A transient nanoscale flow model for alkanes considering inhomogeneous flow properties and rough surfaces
•Density and viscosity models that characterize the properties of inhomogeneous flow are developed.•A transient numerical model that describes the transport behavior of alkanes in unsteady and steady stages is proposed.•Revealing the alkane flow behavior with the combined effect of nanoconfinement e...
Saved in:
Published in | Journal of molecular liquids Vol. 407; p. 125145 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Density and viscosity models that characterize the properties of inhomogeneous flow are developed.•A transient numerical model that describes the transport behavior of alkanes in unsteady and steady stages is proposed.•Revealing the alkane flow behavior with the combined effect of nanoconfinement effects and rough nanochannels.
The flow of alkanes within nanochannels holds significant scientific implications for biological, material, and oil field development. Existing models often overlook the combined effect of transient transport and rough surfaces under nanoconfinement conditions. In this study, we formulated an inhomogeneous density model controlled by wall energy based on molecular simulation results. Additionally, we constructed an inhomogeneous viscosity model by combining excess free energy, solvation energy, and cohesion energy using the Eyring equation. Integrating these models with the Weierstrass-Mandelbrot fractal function and a modified Navier-Stokes equation yielded a novel transient nanoscale flow model. We iteratively solved the model using the finite element method and confirmed model validity through comparisons with experimental data, molecular dynamics simulations, and existing models. Key findings indicated that surface roughness inhibited pressure drop deceleration caused by nanoconfinement. Conversely, rough surfaces and an inhomogeneous viscosity contributed to an increased pressure drop, moderated by slip effects. In the unsteady stage, the variation in flow enhancement rate was intricate and contingent on the combined action of rough surfaces and nanoconfinement effects at distinct times. Notably, the influence of inhomogeneous density on the flow enhancement rate initially amplified and then diminished, gradually dissipating over time. In the steady stage, inhomogeneous viscosity facilitated volumetric flux in smaller sizes (2 nm) but hindered it in larger sizes (10 nm). |
---|---|
AbstractList | •Density and viscosity models that characterize the properties of inhomogeneous flow are developed.•A transient numerical model that describes the transport behavior of alkanes in unsteady and steady stages is proposed.•Revealing the alkane flow behavior with the combined effect of nanoconfinement effects and rough nanochannels.
The flow of alkanes within nanochannels holds significant scientific implications for biological, material, and oil field development. Existing models often overlook the combined effect of transient transport and rough surfaces under nanoconfinement conditions. In this study, we formulated an inhomogeneous density model controlled by wall energy based on molecular simulation results. Additionally, we constructed an inhomogeneous viscosity model by combining excess free energy, solvation energy, and cohesion energy using the Eyring equation. Integrating these models with the Weierstrass-Mandelbrot fractal function and a modified Navier-Stokes equation yielded a novel transient nanoscale flow model. We iteratively solved the model using the finite element method and confirmed model validity through comparisons with experimental data, molecular dynamics simulations, and existing models. Key findings indicated that surface roughness inhibited pressure drop deceleration caused by nanoconfinement. Conversely, rough surfaces and an inhomogeneous viscosity contributed to an increased pressure drop, moderated by slip effects. In the unsteady stage, the variation in flow enhancement rate was intricate and contingent on the combined action of rough surfaces and nanoconfinement effects at distinct times. Notably, the influence of inhomogeneous density on the flow enhancement rate initially amplified and then diminished, gradually dissipating over time. In the steady stage, inhomogeneous viscosity facilitated volumetric flux in smaller sizes (2 nm) but hindered it in larger sizes (10 nm). |
ArticleNumber | 125145 |
Author | Li, Changzhou Cao, Cheng Yong, Longquan Chang, Bin Yang, Zhao |
Author_xml | – sequence: 1 givenname: Cheng surname: Cao fullname: Cao, Cheng email: caocheng@snut.edu.cn organization: Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China – sequence: 2 givenname: Bin surname: Chang fullname: Chang, Bin organization: State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an, Shaanxi 710069, China – sequence: 3 givenname: Zhao surname: Yang fullname: Yang, Zhao organization: Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China – sequence: 4 givenname: Longquan surname: Yong fullname: Yong, Longquan organization: Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China – sequence: 5 givenname: Changzhou surname: Li fullname: Li, Changzhou organization: Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China |
BookMark | eNp9kL1OwzAUhT0UiRZ4Awa_QILtOHGyIFUVf1IlFpgtx75uXRy72CmItydVmJnucM53dPWt0CLEAAjdUlJSQpu7QzlE791nyQjjJWU15fUCLadIFKJi7BKtcj4QQuq6JUvk1nhMKmQHYcRBhZi18oCtj994iAY8tjFh5T9UgIx1nJoGkgs77MI-DnEHAeIpz8AxxSOk0U1NFQxO8bTb43xKVmnI1-jCKp_h5u9eoffHh7fNc7F9fXrZrLeFZnU9FszQzlbC1JQw1ba2g6axbQs9p00nDCMdaNHpCjhViveCG11pwfu-BWFs31VXiM-7OsWcE1h5TG5Q6UdSIs-K5EHOiuRZkZwVTdj9jMH025eDJLOepGgwLoEepYnu_4Ff_aJ4gA |
Cites_doi | 10.1021/nl8013617 10.1016/j.fuel.2021.122389 10.1016/bs.ache.2015.10.001 10.1115/1.2787208 10.1016/j.cis.2017.02.004 10.1016/j.icheatmasstransfer.2009.07.010 10.1007/s10404-010-0678-0 10.1021/acs.langmuir.7b02752 10.1016/j.ijthermalsci.2009.07.008 10.1016/j.ijheatmasstransfer.2017.08.024 10.1016/j.molliq.2020.112745 10.1063/1.1419258 10.1038/nmat5025 10.1126/science.aaa5058 10.1073/pnas.1612608114 10.1016/j.jcis.2004.06.090 10.1016/j.fuel.2019.05.098 10.1103/PhysRevLett.102.184502 10.1021/jp992922y 10.1016/j.physa.2008.06.043 10.1063/1.1541615 10.1021/acs.iecr.1c03615 10.1038/ncomms7949 10.1016/j.ces.2018.05.016 10.1007/s10404-014-1500-1 10.1016/j.icheatmasstransfer.2008.10.009 10.1021/acs.langmuir.8b01397 10.1016/j.fuel.2015.12.071 10.1103/PhysRevE.70.017303 10.1039/f19807600717 10.1016/j.fuel.2016.05.057 10.1126/science.1212101 10.1063/1.1749836 10.1016/j.petrol.2019.02.027 10.1016/j.fuel.2016.10.105 10.1007/s11242-020-01462-5 10.1007/s10404-018-2067-z 10.1016/j.fuel.2019.01.042 10.1039/c1sm05543g 10.1063/1.1810473 10.1021/acsnano.6b02856 10.1016/j.petsci.2023.07.015 10.1103/PhysRevLett.69.1967 10.1002/aic.15535 10.1039/FT9928803505 10.1063/1.2424934 10.1016/j.jcis.2021.04.077 10.1038/ncomms3482 10.1016/j.ces.2018.12.042 10.1021/acs.jpcc.9b03903 10.1016/j.molliq.2019.111183 10.1016/j.petrol.2018.04.045 10.1016/j.cnsns.2010.03.010 10.1021/la901314b |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.molliq.2024.125145 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
ExternalDocumentID | 10_1016_j_molliq_2024_125145 S0167732224012017 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXKI AAXUO ABJNI ABMAC ABNEU ACDAQ ACFVG ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AFJKZ AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSK SSQ SSZ T5K TN5 YK3 ZMT ~G- 29L AAQXK AATTM AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AJQLL AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HMU HVGLF HZ~ R2- SCB SCH SSH WUQ XPP |
ID | FETCH-LOGICAL-c255t-2d19f37d5102a88f9e66f88eb41697d209ec79c3e41aa4b74dc3c74bb8e7dfb93 |
IEDL.DBID | .~1 |
ISSN | 0167-7322 |
IngestDate | Tue Jul 01 03:02:56 EDT 2025 Sat Nov 16 16:00:13 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nanochannel Inhomogeneous flow properties Transient flow Roughness surface Pressure drop |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c255t-2d19f37d5102a88f9e66f88eb41697d209ec79c3e41aa4b74dc3c74bb8e7dfb93 |
ParticipantIDs | crossref_primary_10_1016_j_molliq_2024_125145 elsevier_sciencedirect_doi_10_1016_j_molliq_2024_125145 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 2024-08-00 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of molecular liquids |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wang, Javadpour, Feng (b0100) 2016; 181 R.Y. Jin K. Song W.L. Hase Molecular Dynamics Simulations of the Structures of Alkane/Hydroxylated Α-Al_2O_3(0001) Interfaces, The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical (2000) 2692-2701. Yang, Su, Chi, Cherian, Huang, Kravets, Wang, Zhang, Pratt, Grigorenko, Guinea, Geim, Nair (b0270) 2017; 16 Tavana, Lam, Grundke, Friedel, Kwok, Hair, Neumann (b0255) 2004; 279 Wang, Fichthorn (b0310) 2002; 116 Zhan, Su, Lu, Cai, Fu, Liu, Wang, Han (b0080) 2021; 2021 Wang, Cheng (b0170) 2019; 198 Falk, Coasne, Pellenq, Ulm, Bocquet (b0305) 2015; 6 Sendner, Horinek, Bocquet, Netz (b0135) 2009; 25 Tl, Krajcinovic, Majumdar (b0235) 1996; 63 Wu, Wiwatanapataphee, Hu (b0035) 2008; 387 Ni, Liu, Li, Sha, Pu (b0020) 2022; 30 Thomas, McGaughey (b0045) 2007; 126 Cao, Chang, Yang, Gao (b0195) 2023; 20 Yang, Dehghanpour, Binazadeh, Dong (b0075) 2017; 190 Zhang, Li, Shi, Sun, Yin, Wu, Li, Feng (b0180) 2018; 187 Li, Li, Bai, Jia, Xu, Meng, Ma, Tian (b0115) 2021; 599 Lockerby, Reese, Emerson, Barber (b0240) 2004; 70 Thomas, McGaughey (b0050) 2008; 8 Wu, Chen, Li, Lei, Xu, Wang, Li, Dong, Peng, Yang, Zhang, Chen, Gao (b0155) 2019; 123 Israelachvili (b0220) 2011; 2 Zeng, Ning, Wang, Sun, Huang, Ye (b0225) 2018; 167 Wang, Zhao (b0160) 2011; 7 Wu, Chen, Li, Li, Xu, Dong (b0140) 2017; 114 Karan, Jiang, Livingston, Filtration (b0280) 2015; 348 Wang, Javadpour, Feng (b0120) 2016; 171 Tang (b0085) 2003; 118 Wu, Li, Zhang, Lv, Zhou (b0125) 2021; 60 Thomas, McGaughey, Kuter-Arnebeck (b0060) 2010; 49 Zhang, Ye, Zheng, Zhang (b0130) 2011; 10 Yang, Liang, Yu, Zou (b0190) 2015; 18 Berry (b0230) 1984 Zhang, Su, Wang, Lu, Sheng (b0175) 2017; 115 Wu, Nikolov, Wasan (b0215) 2017; 243 Liu, Zou, He, Sun, Ju, Meng, Cai (b0030) 2021 Thomas, McGaughey (b0055) 2009; 102 Wang, Fu (b0025) 2021; 29 Feng, Li, Wang, Li, Zhang, Sun, He, Liu, Qin, Han, Hu (b0150) 2018; 34 Papanastasiou, Georgiou, Alexandrou (b0265) 1999 Heink, Kärger, Pfeifer, Datema, Nowak (b0290) 1992; 88 Zhang, Feng, Wang, Xing (b0015) 2019; 290 Wang, Su, Zhao, Wang, Sheng, Zhan (b0010) 2019; 176 Shams, Shojaeian, Aghanajafi, Dibaji (b0250) 2009; 36 Fan, Ettehadtavakkol, Wang (b0200) 2020; 134 Kärger, Pfeifer, Rauscher, Walter (b0295) 1980; 76 Xia, Ouyang, Ribarsky, Landman (b0320) 1992; 69 Tang (b0090) 2004; 121 Cai, Su, Zhan, Elsworth, Li (b0070) 2022; 310 Wang, Yuliang, Wang, Sheng, Li, Zafar (b0185) 2019; 253 Karan, Samitsu, Peng, Kurashima, Ichinose (b0285) 2012; 335 Zhao, Hu, Yu, Liu, Bai, Liu (b0105) 2017; 63 Smith, Lynden-Bell, Smith (b0315) 2000; 255–260 Zhao, Liu, Chen, Lu, Liu, Hu (b0095) 2015 Chandramoorthy, Hadjiconstantinou (b0300) 2018; 22 Khadem, Shams, Hossainpour (b0245) 2009; 36 Bai, Haldoupis, Dauenhauer, Tsapatsis, Siepmann (b0275) 2016; 10 Eyring (b0210) 1936; 4 Shaat (b0065) 2017; 33 Sui, Zhang, Wang, Wang, Wang (b0005) 2020; 305 Ortiz-Young, Chiu, Kim, Voïtchovsky, Riedo (b0110) 2013; 4 Siddique, Sajid (b0040) 2011; 16 Hu, Zheng, Li (b0205) 2008 Blake (b0145) 1952; 47 Zhang, Li, Yin, He, Liu, Huang, Shi (b0165) 2019; 242 Xia (10.1016/j.molliq.2024.125145_b0320) 1992; 69 Zhang (10.1016/j.molliq.2024.125145_b0130) 2011; 10 Thomas (10.1016/j.molliq.2024.125145_b0045) 2007; 126 Shams (10.1016/j.molliq.2024.125145_b0250) 2009; 36 Wang (10.1016/j.molliq.2024.125145_b0100) 2016; 181 Yang (10.1016/j.molliq.2024.125145_b0075) 2017; 190 Tang (10.1016/j.molliq.2024.125145_b0085) 2003; 118 Karan (10.1016/j.molliq.2024.125145_b0285) 2012; 335 Zhang (10.1016/j.molliq.2024.125145_b0180) 2018; 187 Heink (10.1016/j.molliq.2024.125145_b0290) 1992; 88 Yang (10.1016/j.molliq.2024.125145_b0190) 2015; 18 Tavana (10.1016/j.molliq.2024.125145_b0255) 2004; 279 Yang (10.1016/j.molliq.2024.125145_b0270) 2017; 16 Thomas (10.1016/j.molliq.2024.125145_b0055) 2009; 102 Chandramoorthy (10.1016/j.molliq.2024.125145_b0300) 2018; 22 Wang (10.1016/j.molliq.2024.125145_b0310) 2002; 116 Zhang (10.1016/j.molliq.2024.125145_b0165) 2019; 242 Tang (10.1016/j.molliq.2024.125145_b0090) 2004; 121 Berry (10.1016/j.molliq.2024.125145_b0230) 1984 Bai (10.1016/j.molliq.2024.125145_b0275) 2016; 10 Wu (10.1016/j.molliq.2024.125145_b0215) 2017; 243 Wang (10.1016/j.molliq.2024.125145_b0025) 2021; 29 Feng (10.1016/j.molliq.2024.125145_b0150) 2018; 34 Wu (10.1016/j.molliq.2024.125145_b0035) 2008; 387 Lockerby (10.1016/j.molliq.2024.125145_b0240) 2004; 70 Ni (10.1016/j.molliq.2024.125145_b0020) 2022; 30 Wang (10.1016/j.molliq.2024.125145_b0185) 2019; 253 Zhang (10.1016/j.molliq.2024.125145_b0015) 2019; 290 Thomas (10.1016/j.molliq.2024.125145_b0060) 2010; 49 Hu (10.1016/j.molliq.2024.125145_b0205) 2008 Zeng (10.1016/j.molliq.2024.125145_b0225) 2018; 167 Tl (10.1016/j.molliq.2024.125145_b0235) 1996; 63 Israelachvili (10.1016/j.molliq.2024.125145_b0220) 2011; 2 Wang (10.1016/j.molliq.2024.125145_b0160) 2011; 7 Sui (10.1016/j.molliq.2024.125145_b0005) 2020; 305 Falk (10.1016/j.molliq.2024.125145_b0305) 2015; 6 Wang (10.1016/j.molliq.2024.125145_b0170) 2019; 198 Wang (10.1016/j.molliq.2024.125145_b0120) 2016; 171 Fan (10.1016/j.molliq.2024.125145_b0200) 2020; 134 Wang (10.1016/j.molliq.2024.125145_b0010) 2019; 176 Cao (10.1016/j.molliq.2024.125145_b0195) 2023; 20 Liu (10.1016/j.molliq.2024.125145_b0030) 2021 Shaat (10.1016/j.molliq.2024.125145_b0065) 2017; 33 Thomas (10.1016/j.molliq.2024.125145_b0050) 2008; 8 Khadem (10.1016/j.molliq.2024.125145_b0245) 2009; 36 10.1016/j.molliq.2024.125145_b0260 Zhan (10.1016/j.molliq.2024.125145_b0080) 2021; 2021 Sendner (10.1016/j.molliq.2024.125145_b0135) 2009; 25 Blake (10.1016/j.molliq.2024.125145_b0145) 1952; 47 Kärger (10.1016/j.molliq.2024.125145_b0295) 1980; 76 Smith (10.1016/j.molliq.2024.125145_b0315) 2000; 255–260 Ortiz-Young (10.1016/j.molliq.2024.125145_b0110) 2013; 4 Wu (10.1016/j.molliq.2024.125145_b0140) 2017; 114 Li (10.1016/j.molliq.2024.125145_b0115) 2021; 599 Eyring (10.1016/j.molliq.2024.125145_b0210) 1936; 4 Siddique (10.1016/j.molliq.2024.125145_b0040) 2011; 16 Wu (10.1016/j.molliq.2024.125145_b0125) 2021; 60 Wu (10.1016/j.molliq.2024.125145_b0155) 2019; 123 Zhang (10.1016/j.molliq.2024.125145_b0175) 2017; 115 Karan (10.1016/j.molliq.2024.125145_b0280) 2015; 348 Cai (10.1016/j.molliq.2024.125145_b0070) 2022; 310 Zhao (10.1016/j.molliq.2024.125145_b0095) 2015 Papanastasiou (10.1016/j.molliq.2024.125145_b0265) 1999 Zhao (10.1016/j.molliq.2024.125145_b0105) 2017; 63 |
References_xml | – start-page: 1 year: 2015 end-page: 83 ident: b0095 article-title: Chapter One - Unified Framework of Multiscale Density Functional Theories and its Recent Applications publication-title: Advances in Chemical Engineering – volume: 63 start-page: 47 year: 1996 ident: b0235 article-title: A fractal model for the rigid-perfectly plastic contact of rough surfaces publication-title: J. Appl. Mech. – volume: 70 start-page: 17303 year: 2004 ident: b0240 article-title: Velocity boundary condition at solid walls in rarefied gas calculations publication-title: Phys. Rev. E, Statistic., Nonlinear, Soft. Matter. Phys. – volume: 176 start-page: 1041 year: 2019 end-page: 1052 ident: b0010 article-title: Apparent permeability model for shale oil transport through elliptic nanopores considering wall-oil interaction publication-title: J. Pet. Sci. Eng. – volume: 134 start-page: 651 year: 2020 end-page: 677 ident: b0200 article-title: Apparent liquid permeability in mixed-wet shale permeable media publication-title: Transp. Porous Media – volume: 242 start-page: 305 year: 2019 end-page: 315 ident: b0165 article-title: The transport behaviors of oil in nanopores and nanoporous media of shale publication-title: Fuel – volume: 30 year: 2022 ident: b0020 article-title: An improved fractal permeability model for porous geomaterials with complex pore structures and rough surfaces publication-title: Fractals-Complex Geom. Patterns Scaling Nat. Soc. – volume: 10 start-page: 403 year: 2011 end-page: 414 ident: b0130 article-title: Prediction of the viscosity of water confined in carbon nanotubes publication-title: Microfluid. Nanofluid. – year: 1984 ident: b0230 article-title: Quantal phase factors accompanying adiabatic changes publication-title: Proc. Royal Soc. A: Math. – volume: 290 year: 2019 ident: b0015 article-title: Oil diffusion in shale nanopores: insight of molecular dynamics simulation publication-title: J. Mol. Liq. – volume: 253 year: 2019 ident: b0185 article-title: Enhanced water flow and apparent viscosity model considering wettability and shape effects publication-title: Fuel – volume: 20 start-page: 3461 year: 2023 end-page: 3477 ident: b0195 article-title: A transient model integrating the nanoconfinement effect and pore structure characteristics of oil transport through nanopores publication-title: Pet. Sci. – volume: 243 start-page: 114 year: 2017 end-page: 120 ident: b0215 article-title: Capillary dynamics driven by molecular self-layering publication-title: Adv. Colloid Interface Sci. – volume: 305 year: 2020 ident: b0005 article-title: Molecular simulations of oil adsorption and transport behavior in inorganic shale publication-title: J. Mol. Liq. – volume: 47 start-page: 135 year: 1952 end-page: 145 ident: b0145 article-title: Slip between a liquid and a solid: D.M. Tolstoi's, Theory reconsidered publication-title: Colloids and Surfaces – volume: 255–260 year: 2000 ident: b0315 article-title: The behaviour of liquid alkanes near interfaces publication-title: Mol. Phys. – year: 2021 ident: b0030 article-title: Influence of fractal surface roughness on multiphase flow behavior: lattice boltzmann simulation publication-title: Int. J. Multiph. Flow – volume: 126 start-page: 34707 year: 2007 ident: b0045 article-title: Effect of surface wettability on liquid density, structure, and diffusion near a solid surface publication-title: J. Chem. Phys. – volume: 29 start-page: 2150088 year: 2021 ident: b0025 article-title: A fractal model for apparent liquid permeability of dual wettability shale coupling boundary layer and slip effect publication-title: Fractals-Complex Geom. Patterns Scaling Nat. Soc. – volume: 16 start-page: 226 year: 2011 end-page: 238 ident: b0040 article-title: Exact solutions for the unsteady axial flow of non-newtonian fluids through a circular cylinder publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 36 start-page: 69 year: 2009 end-page: 77 ident: b0245 article-title: Numerical simulation of roughness effects on flow and heat transfer in microchannels at slip flow regime publication-title: Int. Commun. Heat Mass Transf. – volume: 310 year: 2022 ident: b0070 article-title: Immiscible/near-miscible relative permeability for confined fluids at high-pressure and high-temperature for a fractal reservoir publication-title: Fuel – volume: 116 start-page: 410 year: 2002 ident: b0310 article-title: Molecular dynamics studies of the effects of chain branching on the properties of confined alkanes publication-title: J. Chem. Phys. – volume: 335 start-page: 444 year: 2012 end-page: 447 ident: b0285 article-title: Ultrafast viscous permeation of organic solvents through diamond-like carbon nanosheets publication-title: Science – volume: 167 start-page: 716 year: 2018 end-page: 728 ident: b0225 article-title: Gas transport in self-affine rough microchannels of shale gas reservoir publication-title: J. Pet. Sci. Eng. – volume: 36 start-page: 1075 year: 2009 end-page: 1081 ident: b0250 article-title: Numerical simulation of slip flow through rhombus microchannels publication-title: Int. Commun. Heat Mass Transf. – volume: 33 start-page: 12814 year: 2017 end-page: 12819 ident: b0065 article-title: viscosity of water interfaces with hydrophobic nanopores: application to water flow in carbon nanotubes publication-title: Langmuir – volume: 187 start-page: 280 year: 2018 end-page: 291 ident: b0180 article-title: An apparent liquid permeability model of dual-wettability nanoporous media: a case study of shale publication-title: Chem. Eng. Sci. – volume: 10 start-page: 7612 year: 2016 end-page: 7618 ident: b0275 article-title: Understanding diffusion in hierarchical zeolites with house-of-cards nanosheets publication-title: ACS Nano – volume: 60 start-page: 18154 year: 2021 end-page: 18165 ident: b0125 article-title: Nanohydrodynamic model and transport mechanisms of tight oil confined in nanopores considering liquid-solid molecular interaction effect publication-title: Ind. Eng. Chem. Res. – year: 1999 ident: b0265 article-title: Viscous fluid flow viscous – volume: 49 start-page: 281 year: 2010 end-page: 289 ident: b0060 article-title: Pressure-driven water flow through carbon nanotubes: insights from molecular dynamics simulation publication-title: Int. J. Therm. Sci. – volume: 190 start-page: 409 year: 2017 end-page: 419 ident: b0075 article-title: A molecular dynamics explanation for fast imbibition of oil in organic tight rocks publication-title: Fuel – volume: 2 start-page: 59 year: 2011 end-page: 65 ident: b0220 article-title: Intermolecular and surface forces publication-title: Q. Rev. Biol. – volume: 22 start-page: 41 year: 2018 end-page: 48 ident: b0300 article-title: Solving lubrication problems at the nanometer scale publication-title: Microfluid. Nanofluid. – volume: 123 start-page: 16456 year: 2019 end-page: 16461 ident: b0155 article-title: Nanoconfinement effect on n-alkane flow publication-title: J. Phys. Chem. C – volume: 198 start-page: 62 year: 2019 end-page: 73 ident: b0170 article-title: A fractal model of water transport in shale reservoirs publication-title: Chem. Eng. Sci. – start-page: 2321 year: 2008 end-page: 2328 ident: b0205 article-title: Molecular dynamics simulations of I2/Ar solution confined in a cylindrical nanotube publication-title: Acta Chim. Sin. – volume: 76 start-page: 717 year: 1980 ident: b0295 article-title: Self-Diffusion of N-Paraffins in Nax Zeolite publication-title: J. Chem. Soc., Faraday Transac. 1: Phys. Chem. Condensed Phases – volume: 121 start-page: 10605 year: 2004 end-page: 10610 ident: b0090 article-title: First-order mean spherical approximation for inhomogeneous fluids publication-title: J. Chem. Phys. – volume: 25 start-page: 10768 year: 2009 end-page: 10781 ident: b0135 article-title: Interfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion publication-title: Langmuir – volume: 118 start-page: 4140 year: 2003 end-page: 4148 ident: b0085 article-title: On the first-order mean spherical approximation publication-title: J. Chem. Phys. – volume: 114 start-page: 3358 year: 2017 end-page: 3363 ident: b0140 article-title: Wettability effect on nanoconfined water flow publication-title: Proc. Nat. Acad. Sci. – volume: 2021 start-page: 1 year: 2021 end-page: 12 ident: b0080 article-title: Effect of surface type on the flow characteristics in shale nanopores publication-title: Geofluids – volume: 88 start-page: 3505 year: 1992 end-page: 3509 ident: b0290 article-title: High-temperature pulsed field gradient nuclear magnetic resonance self-diffusion measurements of N-Alkanes in Mfl-Type Zeolites publication-title: J. Chem. Soc. Faraday Transac. – volume: 8 start-page: 2788 year: 2008 end-page: 2793 ident: b0050 article-title: Reassessing fast water transport through carbon nanotubes publication-title: Nano Lett. – volume: 102 year: 2009 ident: b0055 article-title: water flow in carbon nanotubes: transition to subcontinuum transport publication-title: Phys. Rev. Lett. – volume: 7 start-page: 8628 year: 2011 ident: b0160 article-title: Slip boundary conditions based on molecular kinetic theory: the critical shear stress and the energy dissipation at the liquid-solid interface publication-title: Soft. Matter. – reference: R.Y. Jin K. Song W.L. Hase Molecular Dynamics Simulations of the Structures of Alkane/Hydroxylated Α-Al_2O_3(0001) Interfaces, The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical (2000) 2692-2701. – volume: 115 start-page: 224 year: 2017 end-page: 234 ident: b0175 article-title: Apparent permeability for liquid transport in nanopores of shale reservoirs: coupling flow enhancement and near wall flow publication-title: Int. J. Heat Mass Transf. – volume: 279 start-page: 493 year: 2004 end-page: 502 ident: b0255 article-title: Contact angle measurements with liquids consisting of bulky molecules publication-title: J. Colloid Interface Sci. – volume: 181 start-page: 741 year: 2016 end-page: 758 ident: b0100 article-title: Fast mass transport of oil and supercritical carbon dioxide through organic nanopores in shale publication-title: Fuel – volume: 4 start-page: 283 year: 1936 end-page: 291 ident: b0210 article-title: Viscosity, plasticity, and diffusion as examples of absolute reaction rates publication-title: J. Chem. Phys. – volume: 348 start-page: 1347 year: 2015 end-page: 1351 ident: b0280 article-title: Sub-10 Nm polyamide nanofilms with ultrafast solvent transport for molecular separation publication-title: Science – volume: 171 start-page: 74 year: 2016 end-page: 86 ident: b0120 article-title: Molecular dynamics simulations of oil transport through inorganic nanopores in shale publication-title: Fuel (Guildford) – volume: 18 start-page: 1085 year: 2015 end-page: 1093 ident: b0190 article-title: Permeability model for fractal porous media with rough surfaces publication-title: Microfluid. Nanofluid. – volume: 63 start-page: 1704 year: 2017 end-page: 1714 ident: b0105 article-title: Surface wettability effect on fluid transport in nanoscale slit pores publication-title: AICHE J. – volume: 4 year: 2013 ident: b0110 article-title: The interplay between apparent viscosity and wettability in nanoconfined water publication-title: Nat. Commun. – volume: 16 start-page: 1198 year: 2017 end-page: 1202 ident: b0270 article-title: Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation publication-title: Nat. Mater. – volume: 34 start-page: 7714 year: 2018 end-page: 7725 ident: b0150 article-title: Anomalous capillary rise under nanoconfinement: a view of molecular Kinetic Theory publication-title: Langmuir – volume: 69 start-page: 1967 year: 1992 end-page: 1970 ident: b0320 article-title: Interfacial alkane films publication-title: Phys. Rev. Lett. – volume: 6 year: 2015 ident: b0305 article-title: Subcontinuum mass transport of condensed hydrocarbons in nanoporous media publication-title: Nat. Commun. – volume: 599 start-page: 667 year: 2021 end-page: 675 ident: b0115 article-title: Surface wettability effect on aqueous lubrication: van der waals and hydration force competition induced adhesive friction publication-title: J. Colloid Interface Sci. – volume: 387 start-page: 5979 year: 2008 end-page: 5990 ident: b0035 article-title: Pressure-driven transient flows of newtonian fluids through microtubes with slip boundary publication-title: Physica A: Statistic. Mech. Its Appli. – volume: 8 start-page: 2788 year: 2008 ident: 10.1016/j.molliq.2024.125145_b0050 article-title: Reassessing fast water transport through carbon nanotubes publication-title: Nano Lett. doi: 10.1021/nl8013617 – volume: 310 year: 2022 ident: 10.1016/j.molliq.2024.125145_b0070 article-title: Immiscible/near-miscible relative permeability for confined fluids at high-pressure and high-temperature for a fractal reservoir publication-title: Fuel doi: 10.1016/j.fuel.2021.122389 – start-page: 1 year: 2015 ident: 10.1016/j.molliq.2024.125145_b0095 article-title: Chapter One - Unified Framework of Multiscale Density Functional Theories and its Recent Applications doi: 10.1016/bs.ache.2015.10.001 – volume: 63 start-page: 47 year: 1996 ident: 10.1016/j.molliq.2024.125145_b0235 article-title: A fractal model for the rigid-perfectly plastic contact of rough surfaces publication-title: J. Appl. Mech. doi: 10.1115/1.2787208 – volume: 243 start-page: 114 year: 2017 ident: 10.1016/j.molliq.2024.125145_b0215 article-title: Capillary dynamics driven by molecular self-layering publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2017.02.004 – volume: 36 start-page: 1075 year: 2009 ident: 10.1016/j.molliq.2024.125145_b0250 article-title: Numerical simulation of slip flow through rhombus microchannels publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2009.07.010 – volume: 10 start-page: 403 year: 2011 ident: 10.1016/j.molliq.2024.125145_b0130 article-title: Prediction of the viscosity of water confined in carbon nanotubes publication-title: Microfluid. Nanofluid. doi: 10.1007/s10404-010-0678-0 – volume: 33 start-page: 12814 year: 2017 ident: 10.1016/j.molliq.2024.125145_b0065 article-title: viscosity of water interfaces with hydrophobic nanopores: application to water flow in carbon nanotubes publication-title: Langmuir doi: 10.1021/acs.langmuir.7b02752 – volume: 49 start-page: 281 year: 2010 ident: 10.1016/j.molliq.2024.125145_b0060 article-title: Pressure-driven water flow through carbon nanotubes: insights from molecular dynamics simulation publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2009.07.008 – volume: 115 start-page: 224 year: 2017 ident: 10.1016/j.molliq.2024.125145_b0175 article-title: Apparent permeability for liquid transport in nanopores of shale reservoirs: coupling flow enhancement and near wall flow publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.08.024 – volume: 305 year: 2020 ident: 10.1016/j.molliq.2024.125145_b0005 article-title: Molecular simulations of oil adsorption and transport behavior in inorganic shale publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2020.112745 – volume: 116 start-page: 410 year: 2002 ident: 10.1016/j.molliq.2024.125145_b0310 article-title: Molecular dynamics studies of the effects of chain branching on the properties of confined alkanes publication-title: J. Chem. Phys. doi: 10.1063/1.1419258 – volume: 16 start-page: 1198 year: 2017 ident: 10.1016/j.molliq.2024.125145_b0270 article-title: Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation publication-title: Nat. Mater. doi: 10.1038/nmat5025 – year: 2021 ident: 10.1016/j.molliq.2024.125145_b0030 article-title: Influence of fractal surface roughness on multiphase flow behavior: lattice boltzmann simulation publication-title: Int. J. Multiph. Flow – volume: 2021 start-page: 1 year: 2021 ident: 10.1016/j.molliq.2024.125145_b0080 article-title: Effect of surface type on the flow characteristics in shale nanopores publication-title: Geofluids – volume: 348 start-page: 1347 year: 2015 ident: 10.1016/j.molliq.2024.125145_b0280 article-title: Sub-10 Nm polyamide nanofilms with ultrafast solvent transport for molecular separation publication-title: Science doi: 10.1126/science.aaa5058 – volume: 114 start-page: 3358 year: 2017 ident: 10.1016/j.molliq.2024.125145_b0140 article-title: Wettability effect on nanoconfined water flow publication-title: Proc. Nat. Acad. Sci. doi: 10.1073/pnas.1612608114 – volume: 279 start-page: 493 year: 2004 ident: 10.1016/j.molliq.2024.125145_b0255 article-title: Contact angle measurements with liquids consisting of bulky molecules publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2004.06.090 – volume: 253 year: 2019 ident: 10.1016/j.molliq.2024.125145_b0185 article-title: Enhanced water flow and apparent viscosity model considering wettability and shape effects publication-title: Fuel doi: 10.1016/j.fuel.2019.05.098 – volume: 102 year: 2009 ident: 10.1016/j.molliq.2024.125145_b0055 article-title: water flow in carbon nanotubes: transition to subcontinuum transport publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.184502 – ident: 10.1016/j.molliq.2024.125145_b0260 doi: 10.1021/jp992922y – volume: 255–260 year: 2000 ident: 10.1016/j.molliq.2024.125145_b0315 article-title: The behaviour of liquid alkanes near interfaces publication-title: Mol. Phys. – volume: 387 start-page: 5979 year: 2008 ident: 10.1016/j.molliq.2024.125145_b0035 article-title: Pressure-driven transient flows of newtonian fluids through microtubes with slip boundary publication-title: Physica A: Statistic. Mech. Its Appli. doi: 10.1016/j.physa.2008.06.043 – volume: 2 start-page: 59 year: 2011 ident: 10.1016/j.molliq.2024.125145_b0220 article-title: Intermolecular and surface forces publication-title: Q. Rev. Biol. – volume: 118 start-page: 4140 year: 2003 ident: 10.1016/j.molliq.2024.125145_b0085 article-title: On the first-order mean spherical approximation publication-title: J. Chem. Phys. doi: 10.1063/1.1541615 – volume: 60 start-page: 18154 year: 2021 ident: 10.1016/j.molliq.2024.125145_b0125 article-title: Nanohydrodynamic model and transport mechanisms of tight oil confined in nanopores considering liquid-solid molecular interaction effect publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.1c03615 – volume: 6 year: 2015 ident: 10.1016/j.molliq.2024.125145_b0305 article-title: Subcontinuum mass transport of condensed hydrocarbons in nanoporous media publication-title: Nat. Commun. doi: 10.1038/ncomms7949 – volume: 187 start-page: 280 year: 2018 ident: 10.1016/j.molliq.2024.125145_b0180 article-title: An apparent liquid permeability model of dual-wettability nanoporous media: a case study of shale publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2018.05.016 – volume: 29 start-page: 2150088 year: 2021 ident: 10.1016/j.molliq.2024.125145_b0025 article-title: A fractal model for apparent liquid permeability of dual wettability shale coupling boundary layer and slip effect publication-title: Fractals-Complex Geom. Patterns Scaling Nat. Soc. – volume: 18 start-page: 1085 year: 2015 ident: 10.1016/j.molliq.2024.125145_b0190 article-title: Permeability model for fractal porous media with rough surfaces publication-title: Microfluid. Nanofluid. doi: 10.1007/s10404-014-1500-1 – volume: 36 start-page: 69 year: 2009 ident: 10.1016/j.molliq.2024.125145_b0245 article-title: Numerical simulation of roughness effects on flow and heat transfer in microchannels at slip flow regime publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2008.10.009 – volume: 34 start-page: 7714 year: 2018 ident: 10.1016/j.molliq.2024.125145_b0150 article-title: Anomalous capillary rise under nanoconfinement: a view of molecular Kinetic Theory publication-title: Langmuir doi: 10.1021/acs.langmuir.8b01397 – volume: 171 start-page: 74 year: 2016 ident: 10.1016/j.molliq.2024.125145_b0120 article-title: Molecular dynamics simulations of oil transport through inorganic nanopores in shale publication-title: Fuel (Guildford) doi: 10.1016/j.fuel.2015.12.071 – volume: 70 start-page: 17303 year: 2004 ident: 10.1016/j.molliq.2024.125145_b0240 article-title: Velocity boundary condition at solid walls in rarefied gas calculations publication-title: Phys. Rev. E, Statistic., Nonlinear, Soft. Matter. Phys. doi: 10.1103/PhysRevE.70.017303 – volume: 30 year: 2022 ident: 10.1016/j.molliq.2024.125145_b0020 article-title: An improved fractal permeability model for porous geomaterials with complex pore structures and rough surfaces publication-title: Fractals-Complex Geom. Patterns Scaling Nat. Soc. – volume: 76 start-page: 717 year: 1980 ident: 10.1016/j.molliq.2024.125145_b0295 article-title: Self-Diffusion of N-Paraffins in Nax Zeolite publication-title: J. Chem. Soc., Faraday Transac. 1: Phys. Chem. Condensed Phases doi: 10.1039/f19807600717 – volume: 181 start-page: 741 year: 2016 ident: 10.1016/j.molliq.2024.125145_b0100 article-title: Fast mass transport of oil and supercritical carbon dioxide through organic nanopores in shale publication-title: Fuel doi: 10.1016/j.fuel.2016.05.057 – volume: 335 start-page: 444 year: 2012 ident: 10.1016/j.molliq.2024.125145_b0285 article-title: Ultrafast viscous permeation of organic solvents through diamond-like carbon nanosheets publication-title: Science doi: 10.1126/science.1212101 – volume: 4 start-page: 283 year: 1936 ident: 10.1016/j.molliq.2024.125145_b0210 article-title: Viscosity, plasticity, and diffusion as examples of absolute reaction rates publication-title: J. Chem. Phys. doi: 10.1063/1.1749836 – volume: 176 start-page: 1041 year: 2019 ident: 10.1016/j.molliq.2024.125145_b0010 article-title: Apparent permeability model for shale oil transport through elliptic nanopores considering wall-oil interaction publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2019.02.027 – volume: 190 start-page: 409 year: 2017 ident: 10.1016/j.molliq.2024.125145_b0075 article-title: A molecular dynamics explanation for fast imbibition of oil in organic tight rocks publication-title: Fuel doi: 10.1016/j.fuel.2016.10.105 – volume: 47 start-page: 135 issue: 1990 year: 1952 ident: 10.1016/j.molliq.2024.125145_b0145 article-title: Slip between a liquid and a solid: D.M. Tolstoi's, Theory reconsidered publication-title: Colloids and Surfaces – year: 1999 ident: 10.1016/j.molliq.2024.125145_b0265 – volume: 134 start-page: 651 year: 2020 ident: 10.1016/j.molliq.2024.125145_b0200 article-title: Apparent liquid permeability in mixed-wet shale permeable media publication-title: Transp. Porous Media doi: 10.1007/s11242-020-01462-5 – volume: 22 start-page: 41 year: 2018 ident: 10.1016/j.molliq.2024.125145_b0300 article-title: Solving lubrication problems at the nanometer scale publication-title: Microfluid. Nanofluid. doi: 10.1007/s10404-018-2067-z – volume: 242 start-page: 305 year: 2019 ident: 10.1016/j.molliq.2024.125145_b0165 article-title: The transport behaviors of oil in nanopores and nanoporous media of shale publication-title: Fuel doi: 10.1016/j.fuel.2019.01.042 – volume: 7 start-page: 8628 year: 2011 ident: 10.1016/j.molliq.2024.125145_b0160 article-title: Slip boundary conditions based on molecular kinetic theory: the critical shear stress and the energy dissipation at the liquid-solid interface publication-title: Soft. Matter. doi: 10.1039/c1sm05543g – year: 1984 ident: 10.1016/j.molliq.2024.125145_b0230 article-title: Quantal phase factors accompanying adiabatic changes publication-title: Proc. Royal Soc. A: Math. – volume: 121 start-page: 10605 year: 2004 ident: 10.1016/j.molliq.2024.125145_b0090 article-title: First-order mean spherical approximation for inhomogeneous fluids publication-title: J. Chem. Phys. doi: 10.1063/1.1810473 – start-page: 2321 year: 2008 ident: 10.1016/j.molliq.2024.125145_b0205 article-title: Molecular dynamics simulations of I2/Ar solution confined in a cylindrical nanotube publication-title: Acta Chim. Sin. – volume: 10 start-page: 7612 year: 2016 ident: 10.1016/j.molliq.2024.125145_b0275 article-title: Understanding diffusion in hierarchical zeolites with house-of-cards nanosheets publication-title: ACS Nano doi: 10.1021/acsnano.6b02856 – volume: 20 start-page: 3461 year: 2023 ident: 10.1016/j.molliq.2024.125145_b0195 article-title: A transient model integrating the nanoconfinement effect and pore structure characteristics of oil transport through nanopores publication-title: Pet. Sci. doi: 10.1016/j.petsci.2023.07.015 – volume: 69 start-page: 1967 year: 1992 ident: 10.1016/j.molliq.2024.125145_b0320 article-title: Interfacial alkane films publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.69.1967 – volume: 63 start-page: 1704 year: 2017 ident: 10.1016/j.molliq.2024.125145_b0105 article-title: Surface wettability effect on fluid transport in nanoscale slit pores publication-title: AICHE J. doi: 10.1002/aic.15535 – volume: 88 start-page: 3505 year: 1992 ident: 10.1016/j.molliq.2024.125145_b0290 article-title: High-temperature pulsed field gradient nuclear magnetic resonance self-diffusion measurements of N-Alkanes in Mfl-Type Zeolites publication-title: J. Chem. Soc. Faraday Transac. doi: 10.1039/FT9928803505 – volume: 126 start-page: 34707 year: 2007 ident: 10.1016/j.molliq.2024.125145_b0045 article-title: Effect of surface wettability on liquid density, structure, and diffusion near a solid surface publication-title: J. Chem. Phys. doi: 10.1063/1.2424934 – volume: 599 start-page: 667 year: 2021 ident: 10.1016/j.molliq.2024.125145_b0115 article-title: Surface wettability effect on aqueous lubrication: van der waals and hydration force competition induced adhesive friction publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.04.077 – volume: 4 year: 2013 ident: 10.1016/j.molliq.2024.125145_b0110 article-title: The interplay between apparent viscosity and wettability in nanoconfined water publication-title: Nat. Commun. doi: 10.1038/ncomms3482 – volume: 198 start-page: 62 year: 2019 ident: 10.1016/j.molliq.2024.125145_b0170 article-title: A fractal model of water transport in shale reservoirs publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2018.12.042 – volume: 123 start-page: 16456 year: 2019 ident: 10.1016/j.molliq.2024.125145_b0155 article-title: Nanoconfinement effect on n-alkane flow publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b03903 – volume: 290 year: 2019 ident: 10.1016/j.molliq.2024.125145_b0015 article-title: Oil diffusion in shale nanopores: insight of molecular dynamics simulation publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2019.111183 – volume: 167 start-page: 716 year: 2018 ident: 10.1016/j.molliq.2024.125145_b0225 article-title: Gas transport in self-affine rough microchannels of shale gas reservoir publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2018.04.045 – volume: 16 start-page: 226 year: 2011 ident: 10.1016/j.molliq.2024.125145_b0040 article-title: Exact solutions for the unsteady axial flow of non-newtonian fluids through a circular cylinder publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2010.03.010 – volume: 25 start-page: 10768 year: 2009 ident: 10.1016/j.molliq.2024.125145_b0135 article-title: Interfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion publication-title: Langmuir doi: 10.1021/la901314b |
SSID | ssj0005580 |
Score | 2.3820932 |
Snippet | •Density and viscosity models that characterize the properties of inhomogeneous flow are developed.•A transient numerical model that describes the transport... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 125145 |
SubjectTerms | Inhomogeneous flow properties Nanochannel Pressure drop Roughness surface Transient flow |
Title | A transient nanoscale flow model for alkanes considering inhomogeneous flow properties and rough surfaces |
URI | https://dx.doi.org/10.1016/j.molliq.2024.125145 |
Volume | 407 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT4NAEN00NUYvRqvG-tHswSv9gIGFY9PYVI29aJPeyC67G6st1ELjzd_uzgJJTYwHjxCGkMcwM8u-mUfIbZ8xpbgLDhPgOQCi73AIheP52gMZhL6ympFP02Ayg4e5P2-QUd0Lg7TKKvaXMd1G6-pMr0Kzt14ses9IoGe4UQDYADrAjnIAhl7e_dqhefhWPc3O98ar6_Y5y_Fa4eDrD7NKdKGLmR6bmn5LTzspZ3xMjqpakQ7LxzkhDZW2yMGolmhrkX3L30zyU7IY0gKzDnY30pSnWW6wV1Qvs09qxW6oKU4pX75zE9poUql0mrRFF-lrtsqMG6lsm5cGa_xBv8FJq5SnklohH5pvNxrpW2dkNr57GU2cSkXBScxyoXBcOYi0x6T5-FwehjpSQaDDUAlTikVMuv1IJSxKPAUDzkEwkImXMBAiVExqEXnnpJlmqbogVHPOpWCeDKRZF0oRhUkAzN5JBwGHNnFq8OJ1OSwjrllkb3EJdoxgxyXYbcJqhOMfLz028fxPy8t_W16RQzwqOXzXpFlsturG1BWF6FjH6ZC94f3jZPoNLufPgQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1VIAQXxCrK6gMc0yVx4-TAoSqgsl4Aqbdgx7YotElpWlVc-Cl-EI-TSCAhDki9JrKVPI9mkd_MAzhuMKYUd6nDBPUcSkXD4TQQjtfSHpV-0FJWM_L2zu8-0qteq1eBz7IXBmmVhe_Pfbr11sWTeoFmfdTv1--RQM_wooBiA2iTFczKa_U-M3Vbdnp5Zg75xHUvzh86XaeQFnBik0NPHFc2Q-0xaSzS5UGgQ-X7OgiUMPlJyKTbCFXMwthTtMk5FYzK2IsZFSJQTGqBE5iM31-kxl2gbELt4xuvpGXl2uxAcfy8sl_PksqGOGn7zZSlLq1haoFdVL_Fw28x7mINVovklLTz_1-Hiko2YLlTasJtwJIljMbZJvTbZIJhDtspScKTNDOHrYgepDNi1XWIyYYJH7xy40tJXMiCmjhJ-slzOkyN3ap0muULRngjMMbRroQnkljlIJJNxxr5YlvwOBdst2EhSRO1A0RzzqVgnvSlKUSlCIPYp8zupH2f0yo4JXjRKJ_OEZW0tZcoBztCsKMc7CqwEuHoh5VFJoD8uXL33yuPYLn7cHsT3VzeXe_BCr7JCYT7sDAZT9WBSWom4tAaEYGneVvtF-9iC_Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+transient+nanoscale+flow+model+for+alkanes+considering+inhomogeneous+flow+properties+and+rough+surfaces&rft.jtitle=Journal+of+molecular+liquids&rft.au=Cao%2C+Cheng&rft.au=Chang%2C+Bin&rft.au=Yang%2C+Zhao&rft.au=Yong%2C+Longquan&rft.date=2024-08-01&rft.pub=Elsevier+B.V&rft.issn=0167-7322&rft.volume=407&rft_id=info:doi/10.1016%2Fj.molliq.2024.125145&rft.externalDocID=S0167732224012017 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7322&client=summon |