Evaluation of particle swarm optimization techniques applied to maximum power point tracking in photovoltaic systems

Even with significant progresses in the maximum power point (MPP) research area, the necessity to improve the existing methods becomes mandatory to increase the energy conversion efficiency. Since the power–voltage ( P ‐ V ) characteristic curve of photovoltaic (PV) arrays has multiple peaks under p...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of circuit theory and applications Vol. 49; no. 7; pp. 1849 - 1867
Main Authors Díaz Martínez, David, Trujillo Codorniu, Rafael, Giral, Roberto, Vázquez Seisdedos, Luis
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.07.2021
Subjects
Online AccessGet full text
ISSN0098-9886
1097-007X
DOI10.1002/cta.2978

Cover

Abstract Even with significant progresses in the maximum power point (MPP) research area, the necessity to improve the existing methods becomes mandatory to increase the energy conversion efficiency. Since the power–voltage ( P ‐ V ) characteristic curve of photovoltaic (PV) arrays has multiple peaks under partially shaded (PS) conditions, the conventional MPP tracking (MPPT) control methods have the difficult challenge of locate the global MPP (GMPP) among many local MPPs (LMPPs). In recent years, numerous research papers have been focused on techniques to efficiently track the GMPP and alleviate the partial shading effects. One of the most popular evolutionary search technique is particle swarm optimization (PSO) that provides high tracking speed and the ability operate under different environmental conditions. For solving some conventional PSO technique common weaknesses, several modifications and improvements have emerged in the past years. This paper provides a comparative and comprehensive review of some relevant PSO‐based methods taking into account the effects of important key issues such as particles initialization criteria, search space, convergence speed, initial parameters, performance with and without partial shading, and efficiency. The simulation results are validated under numerous test conditions using MATLAB code and Simulink package.
AbstractList Even with significant progresses in the maximum power point (MPP) research area, the necessity to improve the existing methods becomes mandatory to increase the energy conversion efficiency. Since the power–voltage ( P ‐ V ) characteristic curve of photovoltaic (PV) arrays has multiple peaks under partially shaded (PS) conditions, the conventional MPP tracking (MPPT) control methods have the difficult challenge of locate the global MPP (GMPP) among many local MPPs (LMPPs). In recent years, numerous research papers have been focused on techniques to efficiently track the GMPP and alleviate the partial shading effects. One of the most popular evolutionary search technique is particle swarm optimization (PSO) that provides high tracking speed and the ability operate under different environmental conditions. For solving some conventional PSO technique common weaknesses, several modifications and improvements have emerged in the past years. This paper provides a comparative and comprehensive review of some relevant PSO‐based methods taking into account the effects of important key issues such as particles initialization criteria, search space, convergence speed, initial parameters, performance with and without partial shading, and efficiency. The simulation results are validated under numerous test conditions using MATLAB code and Simulink package.
Even with significant progresses in the maximum power point (MPP) research area, the necessity to improve the existing methods becomes mandatory to increase the energy conversion efficiency. Since the power–voltage (P‐V) characteristic curve of photovoltaic (PV) arrays has multiple peaks under partially shaded (PS) conditions, the conventional MPP tracking (MPPT) control methods have the difficult challenge of locate the global MPP (GMPP) among many local MPPs (LMPPs). In recent years, numerous research papers have been focused on techniques to efficiently track the GMPP and alleviate the partial shading effects. One of the most popular evolutionary search technique is particle swarm optimization (PSO) that provides high tracking speed and the ability operate under different environmental conditions. For solving some conventional PSO technique common weaknesses, several modifications and improvements have emerged in the past years. This paper provides a comparative and comprehensive review of some relevant PSO‐based methods taking into account the effects of important key issues such as particles initialization criteria, search space, convergence speed, initial parameters, performance with and without partial shading, and efficiency. The simulation results are validated under numerous test conditions using MATLAB code and Simulink package.
Author Vázquez Seisdedos, Luis
Giral, Roberto
Trujillo Codorniu, Rafael
Díaz Martínez, David
Author_xml – sequence: 1
  givenname: David
  orcidid: 0000-0002-1947-9264
  surname: Díaz Martínez
  fullname: Díaz Martínez, David
  organization: Dept. Automática, Fac. Ing. Eléctrica Universidad de Oriente Santiago de Cuba Cuba
– sequence: 2
  givenname: Rafael
  orcidid: 0000-0001-7449-1939
  surname: Trujillo Codorniu
  fullname: Trujillo Codorniu, Rafael
  organization: Dept. Automática, Fac. Ing. Eléctrica Universidad de Oriente Santiago de Cuba Cuba
– sequence: 3
  givenname: Roberto
  orcidid: 0000-0001-6582-6741
  surname: Giral
  fullname: Giral, Roberto
  organization: Dept. Eng. Electrònica, Elèctrica i Automàtica Universitat Rovira i Virgili Tarragona Spain
– sequence: 4
  givenname: Luis
  orcidid: 0000-0001-5459-2265
  surname: Vázquez Seisdedos
  fullname: Vázquez Seisdedos, Luis
  organization: Dept. Automática, Fac. Ing. Eléctrica Universidad de Oriente Santiago de Cuba Cuba
BookMark eNplkDtPwzAQgC1UJNqCxE-wxMKScnZe9oiq8pAqsYDEFjmOTV0SO9huS_n1pJQJlrvhvnt9EzSyziqELgnMCAC9kVHMKC_ZCRoT4GUCUL6O0BiAs4QzVpyhSQhrAGA05WMUF1vRbkQ0zmKncS98NLJVOOyE77Dro-nM17EclVxZ87FRAYu-b41qcHS4E5-m23S4dzvlh2hsxNEL-W7sGzYW9ysX3da1URiJwz5E1YVzdKpFG9TFb56il7vF8_whWT7dP85vl4mkeR4TqsqS1VwVOVMZJVIq4E1ZqzqV0Ax_6abOiKJa6kJp4FrUUGdFkWpCMiIYpFN0dZzbe3e4O1Zrt_F2WFnRPGNpSgrOB-r6SEnvQvBKV703nfD7ikB1cFoNTquD0wGd_UGliT92hpdN-7_hG--Xf0A
CitedBy_id crossref_primary_10_1049_rpg2_13158
crossref_primary_10_1109_ACCESS_2024_3408239
crossref_primary_10_1002_eng2_12963
crossref_primary_10_1007_s11831_023_10023_0
crossref_primary_10_1016_j_egyr_2024_09_029
crossref_primary_10_29121_granthaalayah_v11_i3_2023_5086
crossref_primary_10_1016_j_ijleo_2022_169636
crossref_primary_10_3390_en15176172
crossref_primary_10_1016_j_energy_2022_126366
crossref_primary_10_1002_cta_3546
crossref_primary_10_1002_cta_3126
crossref_primary_10_1002_cta_3368
crossref_primary_10_1002_cta_3387
crossref_primary_10_1016_j_ref_2024_100564
crossref_primary_10_3390_math9182228
crossref_primary_10_1002_cta_3483
crossref_primary_10_3390_pr11102986
crossref_primary_10_1515_ijeeps_2022_0380
crossref_primary_10_53759_7669_jmc202404055
crossref_primary_10_3389_fenrg_2024_1505419
crossref_primary_10_3390_app11167550
crossref_primary_10_1016_j_renene_2024_120892
crossref_primary_10_3390_en16196974
crossref_primary_10_3390_app15031031
crossref_primary_10_3390_machines11080814
crossref_primary_10_1109_TTE_2023_3312621
crossref_primary_10_3389_fmech_2024_1390341
crossref_primary_10_3390_app14072853
crossref_primary_10_1016_j_procs_2022_11_116
crossref_primary_10_1080_15325008_2023_2215780
crossref_primary_10_1002_cta_3133
crossref_primary_10_1002_cta_3870
crossref_primary_10_1002_cta_3374
crossref_primary_10_3389_fenrg_2022_946864
crossref_primary_10_3390_app11167732
crossref_primary_10_1002_cta_3152
crossref_primary_10_1016_j_renene_2025_122709
Cites_doi 10.1049/iet-rpg.2019.0875
10.1016/j.rser.2017.05.083
10.3390/en11102543
10.3390/en11030567
10.6113/JPE.2016.16.1.287
10.1049/iet-rpg.2016.0114
10.3390/en11020365
10.1109/TPEL.2010.2049747
10.1002/9781118755877
10.1016/j.rser.2016.09.131
10.1109/TSTE.2015.2413359
10.1049/joe.2017.0437
10.3390/en12020202
10.1109/TSTE.2016.2598240
10.1109/JESTPE.2016.2581858
10.1016/j.solener.2014.07.024
10.3390/en10122036
10.1016/j.solener.2005.06.010
10.3390/en12040623
10.3390/su11072091
10.3390/en10091316
10.1080/15435075.2017.1324792
10.1063/1.4906982
10.3390/en10122037
10.1109/TSTE.2014.2363521
10.3390/su10051347
10.1016/j.apenergy.2013.12.062
10.1016/j.apenergy.2015.05.035
10.1016/j.jclepro.2019.01.150
10.3390/en13082035
10.4236/epe.2016.811031
10.1016/j.rser.2016.09.076
10.1016/j.egypro.2017.07.084
10.4236/jpee.2016.43004
10.1016/j.renene.2014.09.044
10.1109/TEC.2014.2298237
10.1016/j.rser.2016.07.053
10.1016/j.solener.2018.09.060
10.3390/en9040245
10.1016/j.asoc.2017.05.017
10.1109/TPEL.2012.2185713
10.1016/j.asoc.2015.05.029
10.1109/ACCESS.2020.2964759
10.3390/su12031185
10.3390/electronics8030321
10.1016/j.solener.2016.08.008
10.19026/rjaset.7.797
10.1007/s00521-016-2447-9
10.1109/MHS.1995.494215
10.1016/j.asoc.2015.03.047
10.1109/TAES.2011.5705681
10.1016/j.apenergy.2011.09.005
10.1016/j.ifacol.2018.11.756
10.1016/j.apenergy.2015.08.047
10.11648/j.ijepe.20170606.12
10.1016/j.rser.2016.11.125
10.3390/en8065338
10.1007/978-981-13-1945-7
10.1016/j.rser.2016.09.132
10.1049/joe.2018.8337
10.1109/TSTE.2015.2438781
10.1016/j.gee.2016.11.001
10.1109/TCSII.2018.2838672
10.15623/ijret.2013.0209086
10.1016/j.apenergy.2005.11.004
10.26480/jmerd.04.2018.116.121
10.1002/cta.2741
10.1002/cta.631
10.1007/978-3-030-05578-3_2
ContentType Journal Article
Copyright 2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1002/cta.2978
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1097-007X
EndPage 1867
ExternalDocumentID 10_1002_cta_2978
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XV2
ZY4
ZZTAW
~IA
~WT
7SP
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
L7M
ID FETCH-LOGICAL-c255t-2e778b9e658e421cce09d7beb3c0d007fdb41e2fcf6ef09fab0b4663f1141a803
ISSN 0098-9886
IngestDate Fri Jul 25 12:21:17 EDT 2025
Thu Apr 24 23:07:57 EDT 2025
Tue Jul 01 02:55:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c255t-2e778b9e658e421cce09d7beb3c0d007fdb41e2fcf6ef09fab0b4663f1141a803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5459-2265
0000-0001-7449-1939
0000-0002-1947-9264
0000-0001-6582-6741
PQID 2548331699
PQPubID 996369
PageCount 19
ParticipantIDs proquest_journals_2548331699
crossref_primary_10_1002_cta_2978
crossref_citationtrail_10_1002_cta_2978
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-00
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal of circuit theory and applications
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
Debnath D (e_1_2_8_51_1) 2020; 20
Sampaio LP (e_1_2_8_50_1) 2019; 13
Deepak V (e_1_2_8_32_1) 2015; 54
Ngan MS (e_1_2_8_68_1) 2016
e_1_2_8_81_1
e_1_2_8_5_1
Ishaque K (e_1_2_8_57_1) 2012; 60
e_1_2_8_7_1
Eltamaly AM (e_1_2_8_83_1) 2019; 1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
Shi JY (e_1_2_8_11_1) 2019; 19
e_1_2_8_22_1
e_1_2_8_45_1
Rai U (e_1_2_8_55_1) 2017; 4
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_70_1
e_1_2_8_78_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_74_1
Koutroulis E (e_1_2_8_12_1) 2015; 55
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
Derbel N (e_1_2_8_4_1) 2019
Lessa Tofoli F (e_1_2_8_14_1) 2015; 2015
e_1_2_8_25_1
e_1_2_8_46_1
Rana R (e_1_2_8_66_1) 2016; 4
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
Yang Y (e_1_2_8_3_1) 2019
e_1_2_8_2_1
e_1_2_8_80_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_84_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Abdulkadir M (e_1_2_8_62_1) 2018; 5
e_1_2_8_79_1
Foster N (e_1_2_8_64_1) 2017
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_71_1
References_xml – ident: e_1_2_8_39_1
  doi: 10.1049/iet-rpg.2019.0875
– ident: e_1_2_8_5_1
  doi: 10.1016/j.rser.2017.05.083
– ident: e_1_2_8_13_1
  doi: 10.3390/en11102543
– ident: e_1_2_8_81_1
  doi: 10.3390/en11030567
– ident: e_1_2_8_43_1
  doi: 10.6113/JPE.2016.16.1.287
– ident: e_1_2_8_82_1
  doi: 10.1049/iet-rpg.2016.0114
– start-page: 107
  year: 2016
  ident: e_1_2_8_68_1
  article-title: Photovoltaic multiple peaks power tracking using particle swarm optimization with artificial neural network algorithm
  publication-title: Adv Solar Photovolt Power Plants
– ident: e_1_2_8_15_1
  doi: 10.3390/en11020365
– ident: e_1_2_8_28_1
  doi: 10.1109/TPEL.2010.2049747
– ident: e_1_2_8_73_1
  doi: 10.1002/9781118755877
– ident: e_1_2_8_36_1
  doi: 10.1016/j.rser.2016.09.131
– ident: e_1_2_8_71_1
  doi: 10.1109/TSTE.2015.2413359
– ident: e_1_2_8_65_1
  doi: 10.1049/joe.2017.0437
– volume: 55
  start-page: 184
  year: 2015
  ident: e_1_2_8_12_1
  article-title: A new technique for tracking the global maximum power point of PV arrays operating under partial‐shading conditions
  publication-title: IEEE J Photovolt
– ident: e_1_2_8_10_1
  doi: 10.3390/en12020202
– volume: 1
  start-page: 104
  issue: 12
  year: 2019
  ident: e_1_2_8_83_1
  article-title: Photovoltaic MPPT under dynamic partial shading changes by novel adaptive particle swarm optimization strategy
  publication-title: Trans Inst Meas Control
– ident: e_1_2_8_40_1
  doi: 10.1109/TSTE.2016.2598240
– ident: e_1_2_8_45_1
  doi: 10.1109/JESTPE.2016.2581858
– ident: e_1_2_8_78_1
  doi: 10.1016/j.solener.2014.07.024
– volume: 54
  start-page: 1018
  year: 2015
  ident: e_1_2_8_32_1
  article-title: Maximum power point tracking (MPPT) techniques: recapitulation in solar photovoltaic systems
  publication-title: Renew Sustain Energy Rev
– ident: e_1_2_8_34_1
  doi: 10.3390/en10122036
– ident: e_1_2_8_77_1
  doi: 10.1016/j.solener.2005.06.010
– ident: e_1_2_8_53_1
  doi: 10.3390/en12040623
– volume: 13
  start-page: 1
  year: 2019
  ident: e_1_2_8_50_1
  article-title: Comparative analysis of MPPT algorithms bio‐inspired by grey wolves employing a feed‐forward control loop in a three‐phase grid‐connected photovoltaic system
  publication-title: IET Renew Power Gen
– ident: e_1_2_8_72_1
  doi: 10.3390/su11072091
– ident: e_1_2_8_6_1
  doi: 10.3390/en10091316
– ident: e_1_2_8_70_1
  doi: 10.1080/15435075.2017.1324792
– ident: e_1_2_8_20_1
  doi: 10.1063/1.4906982
– ident: e_1_2_8_27_1
  doi: 10.3390/en10122037
– volume: 5
  start-page: 218
  year: 2018
  ident: e_1_2_8_62_1
  article-title: Optimization of an MPPT‐based controller for PV system using PSO
  publication-title: Eur J Adv Eng Technol
– ident: e_1_2_8_46_1
  doi: 10.1109/TSTE.2014.2363521
– ident: e_1_2_8_49_1
  doi: 10.3390/su10051347
– ident: e_1_2_8_42_1
  doi: 10.1016/j.apenergy.2013.12.062
– volume-title: Proceedings of The National Conference On Undergraduate Research (NCUR)
  year: 2017
  ident: e_1_2_8_64_1
– ident: e_1_2_8_75_1
  doi: 10.1016/j.apenergy.2015.05.035
– ident: e_1_2_8_37_1
  doi: 10.1016/j.jclepro.2019.01.150
– ident: e_1_2_8_52_1
  doi: 10.3390/en13082035
– ident: e_1_2_8_56_1
  doi: 10.4236/epe.2016.811031
– ident: e_1_2_8_8_1
  doi: 10.1016/j.rser.2016.09.076
– ident: e_1_2_8_41_1
  doi: 10.1016/j.egypro.2017.07.084
– ident: e_1_2_8_74_1
  doi: 10.4236/jpee.2016.43004
– volume: 4
  start-page: 5011
  issue: 12
  year: 2016
  ident: e_1_2_8_66_1
  article-title: MPPT for PV systems based on optimization algorithm
  publication-title: Int J Sci Res Manag (IJSRM)
– volume: 20
  start-page: 87
  year: 2020
  ident: e_1_2_8_51_1
  article-title: Improved grey wolf assists MPPT approach for solar photovoltaic system under partially shaded and gradually atmospheric changing condition
  publication-title: Int Energy J
– volume-title: Advances in Grid‐Connected Photovoltaic Power Conversion Systems
  year: 2019
  ident: e_1_2_8_3_1
– ident: e_1_2_8_63_1
  doi: 10.1016/j.renene.2014.09.044
– ident: e_1_2_8_44_1
  doi: 10.1109/TEC.2014.2298237
– ident: e_1_2_8_30_1
  doi: 10.1016/j.rser.2016.07.053
– ident: e_1_2_8_31_1
  doi: 10.1016/j.solener.2018.09.060
– volume: 4
  issue: 2
  year: 2017
  ident: e_1_2_8_55_1
  article-title: Modeling of solar PV system under partial shading using particle swarm optimization based MPPT
  publication-title: Int Res J Eng Technol
– volume: 60
  start-page: 3195
  year: 2012
  ident: e_1_2_8_57_1
  article-title: A deterministic particle swarm optimization maximum power point tracker for photovoltaic system under partial shading condition
  publication-title: IEEE Trans Ind Electron
– ident: e_1_2_8_25_1
  doi: 10.3390/en9040245
– ident: e_1_2_8_38_1
  doi: 10.1016/j.asoc.2017.05.017
– ident: e_1_2_8_59_1
  doi: 10.1109/TPEL.2012.2185713
– ident: e_1_2_8_61_1
  doi: 10.1016/j.asoc.2015.05.029
– ident: e_1_2_8_48_1
  doi: 10.1109/ACCESS.2020.2964759
– ident: e_1_2_8_54_1
  doi: 10.3390/su12031185
– ident: e_1_2_8_22_1
  doi: 10.3390/electronics8030321
– ident: e_1_2_8_33_1
  doi: 10.1016/j.solener.2016.08.008
– ident: e_1_2_8_19_1
  doi: 10.19026/rjaset.7.797
– ident: e_1_2_8_35_1
  doi: 10.1007/s00521-016-2447-9
– ident: e_1_2_8_79_1
  doi: 10.1109/MHS.1995.494215
– ident: e_1_2_8_47_1
  doi: 10.1016/j.asoc.2015.03.047
– ident: e_1_2_8_58_1
  doi: 10.1109/TAES.2011.5705681
– volume: 2015
  start-page: 812582
  year: 2015
  ident: e_1_2_8_14_1
  article-title: Comparative study of maximum power point tracking techniques for photovoltaic systems
  publication-title: Int J Photoenergy
– ident: e_1_2_8_26_1
  doi: 10.1016/j.apenergy.2011.09.005
– ident: e_1_2_8_2_1
  doi: 10.1016/j.ifacol.2018.11.756
– ident: e_1_2_8_60_1
  doi: 10.1016/j.apenergy.2015.08.047
– ident: e_1_2_8_67_1
  doi: 10.11648/j.ijepe.20170606.12
– ident: e_1_2_8_7_1
  doi: 10.1016/j.rser.2016.11.125
– ident: e_1_2_8_69_1
  doi: 10.3390/en8065338
– start-page: 374
  volume-title: Modeling, Identification and Control Methods in Renewable Energy Systems
  year: 2019
  ident: e_1_2_8_4_1
  doi: 10.1007/978-981-13-1945-7
– ident: e_1_2_8_16_1
  doi: 10.1016/j.rser.2016.09.132
– ident: e_1_2_8_18_1
  doi: 10.1049/joe.2018.8337
– ident: e_1_2_8_21_1
  doi: 10.1109/TSTE.2015.2438781
– ident: e_1_2_8_29_1
  doi: 10.1016/j.gee.2016.11.001
– ident: e_1_2_8_23_1
  doi: 10.1109/TCSII.2018.2838672
– volume: 19
  start-page: 1248
  year: 2019
  ident: e_1_2_8_11_1
  article-title: Moth‐flame pptimization‐based maximum power point tracking for photovoltaic systems under partial shading conditions
  publication-title: J Power Electron
– ident: e_1_2_8_17_1
  doi: 10.15623/ijret.2013.0209086
– ident: e_1_2_8_24_1
  doi: 10.1016/j.apenergy.2005.11.004
– ident: e_1_2_8_84_1
  doi: 10.26480/jmerd.04.2018.116.121
– ident: e_1_2_8_80_1
  doi: 10.1002/cta.2741
– ident: e_1_2_8_76_1
  doi: 10.1002/cta.631
– ident: e_1_2_8_9_1
  doi: 10.1007/978-3-030-05578-3_2
SSID ssj0008239
Score 2.4629674
Snippet Even with significant progresses in the maximum power point (MPP) research area, the necessity to improve the existing methods becomes mandatory to increase...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1849
SubjectTerms Control methods
Energy conversion efficiency
Maximum power tracking
Optimization techniques
Particle swarm optimization
Photovoltaic cells
Scientific papers
Shading
Tracking control
Title Evaluation of particle swarm optimization techniques applied to maximum power point tracking in photovoltaic systems
URI https://www.proquest.com/docview/2548331699
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcoED4imWXZCRkDhUWRInTeIjgkUrhDigXdRb5KcItEnVOmLVX8tPYfxImq56WLhYreU4Sufr-LMz8w1Cb6hK00woGQH7zaOM5zTinOhIESVmsdbgH12A7Nf84ir7PJ_NJ5M_o6ilzvAzsT2YV_I_VoU-sKvNkv0Hyw6TQgd8BvtCCxaG9lY2Ph-kul3gchgx3fxm6-W0BWewDFmW00GqdTNlgXcC6Vyy63rZLacrWyoN2roxtmaE-BUSXVY_WtOC_zKsFkHzeTNms_vHiSMRClGvRVeHNEmv8DR-Uz6wZ_ea_iPb2pQh4780_kh7FGvfwYLa_awXixa8l7R5ZJ0DBtN9vL-NH6rXrnRBCBVv-_7vbtZkC4--BcdYb6SSPrLwS1fvnXmQZIiPHfw4BTdd9iLa3nXHVlc2LuZj3-7lUAOGi5Gjho0tHS36Vtbv4ILiBWqFYWeE-lpD-5rdN9bSIcLRq0GTCq6s7JV30F1SFD6Q4NtO4KwkKe1VXe3z9PLIMXnX33OfMO3zBUeCLh-iB2H3gt97oD1CE9U8RvdHmpZPkNmBErca96DEDpR4DEq8AyUOoMSmxQGU2IESO1DiHpS4bvAYlDiA8im6-nR--eEiCqU9IgF7WBMRVRQlpwr4r8pIIoSKqSy44qmIJRhRS54limihc6VjqhmPeQbkWMP2PWFlnD5DR03bqOcIC6DwrEzyGVNlJqVkssyFVgkjSawLXhyjt_3vV4mge2_LryyqmzY6Rq-HkSuv9XJgzGlvgir8rTYVgW1_miY5pS9uMcUJurfD9Ck6MutOvQRma_grB46_1Syw3A
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+particle+swarm+optimization+techniques+applied+to+maximum+power+point+tracking+in+photovoltaic+systems&rft.jtitle=International+journal+of+circuit+theory+and+applications&rft.au=D%C3%ADaz+Mart%C3%ADnez%2C+David&rft.au=Trujillo+Codorniu%2C+Rafael&rft.au=Giral%2C+Roberto&rft.au=V%C3%A1zquez+Seisdedos%2C+Luis&rft.date=2021-07-01&rft.issn=0098-9886&rft.eissn=1097-007X&rft.volume=49&rft.issue=7&rft.spage=1849&rft.epage=1867&rft_id=info:doi/10.1002%2Fcta.2978&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cta_2978
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-9886&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-9886&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-9886&client=summon