Asymptotic analysis for a nonlinear reaction–diffusion system modeling an infectious disease
In this paper we study a nonlinear reaction–diffusion system which models an infectious disease caused by bacteria such as those for Cholera. One of the significant features in this model is that a certain portion of the recovered human hosts may lose a lifetime immunity and could be infected again....
Saved in:
Published in | Nonlinear analysis: real world applications Vol. 75; p. 103984 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper we study a nonlinear reaction–diffusion system which models an infectious disease caused by bacteria such as those for Cholera. One of the significant features in this model is that a certain portion of the recovered human hosts may lose a lifetime immunity and could be infected again. Another important feature in the model is that the mobility for each species is allowed to be dependent upon both the location and time. With the whole population assumed to be susceptible with the bacteria, the model is a strongly coupled nonlinear reaction–diffusion system. We prove that the nonlinear system has a unique solution globally in any space dimension under some natural conditions on the model parameters and the given data. Moreover, the long-time behavior and stability analysis for the solutions are carried out rigorously. In particular, we characterize the precise conditions on variable parameters about the stability or instability of all steady-state solutions. These new results provide the answers to several open questions raised in the literature. |
---|---|
AbstractList | In this paper we study a nonlinear reaction–diffusion system which models an infectious disease caused by bacteria such as those for Cholera. One of the significant features in this model is that a certain portion of the recovered human hosts may lose a lifetime immunity and could be infected again. Another important feature in the model is that the mobility for each species is allowed to be dependent upon both the location and time. With the whole population assumed to be susceptible with the bacteria, the model is a strongly coupled nonlinear reaction–diffusion system. We prove that the nonlinear system has a unique solution globally in any space dimension under some natural conditions on the model parameters and the given data. Moreover, the long-time behavior and stability analysis for the solutions are carried out rigorously. In particular, we characterize the precise conditions on variable parameters about the stability or instability of all steady-state solutions. These new results provide the answers to several open questions raised in the literature. |
ArticleNumber | 103984 |
Author | Yin, Hong-Ming Zou, Jun |
Author_xml | – sequence: 1 givenname: Hong-Ming orcidid: 0000-0001-9119-6392 surname: Yin fullname: Yin, Hong-Ming email: hyin@wsu.edu organization: Department of Mathematics and Statistics, Washington State University, Pullman, WA 99164, USA – sequence: 2 givenname: Jun surname: Zou fullname: Zou, Jun organization: Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong |
BookMark | eNp9kE1OwzAQhS1UJNrCDVj4Agn-i-NskKqKP6kSG9hiufYYuWqSyk5B2XEHbshJcBXWrOZp9N7TzLdAs67vAKFrSkpKqLzZlXkRP03JCON5xRslztCcqloVVU2bWdZCqoIyqi7QIqUdIbSmnM7R2yqN7WHoh2Cx6cx-TCFh30dscO7chw5MxBGMHULf_Xx9u-D9MWWN05gGaHHbO8i295zGofNwMh4TdiGBSXCJzr3ZJ7j6m0v0en_3sn4sNs8PT-vVprCsqoaCeeKbrWhUIyR3zkpFWUMlMwTAkRp4JQgQ4Z0QW6CEKc65FLTh0jpeecmXSEy9NvYpRfD6EENr4qgp0SdGeqcnRvrESE-Mcux2ikG-7SNA1MkG6Cy4EPMn2vXh_4JfvlV2Ew |
Cites_doi | 10.2307/1939378 10.1006/jdeq.1996.0157 10.3934/dcdsb.2016.21.1297 10.1007/s00028-018-0458-y 10.1080/17513758.2014.974696 10.1016/j.na.2017.03.007 10.1515/ans-2007-0309 10.1137/S0036144599359735 10.1137/S0036144500371907 10.1038/280455a0 10.1038/nrmicro1845 10.1038/280361a0 10.57262/ade/1356651736 10.1016/j.epidem.2018.05.007 10.1137/060672522 10.1088/1361-6544/ab8772 10.1098/rspa.1927.0118 10.1137/120876642 10.1016/S0025-5564(02)00108-6 10.1016/j.jde.2019.05.022 10.1007/BF00163027 10.1080/03605300903089867 10.1016/j.anihpc.2019.09.003 10.4161/viru.24041 10.3934/mbe.2011.8.733 10.1016/S0140-6736(11)60273-0 10.1090/gsm/019 10.1016/0025-5564(92)90081-7 10.1016/j.mbs.2019.04.003 10.1016/j.mbs.2011.04.001 10.1016/j.na.2017.02.022 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nonrwa.2023.103984 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1878-5719 |
ExternalDocumentID | 10_1016_j_nonrwa_2023_103984 S1468121823001542 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29N 4.4 457 4G. 5VS 6OB 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W J9A JJJVA KOM M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSW SSZ T5K XPP YQT ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c255t-2f0f9b4989463ddc68129162a0eed07e3540e04fd44be1028333641936cd35f63 |
IEDL.DBID | .~1 |
ISSN | 1468-1218 |
IngestDate | Tue Jul 01 04:03:15 EDT 2025 Fri Feb 23 02:35:41 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Global existence and uniqueness Stability analysis Nonlinear reaction–diffusion system Infectious disease model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c255t-2f0f9b4989463ddc68129162a0eed07e3540e04fd44be1028333641936cd35f63 |
ORCID | 0000-0001-9119-6392 |
ParticipantIDs | crossref_primary_10_1016_j_nonrwa_2023_103984 elsevier_sciencedirect_doi_10_1016_j_nonrwa_2023_103984 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2024 2024-02-00 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: February 2024 |
PublicationDecade | 2020 |
PublicationTitle | Nonlinear analysis: real world applications |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | van de Driessche, Watmough (b9) 2002; 180 Lou, Ni (b14) 1996; 131 Anderson, May (b6) 1979; 280 Desvillettes, Fellner, Pierre, Vovelle (b31) 2007; 7 Pierre, Schmitt (b30) 2000; 42 Busenberg, Cooke (b17) 2012 Bendahmane, Langlais, Saad (b45) 2002; 7 Caceres, Canizo (b35) 2017; 159 Morgan, Tang (b38) 2020; 33 Pierre (b34) 2010; 78 Kuznetsov, Piccardi (b10) 1994; 32 Kermack, McKendrick (b4) 1927; 115 Shuai, van den Driessche (b27) 2013; 73 Lieberman (b41) 1996 Gilbarg, Trudinger (b47) 1998 Yin, Chen, Wang (b46) 2017; 159 De Jone, Diekmann, Heesterbreek (b13) 1995 Thieme (b26) 1992; 111 Fitzgibbon, Jeffery J. Morgan, Glenn F. Webb, Wu (b12) 2019; 312 O.A. Ladyzenskaja, V.A. Solonikov, N.N. Uralceva, Linear and Quasilinear Equations of Parabolic Type, in: AMS translation series, vol. 23, Rode Island, 1968. Yamazaki, Wang (b25) 2016; 21 Eisenberg, Shuai, Tien, van den Driessche (b20) 2002; 180 Yin (b43) 1997; 10 Yin (b22) 2020 Cantrell, Cosner (b18) 2003 Hethcote (b16) 2000; 42 Andrew, Basu (b19) 2011; 377 Troianiello (b44) 1987 Song, Lou, Xiao (b15) 2019; 267 Waltersa, Mesléb, Hall (b3) 2018; 25 Tian, Wang (b28) 2011; 232 Yamazaki (b29) 2018; 10 L.C. Evans, Partial Differential Equations, in: AMS Graduate Studies in Mathematics, vol. 19, Providence, Rhode Island, USA, 2010. Allen, Bolker, Lou, Nevai (b11) 2007; 67 Kanel (b32) 1990; 26 Holmes, Lewis, Banks, Veit (b5) 1994; 75 May, Anderson (b7) 1979; 280 Yamazaki, Wang (b21) 2017; 14 Liao, Wang (b23) 2011; 8 Fitzgibbon, Morgan, Webb, Wu (b39) 2021 Caputo, Vasseur (b33) 2009; 34 Fellner, Morgan, Tang (b37) 2019; 37 Siettos, Russo (b2) 2013; 4 Souplet (b36) 2018; 18 Daley, Gani (b8) 1999 Wang, Wang (b24) 2015; 9 Nicholas (b1) 2008; 6 Yin (10.1016/j.nonrwa.2023.103984_b22) 2020 Pierre (10.1016/j.nonrwa.2023.103984_b34) 2010; 78 Kuznetsov (10.1016/j.nonrwa.2023.103984_b10) 1994; 32 Wang (10.1016/j.nonrwa.2023.103984_b24) 2015; 9 Shuai (10.1016/j.nonrwa.2023.103984_b27) 2013; 73 Tian (10.1016/j.nonrwa.2023.103984_b28) 2011; 232 De Jone (10.1016/j.nonrwa.2023.103984_b13) 1995 Pierre (10.1016/j.nonrwa.2023.103984_b30) 2000; 42 Busenberg (10.1016/j.nonrwa.2023.103984_b17) 2012 Fitzgibbon (10.1016/j.nonrwa.2023.103984_b12) 2019; 312 Andrew (10.1016/j.nonrwa.2023.103984_b19) 2011; 377 Morgan (10.1016/j.nonrwa.2023.103984_b38) 2020; 33 Daley (10.1016/j.nonrwa.2023.103984_b8) 1999 Fellner (10.1016/j.nonrwa.2023.103984_b37) 2019; 37 Hethcote (10.1016/j.nonrwa.2023.103984_b16) 2000; 42 Siettos (10.1016/j.nonrwa.2023.103984_b2) 2013; 4 Anderson (10.1016/j.nonrwa.2023.103984_b6) 1979; 280 Liao (10.1016/j.nonrwa.2023.103984_b23) 2011; 8 10.1016/j.nonrwa.2023.103984_b40 Cantrell (10.1016/j.nonrwa.2023.103984_b18) 2003 Lieberman (10.1016/j.nonrwa.2023.103984_b41) 1996 10.1016/j.nonrwa.2023.103984_b42 Troianiello (10.1016/j.nonrwa.2023.103984_b44) 1987 Yamazaki (10.1016/j.nonrwa.2023.103984_b25) 2016; 21 Eisenberg (10.1016/j.nonrwa.2023.103984_b20) 2002; 180 Caputo (10.1016/j.nonrwa.2023.103984_b33) 2009; 34 Lou (10.1016/j.nonrwa.2023.103984_b14) 1996; 131 Holmes (10.1016/j.nonrwa.2023.103984_b5) 1994; 75 Souplet (10.1016/j.nonrwa.2023.103984_b36) 2018; 18 Desvillettes (10.1016/j.nonrwa.2023.103984_b31) 2007; 7 Allen (10.1016/j.nonrwa.2023.103984_b11) 2007; 67 Nicholas (10.1016/j.nonrwa.2023.103984_b1) 2008; 6 Yin (10.1016/j.nonrwa.2023.103984_b43) 1997; 10 Yin (10.1016/j.nonrwa.2023.103984_b46) 2017; 159 Kermack (10.1016/j.nonrwa.2023.103984_b4) 1927; 115 Fitzgibbon (10.1016/j.nonrwa.2023.103984_b39) 2021 Bendahmane (10.1016/j.nonrwa.2023.103984_b45) 2002; 7 Yamazaki (10.1016/j.nonrwa.2023.103984_b29) 2018; 10 Waltersa (10.1016/j.nonrwa.2023.103984_b3) 2018; 25 Caceres (10.1016/j.nonrwa.2023.103984_b35) 2017; 159 Gilbarg (10.1016/j.nonrwa.2023.103984_b47) 1998 Kanel (10.1016/j.nonrwa.2023.103984_b32) 1990; 26 May (10.1016/j.nonrwa.2023.103984_b7) 1979; 280 Song (10.1016/j.nonrwa.2023.103984_b15) 2019; 267 Yamazaki (10.1016/j.nonrwa.2023.103984_b21) 2017; 14 van de Driessche (10.1016/j.nonrwa.2023.103984_b9) 2002; 180 Thieme (10.1016/j.nonrwa.2023.103984_b26) 1992; 111 |
References_xml | – year: 1999 ident: b8 article-title: Epidemic Modelling, an Introduction – volume: 26 start-page: 448 year: 1990 end-page: 458 ident: b32 article-title: Solvability in the large of a system of reaction–diffusion equations with balanced condition publication-title: Differential Equations – volume: 377 start-page: 1248 year: 2011 end-page: 1255 ident: b19 article-title: Transmission dynamics and control of cholera in Haiti: an epidemic model publication-title: Lancet – volume: 7 start-page: 491 year: 2007 end-page: 511 ident: b31 article-title: Global existence for a quadratic systems of reaction–diffusion publication-title: Adv. Nonlin. Stud. – volume: 131 start-page: 791 year: 1996 end-page: 831 ident: b14 article-title: Self-diffusion and cross-diffusion publication-title: J. Differential Equations – year: 2020 ident: b22 article-title: On a reaction–diffusion system modeling infectious diseases without life-time immunity publication-title: European J. Appl. Math. – volume: 312 start-page: 77 year: 2019 end-page: 87 ident: b12 article-title: Spatial models of vector-host epidemics with directed movement of vectors over long distances publication-title: Math. Biosci. – volume: 267 start-page: 5084 year: 2019 end-page: 5114 ident: b15 article-title: A spatial SEIRS reaction–diffusion model in heterogeneous environment publication-title: J. Differential Equations – volume: 159 start-page: 62 year: 2017 end-page: 84 ident: b35 article-title: Close-to-equilibrium behavior of quadratic reaction–diffusion systems with detailed balance publication-title: Nonlinear Anal. – volume: 180 start-page: 29 year: 2002 end-page: 48 ident: b20 article-title: A cholera model in a patchy environment with water and human movement publication-title: Math. Biosci. – volume: 8 start-page: 733 year: 2011 end-page: 752 ident: b23 article-title: Stability analysis and application of a mathematical cholera model publication-title: Math. Biosci. Eng. – year: 1998 ident: b47 article-title: Elliptic Partial Differential Equations – volume: 32 start-page: 109 year: 1994 end-page: 121 ident: b10 article-title: Bifurcation analysis of periodic SEIR and SIR epidemic models publication-title: J. Math. Biol. – volume: 7 start-page: 743 year: 2002 end-page: 768 ident: b45 article-title: Existence of solutions for reaction–diffusion systems with publication-title: Adv. Differential Equations – year: 1995 ident: b13 article-title: Transmission of Infection Depend on Population Size? in Epidemic Models: Their Structure and Relation To Data, 84-89 – volume: 14 start-page: 559 year: 2017 end-page: 579 ident: b21 article-title: Global stability and uniform persistence of the reaction-convection–diffusion cholera epidemic model publication-title: Math. Biosci. Eng – volume: 34 start-page: 1228 year: 2009 end-page: 1250 ident: b33 article-title: Global regularity of solutions to systems of reaction–diffusion with sub-quadratic growth in any space dimension publication-title: Comm. Partial Differential Equations – volume: 159 start-page: 482 year: 2017 end-page: 491 ident: b46 article-title: On a cross-diffusion system modeling vegetation spots and strips in a semi-arid or arid landscape publication-title: Nonlinear Anal. – volume: 10 start-page: 200 year: 2018 end-page: 220 ident: b29 article-title: Global well-posedness of infectious disease models without life-time immunity: the cases of cholera and avian influenza publication-title: Math. Medic. Bio. – volume: 42 start-page: 93 year: 2000 end-page: 106 ident: b30 article-title: Blowup in reaction–diffusion systems with dissipation of mass publication-title: SIAM Rev. – volume: 33 start-page: 3105 year: 2020 end-page: 3133 ident: b38 article-title: Boundedness for reaction–diffusion systems with Lyapunov functions with intermediate sum conditions publication-title: Nonlinearity – volume: 9 start-page: 233 year: 2015 end-page: 261 ident: b24 article-title: Analysis of cholera epidemics with bacterial growth and spatial movement publication-title: J. Biol. Dyn. – year: 1987 ident: b44 article-title: Elliptic Differential Equations and Obstacle Problems – volume: 6 start-page: 477 year: 2008 end-page: 487 ident: b1 article-title: Grassly and christopher fraser, mathematical models of infectious disease transmission publication-title: Nat. Rev. Microbiol. – volume: 25 start-page: 1 year: 2018 end-page: 8 ident: b3 article-title: Modelling the global spread of diseases: A review of current practice and capability publication-title: Epidemics – volume: 75 start-page: 17 year: 1994 end-page: 29 ident: b5 article-title: Partial differential equations in ecology: Spatial interactions and population dynamics publication-title: Ecology – volume: 180 start-page: 29 year: 2002 end-page: 48 ident: b9 article-title: Reproduction numbers and sub-threshold endemic equilibra for compartmental models of disease transmission publication-title: Math. Biosci. – year: 2021 ident: b39 publication-title: SIAM J. Math. Anal – volume: 280 start-page: 361 year: 1979 end-page: 367 ident: b6 article-title: Population biology of infectious diseases I publication-title: Nature – reference: L.C. Evans, Partial Differential Equations, in: AMS Graduate Studies in Mathematics, vol. 19, Providence, Rhode Island, USA, 2010. – volume: 115 start-page: 700 year: 1927 end-page: 721 ident: b4 article-title: A contribution to the mathematical theory of epidemics publication-title: Proc. Roy. Soc. Lond. A – volume: 37 start-page: 281 year: 2019 end-page: 307 ident: b37 article-title: Global classical solutions to quadratic systems with mass control in arbitrary dimensions publication-title: Ann. Instit. Henri Poincare – volume: 67 start-page: 1283 year: 2007 end-page: 1309 ident: b11 article-title: Asymptotic profiles of the steady-states for an SIS epidemic disease patch model publication-title: SIAM J. Appl. Math. – volume: 21 start-page: 1297 year: 2016 end-page: 1316 ident: b25 article-title: Global well-posedness and asymptotic behavior of solutions to a reaction-convection–diffusion Cholera pedimic model publication-title: Disc. Cont. Dyn. Sys. Ser. B – year: 2003 ident: b18 article-title: Spatial Ecology Via Reaction-Diffusion Equations – year: 2012 ident: b17 article-title: Vertically Transmitted Diseases: Models and Dynamics, Vol. 23 – volume: 42 start-page: 599 year: 2000 end-page: 653 ident: b16 article-title: The mathematics of infectious diseases publication-title: SIAM Rev. – volume: 78 start-page: 417 year: 2010 end-page: 455 ident: b34 article-title: Global existence in reaction–diffusion systems with control of mass, Milan publication-title: J. Math. – volume: 232 start-page: 31 year: 2011 end-page: 41 ident: b28 article-title: Global stability for cholera epidemic models publication-title: Math. Biosci. – volume: 4 start-page: 295 year: 2013 end-page: 306 ident: b2 article-title: Mathematical modeling of infectious disease dynamics publication-title: Virulence – reference: O.A. Ladyzenskaja, V.A. Solonikov, N.N. Uralceva, Linear and Quasilinear Equations of Parabolic Type, in: AMS translation series, vol. 23, Rode Island, 1968. – volume: 73 start-page: 1513 year: 2013 end-page: 1532 ident: b27 article-title: Global stability of infectious disease models using lyapunov functions publication-title: SIAM J. Appl. Math. – volume: 18 start-page: 1713 year: 2018 end-page: 1720 ident: b36 article-title: Global existence for reaction–diffusion systems with dissipation of mass and quadratic growth publication-title: J. Evol. Equ. – volume: 280 start-page: 455 year: 1979 end-page: 466 ident: b7 article-title: Population biology of infectious disease II publication-title: Nature – volume: 111 start-page: 99 year: 1992 end-page: 121 ident: b26 article-title: Epidemic and demographic interaction in the spread of potentially fatal diseases in growing populations publication-title: Math. Biosci. – year: 1996 ident: b41 article-title: Second-Order Parabolic Differential Equations – volume: 10 start-page: 31 year: 1997 end-page: 44 ident: b43 article-title: -Estimates for parabolic equations and applications publication-title: J. Part. Diff. Equ. – volume: 75 start-page: 17 year: 1994 ident: 10.1016/j.nonrwa.2023.103984_b5 article-title: Partial differential equations in ecology: Spatial interactions and population dynamics publication-title: Ecology doi: 10.2307/1939378 – volume: 131 start-page: 791 year: 1996 ident: 10.1016/j.nonrwa.2023.103984_b14 article-title: Self-diffusion and cross-diffusion publication-title: J. Differential Equations doi: 10.1006/jdeq.1996.0157 – volume: 21 start-page: 1297 year: 2016 ident: 10.1016/j.nonrwa.2023.103984_b25 article-title: Global well-posedness and asymptotic behavior of solutions to a reaction-convection–diffusion Cholera pedimic model publication-title: Disc. Cont. Dyn. Sys. Ser. B doi: 10.3934/dcdsb.2016.21.1297 – volume: 18 start-page: 1713 year: 2018 ident: 10.1016/j.nonrwa.2023.103984_b36 article-title: Global existence for reaction–diffusion systems with dissipation of mass and quadratic growth publication-title: J. Evol. Equ. doi: 10.1007/s00028-018-0458-y – volume: 9 start-page: 233 year: 2015 ident: 10.1016/j.nonrwa.2023.103984_b24 article-title: Analysis of cholera epidemics with bacterial growth and spatial movement publication-title: J. Biol. Dyn. doi: 10.1080/17513758.2014.974696 – volume: 159 start-page: 62 year: 2017 ident: 10.1016/j.nonrwa.2023.103984_b35 article-title: Close-to-equilibrium behavior of quadratic reaction–diffusion systems with detailed balance publication-title: Nonlinear Anal. doi: 10.1016/j.na.2017.03.007 – volume: 7 start-page: 491 year: 2007 ident: 10.1016/j.nonrwa.2023.103984_b31 article-title: Global existence for a quadratic systems of reaction–diffusion publication-title: Adv. Nonlin. Stud. doi: 10.1515/ans-2007-0309 – volume: 42 start-page: 93 year: 2000 ident: 10.1016/j.nonrwa.2023.103984_b30 article-title: Blowup in reaction–diffusion systems with dissipation of mass publication-title: SIAM Rev. doi: 10.1137/S0036144599359735 – volume: 42 start-page: 599 year: 2000 ident: 10.1016/j.nonrwa.2023.103984_b16 article-title: The mathematics of infectious diseases publication-title: SIAM Rev. doi: 10.1137/S0036144500371907 – volume: 280 start-page: 455 year: 1979 ident: 10.1016/j.nonrwa.2023.103984_b7 article-title: Population biology of infectious disease II publication-title: Nature doi: 10.1038/280455a0 – year: 1995 ident: 10.1016/j.nonrwa.2023.103984_b13 – volume: 6 start-page: 477 year: 2008 ident: 10.1016/j.nonrwa.2023.103984_b1 article-title: Grassly and christopher fraser, mathematical models of infectious disease transmission publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro1845 – volume: 280 start-page: 361 year: 1979 ident: 10.1016/j.nonrwa.2023.103984_b6 article-title: Population biology of infectious diseases I publication-title: Nature doi: 10.1038/280361a0 – volume: 7 start-page: 743 year: 2002 ident: 10.1016/j.nonrwa.2023.103984_b45 article-title: Existence of solutions for reaction–diffusion systems with L1-data publication-title: Adv. Differential Equations doi: 10.57262/ade/1356651736 – year: 1987 ident: 10.1016/j.nonrwa.2023.103984_b44 – year: 1996 ident: 10.1016/j.nonrwa.2023.103984_b41 – volume: 25 start-page: 1 year: 2018 ident: 10.1016/j.nonrwa.2023.103984_b3 article-title: Modelling the global spread of diseases: A review of current practice and capability publication-title: Epidemics doi: 10.1016/j.epidem.2018.05.007 – volume: 67 start-page: 1283 year: 2007 ident: 10.1016/j.nonrwa.2023.103984_b11 article-title: Asymptotic profiles of the steady-states for an SIS epidemic disease patch model publication-title: SIAM J. Appl. Math. doi: 10.1137/060672522 – year: 2020 ident: 10.1016/j.nonrwa.2023.103984_b22 article-title: On a reaction–diffusion system modeling infectious diseases without life-time immunity publication-title: European J. Appl. Math. – volume: 10 start-page: 200 year: 2018 ident: 10.1016/j.nonrwa.2023.103984_b29 article-title: Global well-posedness of infectious disease models without life-time immunity: the cases of cholera and avian influenza publication-title: Math. Medic. Bio. – volume: 33 start-page: 3105 year: 2020 ident: 10.1016/j.nonrwa.2023.103984_b38 article-title: Boundedness for reaction–diffusion systems with Lyapunov functions with intermediate sum conditions publication-title: Nonlinearity doi: 10.1088/1361-6544/ab8772 – volume: 115 start-page: 700 year: 1927 ident: 10.1016/j.nonrwa.2023.103984_b4 article-title: A contribution to the mathematical theory of epidemics publication-title: Proc. Roy. Soc. Lond. A doi: 10.1098/rspa.1927.0118 – year: 1999 ident: 10.1016/j.nonrwa.2023.103984_b8 – year: 2012 ident: 10.1016/j.nonrwa.2023.103984_b17 – ident: 10.1016/j.nonrwa.2023.103984_b42 – year: 2003 ident: 10.1016/j.nonrwa.2023.103984_b18 – volume: 73 start-page: 1513 year: 2013 ident: 10.1016/j.nonrwa.2023.103984_b27 article-title: Global stability of infectious disease models using lyapunov functions publication-title: SIAM J. Appl. Math. doi: 10.1137/120876642 – volume: 180 start-page: 29 year: 2002 ident: 10.1016/j.nonrwa.2023.103984_b9 article-title: Reproduction numbers and sub-threshold endemic equilibra for compartmental models of disease transmission publication-title: Math. Biosci. doi: 10.1016/S0025-5564(02)00108-6 – volume: 267 start-page: 5084 year: 2019 ident: 10.1016/j.nonrwa.2023.103984_b15 article-title: A spatial SEIRS reaction–diffusion model in heterogeneous environment publication-title: J. Differential Equations doi: 10.1016/j.jde.2019.05.022 – volume: 32 start-page: 109 year: 1994 ident: 10.1016/j.nonrwa.2023.103984_b10 article-title: Bifurcation analysis of periodic SEIR and SIR epidemic models publication-title: J. Math. Biol. doi: 10.1007/BF00163027 – volume: 34 start-page: 1228 year: 2009 ident: 10.1016/j.nonrwa.2023.103984_b33 article-title: Global regularity of solutions to systems of reaction–diffusion with sub-quadratic growth in any space dimension publication-title: Comm. Partial Differential Equations doi: 10.1080/03605300903089867 – volume: 10 start-page: 31 issue: 1 year: 1997 ident: 10.1016/j.nonrwa.2023.103984_b43 article-title: L2,u-Estimates for parabolic equations and applications publication-title: J. Part. Diff. Equ. – volume: 37 start-page: 281 year: 2019 ident: 10.1016/j.nonrwa.2023.103984_b37 article-title: Global classical solutions to quadratic systems with mass control in arbitrary dimensions publication-title: Ann. Instit. Henri Poincare doi: 10.1016/j.anihpc.2019.09.003 – volume: 4 start-page: 295 year: 2013 ident: 10.1016/j.nonrwa.2023.103984_b2 article-title: Mathematical modeling of infectious disease dynamics publication-title: Virulence doi: 10.4161/viru.24041 – year: 2021 ident: 10.1016/j.nonrwa.2023.103984_b39 publication-title: SIAM J. Math. Anal – volume: 8 start-page: 733 year: 2011 ident: 10.1016/j.nonrwa.2023.103984_b23 article-title: Stability analysis and application of a mathematical cholera model publication-title: Math. Biosci. Eng. doi: 10.3934/mbe.2011.8.733 – volume: 377 start-page: 1248 year: 2011 ident: 10.1016/j.nonrwa.2023.103984_b19 article-title: Transmission dynamics and control of cholera in Haiti: an epidemic model publication-title: Lancet doi: 10.1016/S0140-6736(11)60273-0 – ident: 10.1016/j.nonrwa.2023.103984_b40 doi: 10.1090/gsm/019 – volume: 180 start-page: 29 year: 2002 ident: 10.1016/j.nonrwa.2023.103984_b20 article-title: A cholera model in a patchy environment with water and human movement publication-title: Math. Biosci. – volume: 26 start-page: 448 year: 1990 ident: 10.1016/j.nonrwa.2023.103984_b32 article-title: Solvability in the large of a system of reaction–diffusion equations with balanced condition publication-title: Differential Equations – volume: 111 start-page: 99 year: 1992 ident: 10.1016/j.nonrwa.2023.103984_b26 article-title: Epidemic and demographic interaction in the spread of potentially fatal diseases in growing populations publication-title: Math. Biosci. doi: 10.1016/0025-5564(92)90081-7 – volume: 312 start-page: 77 year: 2019 ident: 10.1016/j.nonrwa.2023.103984_b12 article-title: Spatial models of vector-host epidemics with directed movement of vectors over long distances publication-title: Math. Biosci. doi: 10.1016/j.mbs.2019.04.003 – volume: 14 start-page: 559 year: 2017 ident: 10.1016/j.nonrwa.2023.103984_b21 article-title: Global stability and uniform persistence of the reaction-convection–diffusion cholera epidemic model publication-title: Math. Biosci. Eng – volume: 232 start-page: 31 year: 2011 ident: 10.1016/j.nonrwa.2023.103984_b28 article-title: Global stability for cholera epidemic models publication-title: Math. Biosci. doi: 10.1016/j.mbs.2011.04.001 – year: 1998 ident: 10.1016/j.nonrwa.2023.103984_b47 – volume: 78 start-page: 417 year: 2010 ident: 10.1016/j.nonrwa.2023.103984_b34 article-title: Global existence in reaction–diffusion systems with control of mass, Milan publication-title: J. Math. – volume: 159 start-page: 482 year: 2017 ident: 10.1016/j.nonrwa.2023.103984_b46 article-title: On a cross-diffusion system modeling vegetation spots and strips in a semi-arid or arid landscape publication-title: Nonlinear Anal. doi: 10.1016/j.na.2017.02.022 |
SSID | ssj0017131 |
Score | 2.377087 |
Snippet | In this paper we study a nonlinear reaction–diffusion system which models an infectious disease caused by bacteria such as those for Cholera. One of the... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 103984 |
SubjectTerms | Global existence and uniqueness Infectious disease model Nonlinear reaction–diffusion system Stability analysis |
Title | Asymptotic analysis for a nonlinear reaction–diffusion system modeling an infectious disease |
URI | https://dx.doi.org/10.1016/j.nonrwa.2023.103984 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KvehBfGJ9lD14jU2ym9exFEt9tIha6MmwyW6ggrW0CeJF_A_-Q3-JM9mkKIgHT2HDDixfNjPfJDPfApyKJJEq8COLSy-zhA5sfKVSbYUayVGW6MjVlCgOR_5gLC4n3qQBvboXhsoqK99vfHrpras7nQrNznw67dxR05BDAuS8JALkh4UIaJefva3KPBxMwpy6w4hm1-1zZY0XZtiLF1Ifcjl1n0eh-D08fQs5_S3YrLgi65rlbENDz3ZgY7gSWl3uwkN3-fo0z59xxGSlL8KQhzLJZkYEQy4Y8sKye-Hz_YPOQynoAxkzEs6sPAkHwxdas7owq1iy6r_NHoz75_e9gVUdmWClmBvklpvZWZQIUlX3uVIpIYQE0JU2xkI70PSVR9siU0IkuuQWnPsCSZyfKu5lPt-HJi5PHwBDEzdMA6lwogg9P1SYswoudWinTqJUC6waqXhulDHiumTsMTbIxoRsbJBtQVDDGf94wjE67z8tD_9teQTrOBKmyvoYmvmi0CdIIvKkXe6SNqx1e7fXN3S9uBqMvgBFlctD |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1V7QE4IFZRVh-4Rk1jZztWFVVKlwut1BOWEztSkShVmwpx4x_4Q76EcexUICEOHLOMZD0nM2_smWeAW5amQoZB7FDh5w5ToYu_VKacSCE5ylMVe0oniqNxkEzZ_cyf1aBb9cLoskrr-41PL721vdOyaLaW83nrQTcNtbUAOS2JAPrhhlan8uvQ6PQHyXi7mYB5WLtqMtIGVQddWeaFSfbqVQsQeVQ3oMcR-z1CfYs6vQPYt3SRdMyIDqGmFkewN9pqra6P4bGzfnteFi94RYSVGCFIRYkgC6ODIVYEqWHZwPD5_qGPRNnoNTJiVJxJeRgORjC0JlVt1mZN7NbNCUx7d5Nu4thTE5wM04PC8XI3j1OmhdUDKmWmQUIO6AkXw6EbKr3Qo1yWS8ZSVdILSgOGPC7IJPXzgJ5CHYenzoCgiRdloZD4Iov8IJKYtjIqVORm7VTKJjgVUnxpxDF4VTX2xA2yXCPLDbJNCCs4-Y9J5ui__7Q8_7flDewkk9GQD_vjwQXs4hNmiq4voV6sNuoKOUWRXttv5gvp9cxf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymptotic+analysis+for+a+nonlinear+reaction%E2%80%93diffusion+system+modeling+an+infectious+disease&rft.jtitle=Nonlinear+analysis%3A+real+world+applications&rft.au=Yin%2C+Hong-Ming&rft.au=Zou%2C+Jun&rft.date=2024-02-01&rft.issn=1468-1218&rft.volume=75&rft.spage=103984&rft_id=info:doi/10.1016%2Fj.nonrwa.2023.103984&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nonrwa_2023_103984 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-1218&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-1218&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-1218&client=summon |