reference: F. Schroff, D. Kalenichenko, J. Philbin, Facenet: A unified embedding for face recognition and clustering, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 815–823.
– volume: 33
  start-page: 4536
  year: 2020
  end-page: 4548
  ident: b63
  article-title: Diversity can be transferred: Output diversification for white-and black-box attacks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 388
  start-page: 144
  year: 2020
  end-page: 156
  ident: b29
  article-title: Systematic evaluation of deep face recognition methods
  publication-title: Neurocomputing
– start-page: 1
  year: 2022
  end-page: 26
  ident: b68
  article-title: Facial expression recognition based on hybrid geometry-appearance and dynamic-still feature fusion
  publication-title: Multimedia Tools Appl.
– reference: R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, Grad-cam: Visual explanations from deep networks via gradient-based localization, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 618–626.
– volume: 429
  start-page: 215
  year: 2021
  end-page: 244
  ident: b1
  article-title: Deep face recognition: A survey
  publication-title: Neurocomputing
– year: 2022
  ident: b27
  article-title: Recent advances on loss functions in deep learning for computer vision
  publication-title: Neurocomputing
– volume: 133
  year: 2023
  ident: b41
  article-title: Adversarial scratches: Deployable attacks to CNN classifiers
  publication-title: Pattern Recognit.
– volume: 80
  start-page: 855
  year: 2021
  end-page: 875
  ident: b62
  article-title: Attacks on state-of-the-art face recognition using attentional adversarial attack generative network
  publication-title: Multimed. Tools Appl.
– volume: 355
  start-page: 1
  year: 2019
  end-page: 12
  ident: b18
  article-title: Local polynomial contrast binary patterns for face recognition
  publication-title: Neurocomputing
– volume: 37
  start-page: 167
  year: 2022
  end-page: 175
  ident: b10
  article-title: The ethical application of biometric facial recognition technology
  publication-title: AI Soc.
– start-page: 99
  year: 2018
  end-page: 112
  ident: b67
  article-title: Adversarial examples in the physical world
  publication-title: Artificial Intelligence Safety and Security
– year: 2017
  ident: b6
  article-title: Adversarial generative nets: Neural network attacks on state-of-the-art face recognition
– start-page: 1
  year: 2016
  end-page: 9
  ident: b16
  article-title: Frontal to profile face verification in the wild
  publication-title: 2016 IEEE Winter Conference on Applications of Computer Vision
– volume: 45
  start-page: 503
  year: 1989
  end-page: 528
  ident: b50
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Math. Program.
– year: 2015
  ident: b30
  article-title: Deepid3: Face recognition with very deep neural networks
– start-page: 1979
  year: 2019
  end-page: 1988
  ident: b51
  article-title: Fast geometrically-perturbed adversarial faces
  publication-title: 2019 IEEE Winter Conference on Applications of Computer Vision
– volume: 287
  start-page: 45
  year: 2018
  end-page: 51
  ident: b31
  article-title: Improving face recognition with domain adaptation
  publication-title: Neurocomputing
– reference: I. Masi, Y. Wu, T. Hassner, P. Natarajan, Deep Face Recognition: A Survey, in: 2018 31st SIBGRAPI Conference on Graphics, Patterns and Images, SIBGRAPI.
– reference: W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, L. Song, Sphereface: Deep hypersphere embedding for face recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 212–220.
– reference: T. Stolik, I. Lang, S. Avidan, SAGA: Spectral Adversarial Geometric Attack on 3D Meshes, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 4284–4294.
– start-page: 2196
  year: 2020
  end-page: 2205
  ident: b61
  article-title: Minimally distorted adversarial examples with a fast adaptive boundary attack
  publication-title: International Conference on Machine Learning
– start-page: 39
  year: 2017
  end-page: 57
  ident: b65
  article-title: Towards evaluating the robustness of neural networks
  publication-title: 2017 IEEE Symposium on Security and Privacy
– year: 2014
  ident: b12
  article-title: Explaining and harnessing adversarial examples
– year: 2017
  ident: b9
  article-title: Towards deep learning models resistant to adversarial attacks
– reference: Z. Zhou, S. Hu, M. Li, H. Zhang, Y. Zhang, H. Jin, Advclip: Downstream-agnostic adversarial examples in multimodal contrastive learning, in: Proceedings of the 31st ACM International Conference on Multimedia, 2023, pp. 6311–6320.
– year: 2023
  ident: b43
  article-title: Generating semantic adversarial examples via feature manipulation in latent space
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 312
  start-page: 135
  year: 2018
  end-page: 153
  ident: b28
  article-title: Deep visual domain adaptation: A survey
  publication-title: Neurocomputing
– reference: Z. Zhao, G. Chen, J. Wang, Y. Yang, F. Song, J. Sun, Attack as defense: Characterizing adversarial examples using robustness, in: Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis, 2021, pp. 42–55.
– year: 2021
  ident: b60
  article-title: Adversarial attacks on ML defense models competition
– reference: Y. Taigman, M. Yang, M.A. Ranzato, L. Wolf, Deepface: Closing the gap to human-level performance in face verification, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 1701–1708.
– year: 2017
  ident: b81
  article-title: Mobilenets: Efficient convolutional neural networks for mobile vision applications
– reference: G.B. Huang, M. Mattar, T. Berg, E. Learned-Miller, Labeled faces in the wild: A database forstudying face recognition in unconstrained environments, in: Workshop on Faces in’Real-Life’Images: Detection, Alignment, and Recognition, 2008.
– start-page: 1
  year: 2022
  end-page: 32
  ident: b74
  article-title: You can try without visiting: a comprehensive survey on virtually try-on outfits
  publication-title: Multimedia Tools Appl.
– year: 2020
  ident: b64
  article-title: Skip connections matter: On the transferability of adversarial examples generated with resnets
– year: 2013
  ident: b33
  article-title: Intriguing properties of neural networks
– year: 2018
  ident: b48
  article-title: Spatially transformed adversarial examples
– year: 2014
  ident: b76
  article-title: Learning face representation from scratch
– volume: 120
  start-page: 365
  year: 2013
  end-page: 379
  ident: b17
  article-title: A comparative study on local binary pattern (LBP) based face recognition: LBP histogram versus LBP image
  publication-title: Neurocomputing
– year: 2022
  ident: b57
  article-title: Towards lightweight black-box attacks against deep neural networks
– volume: 174
  start-page: 92
  year: 2023
  end-page: 98
  ident: b52
  article-title: Adversarial image generation by spatial transformation in perceptual colorspaces
  publication-title: Pattern Recognit. Lett.
– start-page: 1
  year: 2020
  end-page: 10
  ident: b45
  article-title: Advfaces: Adversarial face synthesis
  publication-title: 2020 IEEE International Joint Conference on Biometrics
– year: 2022
  ident: b42
  article-title: Natural color fool: Towards boosting black-box unrestricted attacks
– reference: P. Isola, J.Y. Zhu, T. Zhou, A.A. Efros, Image-to-image translation with conditional adversarial networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1125–1134.
– year: 2015
  ident: b20
  article-title: Deep face recognition
– volume: 9
  start-page: 92735
  year: 2021
  end-page: 92756
  ident: b11
  article-title: Adversarial attacks against face recognition: A comprehensive study
  publication-title: IEEE Access
– volume: 28
  year: 2015
  ident: b49
  article-title: Spatial transformer networks
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: F. Shamshad, M. Naseer, K. Nandakumar, Clip2protect: Protecting facial privacy using text-guided makeup via adversarial latent search, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 20595–20605.
– start-page: 759
  year: 2016
  end-page: 770
  ident: b70
  article-title: Improving performances of MSER features in matching and retrieval tasks
  publication-title: European Conference on Computer Vision
– year: 2017
  ident: b35
  article-title: Towards deep learning models resistant to adversarial attacks
– volume: 580
  year: 2024
  ident: b46
  article-title: EAP: An effective black-box impersonation adversarial patch attack method on face recognition in the physical world
  publication-title: Neurocomputing
– volume: 23
  start-page: 1499
  year: 2016
  end-page: 1503
  ident: b82
  article-title: Joint face detection and alignment using multitask cascaded convolutional networks
  publication-title: IEEE Signal Process. Lett.
– reference: Y. Sun, L. Yu, H. Xie, J. Li, Y. Zhang, DiffAM: Diffusion-based Adversarial Makeup Transfer for Facial Privacy Protection, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024, pp. 24584–24594.
– volume: 27
  year: 2014
  ident: b25
  article-title: Deep learning face representation by joint identification-verification
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: S.M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, P. Frossard, Universal adversarial perturbations, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1765–1773.
– volume: 23
  start-page: 828
  year: 2019
  end-page: 841
  ident: b38
  article-title: One pixel attack for fooling deep neural networks
  publication-title: IEEE Trans. Evol. Comput.
– volume: 219
  start-page: 26
  year: 2017
  end-page: 38
  ident: b72
  article-title: Recurrent neural network for facial landmark detection
  publication-title: Neurocomputing
– reference: N. Narodytska, S.P. Kasiviswanathan, Simple Black-Box Adversarial Attacks on Deep Neural Networks, in: CVPR Workshops, Vol. 2, 2017, p. 2.
– volume: 9
  start-page: 143
  year: 2016
  end-page: 158
  ident: b69
  article-title: Comparison of various edge detection technique
  publication-title: Int. J. Signal Process. Image Process. Pattern Recognit.
– year: 2014
  ident: b13
  article-title: Towards deep neural network architectures robust to adversarial examples
– start-page: 372
  year: 2016
  end-page: 387
  ident: b37
  article-title: The limitations of deep learning in adversarial settings
  publication-title: 2016 IEEE European Symposium on Security and Privacy
– reference: Y. Sun, X. Wang, X. Tang, Deeply learned face representations are sparse, selective, and robust, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 2892–2900.
– reference: S. Jandial, P. Mangla, S. Varshney, V. Balasubramanian, Advgan++: Harnessing latent layers for adversary generation, in: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2019.
– volume: 433
  start-page: 83
  year: 2021
  end-page: 95
  ident: b75
  article-title: A lowlight image enhancement method learning from both paired and unpaired data by adversarial training
  publication-title: Neurocomputing
– reference: J. Liu, J. Zhou, J. Zeng, J. Tian, DifAttack: Query-Efficient Black-Box Adversarial Attack via Disentangled Feature Space, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38, No. 4, 2024, pp. 3666–3674.
– start-page: 499
  year: 2016
  end-page: 515
  ident: b32
  article-title: A discriminative feature learning approach for deep face recognition
  publication-title: European Conference on Computer Vision
– year: 2018
  ident: b44
  article-title: Generating adversarial examples with adversarial networks
– volume: 9
  start-page: 6051
  year: 2023
  end-page: 6063
  ident: b55
  article-title: SGMA: a novel adversarial attack approach with improved transferability
  publication-title: Complex Intell. Syst.
– reference: H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, et al., Cosface: Large margin cosine loss for deep face recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 5265–5274.
– year: 2014
  ident: b8
  article-title: Explaining and harnessing adversarial examples
– reference: J. Deng, J. Guo, N. Xue, S. Zafeiriou, Arcface: Additive angular margin loss for deep face recognition, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 4690–4699.
– year: 2022
  ident: b56
  article-title: Beyond imagenet attack: Towards crafting adversarial examples for black-box domains
– reference: F. Liao, M. Liang, Y. Dong, T. Pang, X. Hu, J. Zhu, Defense against adversarial attacks using high-level representation guided denoiser, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1778–1787.
– reference: A. Hasnat, J. Bohné, J. Milgram, S. Gentric, L. Chen, Deepvisage: Making face recognition simple yet with powerful generalization skills, in: Proceedings of the IEEE International Conference on Computer Vision Workshops, 2017, pp. 1682–1691.
– year: 2013
  ident: b7
  article-title: Intriguing properties of neural networks
– reference: Z. Cai, S. Rane, A.E. Brito, C. Song, S.V. Krishnamurthy, A.K. Roy-Chowdhury, M.S. Asif, Zero-Query Transfer Attacks on Context-Aware Object Detectors, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 15024–15034.
– start-page: 539
  year: 2005
  end-page: 546
  ident: b24
  article-title: Learning a similarity metric discriminatively, with application to face verification
  publication-title: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1
– start-page: 67
  year: 2018
  end-page: 74
  ident: b4
  article-title: Vggface2: A dataset for recognising faces across pose and age
  publication-title: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition
– reference: S.M. Iranmanesh, A. Dabouei, S. Soleymani, H. Kazemi, N. Nasrabadi, Robust facial landmark detection via aggregation on geometrically manipulated faces, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2020, pp. 330–340.
– start-page: 67
  year: 2018
  end-page: 74
  ident: b80
  article-title: Vggface2: A dataset for recognising faces across pose and age
  publication-title: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition
– volume: 174
  start-page: 92
  year: 2023
  ident: 10.1016/j.neucom.2024.129295_b52
  article-title: Adversarial image generation by spatial transformation in perceptual colorspaces
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2023.09.003
– ident: 10.1016/j.neucom.2024.129295_b19
  doi: 10.1109/CVPR.2019.00482
– volume: 9
  start-page: 6051
  issue: 5
  year: 2023
  ident: 10.1016/j.neucom.2024.129295_b55
  article-title: SGMA: a novel adversarial attack approach with improved transferability
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-023-01060-0
– ident: 10.1016/j.neucom.2024.129295_b77
  doi: 10.1109/CVPR.2015.7298682
– ident: 10.1016/j.neucom.2024.129295_b3
  doi: 10.1109/CVPR.2014.220
– start-page: 99
  year: 2018
  ident: 10.1016/j.neucom.2024.129295_b67
  article-title: Adversarial examples in the physical world
– volume: 355
  start-page: 1
  year: 2019
  ident: 10.1016/j.neucom.2024.129295_b18
  article-title: Local polynomial contrast binary patterns for face recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.056
– start-page: 499
  year: 2016
  ident: 10.1016/j.neucom.2024.129295_b32
  article-title: A discriminative feature learning approach for deep face recognition
– ident: 10.1016/j.neucom.2024.129295_b2
  doi: 10.1109/SIBGRAPI.2018.00067
– ident: 10.1016/j.neucom.2024.129295_b39
  doi: 10.1109/CVPR52729.2023.01973
– volume: 120
  start-page: 365
  year: 2013
  ident: 10.1016/j.neucom.2024.129295_b17
  article-title: A comparative study on local binary pattern (LBP) based face recognition: LBP histogram versus LBP image
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.10.032
– volume: 429
  start-page: 215
  year: 2021
  ident: 10.1016/j.neucom.2024.129295_b1
  article-title: Deep face recognition: A survey
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.10.081
– volume: 27
  year: 2014
  ident: 10.1016/j.neucom.2024.129295_b25
  article-title: Deep learning face representation by joint identification-verification
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2015
  ident: 10.1016/j.neucom.2024.129295_b20
– ident: 10.1016/j.neucom.2024.129295_b36
  doi: 10.1109/CVPR.2018.00957
– volume: 312
  start-page: 135
  year: 2018
  ident: 10.1016/j.neucom.2024.129295_b28
  article-title: Deep visual domain adaptation: A survey
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.083
– ident: 10.1016/j.neucom.2024.129295_b54
  doi: 10.1609/aaai.v38i4.28156
– ident: 10.1016/j.neucom.2024.129295_b79
  doi: 10.1109/CVPR.2019.00482
– ident: 10.1016/j.neucom.2024.129295_b14
  doi: 10.1109/CVPR.2018.00191
– volume: 33
  start-page: 4536
  year: 2020
  ident: 10.1016/j.neucom.2024.129295_b63
  article-title: Diversity can be transferred: Output diversification for white-and black-box attacks
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.neucom.2024.129295_b53
  doi: 10.1109/ICCV51070.2023.00395
– start-page: 759
  year: 2016
  ident: 10.1016/j.neucom.2024.129295_b70
  article-title: Improving performances of MSER features in matching and retrieval tasks
– start-page: 67
  year: 2018
  ident: 10.1016/j.neucom.2024.129295_b4
  article-title: Vggface2: A dataset for recognising faces across pose and age
– year: 2021
  ident: 10.1016/j.neucom.2024.129295_b60
– start-page: 372
  year: 2016
  ident: 10.1016/j.neucom.2024.129295_b37
  article-title: The limitations of deep learning in adversarial settings
– ident: 10.1016/j.neucom.2024.129295_b59
  doi: 10.1145/3460319.3464822
– volume: 23
  start-page: 1499
  issue: 10
  year: 2016
  ident: 10.1016/j.neucom.2024.129295_b82
  article-title: Joint face detection and alignment using multitask cascaded convolutional networks
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2016.2603342
– start-page: 1
  year: 2020
  ident: 10.1016/j.neucom.2024.129295_b45
  article-title: Advfaces: Adversarial face synthesis
– year: 2017
  ident: 10.1016/j.neucom.2024.129295_b35
– start-page: 1
  year: 2016
  ident: 10.1016/j.neucom.2024.129295_b16
  article-title: Frontal to profile face verification in the wild
– year: 2017
  ident: 10.1016/j.neucom.2024.129295_b81
– volume: 388
  start-page: 144
  year: 2020
  ident: 10.1016/j.neucom.2024.129295_b29
  article-title: Systematic evaluation of deep face recognition methods
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.01.023
– ident: 10.1016/j.neucom.2024.129295_b40
  doi: 10.1109/CVPR52733.2024.02321
– volume: 219
  start-page: 26
  year: 2017
  ident: 10.1016/j.neucom.2024.129295_b72
  article-title: Recurrent neural network for facial landmark detection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.015
– volume: 433
  start-page: 83
  year: 2021
  ident: 10.1016/j.neucom.2024.129295_b75
  article-title: A lowlight image enhancement method learning from both paired and unpaired data by adversarial training
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.12.057
– year: 2018
  ident: 10.1016/j.neucom.2024.129295_b48
– ident: 10.1016/j.neucom.2024.129295_b22
  doi: 10.1109/ICCVW.2017.197
– year: 2022
  ident: 10.1016/j.neucom.2024.129295_b27
  article-title: Recent advances on loss functions in deep learning for computer vision
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.04.127
– volume: 37
  start-page: 167
  issue: 1
  year: 2022
  ident: 10.1016/j.neucom.2024.129295_b10
  article-title: The ethical application of biometric facial recognition technology
  publication-title: AI Soc.
  doi: 10.1007/s00146-021-01199-9
– year: 2018
  ident: 10.1016/j.neucom.2024.129295_b44
– start-page: 2196
  year: 2020
  ident: 10.1016/j.neucom.2024.129295_b61
  article-title: Minimally distorted adversarial examples with a fast adaptive boundary attack
– year: 2014
  ident: 10.1016/j.neucom.2024.129295_b8
– year: 2013
  ident: 10.1016/j.neucom.2024.129295_b33
– ident: 10.1016/j.neucom.2024.129295_b78
  doi: 10.1109/CVPR.2017.713
– volume: 287
  start-page: 45
  year: 2018
  ident: 10.1016/j.neucom.2024.129295_b31
  article-title: Improving face recognition with domain adaptation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.01.079
– start-page: 1979
  year: 2019
  ident: 10.1016/j.neucom.2024.129295_b51
  article-title: Fast geometrically-perturbed adversarial faces
– volume: 80
  start-page: 855
  issue: 1
  year: 2021
  ident: 10.1016/j.neucom.2024.129295_b62
  article-title: Attacks on state-of-the-art face recognition using attentional adversarial attack generative network
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-09604-z
– year: 2014
  ident: 10.1016/j.neucom.2024.129295_b13
– start-page: 39
  year: 2017
  ident: 10.1016/j.neucom.2024.129295_b65
  article-title: Towards evaluating the robustness of neural networks
– year: 2022
  ident: 10.1016/j.neucom.2024.129295_b57
– ident: 10.1016/j.neucom.2024.129295_b71
  doi: 10.1109/WACV45572.2020.9093508
– year: 2023
  ident: 10.1016/j.neucom.2024.129295_b43
  article-title: Generating semantic adversarial examples via feature manipulation in latent space
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– year: 2017
  ident: 10.1016/j.neucom.2024.129295_b6
– volume: 580
  year: 2024
  ident: 10.1016/j.neucom.2024.129295_b46
  article-title: EAP: An effective black-box impersonation adversarial patch attack method on face recognition in the physical world
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2024.127517
– volume: 23
  start-page: 828
  issue: 5
  year: 2019
  ident: 10.1016/j.neucom.2024.129295_b38
  article-title: One pixel attack for fooling deep neural networks
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2890858
– start-page: 67
  year: 2018
  ident: 10.1016/j.neucom.2024.129295_b80
  article-title: Vggface2: A dataset for recognising faces across pose and age
– volume: 9
  start-page: 143
  year: 2016
  ident: 10.1016/j.neucom.2024.129295_b69
  article-title: Comparison of various edge detection technique
  publication-title: Int. J. Signal Process. Image Process. Pattern Recognit.
– volume: 28
  year: 2015
  ident: 10.1016/j.neucom.2024.129295_b49
  article-title: Spatial transformer networks
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2020
  ident: 10.1016/j.neucom.2024.129295_b64
– ident: 10.1016/j.neucom.2024.129295_b83
  doi: 10.1109/ICCV.2017.74
– ident: 10.1016/j.neucom.2024.129295_b73
  doi: 10.1109/CVPR.2017.632
– ident: 10.1016/j.neucom.2024.129295_b26
  doi: 10.1109/CVPR.2015.7298907
– volume: 133
  year: 2023
  ident: 10.1016/j.neucom.2024.129295_b41
  article-title: Adversarial scratches: Deployable attacks to CNN classifiers
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2022.108985
– year: 2013
  ident: 10.1016/j.neucom.2024.129295_b7
– volume: 9
  start-page: 92735
  year: 2021
  ident: 10.1016/j.neucom.2024.129295_b11
  article-title: Adversarial attacks against face recognition: A comprehensive study
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3092646
– ident: 10.1016/j.neucom.2024.129295_b5
  doi: 10.1109/CVPR.2017.713
– ident: 10.1016/j.neucom.2024.129295_b23
  doi: 10.1109/CVPR.2018.00552
– start-page: 1
  year: 2022
  ident: 10.1016/j.neucom.2024.129295_b68
  article-title: Facial expression recognition based on hybrid geometry-appearance and dynamic-still feature fusion
  publication-title: Multimedia Tools Appl.
– year: 2014
  ident: 10.1016/j.neucom.2024.129295_b12
– year: 2015
  ident: 10.1016/j.neucom.2024.129295_b30
– ident: 10.1016/j.neucom.2024.129295_b58
  doi: 10.1109/CVPR52688.2022.01460
– year: 2014
  ident: 10.1016/j.neucom.2024.129295_b76
– volume: 45
  start-page: 503
  issue: 1
  year: 1989
  ident: 10.1016/j.neucom.2024.129295_b50
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Math. Program.
  doi: 10.1007/BF01589116
– year: 2022
  ident: 10.1016/j.neucom.2024.129295_b56
– start-page: 1
  year: 2022
  ident: 10.1016/j.neucom.2024.129295_b74
  article-title: You can try without visiting: a comprehensive survey on virtually try-on outfits
  publication-title: Multimedia Tools Appl.
– ident: 10.1016/j.neucom.2024.129295_b34
  doi: 10.1109/CVPR.2017.17
– start-page: 539
  year: 2005
  ident: 10.1016/j.neucom.2024.129295_b24
  article-title: Learning a similarity metric discriminatively, with application to face verification
– year: 2017
  ident: 10.1016/j.neucom.2024.129295_b9
– year: 2022
  ident: 10.1016/j.neucom.2024.129295_b42
– ident: 10.1016/j.neucom.2024.129295_b15
– ident: 10.1016/j.neucom.2024.129295_b21
  doi: 10.1109/ICCVW.2019.00257
– ident: 10.1016/j.neucom.2024.129295_b47
  doi: 10.1145/3581783.3612454
– ident: 10.1016/j.neucom.2024.129295_b66
  doi: 10.1109/CVPRW.2017.172
SSID ssj0017129
Score 2.4457703
Snippet Face recognition systems based on deep learning have recently demonstrated an outstanding success in solving complex issues. Yet they turn out to be very...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 129295
SubjectTerms Adversarial attack
Face keypoints
Face recognition
Landmarks
Title Deep keypoints adversarial attack on face recognition systems
URI https://dx.doi.org/10.1016/j.neucom.2024.129295
Volume 621
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED71sbDwRpRH5YHVreM4r4GhKlQFRBeo1C3yK1JBSiOarvx2zk1SgYQYWK1Ysr747r7Tfb4DuEmMK2dZQQ23PhUZ5imSSU65jZlFhpLZbXf951k4nYvHRbBowbh5C-NklbXvr3z61lvXK8MazWGxXA5fWMIxi3KVIeZ6kodt6HI_CYMOdEcPT9PZrpgQebxquccD6jY0L-i2Mq_cbpxshGOsGuB33A2a-C1CfYs6k0PYr-kiGVUnOoKWzY_hoBnFQGrLPIHbO2sLggZZrJZ5uSbSzVleS3e7iCxLqd_JKieZ1JbsJEO4UPVxXp_CfHL_Op7SejIC1ZgClNRHomK9LFCRsMKEKlMqZlzbWEbK8EgiK0BTVKE0NtAZQ8TRsk2smWRaxGHgn0EnX-X2HIgRyku0ChOZZEIpmfien6EXZL7hSCdUD2iDRlpUDTDSRhn2llbopQ69tEKvB1EDWfrjR6boo__cefHvnZewx91YXicNi66gU35s7DVyhVL1oT349Pr1jfgCK9a-gw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61HvTiW6zPHLymzWazr4MHqZaqbS-20FvIa6EK28Vur_52J_soCuLBa0ggfMnMfEO-zCB0mxj3nGU5Mcz6hKeQp0gqGWE2phYYSmrL6vrjSTic8ed5MG-hfvMXxskqa99f-fTSW9cjvRrNXr5Y9F5pwiCLci9D1NUkD7fQNg_8yOn6up8bnYcXeawquMcC4qY3_-dKkVdm1040wiBSdWEec20mfotP32LO4ADt1WQR31f7OUQtmx2h_aYRA67t8hjdPVibYzDHfLnIihWWrsvySrq7hWVRSP2OlxlOpbZ4IxiCgaqK8-oEzQaP0_6Q1H0RiIYEoCA-0BTrpYGKuOUmVKlSMWXaxjJShkUSOAEYogqlsYFOKeANdm1iTSXVPA4D_xS1s2VmzxA2XHmJVmEik5QrJRPf81PwgdQ3DMiE6iDSoCHyqvyFaHRhb6JCTzj0RIVeB0UNZOLHMQrw0H-uPP_3yhu0M5yOR2L0NHm5QLvMNeh1IrHoErWLj7W9AtZQqOvyVnwBwhq_Tg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+keypoints+adversarial+attack+on+face+recognition+systems&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=BenSaid%2C+Emna&rft.au=Neji%2C+Mohamed&rft.au=Jabberi%2C+Marwa&rft.au=Alimi%2C+Adel+M.&rft.date=2025-03-07&rft.issn=0925-2312&rft.volume=621&rft.spage=129295&rft_id=info:doi/10.1016%2Fj.neucom.2024.129295&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2024_129295
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon