Asymptotic analysis for a nonlinear reaction–diffusion system modeling an infectious disease

In this paper we study a nonlinear reaction–diffusion system which models an infectious disease caused by bacteria such as those for Cholera. One of the significant features in this model is that a certain portion of the recovered human hosts may lose a lifetime immunity and could be infected again....

Full description

Saved in:
Bibliographic Details
Published inNonlinear analysis: real world applications Vol. 75; p. 103984
Main Authors Yin, Hong-Ming, Zou, Jun
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper we study a nonlinear reaction–diffusion system which models an infectious disease caused by bacteria such as those for Cholera. One of the significant features in this model is that a certain portion of the recovered human hosts may lose a lifetime immunity and could be infected again. Another important feature in the model is that the mobility for each species is allowed to be dependent upon both the location and time. With the whole population assumed to be susceptible with the bacteria, the model is a strongly coupled nonlinear reaction–diffusion system. We prove that the nonlinear system has a unique solution globally in any space dimension under some natural conditions on the model parameters and the given data. Moreover, the long-time behavior and stability analysis for the solutions are carried out rigorously. In particular, we characterize the precise conditions on variable parameters about the stability or instability of all steady-state solutions. These new results provide the answers to several open questions raised in the literature.
AbstractList In this paper we study a nonlinear reaction–diffusion system which models an infectious disease caused by bacteria such as those for Cholera. One of the significant features in this model is that a certain portion of the recovered human hosts may lose a lifetime immunity and could be infected again. Another important feature in the model is that the mobility for each species is allowed to be dependent upon both the location and time. With the whole population assumed to be susceptible with the bacteria, the model is a strongly coupled nonlinear reaction–diffusion system. We prove that the nonlinear system has a unique solution globally in any space dimension under some natural conditions on the model parameters and the given data. Moreover, the long-time behavior and stability analysis for the solutions are carried out rigorously. In particular, we characterize the precise conditions on variable parameters about the stability or instability of all steady-state solutions. These new results provide the answers to several open questions raised in the literature.
ArticleNumber 103984
Author Yin, Hong-Ming
Zou, Jun
Author_xml – sequence: 1
  givenname: Hong-Ming
  orcidid: 0000-0001-9119-6392
  surname: Yin
  fullname: Yin, Hong-Ming
  email: hyin@wsu.edu
  organization: Department of Mathematics and Statistics, Washington State University, Pullman, WA 99164, USA
– sequence: 2
  givenname: Jun
  surname: Zou
  fullname: Zou, Jun
  organization: Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
BookMark eNp9kE1OwzAQhS1UJNrCDVj4Agn-i-NskKqKP6kSG9hiufYYuWqSyk5B2XEHbshJcBXWrOZp9N7TzLdAs67vAKFrSkpKqLzZlXkRP03JCON5xRslztCcqloVVU2bWdZCqoIyqi7QIqUdIbSmnM7R2yqN7WHoh2Cx6cx-TCFh30dscO7chw5MxBGMHULf_Xx9u-D9MWWN05gGaHHbO8i295zGofNwMh4TdiGBSXCJzr3ZJ7j6m0v0en_3sn4sNs8PT-vVprCsqoaCeeKbrWhUIyR3zkpFWUMlMwTAkRp4JQgQ4Z0QW6CEKc65FLTh0jpeecmXSEy9NvYpRfD6EENr4qgp0SdGeqcnRvrESE-Mcux2ikG-7SNA1MkG6Cy4EPMn2vXh_4JfvlV2Ew
Cites_doi 10.2307/1939378
10.1006/jdeq.1996.0157
10.3934/dcdsb.2016.21.1297
10.1007/s00028-018-0458-y
10.1080/17513758.2014.974696
10.1016/j.na.2017.03.007
10.1515/ans-2007-0309
10.1137/S0036144599359735
10.1137/S0036144500371907
10.1038/280455a0
10.1038/nrmicro1845
10.1038/280361a0
10.57262/ade/1356651736
10.1016/j.epidem.2018.05.007
10.1137/060672522
10.1088/1361-6544/ab8772
10.1098/rspa.1927.0118
10.1137/120876642
10.1016/S0025-5564(02)00108-6
10.1016/j.jde.2019.05.022
10.1007/BF00163027
10.1080/03605300903089867
10.1016/j.anihpc.2019.09.003
10.4161/viru.24041
10.3934/mbe.2011.8.733
10.1016/S0140-6736(11)60273-0
10.1090/gsm/019
10.1016/0025-5564(92)90081-7
10.1016/j.mbs.2019.04.003
10.1016/j.mbs.2011.04.001
10.1016/j.na.2017.02.022
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nonrwa.2023.103984
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1878-5719
ExternalDocumentID 10_1016_j_nonrwa_2023_103984
S1468121823001542
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29N
4.4
457
4G.
5VS
6OB
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
J9A
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
XPP
YQT
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c255t-2f0f9b4989463ddc68129162a0eed07e3540e04fd44be1028333641936cd35f63
IEDL.DBID .~1
ISSN 1468-1218
IngestDate Tue Jul 01 04:03:15 EDT 2025
Fri Feb 23 02:35:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Global existence and uniqueness
Stability analysis
Nonlinear reaction–diffusion system
Infectious disease model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c255t-2f0f9b4989463ddc68129162a0eed07e3540e04fd44be1028333641936cd35f63
ORCID 0000-0001-9119-6392
ParticipantIDs crossref_primary_10_1016_j_nonrwa_2023_103984
elsevier_sciencedirect_doi_10_1016_j_nonrwa_2023_103984
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2024
2024-02-00
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationTitle Nonlinear analysis: real world applications
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References van de Driessche, Watmough (b9) 2002; 180
Lou, Ni (b14) 1996; 131
Anderson, May (b6) 1979; 280
Desvillettes, Fellner, Pierre, Vovelle (b31) 2007; 7
Pierre, Schmitt (b30) 2000; 42
Busenberg, Cooke (b17) 2012
Bendahmane, Langlais, Saad (b45) 2002; 7
Caceres, Canizo (b35) 2017; 159
Morgan, Tang (b38) 2020; 33
Pierre (b34) 2010; 78
Kuznetsov, Piccardi (b10) 1994; 32
Kermack, McKendrick (b4) 1927; 115
Shuai, van den Driessche (b27) 2013; 73
Lieberman (b41) 1996
Gilbarg, Trudinger (b47) 1998
Yin, Chen, Wang (b46) 2017; 159
De Jone, Diekmann, Heesterbreek (b13) 1995
Thieme (b26) 1992; 111
Fitzgibbon, Jeffery J. Morgan, Glenn F. Webb, Wu (b12) 2019; 312
O.A. Ladyzenskaja, V.A. Solonikov, N.N. Uralceva, Linear and Quasilinear Equations of Parabolic Type, in: AMS translation series, vol. 23, Rode Island, 1968.
Yamazaki, Wang (b25) 2016; 21
Eisenberg, Shuai, Tien, van den Driessche (b20) 2002; 180
Yin (b43) 1997; 10
Yin (b22) 2020
Cantrell, Cosner (b18) 2003
Hethcote (b16) 2000; 42
Andrew, Basu (b19) 2011; 377
Troianiello (b44) 1987
Song, Lou, Xiao (b15) 2019; 267
Waltersa, Mesléb, Hall (b3) 2018; 25
Tian, Wang (b28) 2011; 232
Yamazaki (b29) 2018; 10
L.C. Evans, Partial Differential Equations, in: AMS Graduate Studies in Mathematics, vol. 19, Providence, Rhode Island, USA, 2010.
Allen, Bolker, Lou, Nevai (b11) 2007; 67
Kanel (b32) 1990; 26
Holmes, Lewis, Banks, Veit (b5) 1994; 75
May, Anderson (b7) 1979; 280
Yamazaki, Wang (b21) 2017; 14
Liao, Wang (b23) 2011; 8
Fitzgibbon, Morgan, Webb, Wu (b39) 2021
Caputo, Vasseur (b33) 2009; 34
Fellner, Morgan, Tang (b37) 2019; 37
Siettos, Russo (b2) 2013; 4
Souplet (b36) 2018; 18
Daley, Gani (b8) 1999
Wang, Wang (b24) 2015; 9
Nicholas (b1) 2008; 6
Yin (10.1016/j.nonrwa.2023.103984_b22) 2020
Pierre (10.1016/j.nonrwa.2023.103984_b34) 2010; 78
Kuznetsov (10.1016/j.nonrwa.2023.103984_b10) 1994; 32
Wang (10.1016/j.nonrwa.2023.103984_b24) 2015; 9
Shuai (10.1016/j.nonrwa.2023.103984_b27) 2013; 73
Tian (10.1016/j.nonrwa.2023.103984_b28) 2011; 232
De Jone (10.1016/j.nonrwa.2023.103984_b13) 1995
Pierre (10.1016/j.nonrwa.2023.103984_b30) 2000; 42
Busenberg (10.1016/j.nonrwa.2023.103984_b17) 2012
Fitzgibbon (10.1016/j.nonrwa.2023.103984_b12) 2019; 312
Andrew (10.1016/j.nonrwa.2023.103984_b19) 2011; 377
Morgan (10.1016/j.nonrwa.2023.103984_b38) 2020; 33
Daley (10.1016/j.nonrwa.2023.103984_b8) 1999
Fellner (10.1016/j.nonrwa.2023.103984_b37) 2019; 37
Hethcote (10.1016/j.nonrwa.2023.103984_b16) 2000; 42
Siettos (10.1016/j.nonrwa.2023.103984_b2) 2013; 4
Anderson (10.1016/j.nonrwa.2023.103984_b6) 1979; 280
Liao (10.1016/j.nonrwa.2023.103984_b23) 2011; 8
10.1016/j.nonrwa.2023.103984_b40
Cantrell (10.1016/j.nonrwa.2023.103984_b18) 2003
Lieberman (10.1016/j.nonrwa.2023.103984_b41) 1996
10.1016/j.nonrwa.2023.103984_b42
Troianiello (10.1016/j.nonrwa.2023.103984_b44) 1987
Yamazaki (10.1016/j.nonrwa.2023.103984_b25) 2016; 21
Eisenberg (10.1016/j.nonrwa.2023.103984_b20) 2002; 180
Caputo (10.1016/j.nonrwa.2023.103984_b33) 2009; 34
Lou (10.1016/j.nonrwa.2023.103984_b14) 1996; 131
Holmes (10.1016/j.nonrwa.2023.103984_b5) 1994; 75
Souplet (10.1016/j.nonrwa.2023.103984_b36) 2018; 18
Desvillettes (10.1016/j.nonrwa.2023.103984_b31) 2007; 7
Allen (10.1016/j.nonrwa.2023.103984_b11) 2007; 67
Nicholas (10.1016/j.nonrwa.2023.103984_b1) 2008; 6
Yin (10.1016/j.nonrwa.2023.103984_b43) 1997; 10
Yin (10.1016/j.nonrwa.2023.103984_b46) 2017; 159
Kermack (10.1016/j.nonrwa.2023.103984_b4) 1927; 115
Fitzgibbon (10.1016/j.nonrwa.2023.103984_b39) 2021
Bendahmane (10.1016/j.nonrwa.2023.103984_b45) 2002; 7
Yamazaki (10.1016/j.nonrwa.2023.103984_b29) 2018; 10
Waltersa (10.1016/j.nonrwa.2023.103984_b3) 2018; 25
Caceres (10.1016/j.nonrwa.2023.103984_b35) 2017; 159
Gilbarg (10.1016/j.nonrwa.2023.103984_b47) 1998
Kanel (10.1016/j.nonrwa.2023.103984_b32) 1990; 26
May (10.1016/j.nonrwa.2023.103984_b7) 1979; 280
Song (10.1016/j.nonrwa.2023.103984_b15) 2019; 267
Yamazaki (10.1016/j.nonrwa.2023.103984_b21) 2017; 14
van de Driessche (10.1016/j.nonrwa.2023.103984_b9) 2002; 180
Thieme (10.1016/j.nonrwa.2023.103984_b26) 1992; 111
References_xml – year: 1999
  ident: b8
  article-title: Epidemic Modelling, an Introduction
– volume: 26
  start-page: 448
  year: 1990
  end-page: 458
  ident: b32
  article-title: Solvability in the large of a system of reaction–diffusion equations with balanced condition
  publication-title: Differential Equations
– volume: 377
  start-page: 1248
  year: 2011
  end-page: 1255
  ident: b19
  article-title: Transmission dynamics and control of cholera in Haiti: an epidemic model
  publication-title: Lancet
– volume: 7
  start-page: 491
  year: 2007
  end-page: 511
  ident: b31
  article-title: Global existence for a quadratic systems of reaction–diffusion
  publication-title: Adv. Nonlin. Stud.
– volume: 131
  start-page: 791
  year: 1996
  end-page: 831
  ident: b14
  article-title: Self-diffusion and cross-diffusion
  publication-title: J. Differential Equations
– year: 2020
  ident: b22
  article-title: On a reaction–diffusion system modeling infectious diseases without life-time immunity
  publication-title: European J. Appl. Math.
– volume: 312
  start-page: 77
  year: 2019
  end-page: 87
  ident: b12
  article-title: Spatial models of vector-host epidemics with directed movement of vectors over long distances
  publication-title: Math. Biosci.
– volume: 267
  start-page: 5084
  year: 2019
  end-page: 5114
  ident: b15
  article-title: A spatial SEIRS reaction–diffusion model in heterogeneous environment
  publication-title: J. Differential Equations
– volume: 159
  start-page: 62
  year: 2017
  end-page: 84
  ident: b35
  article-title: Close-to-equilibrium behavior of quadratic reaction–diffusion systems with detailed balance
  publication-title: Nonlinear Anal.
– volume: 180
  start-page: 29
  year: 2002
  end-page: 48
  ident: b20
  article-title: A cholera model in a patchy environment with water and human movement
  publication-title: Math. Biosci.
– volume: 8
  start-page: 733
  year: 2011
  end-page: 752
  ident: b23
  article-title: Stability analysis and application of a mathematical cholera model
  publication-title: Math. Biosci. Eng.
– year: 1998
  ident: b47
  article-title: Elliptic Partial Differential Equations
– volume: 32
  start-page: 109
  year: 1994
  end-page: 121
  ident: b10
  article-title: Bifurcation analysis of periodic SEIR and SIR epidemic models
  publication-title: J. Math. Biol.
– volume: 7
  start-page: 743
  year: 2002
  end-page: 768
  ident: b45
  article-title: Existence of solutions for reaction–diffusion systems with
  publication-title: Adv. Differential Equations
– year: 1995
  ident: b13
  article-title: Transmission of Infection Depend on Population Size? in Epidemic Models: Their Structure and Relation To Data, 84-89
– volume: 14
  start-page: 559
  year: 2017
  end-page: 579
  ident: b21
  article-title: Global stability and uniform persistence of the reaction-convection–diffusion cholera epidemic model
  publication-title: Math. Biosci. Eng
– volume: 34
  start-page: 1228
  year: 2009
  end-page: 1250
  ident: b33
  article-title: Global regularity of solutions to systems of reaction–diffusion with sub-quadratic growth in any space dimension
  publication-title: Comm. Partial Differential Equations
– volume: 159
  start-page: 482
  year: 2017
  end-page: 491
  ident: b46
  article-title: On a cross-diffusion system modeling vegetation spots and strips in a semi-arid or arid landscape
  publication-title: Nonlinear Anal.
– volume: 10
  start-page: 200
  year: 2018
  end-page: 220
  ident: b29
  article-title: Global well-posedness of infectious disease models without life-time immunity: the cases of cholera and avian influenza
  publication-title: Math. Medic. Bio.
– volume: 42
  start-page: 93
  year: 2000
  end-page: 106
  ident: b30
  article-title: Blowup in reaction–diffusion systems with dissipation of mass
  publication-title: SIAM Rev.
– volume: 33
  start-page: 3105
  year: 2020
  end-page: 3133
  ident: b38
  article-title: Boundedness for reaction–diffusion systems with Lyapunov functions with intermediate sum conditions
  publication-title: Nonlinearity
– volume: 9
  start-page: 233
  year: 2015
  end-page: 261
  ident: b24
  article-title: Analysis of cholera epidemics with bacterial growth and spatial movement
  publication-title: J. Biol. Dyn.
– year: 1987
  ident: b44
  article-title: Elliptic Differential Equations and Obstacle Problems
– volume: 6
  start-page: 477
  year: 2008
  end-page: 487
  ident: b1
  article-title: Grassly and christopher fraser, mathematical models of infectious disease transmission
  publication-title: Nat. Rev. Microbiol.
– volume: 25
  start-page: 1
  year: 2018
  end-page: 8
  ident: b3
  article-title: Modelling the global spread of diseases: A review of current practice and capability
  publication-title: Epidemics
– volume: 75
  start-page: 17
  year: 1994
  end-page: 29
  ident: b5
  article-title: Partial differential equations in ecology: Spatial interactions and population dynamics
  publication-title: Ecology
– volume: 180
  start-page: 29
  year: 2002
  end-page: 48
  ident: b9
  article-title: Reproduction numbers and sub-threshold endemic equilibra for compartmental models of disease transmission
  publication-title: Math. Biosci.
– year: 2021
  ident: b39
  publication-title: SIAM J. Math. Anal
– volume: 280
  start-page: 361
  year: 1979
  end-page: 367
  ident: b6
  article-title: Population biology of infectious diseases I
  publication-title: Nature
– reference: L.C. Evans, Partial Differential Equations, in: AMS Graduate Studies in Mathematics, vol. 19, Providence, Rhode Island, USA, 2010.
– volume: 115
  start-page: 700
  year: 1927
  end-page: 721
  ident: b4
  article-title: A contribution to the mathematical theory of epidemics
  publication-title: Proc. Roy. Soc. Lond. A
– volume: 37
  start-page: 281
  year: 2019
  end-page: 307
  ident: b37
  article-title: Global classical solutions to quadratic systems with mass control in arbitrary dimensions
  publication-title: Ann. Instit. Henri Poincare
– volume: 67
  start-page: 1283
  year: 2007
  end-page: 1309
  ident: b11
  article-title: Asymptotic profiles of the steady-states for an SIS epidemic disease patch model
  publication-title: SIAM J. Appl. Math.
– volume: 21
  start-page: 1297
  year: 2016
  end-page: 1316
  ident: b25
  article-title: Global well-posedness and asymptotic behavior of solutions to a reaction-convection–diffusion Cholera pedimic model
  publication-title: Disc. Cont. Dyn. Sys. Ser. B
– year: 2003
  ident: b18
  article-title: Spatial Ecology Via Reaction-Diffusion Equations
– year: 2012
  ident: b17
  article-title: Vertically Transmitted Diseases: Models and Dynamics, Vol. 23
– volume: 42
  start-page: 599
  year: 2000
  end-page: 653
  ident: b16
  article-title: The mathematics of infectious diseases
  publication-title: SIAM Rev.
– volume: 78
  start-page: 417
  year: 2010
  end-page: 455
  ident: b34
  article-title: Global existence in reaction–diffusion systems with control of mass, Milan
  publication-title: J. Math.
– volume: 232
  start-page: 31
  year: 2011
  end-page: 41
  ident: b28
  article-title: Global stability for cholera epidemic models
  publication-title: Math. Biosci.
– volume: 4
  start-page: 295
  year: 2013
  end-page: 306
  ident: b2
  article-title: Mathematical modeling of infectious disease dynamics
  publication-title: Virulence
– reference: O.A. Ladyzenskaja, V.A. Solonikov, N.N. Uralceva, Linear and Quasilinear Equations of Parabolic Type, in: AMS translation series, vol. 23, Rode Island, 1968.
– volume: 73
  start-page: 1513
  year: 2013
  end-page: 1532
  ident: b27
  article-title: Global stability of infectious disease models using lyapunov functions
  publication-title: SIAM J. Appl. Math.
– volume: 18
  start-page: 1713
  year: 2018
  end-page: 1720
  ident: b36
  article-title: Global existence for reaction–diffusion systems with dissipation of mass and quadratic growth
  publication-title: J. Evol. Equ.
– volume: 280
  start-page: 455
  year: 1979
  end-page: 466
  ident: b7
  article-title: Population biology of infectious disease II
  publication-title: Nature
– volume: 111
  start-page: 99
  year: 1992
  end-page: 121
  ident: b26
  article-title: Epidemic and demographic interaction in the spread of potentially fatal diseases in growing populations
  publication-title: Math. Biosci.
– year: 1996
  ident: b41
  article-title: Second-Order Parabolic Differential Equations
– volume: 10
  start-page: 31
  year: 1997
  end-page: 44
  ident: b43
  article-title: -Estimates for parabolic equations and applications
  publication-title: J. Part. Diff. Equ.
– volume: 75
  start-page: 17
  year: 1994
  ident: 10.1016/j.nonrwa.2023.103984_b5
  article-title: Partial differential equations in ecology: Spatial interactions and population dynamics
  publication-title: Ecology
  doi: 10.2307/1939378
– volume: 131
  start-page: 791
  year: 1996
  ident: 10.1016/j.nonrwa.2023.103984_b14
  article-title: Self-diffusion and cross-diffusion
  publication-title: J. Differential Equations
  doi: 10.1006/jdeq.1996.0157
– volume: 21
  start-page: 1297
  year: 2016
  ident: 10.1016/j.nonrwa.2023.103984_b25
  article-title: Global well-posedness and asymptotic behavior of solutions to a reaction-convection–diffusion Cholera pedimic model
  publication-title: Disc. Cont. Dyn. Sys. Ser. B
  doi: 10.3934/dcdsb.2016.21.1297
– volume: 18
  start-page: 1713
  year: 2018
  ident: 10.1016/j.nonrwa.2023.103984_b36
  article-title: Global existence for reaction–diffusion systems with dissipation of mass and quadratic growth
  publication-title: J. Evol. Equ.
  doi: 10.1007/s00028-018-0458-y
– volume: 9
  start-page: 233
  year: 2015
  ident: 10.1016/j.nonrwa.2023.103984_b24
  article-title: Analysis of cholera epidemics with bacterial growth and spatial movement
  publication-title: J. Biol. Dyn.
  doi: 10.1080/17513758.2014.974696
– volume: 159
  start-page: 62
  year: 2017
  ident: 10.1016/j.nonrwa.2023.103984_b35
  article-title: Close-to-equilibrium behavior of quadratic reaction–diffusion systems with detailed balance
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2017.03.007
– volume: 7
  start-page: 491
  year: 2007
  ident: 10.1016/j.nonrwa.2023.103984_b31
  article-title: Global existence for a quadratic systems of reaction–diffusion
  publication-title: Adv. Nonlin. Stud.
  doi: 10.1515/ans-2007-0309
– volume: 42
  start-page: 93
  year: 2000
  ident: 10.1016/j.nonrwa.2023.103984_b30
  article-title: Blowup in reaction–diffusion systems with dissipation of mass
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144599359735
– volume: 42
  start-page: 599
  year: 2000
  ident: 10.1016/j.nonrwa.2023.103984_b16
  article-title: The mathematics of infectious diseases
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144500371907
– volume: 280
  start-page: 455
  year: 1979
  ident: 10.1016/j.nonrwa.2023.103984_b7
  article-title: Population biology of infectious disease II
  publication-title: Nature
  doi: 10.1038/280455a0
– year: 1995
  ident: 10.1016/j.nonrwa.2023.103984_b13
– volume: 6
  start-page: 477
  year: 2008
  ident: 10.1016/j.nonrwa.2023.103984_b1
  article-title: Grassly and christopher fraser, mathematical models of infectious disease transmission
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro1845
– volume: 280
  start-page: 361
  year: 1979
  ident: 10.1016/j.nonrwa.2023.103984_b6
  article-title: Population biology of infectious diseases I
  publication-title: Nature
  doi: 10.1038/280361a0
– volume: 7
  start-page: 743
  year: 2002
  ident: 10.1016/j.nonrwa.2023.103984_b45
  article-title: Existence of solutions for reaction–diffusion systems with L1-data
  publication-title: Adv. Differential Equations
  doi: 10.57262/ade/1356651736
– year: 1987
  ident: 10.1016/j.nonrwa.2023.103984_b44
– year: 1996
  ident: 10.1016/j.nonrwa.2023.103984_b41
– volume: 25
  start-page: 1
  year: 2018
  ident: 10.1016/j.nonrwa.2023.103984_b3
  article-title: Modelling the global spread of diseases: A review of current practice and capability
  publication-title: Epidemics
  doi: 10.1016/j.epidem.2018.05.007
– volume: 67
  start-page: 1283
  year: 2007
  ident: 10.1016/j.nonrwa.2023.103984_b11
  article-title: Asymptotic profiles of the steady-states for an SIS epidemic disease patch model
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/060672522
– year: 2020
  ident: 10.1016/j.nonrwa.2023.103984_b22
  article-title: On a reaction–diffusion system modeling infectious diseases without life-time immunity
  publication-title: European J. Appl. Math.
– volume: 10
  start-page: 200
  year: 2018
  ident: 10.1016/j.nonrwa.2023.103984_b29
  article-title: Global well-posedness of infectious disease models without life-time immunity: the cases of cholera and avian influenza
  publication-title: Math. Medic. Bio.
– volume: 33
  start-page: 3105
  year: 2020
  ident: 10.1016/j.nonrwa.2023.103984_b38
  article-title: Boundedness for reaction–diffusion systems with Lyapunov functions with intermediate sum conditions
  publication-title: Nonlinearity
  doi: 10.1088/1361-6544/ab8772
– volume: 115
  start-page: 700
  year: 1927
  ident: 10.1016/j.nonrwa.2023.103984_b4
  article-title: A contribution to the mathematical theory of epidemics
  publication-title: Proc. Roy. Soc. Lond. A
  doi: 10.1098/rspa.1927.0118
– year: 1999
  ident: 10.1016/j.nonrwa.2023.103984_b8
– year: 2012
  ident: 10.1016/j.nonrwa.2023.103984_b17
– ident: 10.1016/j.nonrwa.2023.103984_b42
– year: 2003
  ident: 10.1016/j.nonrwa.2023.103984_b18
– volume: 73
  start-page: 1513
  year: 2013
  ident: 10.1016/j.nonrwa.2023.103984_b27
  article-title: Global stability of infectious disease models using lyapunov functions
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/120876642
– volume: 180
  start-page: 29
  year: 2002
  ident: 10.1016/j.nonrwa.2023.103984_b9
  article-title: Reproduction numbers and sub-threshold endemic equilibra for compartmental models of disease transmission
  publication-title: Math. Biosci.
  doi: 10.1016/S0025-5564(02)00108-6
– volume: 267
  start-page: 5084
  year: 2019
  ident: 10.1016/j.nonrwa.2023.103984_b15
  article-title: A spatial SEIRS reaction–diffusion model in heterogeneous environment
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2019.05.022
– volume: 32
  start-page: 109
  year: 1994
  ident: 10.1016/j.nonrwa.2023.103984_b10
  article-title: Bifurcation analysis of periodic SEIR and SIR epidemic models
  publication-title: J. Math. Biol.
  doi: 10.1007/BF00163027
– volume: 34
  start-page: 1228
  year: 2009
  ident: 10.1016/j.nonrwa.2023.103984_b33
  article-title: Global regularity of solutions to systems of reaction–diffusion with sub-quadratic growth in any space dimension
  publication-title: Comm. Partial Differential Equations
  doi: 10.1080/03605300903089867
– volume: 10
  start-page: 31
  issue: 1
  year: 1997
  ident: 10.1016/j.nonrwa.2023.103984_b43
  article-title: L2,u-Estimates for parabolic equations and applications
  publication-title: J. Part. Diff. Equ.
– volume: 37
  start-page: 281
  year: 2019
  ident: 10.1016/j.nonrwa.2023.103984_b37
  article-title: Global classical solutions to quadratic systems with mass control in arbitrary dimensions
  publication-title: Ann. Instit. Henri Poincare
  doi: 10.1016/j.anihpc.2019.09.003
– volume: 4
  start-page: 295
  year: 2013
  ident: 10.1016/j.nonrwa.2023.103984_b2
  article-title: Mathematical modeling of infectious disease dynamics
  publication-title: Virulence
  doi: 10.4161/viru.24041
– year: 2021
  ident: 10.1016/j.nonrwa.2023.103984_b39
  publication-title: SIAM J. Math. Anal
– volume: 8
  start-page: 733
  year: 2011
  ident: 10.1016/j.nonrwa.2023.103984_b23
  article-title: Stability analysis and application of a mathematical cholera model
  publication-title: Math. Biosci. Eng.
  doi: 10.3934/mbe.2011.8.733
– volume: 377
  start-page: 1248
  year: 2011
  ident: 10.1016/j.nonrwa.2023.103984_b19
  article-title: Transmission dynamics and control of cholera in Haiti: an epidemic model
  publication-title: Lancet
  doi: 10.1016/S0140-6736(11)60273-0
– ident: 10.1016/j.nonrwa.2023.103984_b40
  doi: 10.1090/gsm/019
– volume: 180
  start-page: 29
  year: 2002
  ident: 10.1016/j.nonrwa.2023.103984_b20
  article-title: A cholera model in a patchy environment with water and human movement
  publication-title: Math. Biosci.
– volume: 26
  start-page: 448
  year: 1990
  ident: 10.1016/j.nonrwa.2023.103984_b32
  article-title: Solvability in the large of a system of reaction–diffusion equations with balanced condition
  publication-title: Differential Equations
– volume: 111
  start-page: 99
  year: 1992
  ident: 10.1016/j.nonrwa.2023.103984_b26
  article-title: Epidemic and demographic interaction in the spread of potentially fatal diseases in growing populations
  publication-title: Math. Biosci.
  doi: 10.1016/0025-5564(92)90081-7
– volume: 312
  start-page: 77
  year: 2019
  ident: 10.1016/j.nonrwa.2023.103984_b12
  article-title: Spatial models of vector-host epidemics with directed movement of vectors over long distances
  publication-title: Math. Biosci.
  doi: 10.1016/j.mbs.2019.04.003
– volume: 14
  start-page: 559
  year: 2017
  ident: 10.1016/j.nonrwa.2023.103984_b21
  article-title: Global stability and uniform persistence of the reaction-convection–diffusion cholera epidemic model
  publication-title: Math. Biosci. Eng
– volume: 232
  start-page: 31
  year: 2011
  ident: 10.1016/j.nonrwa.2023.103984_b28
  article-title: Global stability for cholera epidemic models
  publication-title: Math. Biosci.
  doi: 10.1016/j.mbs.2011.04.001
– year: 1998
  ident: 10.1016/j.nonrwa.2023.103984_b47
– volume: 78
  start-page: 417
  year: 2010
  ident: 10.1016/j.nonrwa.2023.103984_b34
  article-title: Global existence in reaction–diffusion systems with control of mass, Milan
  publication-title: J. Math.
– volume: 159
  start-page: 482
  year: 2017
  ident: 10.1016/j.nonrwa.2023.103984_b46
  article-title: On a cross-diffusion system modeling vegetation spots and strips in a semi-arid or arid landscape
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2017.02.022
SSID ssj0017131
Score 2.377087
Snippet In this paper we study a nonlinear reaction–diffusion system which models an infectious disease caused by bacteria such as those for Cholera. One of the...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 103984
SubjectTerms Global existence and uniqueness
Infectious disease model
Nonlinear reaction–diffusion system
Stability analysis
Title Asymptotic analysis for a nonlinear reaction–diffusion system modeling an infectious disease
URI https://dx.doi.org/10.1016/j.nonrwa.2023.103984
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KvehBfGJ9lD14jU2ym9exFEt9tIha6MmwyW6ggrW0CeJF_A_-Q3-JM9mkKIgHT2HDDixfNjPfJDPfApyKJJEq8COLSy-zhA5sfKVSbYUayVGW6MjVlCgOR_5gLC4n3qQBvboXhsoqK99vfHrpras7nQrNznw67dxR05BDAuS8JALkh4UIaJefva3KPBxMwpy6w4hm1-1zZY0XZtiLF1Ifcjl1n0eh-D08fQs5_S3YrLgi65rlbENDz3ZgY7gSWl3uwkN3-fo0z59xxGSlL8KQhzLJZkYEQy4Y8sKye-Hz_YPOQynoAxkzEs6sPAkHwxdas7owq1iy6r_NHoz75_e9gVUdmWClmBvklpvZWZQIUlX3uVIpIYQE0JU2xkI70PSVR9siU0IkuuQWnPsCSZyfKu5lPt-HJi5PHwBDEzdMA6lwogg9P1SYswoudWinTqJUC6waqXhulDHiumTsMTbIxoRsbJBtQVDDGf94wjE67z8tD_9teQTrOBKmyvoYmvmi0CdIIvKkXe6SNqx1e7fXN3S9uBqMvgBFlctD
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1V7QE4IFZRVh-4Rk1jZztWFVVKlwut1BOWEztSkShVmwpx4x_4Q76EcexUICEOHLOMZD0nM2_smWeAW5amQoZB7FDh5w5ToYu_VKacSCE5ylMVe0oniqNxkEzZ_cyf1aBb9cLoskrr-41PL721vdOyaLaW83nrQTcNtbUAOS2JAPrhhlan8uvQ6PQHyXi7mYB5WLtqMtIGVQddWeaFSfbqVQsQeVQ3oMcR-z1CfYs6vQPYt3SRdMyIDqGmFkewN9pqra6P4bGzfnteFi94RYSVGCFIRYkgC6ODIVYEqWHZwPD5_qGPRNnoNTJiVJxJeRgORjC0JlVt1mZN7NbNCUx7d5Nu4thTE5wM04PC8XI3j1OmhdUDKmWmQUIO6AkXw6EbKr3Qo1yWS8ZSVdILSgOGPC7IJPXzgJ5CHYenzoCgiRdloZD4Iov8IJKYtjIqVORm7VTKJjgVUnxpxDF4VTX2xA2yXCPLDbJNCCs4-Y9J5ui__7Q8_7flDewkk9GQD_vjwQXs4hNmiq4voV6sNuoKOUWRXttv5gvp9cxf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymptotic+analysis+for+a+nonlinear+reaction%E2%80%93diffusion+system+modeling+an+infectious+disease&rft.jtitle=Nonlinear+analysis%3A+real+world+applications&rft.au=Yin%2C+Hong-Ming&rft.au=Zou%2C+Jun&rft.date=2024-02-01&rft.issn=1468-1218&rft.volume=75&rft.spage=103984&rft_id=info:doi/10.1016%2Fj.nonrwa.2023.103984&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nonrwa_2023_103984
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-1218&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-1218&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-1218&client=summon