A transient nanoscale flow model for alkanes considering inhomogeneous flow properties and rough surfaces

•Density and viscosity models that characterize the properties of inhomogeneous flow are developed.•A transient numerical model that describes the transport behavior of alkanes in unsteady and steady stages is proposed.•Revealing the alkane flow behavior with the combined effect of nanoconfinement e...

Full description

Saved in:
Bibliographic Details
Published inJournal of molecular liquids Vol. 407; p. 125145
Main Authors Cao, Cheng, Chang, Bin, Yang, Zhao, Yong, Longquan, Li, Changzhou
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Density and viscosity models that characterize the properties of inhomogeneous flow are developed.•A transient numerical model that describes the transport behavior of alkanes in unsteady and steady stages is proposed.•Revealing the alkane flow behavior with the combined effect of nanoconfinement effects and rough nanochannels. The flow of alkanes within nanochannels holds significant scientific implications for biological, material, and oil field development. Existing models often overlook the combined effect of transient transport and rough surfaces under nanoconfinement conditions. In this study, we formulated an inhomogeneous density model controlled by wall energy based on molecular simulation results. Additionally, we constructed an inhomogeneous viscosity model by combining excess free energy, solvation energy, and cohesion energy using the Eyring equation. Integrating these models with the Weierstrass-Mandelbrot fractal function and a modified Navier-Stokes equation yielded a novel transient nanoscale flow model. We iteratively solved the model using the finite element method and confirmed model validity through comparisons with experimental data, molecular dynamics simulations, and existing models. Key findings indicated that surface roughness inhibited pressure drop deceleration caused by nanoconfinement. Conversely, rough surfaces and an inhomogeneous viscosity contributed to an increased pressure drop, moderated by slip effects. In the unsteady stage, the variation in flow enhancement rate was intricate and contingent on the combined action of rough surfaces and nanoconfinement effects at distinct times. Notably, the influence of inhomogeneous density on the flow enhancement rate initially amplified and then diminished, gradually dissipating over time. In the steady stage, inhomogeneous viscosity facilitated volumetric flux in smaller sizes (2 nm) but hindered it in larger sizes (10 nm).
AbstractList •Density and viscosity models that characterize the properties of inhomogeneous flow are developed.•A transient numerical model that describes the transport behavior of alkanes in unsteady and steady stages is proposed.•Revealing the alkane flow behavior with the combined effect of nanoconfinement effects and rough nanochannels. The flow of alkanes within nanochannels holds significant scientific implications for biological, material, and oil field development. Existing models often overlook the combined effect of transient transport and rough surfaces under nanoconfinement conditions. In this study, we formulated an inhomogeneous density model controlled by wall energy based on molecular simulation results. Additionally, we constructed an inhomogeneous viscosity model by combining excess free energy, solvation energy, and cohesion energy using the Eyring equation. Integrating these models with the Weierstrass-Mandelbrot fractal function and a modified Navier-Stokes equation yielded a novel transient nanoscale flow model. We iteratively solved the model using the finite element method and confirmed model validity through comparisons with experimental data, molecular dynamics simulations, and existing models. Key findings indicated that surface roughness inhibited pressure drop deceleration caused by nanoconfinement. Conversely, rough surfaces and an inhomogeneous viscosity contributed to an increased pressure drop, moderated by slip effects. In the unsteady stage, the variation in flow enhancement rate was intricate and contingent on the combined action of rough surfaces and nanoconfinement effects at distinct times. Notably, the influence of inhomogeneous density on the flow enhancement rate initially amplified and then diminished, gradually dissipating over time. In the steady stage, inhomogeneous viscosity facilitated volumetric flux in smaller sizes (2 nm) but hindered it in larger sizes (10 nm).
ArticleNumber 125145
Author Li, Changzhou
Cao, Cheng
Yong, Longquan
Chang, Bin
Yang, Zhao
Author_xml – sequence: 1
  givenname: Cheng
  surname: Cao
  fullname: Cao, Cheng
  email: caocheng@snut.edu.cn
  organization: Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China
– sequence: 2
  givenname: Bin
  surname: Chang
  fullname: Chang, Bin
  organization: State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an, Shaanxi 710069, China
– sequence: 3
  givenname: Zhao
  surname: Yang
  fullname: Yang, Zhao
  organization: Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China
– sequence: 4
  givenname: Longquan
  surname: Yong
  fullname: Yong, Longquan
  organization: Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China
– sequence: 5
  givenname: Changzhou
  surname: Li
  fullname: Li, Changzhou
  organization: Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China
BookMark eNp9kL1OwzAUhT0UiRZ4Awa_QILtOHGyIFUVf1IlFpgtx75uXRy72CmItydVmJnucM53dPWt0CLEAAjdUlJSQpu7QzlE791nyQjjJWU15fUCLadIFKJi7BKtcj4QQuq6JUvk1nhMKmQHYcRBhZi18oCtj994iAY8tjFh5T9UgIx1nJoGkgs77MI-DnEHAeIpz8AxxSOk0U1NFQxO8bTb43xKVmnI1-jCKp_h5u9eoffHh7fNc7F9fXrZrLeFZnU9FszQzlbC1JQw1ba2g6axbQs9p00nDCMdaNHpCjhViveCG11pwfu-BWFs31VXiM-7OsWcE1h5TG5Q6UdSIs-K5EHOiuRZkZwVTdj9jMH025eDJLOepGgwLoEepYnu_4Ff_aJ4gA
Cites_doi 10.1021/nl8013617
10.1016/j.fuel.2021.122389
10.1016/bs.ache.2015.10.001
10.1115/1.2787208
10.1016/j.cis.2017.02.004
10.1016/j.icheatmasstransfer.2009.07.010
10.1007/s10404-010-0678-0
10.1021/acs.langmuir.7b02752
10.1016/j.ijthermalsci.2009.07.008
10.1016/j.ijheatmasstransfer.2017.08.024
10.1016/j.molliq.2020.112745
10.1063/1.1419258
10.1038/nmat5025
10.1126/science.aaa5058
10.1073/pnas.1612608114
10.1016/j.jcis.2004.06.090
10.1016/j.fuel.2019.05.098
10.1103/PhysRevLett.102.184502
10.1021/jp992922y
10.1016/j.physa.2008.06.043
10.1063/1.1541615
10.1021/acs.iecr.1c03615
10.1038/ncomms7949
10.1016/j.ces.2018.05.016
10.1007/s10404-014-1500-1
10.1016/j.icheatmasstransfer.2008.10.009
10.1021/acs.langmuir.8b01397
10.1016/j.fuel.2015.12.071
10.1103/PhysRevE.70.017303
10.1039/f19807600717
10.1016/j.fuel.2016.05.057
10.1126/science.1212101
10.1063/1.1749836
10.1016/j.petrol.2019.02.027
10.1016/j.fuel.2016.10.105
10.1007/s11242-020-01462-5
10.1007/s10404-018-2067-z
10.1016/j.fuel.2019.01.042
10.1039/c1sm05543g
10.1063/1.1810473
10.1021/acsnano.6b02856
10.1016/j.petsci.2023.07.015
10.1103/PhysRevLett.69.1967
10.1002/aic.15535
10.1039/FT9928803505
10.1063/1.2424934
10.1016/j.jcis.2021.04.077
10.1038/ncomms3482
10.1016/j.ces.2018.12.042
10.1021/acs.jpcc.9b03903
10.1016/j.molliq.2019.111183
10.1016/j.petrol.2018.04.045
10.1016/j.cnsns.2010.03.010
10.1021/la901314b
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.molliq.2024.125145
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
ExternalDocumentID 10_1016_j_molliq_2024_125145
S0167732224012017
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXKI
AAXUO
ABJNI
ABMAC
ABNEU
ACDAQ
ACFVG
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSK
SSQ
SSZ
T5K
TN5
YK3
ZMT
~G-
29L
AAQXK
AATTM
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AJQLL
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
R2-
SCB
SCH
SSH
WUQ
XPP
ID FETCH-LOGICAL-c255t-2d19f37d5102a88f9e66f88eb41697d209ec79c3e41aa4b74dc3c74bb8e7dfb93
IEDL.DBID .~1
ISSN 0167-7322
IngestDate Tue Jul 01 03:02:56 EDT 2025
Sat Nov 16 16:00:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Nanochannel
Inhomogeneous flow properties
Transient flow
Roughness surface
Pressure drop
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c255t-2d19f37d5102a88f9e66f88eb41697d209ec79c3e41aa4b74dc3c74bb8e7dfb93
ParticipantIDs crossref_primary_10_1016_j_molliq_2024_125145
elsevier_sciencedirect_doi_10_1016_j_molliq_2024_125145
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
2024-08-00
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of molecular liquids
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang, Javadpour, Feng (b0100) 2016; 181
R.Y. Jin K. Song W.L. Hase Molecular Dynamics Simulations of the Structures of Alkane/Hydroxylated Α-Al_2O_3(0001) Interfaces, The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical (2000) 2692-2701.
Yang, Su, Chi, Cherian, Huang, Kravets, Wang, Zhang, Pratt, Grigorenko, Guinea, Geim, Nair (b0270) 2017; 16
Tavana, Lam, Grundke, Friedel, Kwok, Hair, Neumann (b0255) 2004; 279
Wang, Fichthorn (b0310) 2002; 116
Zhan, Su, Lu, Cai, Fu, Liu, Wang, Han (b0080) 2021; 2021
Wang, Cheng (b0170) 2019; 198
Falk, Coasne, Pellenq, Ulm, Bocquet (b0305) 2015; 6
Sendner, Horinek, Bocquet, Netz (b0135) 2009; 25
Tl, Krajcinovic, Majumdar (b0235) 1996; 63
Wu, Wiwatanapataphee, Hu (b0035) 2008; 387
Ni, Liu, Li, Sha, Pu (b0020) 2022; 30
Thomas, McGaughey (b0045) 2007; 126
Cao, Chang, Yang, Gao (b0195) 2023; 20
Yang, Dehghanpour, Binazadeh, Dong (b0075) 2017; 190
Zhang, Li, Shi, Sun, Yin, Wu, Li, Feng (b0180) 2018; 187
Li, Li, Bai, Jia, Xu, Meng, Ma, Tian (b0115) 2021; 599
Lockerby, Reese, Emerson, Barber (b0240) 2004; 70
Thomas, McGaughey (b0050) 2008; 8
Wu, Chen, Li, Lei, Xu, Wang, Li, Dong, Peng, Yang, Zhang, Chen, Gao (b0155) 2019; 123
Israelachvili (b0220) 2011; 2
Zeng, Ning, Wang, Sun, Huang, Ye (b0225) 2018; 167
Wang, Zhao (b0160) 2011; 7
Wu, Chen, Li, Li, Xu, Dong (b0140) 2017; 114
Karan, Jiang, Livingston, Filtration (b0280) 2015; 348
Wang, Javadpour, Feng (b0120) 2016; 171
Tang (b0085) 2003; 118
Wu, Li, Zhang, Lv, Zhou (b0125) 2021; 60
Thomas, McGaughey, Kuter-Arnebeck (b0060) 2010; 49
Zhang, Ye, Zheng, Zhang (b0130) 2011; 10
Yang, Liang, Yu, Zou (b0190) 2015; 18
Berry (b0230) 1984
Zhang, Su, Wang, Lu, Sheng (b0175) 2017; 115
Wu, Nikolov, Wasan (b0215) 2017; 243
Liu, Zou, He, Sun, Ju, Meng, Cai (b0030) 2021
Thomas, McGaughey (b0055) 2009; 102
Wang, Fu (b0025) 2021; 29
Feng, Li, Wang, Li, Zhang, Sun, He, Liu, Qin, Han, Hu (b0150) 2018; 34
Papanastasiou, Georgiou, Alexandrou (b0265) 1999
Heink, Kärger, Pfeifer, Datema, Nowak (b0290) 1992; 88
Zhang, Feng, Wang, Xing (b0015) 2019; 290
Wang, Su, Zhao, Wang, Sheng, Zhan (b0010) 2019; 176
Shams, Shojaeian, Aghanajafi, Dibaji (b0250) 2009; 36
Fan, Ettehadtavakkol, Wang (b0200) 2020; 134
Kärger, Pfeifer, Rauscher, Walter (b0295) 1980; 76
Xia, Ouyang, Ribarsky, Landman (b0320) 1992; 69
Tang (b0090) 2004; 121
Cai, Su, Zhan, Elsworth, Li (b0070) 2022; 310
Wang, Yuliang, Wang, Sheng, Li, Zafar (b0185) 2019; 253
Karan, Samitsu, Peng, Kurashima, Ichinose (b0285) 2012; 335
Zhao, Hu, Yu, Liu, Bai, Liu (b0105) 2017; 63
Smith, Lynden-Bell, Smith (b0315) 2000; 255–260
Zhao, Liu, Chen, Lu, Liu, Hu (b0095) 2015
Chandramoorthy, Hadjiconstantinou (b0300) 2018; 22
Khadem, Shams, Hossainpour (b0245) 2009; 36
Bai, Haldoupis, Dauenhauer, Tsapatsis, Siepmann (b0275) 2016; 10
Eyring (b0210) 1936; 4
Shaat (b0065) 2017; 33
Sui, Zhang, Wang, Wang, Wang (b0005) 2020; 305
Ortiz-Young, Chiu, Kim, Voïtchovsky, Riedo (b0110) 2013; 4
Siddique, Sajid (b0040) 2011; 16
Hu, Zheng, Li (b0205) 2008
Blake (b0145) 1952; 47
Zhang, Li, Yin, He, Liu, Huang, Shi (b0165) 2019; 242
Xia (10.1016/j.molliq.2024.125145_b0320) 1992; 69
Zhang (10.1016/j.molliq.2024.125145_b0130) 2011; 10
Thomas (10.1016/j.molliq.2024.125145_b0045) 2007; 126
Shams (10.1016/j.molliq.2024.125145_b0250) 2009; 36
Wang (10.1016/j.molliq.2024.125145_b0100) 2016; 181
Yang (10.1016/j.molliq.2024.125145_b0075) 2017; 190
Tang (10.1016/j.molliq.2024.125145_b0085) 2003; 118
Karan (10.1016/j.molliq.2024.125145_b0285) 2012; 335
Zhang (10.1016/j.molliq.2024.125145_b0180) 2018; 187
Heink (10.1016/j.molliq.2024.125145_b0290) 1992; 88
Yang (10.1016/j.molliq.2024.125145_b0190) 2015; 18
Tavana (10.1016/j.molliq.2024.125145_b0255) 2004; 279
Yang (10.1016/j.molliq.2024.125145_b0270) 2017; 16
Thomas (10.1016/j.molliq.2024.125145_b0055) 2009; 102
Chandramoorthy (10.1016/j.molliq.2024.125145_b0300) 2018; 22
Wang (10.1016/j.molliq.2024.125145_b0310) 2002; 116
Zhang (10.1016/j.molliq.2024.125145_b0165) 2019; 242
Tang (10.1016/j.molliq.2024.125145_b0090) 2004; 121
Berry (10.1016/j.molliq.2024.125145_b0230) 1984
Bai (10.1016/j.molliq.2024.125145_b0275) 2016; 10
Wu (10.1016/j.molliq.2024.125145_b0215) 2017; 243
Wang (10.1016/j.molliq.2024.125145_b0025) 2021; 29
Feng (10.1016/j.molliq.2024.125145_b0150) 2018; 34
Wu (10.1016/j.molliq.2024.125145_b0035) 2008; 387
Lockerby (10.1016/j.molliq.2024.125145_b0240) 2004; 70
Ni (10.1016/j.molliq.2024.125145_b0020) 2022; 30
Wang (10.1016/j.molliq.2024.125145_b0185) 2019; 253
Zhang (10.1016/j.molliq.2024.125145_b0015) 2019; 290
Thomas (10.1016/j.molliq.2024.125145_b0060) 2010; 49
Hu (10.1016/j.molliq.2024.125145_b0205) 2008
Zeng (10.1016/j.molliq.2024.125145_b0225) 2018; 167
Tl (10.1016/j.molliq.2024.125145_b0235) 1996; 63
Israelachvili (10.1016/j.molliq.2024.125145_b0220) 2011; 2
Wang (10.1016/j.molliq.2024.125145_b0160) 2011; 7
Sui (10.1016/j.molliq.2024.125145_b0005) 2020; 305
Falk (10.1016/j.molliq.2024.125145_b0305) 2015; 6
Wang (10.1016/j.molliq.2024.125145_b0170) 2019; 198
Wang (10.1016/j.molliq.2024.125145_b0120) 2016; 171
Fan (10.1016/j.molliq.2024.125145_b0200) 2020; 134
Wang (10.1016/j.molliq.2024.125145_b0010) 2019; 176
Cao (10.1016/j.molliq.2024.125145_b0195) 2023; 20
Liu (10.1016/j.molliq.2024.125145_b0030) 2021
Shaat (10.1016/j.molliq.2024.125145_b0065) 2017; 33
Thomas (10.1016/j.molliq.2024.125145_b0050) 2008; 8
Khadem (10.1016/j.molliq.2024.125145_b0245) 2009; 36
10.1016/j.molliq.2024.125145_b0260
Zhan (10.1016/j.molliq.2024.125145_b0080) 2021; 2021
Sendner (10.1016/j.molliq.2024.125145_b0135) 2009; 25
Blake (10.1016/j.molliq.2024.125145_b0145) 1952; 47
Kärger (10.1016/j.molliq.2024.125145_b0295) 1980; 76
Smith (10.1016/j.molliq.2024.125145_b0315) 2000; 255–260
Ortiz-Young (10.1016/j.molliq.2024.125145_b0110) 2013; 4
Wu (10.1016/j.molliq.2024.125145_b0140) 2017; 114
Li (10.1016/j.molliq.2024.125145_b0115) 2021; 599
Eyring (10.1016/j.molliq.2024.125145_b0210) 1936; 4
Siddique (10.1016/j.molliq.2024.125145_b0040) 2011; 16
Wu (10.1016/j.molliq.2024.125145_b0125) 2021; 60
Wu (10.1016/j.molliq.2024.125145_b0155) 2019; 123
Zhang (10.1016/j.molliq.2024.125145_b0175) 2017; 115
Karan (10.1016/j.molliq.2024.125145_b0280) 2015; 348
Cai (10.1016/j.molliq.2024.125145_b0070) 2022; 310
Zhao (10.1016/j.molliq.2024.125145_b0095) 2015
Papanastasiou (10.1016/j.molliq.2024.125145_b0265) 1999
Zhao (10.1016/j.molliq.2024.125145_b0105) 2017; 63
References_xml – start-page: 1
  year: 2015
  end-page: 83
  ident: b0095
  article-title: Chapter One - Unified Framework of Multiscale Density Functional Theories and its Recent Applications
  publication-title: Advances in Chemical Engineering
– volume: 63
  start-page: 47
  year: 1996
  ident: b0235
  article-title: A fractal model for the rigid-perfectly plastic contact of rough surfaces
  publication-title: J. Appl. Mech.
– volume: 70
  start-page: 17303
  year: 2004
  ident: b0240
  article-title: Velocity boundary condition at solid walls in rarefied gas calculations
  publication-title: Phys. Rev. E, Statistic., Nonlinear, Soft. Matter. Phys.
– volume: 176
  start-page: 1041
  year: 2019
  end-page: 1052
  ident: b0010
  article-title: Apparent permeability model for shale oil transport through elliptic nanopores considering wall-oil interaction
  publication-title: J. Pet. Sci. Eng.
– volume: 134
  start-page: 651
  year: 2020
  end-page: 677
  ident: b0200
  article-title: Apparent liquid permeability in mixed-wet shale permeable media
  publication-title: Transp. Porous Media
– volume: 242
  start-page: 305
  year: 2019
  end-page: 315
  ident: b0165
  article-title: The transport behaviors of oil in nanopores and nanoporous media of shale
  publication-title: Fuel
– volume: 30
  year: 2022
  ident: b0020
  article-title: An improved fractal permeability model for porous geomaterials with complex pore structures and rough surfaces
  publication-title: Fractals-Complex Geom. Patterns Scaling Nat. Soc.
– volume: 10
  start-page: 403
  year: 2011
  end-page: 414
  ident: b0130
  article-title: Prediction of the viscosity of water confined in carbon nanotubes
  publication-title: Microfluid. Nanofluid.
– year: 1984
  ident: b0230
  article-title: Quantal phase factors accompanying adiabatic changes
  publication-title: Proc. Royal Soc. A: Math.
– volume: 290
  year: 2019
  ident: b0015
  article-title: Oil diffusion in shale nanopores: insight of molecular dynamics simulation
  publication-title: J. Mol. Liq.
– volume: 253
  year: 2019
  ident: b0185
  article-title: Enhanced water flow and apparent viscosity model considering wettability and shape effects
  publication-title: Fuel
– volume: 20
  start-page: 3461
  year: 2023
  end-page: 3477
  ident: b0195
  article-title: A transient model integrating the nanoconfinement effect and pore structure characteristics of oil transport through nanopores
  publication-title: Pet. Sci.
– volume: 243
  start-page: 114
  year: 2017
  end-page: 120
  ident: b0215
  article-title: Capillary dynamics driven by molecular self-layering
  publication-title: Adv. Colloid Interface Sci.
– volume: 305
  year: 2020
  ident: b0005
  article-title: Molecular simulations of oil adsorption and transport behavior in inorganic shale
  publication-title: J. Mol. Liq.
– volume: 47
  start-page: 135
  year: 1952
  end-page: 145
  ident: b0145
  article-title: Slip between a liquid and a solid: D.M. Tolstoi's, Theory reconsidered
  publication-title: Colloids and Surfaces
– volume: 255–260
  year: 2000
  ident: b0315
  article-title: The behaviour of liquid alkanes near interfaces
  publication-title: Mol. Phys.
– year: 2021
  ident: b0030
  article-title: Influence of fractal surface roughness on multiphase flow behavior: lattice boltzmann simulation
  publication-title: Int. J. Multiph. Flow
– volume: 126
  start-page: 34707
  year: 2007
  ident: b0045
  article-title: Effect of surface wettability on liquid density, structure, and diffusion near a solid surface
  publication-title: J. Chem. Phys.
– volume: 29
  start-page: 2150088
  year: 2021
  ident: b0025
  article-title: A fractal model for apparent liquid permeability of dual wettability shale coupling boundary layer and slip effect
  publication-title: Fractals-Complex Geom. Patterns Scaling Nat. Soc.
– volume: 16
  start-page: 226
  year: 2011
  end-page: 238
  ident: b0040
  article-title: Exact solutions for the unsteady axial flow of non-newtonian fluids through a circular cylinder
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 36
  start-page: 69
  year: 2009
  end-page: 77
  ident: b0245
  article-title: Numerical simulation of roughness effects on flow and heat transfer in microchannels at slip flow regime
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 310
  year: 2022
  ident: b0070
  article-title: Immiscible/near-miscible relative permeability for confined fluids at high-pressure and high-temperature for a fractal reservoir
  publication-title: Fuel
– volume: 116
  start-page: 410
  year: 2002
  ident: b0310
  article-title: Molecular dynamics studies of the effects of chain branching on the properties of confined alkanes
  publication-title: J. Chem. Phys.
– volume: 335
  start-page: 444
  year: 2012
  end-page: 447
  ident: b0285
  article-title: Ultrafast viscous permeation of organic solvents through diamond-like carbon nanosheets
  publication-title: Science
– volume: 167
  start-page: 716
  year: 2018
  end-page: 728
  ident: b0225
  article-title: Gas transport in self-affine rough microchannels of shale gas reservoir
  publication-title: J. Pet. Sci. Eng.
– volume: 36
  start-page: 1075
  year: 2009
  end-page: 1081
  ident: b0250
  article-title: Numerical simulation of slip flow through rhombus microchannels
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 33
  start-page: 12814
  year: 2017
  end-page: 12819
  ident: b0065
  article-title: viscosity of water interfaces with hydrophobic nanopores: application to water flow in carbon nanotubes
  publication-title: Langmuir
– volume: 187
  start-page: 280
  year: 2018
  end-page: 291
  ident: b0180
  article-title: An apparent liquid permeability model of dual-wettability nanoporous media: a case study of shale
  publication-title: Chem. Eng. Sci.
– volume: 10
  start-page: 7612
  year: 2016
  end-page: 7618
  ident: b0275
  article-title: Understanding diffusion in hierarchical zeolites with house-of-cards nanosheets
  publication-title: ACS Nano
– volume: 60
  start-page: 18154
  year: 2021
  end-page: 18165
  ident: b0125
  article-title: Nanohydrodynamic model and transport mechanisms of tight oil confined in nanopores considering liquid-solid molecular interaction effect
  publication-title: Ind. Eng. Chem. Res.
– year: 1999
  ident: b0265
  article-title: Viscous fluid flow viscous
– volume: 49
  start-page: 281
  year: 2010
  end-page: 289
  ident: b0060
  article-title: Pressure-driven water flow through carbon nanotubes: insights from molecular dynamics simulation
  publication-title: Int. J. Therm. Sci.
– volume: 190
  start-page: 409
  year: 2017
  end-page: 419
  ident: b0075
  article-title: A molecular dynamics explanation for fast imbibition of oil in organic tight rocks
  publication-title: Fuel
– volume: 2
  start-page: 59
  year: 2011
  end-page: 65
  ident: b0220
  article-title: Intermolecular and surface forces
  publication-title: Q. Rev. Biol.
– volume: 22
  start-page: 41
  year: 2018
  end-page: 48
  ident: b0300
  article-title: Solving lubrication problems at the nanometer scale
  publication-title: Microfluid. Nanofluid.
– volume: 123
  start-page: 16456
  year: 2019
  end-page: 16461
  ident: b0155
  article-title: Nanoconfinement effect on n-alkane flow
  publication-title: J. Phys. Chem. C
– volume: 198
  start-page: 62
  year: 2019
  end-page: 73
  ident: b0170
  article-title: A fractal model of water transport in shale reservoirs
  publication-title: Chem. Eng. Sci.
– start-page: 2321
  year: 2008
  end-page: 2328
  ident: b0205
  article-title: Molecular dynamics simulations of I2/Ar solution confined in a cylindrical nanotube
  publication-title: Acta Chim. Sin.
– volume: 76
  start-page: 717
  year: 1980
  ident: b0295
  article-title: Self-Diffusion of N-Paraffins in Nax Zeolite
  publication-title: J. Chem. Soc., Faraday Transac. 1: Phys. Chem. Condensed Phases
– volume: 121
  start-page: 10605
  year: 2004
  end-page: 10610
  ident: b0090
  article-title: First-order mean spherical approximation for inhomogeneous fluids
  publication-title: J. Chem. Phys.
– volume: 25
  start-page: 10768
  year: 2009
  end-page: 10781
  ident: b0135
  article-title: Interfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion
  publication-title: Langmuir
– volume: 118
  start-page: 4140
  year: 2003
  end-page: 4148
  ident: b0085
  article-title: On the first-order mean spherical approximation
  publication-title: J. Chem. Phys.
– volume: 114
  start-page: 3358
  year: 2017
  end-page: 3363
  ident: b0140
  article-title: Wettability effect on nanoconfined water flow
  publication-title: Proc. Nat. Acad. Sci.
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 12
  ident: b0080
  article-title: Effect of surface type on the flow characteristics in shale nanopores
  publication-title: Geofluids
– volume: 88
  start-page: 3505
  year: 1992
  end-page: 3509
  ident: b0290
  article-title: High-temperature pulsed field gradient nuclear magnetic resonance self-diffusion measurements of N-Alkanes in Mfl-Type Zeolites
  publication-title: J. Chem. Soc. Faraday Transac.
– volume: 8
  start-page: 2788
  year: 2008
  end-page: 2793
  ident: b0050
  article-title: Reassessing fast water transport through carbon nanotubes
  publication-title: Nano Lett.
– volume: 102
  year: 2009
  ident: b0055
  article-title: water flow in carbon nanotubes: transition to subcontinuum transport
  publication-title: Phys. Rev. Lett.
– volume: 7
  start-page: 8628
  year: 2011
  ident: b0160
  article-title: Slip boundary conditions based on molecular kinetic theory: the critical shear stress and the energy dissipation at the liquid-solid interface
  publication-title: Soft. Matter.
– reference: R.Y. Jin K. Song W.L. Hase Molecular Dynamics Simulations of the Structures of Alkane/Hydroxylated Α-Al_2O_3(0001) Interfaces, The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical (2000) 2692-2701.
– volume: 115
  start-page: 224
  year: 2017
  end-page: 234
  ident: b0175
  article-title: Apparent permeability for liquid transport in nanopores of shale reservoirs: coupling flow enhancement and near wall flow
  publication-title: Int. J. Heat Mass Transf.
– volume: 279
  start-page: 493
  year: 2004
  end-page: 502
  ident: b0255
  article-title: Contact angle measurements with liquids consisting of bulky molecules
  publication-title: J. Colloid Interface Sci.
– volume: 181
  start-page: 741
  year: 2016
  end-page: 758
  ident: b0100
  article-title: Fast mass transport of oil and supercritical carbon dioxide through organic nanopores in shale
  publication-title: Fuel
– volume: 4
  start-page: 283
  year: 1936
  end-page: 291
  ident: b0210
  article-title: Viscosity, plasticity, and diffusion as examples of absolute reaction rates
  publication-title: J. Chem. Phys.
– volume: 348
  start-page: 1347
  year: 2015
  end-page: 1351
  ident: b0280
  article-title: Sub-10 Nm polyamide nanofilms with ultrafast solvent transport for molecular separation
  publication-title: Science
– volume: 171
  start-page: 74
  year: 2016
  end-page: 86
  ident: b0120
  article-title: Molecular dynamics simulations of oil transport through inorganic nanopores in shale
  publication-title: Fuel (Guildford)
– volume: 18
  start-page: 1085
  year: 2015
  end-page: 1093
  ident: b0190
  article-title: Permeability model for fractal porous media with rough surfaces
  publication-title: Microfluid. Nanofluid.
– volume: 63
  start-page: 1704
  year: 2017
  end-page: 1714
  ident: b0105
  article-title: Surface wettability effect on fluid transport in nanoscale slit pores
  publication-title: AICHE J.
– volume: 4
  year: 2013
  ident: b0110
  article-title: The interplay between apparent viscosity and wettability in nanoconfined water
  publication-title: Nat. Commun.
– volume: 16
  start-page: 1198
  year: 2017
  end-page: 1202
  ident: b0270
  article-title: Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation
  publication-title: Nat. Mater.
– volume: 34
  start-page: 7714
  year: 2018
  end-page: 7725
  ident: b0150
  article-title: Anomalous capillary rise under nanoconfinement: a view of molecular Kinetic Theory
  publication-title: Langmuir
– volume: 69
  start-page: 1967
  year: 1992
  end-page: 1970
  ident: b0320
  article-title: Interfacial alkane films
  publication-title: Phys. Rev. Lett.
– volume: 6
  year: 2015
  ident: b0305
  article-title: Subcontinuum mass transport of condensed hydrocarbons in nanoporous media
  publication-title: Nat. Commun.
– volume: 599
  start-page: 667
  year: 2021
  end-page: 675
  ident: b0115
  article-title: Surface wettability effect on aqueous lubrication: van der waals and hydration force competition induced adhesive friction
  publication-title: J. Colloid Interface Sci.
– volume: 387
  start-page: 5979
  year: 2008
  end-page: 5990
  ident: b0035
  article-title: Pressure-driven transient flows of newtonian fluids through microtubes with slip boundary
  publication-title: Physica A: Statistic. Mech. Its Appli.
– volume: 8
  start-page: 2788
  year: 2008
  ident: 10.1016/j.molliq.2024.125145_b0050
  article-title: Reassessing fast water transport through carbon nanotubes
  publication-title: Nano Lett.
  doi: 10.1021/nl8013617
– volume: 310
  year: 2022
  ident: 10.1016/j.molliq.2024.125145_b0070
  article-title: Immiscible/near-miscible relative permeability for confined fluids at high-pressure and high-temperature for a fractal reservoir
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.122389
– start-page: 1
  year: 2015
  ident: 10.1016/j.molliq.2024.125145_b0095
  article-title: Chapter One - Unified Framework of Multiscale Density Functional Theories and its Recent Applications
  doi: 10.1016/bs.ache.2015.10.001
– volume: 63
  start-page: 47
  year: 1996
  ident: 10.1016/j.molliq.2024.125145_b0235
  article-title: A fractal model for the rigid-perfectly plastic contact of rough surfaces
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.2787208
– volume: 243
  start-page: 114
  year: 2017
  ident: 10.1016/j.molliq.2024.125145_b0215
  article-title: Capillary dynamics driven by molecular self-layering
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2017.02.004
– volume: 36
  start-page: 1075
  year: 2009
  ident: 10.1016/j.molliq.2024.125145_b0250
  article-title: Numerical simulation of slip flow through rhombus microchannels
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2009.07.010
– volume: 10
  start-page: 403
  year: 2011
  ident: 10.1016/j.molliq.2024.125145_b0130
  article-title: Prediction of the viscosity of water confined in carbon nanotubes
  publication-title: Microfluid. Nanofluid.
  doi: 10.1007/s10404-010-0678-0
– volume: 33
  start-page: 12814
  year: 2017
  ident: 10.1016/j.molliq.2024.125145_b0065
  article-title: viscosity of water interfaces with hydrophobic nanopores: application to water flow in carbon nanotubes
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.7b02752
– volume: 49
  start-page: 281
  year: 2010
  ident: 10.1016/j.molliq.2024.125145_b0060
  article-title: Pressure-driven water flow through carbon nanotubes: insights from molecular dynamics simulation
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2009.07.008
– volume: 115
  start-page: 224
  year: 2017
  ident: 10.1016/j.molliq.2024.125145_b0175
  article-title: Apparent permeability for liquid transport in nanopores of shale reservoirs: coupling flow enhancement and near wall flow
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.08.024
– volume: 305
  year: 2020
  ident: 10.1016/j.molliq.2024.125145_b0005
  article-title: Molecular simulations of oil adsorption and transport behavior in inorganic shale
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2020.112745
– volume: 116
  start-page: 410
  year: 2002
  ident: 10.1016/j.molliq.2024.125145_b0310
  article-title: Molecular dynamics studies of the effects of chain branching on the properties of confined alkanes
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1419258
– volume: 16
  start-page: 1198
  year: 2017
  ident: 10.1016/j.molliq.2024.125145_b0270
  article-title: Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation
  publication-title: Nat. Mater.
  doi: 10.1038/nmat5025
– year: 2021
  ident: 10.1016/j.molliq.2024.125145_b0030
  article-title: Influence of fractal surface roughness on multiphase flow behavior: lattice boltzmann simulation
  publication-title: Int. J. Multiph. Flow
– volume: 2021
  start-page: 1
  year: 2021
  ident: 10.1016/j.molliq.2024.125145_b0080
  article-title: Effect of surface type on the flow characteristics in shale nanopores
  publication-title: Geofluids
– volume: 348
  start-page: 1347
  year: 2015
  ident: 10.1016/j.molliq.2024.125145_b0280
  article-title: Sub-10 Nm polyamide nanofilms with ultrafast solvent transport for molecular separation
  publication-title: Science
  doi: 10.1126/science.aaa5058
– volume: 114
  start-page: 3358
  year: 2017
  ident: 10.1016/j.molliq.2024.125145_b0140
  article-title: Wettability effect on nanoconfined water flow
  publication-title: Proc. Nat. Acad. Sci.
  doi: 10.1073/pnas.1612608114
– volume: 279
  start-page: 493
  year: 2004
  ident: 10.1016/j.molliq.2024.125145_b0255
  article-title: Contact angle measurements with liquids consisting of bulky molecules
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2004.06.090
– volume: 253
  year: 2019
  ident: 10.1016/j.molliq.2024.125145_b0185
  article-title: Enhanced water flow and apparent viscosity model considering wettability and shape effects
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.05.098
– volume: 102
  year: 2009
  ident: 10.1016/j.molliq.2024.125145_b0055
  article-title: water flow in carbon nanotubes: transition to subcontinuum transport
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.184502
– ident: 10.1016/j.molliq.2024.125145_b0260
  doi: 10.1021/jp992922y
– volume: 255–260
  year: 2000
  ident: 10.1016/j.molliq.2024.125145_b0315
  article-title: The behaviour of liquid alkanes near interfaces
  publication-title: Mol. Phys.
– volume: 387
  start-page: 5979
  year: 2008
  ident: 10.1016/j.molliq.2024.125145_b0035
  article-title: Pressure-driven transient flows of newtonian fluids through microtubes with slip boundary
  publication-title: Physica A: Statistic. Mech. Its Appli.
  doi: 10.1016/j.physa.2008.06.043
– volume: 2
  start-page: 59
  year: 2011
  ident: 10.1016/j.molliq.2024.125145_b0220
  article-title: Intermolecular and surface forces
  publication-title: Q. Rev. Biol.
– volume: 118
  start-page: 4140
  year: 2003
  ident: 10.1016/j.molliq.2024.125145_b0085
  article-title: On the first-order mean spherical approximation
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1541615
– volume: 60
  start-page: 18154
  year: 2021
  ident: 10.1016/j.molliq.2024.125145_b0125
  article-title: Nanohydrodynamic model and transport mechanisms of tight oil confined in nanopores considering liquid-solid molecular interaction effect
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.1c03615
– volume: 6
  year: 2015
  ident: 10.1016/j.molliq.2024.125145_b0305
  article-title: Subcontinuum mass transport of condensed hydrocarbons in nanoporous media
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7949
– volume: 187
  start-page: 280
  year: 2018
  ident: 10.1016/j.molliq.2024.125145_b0180
  article-title: An apparent liquid permeability model of dual-wettability nanoporous media: a case study of shale
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2018.05.016
– volume: 29
  start-page: 2150088
  year: 2021
  ident: 10.1016/j.molliq.2024.125145_b0025
  article-title: A fractal model for apparent liquid permeability of dual wettability shale coupling boundary layer and slip effect
  publication-title: Fractals-Complex Geom. Patterns Scaling Nat. Soc.
– volume: 18
  start-page: 1085
  year: 2015
  ident: 10.1016/j.molliq.2024.125145_b0190
  article-title: Permeability model for fractal porous media with rough surfaces
  publication-title: Microfluid. Nanofluid.
  doi: 10.1007/s10404-014-1500-1
– volume: 36
  start-page: 69
  year: 2009
  ident: 10.1016/j.molliq.2024.125145_b0245
  article-title: Numerical simulation of roughness effects on flow and heat transfer in microchannels at slip flow regime
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2008.10.009
– volume: 34
  start-page: 7714
  year: 2018
  ident: 10.1016/j.molliq.2024.125145_b0150
  article-title: Anomalous capillary rise under nanoconfinement: a view of molecular Kinetic Theory
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b01397
– volume: 171
  start-page: 74
  year: 2016
  ident: 10.1016/j.molliq.2024.125145_b0120
  article-title: Molecular dynamics simulations of oil transport through inorganic nanopores in shale
  publication-title: Fuel (Guildford)
  doi: 10.1016/j.fuel.2015.12.071
– volume: 70
  start-page: 17303
  year: 2004
  ident: 10.1016/j.molliq.2024.125145_b0240
  article-title: Velocity boundary condition at solid walls in rarefied gas calculations
  publication-title: Phys. Rev. E, Statistic., Nonlinear, Soft. Matter. Phys.
  doi: 10.1103/PhysRevE.70.017303
– volume: 30
  year: 2022
  ident: 10.1016/j.molliq.2024.125145_b0020
  article-title: An improved fractal permeability model for porous geomaterials with complex pore structures and rough surfaces
  publication-title: Fractals-Complex Geom. Patterns Scaling Nat. Soc.
– volume: 76
  start-page: 717
  year: 1980
  ident: 10.1016/j.molliq.2024.125145_b0295
  article-title: Self-Diffusion of N-Paraffins in Nax Zeolite
  publication-title: J. Chem. Soc., Faraday Transac. 1: Phys. Chem. Condensed Phases
  doi: 10.1039/f19807600717
– volume: 181
  start-page: 741
  year: 2016
  ident: 10.1016/j.molliq.2024.125145_b0100
  article-title: Fast mass transport of oil and supercritical carbon dioxide through organic nanopores in shale
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.05.057
– volume: 335
  start-page: 444
  year: 2012
  ident: 10.1016/j.molliq.2024.125145_b0285
  article-title: Ultrafast viscous permeation of organic solvents through diamond-like carbon nanosheets
  publication-title: Science
  doi: 10.1126/science.1212101
– volume: 4
  start-page: 283
  year: 1936
  ident: 10.1016/j.molliq.2024.125145_b0210
  article-title: Viscosity, plasticity, and diffusion as examples of absolute reaction rates
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1749836
– volume: 176
  start-page: 1041
  year: 2019
  ident: 10.1016/j.molliq.2024.125145_b0010
  article-title: Apparent permeability model for shale oil transport through elliptic nanopores considering wall-oil interaction
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2019.02.027
– volume: 190
  start-page: 409
  year: 2017
  ident: 10.1016/j.molliq.2024.125145_b0075
  article-title: A molecular dynamics explanation for fast imbibition of oil in organic tight rocks
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.10.105
– volume: 47
  start-page: 135
  issue: 1990
  year: 1952
  ident: 10.1016/j.molliq.2024.125145_b0145
  article-title: Slip between a liquid and a solid: D.M. Tolstoi's, Theory reconsidered
  publication-title: Colloids and Surfaces
– year: 1999
  ident: 10.1016/j.molliq.2024.125145_b0265
– volume: 134
  start-page: 651
  year: 2020
  ident: 10.1016/j.molliq.2024.125145_b0200
  article-title: Apparent liquid permeability in mixed-wet shale permeable media
  publication-title: Transp. Porous Media
  doi: 10.1007/s11242-020-01462-5
– volume: 22
  start-page: 41
  year: 2018
  ident: 10.1016/j.molliq.2024.125145_b0300
  article-title: Solving lubrication problems at the nanometer scale
  publication-title: Microfluid. Nanofluid.
  doi: 10.1007/s10404-018-2067-z
– volume: 242
  start-page: 305
  year: 2019
  ident: 10.1016/j.molliq.2024.125145_b0165
  article-title: The transport behaviors of oil in nanopores and nanoporous media of shale
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.01.042
– volume: 7
  start-page: 8628
  year: 2011
  ident: 10.1016/j.molliq.2024.125145_b0160
  article-title: Slip boundary conditions based on molecular kinetic theory: the critical shear stress and the energy dissipation at the liquid-solid interface
  publication-title: Soft. Matter.
  doi: 10.1039/c1sm05543g
– year: 1984
  ident: 10.1016/j.molliq.2024.125145_b0230
  article-title: Quantal phase factors accompanying adiabatic changes
  publication-title: Proc. Royal Soc. A: Math.
– volume: 121
  start-page: 10605
  year: 2004
  ident: 10.1016/j.molliq.2024.125145_b0090
  article-title: First-order mean spherical approximation for inhomogeneous fluids
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1810473
– start-page: 2321
  year: 2008
  ident: 10.1016/j.molliq.2024.125145_b0205
  article-title: Molecular dynamics simulations of I2/Ar solution confined in a cylindrical nanotube
  publication-title: Acta Chim. Sin.
– volume: 10
  start-page: 7612
  year: 2016
  ident: 10.1016/j.molliq.2024.125145_b0275
  article-title: Understanding diffusion in hierarchical zeolites with house-of-cards nanosheets
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b02856
– volume: 20
  start-page: 3461
  year: 2023
  ident: 10.1016/j.molliq.2024.125145_b0195
  article-title: A transient model integrating the nanoconfinement effect and pore structure characteristics of oil transport through nanopores
  publication-title: Pet. Sci.
  doi: 10.1016/j.petsci.2023.07.015
– volume: 69
  start-page: 1967
  year: 1992
  ident: 10.1016/j.molliq.2024.125145_b0320
  article-title: Interfacial alkane films
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.69.1967
– volume: 63
  start-page: 1704
  year: 2017
  ident: 10.1016/j.molliq.2024.125145_b0105
  article-title: Surface wettability effect on fluid transport in nanoscale slit pores
  publication-title: AICHE J.
  doi: 10.1002/aic.15535
– volume: 88
  start-page: 3505
  year: 1992
  ident: 10.1016/j.molliq.2024.125145_b0290
  article-title: High-temperature pulsed field gradient nuclear magnetic resonance self-diffusion measurements of N-Alkanes in Mfl-Type Zeolites
  publication-title: J. Chem. Soc. Faraday Transac.
  doi: 10.1039/FT9928803505
– volume: 126
  start-page: 34707
  year: 2007
  ident: 10.1016/j.molliq.2024.125145_b0045
  article-title: Effect of surface wettability on liquid density, structure, and diffusion near a solid surface
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2424934
– volume: 599
  start-page: 667
  year: 2021
  ident: 10.1016/j.molliq.2024.125145_b0115
  article-title: Surface wettability effect on aqueous lubrication: van der waals and hydration force competition induced adhesive friction
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.04.077
– volume: 4
  year: 2013
  ident: 10.1016/j.molliq.2024.125145_b0110
  article-title: The interplay between apparent viscosity and wettability in nanoconfined water
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3482
– volume: 198
  start-page: 62
  year: 2019
  ident: 10.1016/j.molliq.2024.125145_b0170
  article-title: A fractal model of water transport in shale reservoirs
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2018.12.042
– volume: 123
  start-page: 16456
  year: 2019
  ident: 10.1016/j.molliq.2024.125145_b0155
  article-title: Nanoconfinement effect on n-alkane flow
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b03903
– volume: 290
  year: 2019
  ident: 10.1016/j.molliq.2024.125145_b0015
  article-title: Oil diffusion in shale nanopores: insight of molecular dynamics simulation
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2019.111183
– volume: 167
  start-page: 716
  year: 2018
  ident: 10.1016/j.molliq.2024.125145_b0225
  article-title: Gas transport in self-affine rough microchannels of shale gas reservoir
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2018.04.045
– volume: 16
  start-page: 226
  year: 2011
  ident: 10.1016/j.molliq.2024.125145_b0040
  article-title: Exact solutions for the unsteady axial flow of non-newtonian fluids through a circular cylinder
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2010.03.010
– volume: 25
  start-page: 10768
  year: 2009
  ident: 10.1016/j.molliq.2024.125145_b0135
  article-title: Interfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion
  publication-title: Langmuir
  doi: 10.1021/la901314b
SSID ssj0005580
Score 2.3820932
Snippet •Density and viscosity models that characterize the properties of inhomogeneous flow are developed.•A transient numerical model that describes the transport...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 125145
SubjectTerms Inhomogeneous flow properties
Nanochannel
Pressure drop
Roughness surface
Transient flow
Title A transient nanoscale flow model for alkanes considering inhomogeneous flow properties and rough surfaces
URI https://dx.doi.org/10.1016/j.molliq.2024.125145
Volume 407
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT4NAEN00NUYvRqvG-tHswSv9gIGFY9PYVI29aJPeyC67G6st1ELjzd_uzgJJTYwHjxCGkMcwM8u-mUfIbZ8xpbgLDhPgOQCi73AIheP52gMZhL6ympFP02Ayg4e5P2-QUd0Lg7TKKvaXMd1G6-pMr0Kzt14ses9IoGe4UQDYADrAjnIAhl7e_dqhefhWPc3O98ar6_Y5y_Fa4eDrD7NKdKGLmR6bmn5LTzspZ3xMjqpakQ7LxzkhDZW2yMGolmhrkX3L30zyU7IY0gKzDnY30pSnWW6wV1Qvs09qxW6oKU4pX75zE9poUql0mrRFF-lrtsqMG6lsm5cGa_xBv8FJq5SnklohH5pvNxrpW2dkNr57GU2cSkXBScxyoXBcOYi0x6T5-FwehjpSQaDDUAlTikVMuv1IJSxKPAUDzkEwkImXMBAiVExqEXnnpJlmqbogVHPOpWCeDKRZF0oRhUkAzN5JBwGHNnFq8OJ1OSwjrllkb3EJdoxgxyXYbcJqhOMfLz028fxPy8t_W16RQzwqOXzXpFlsturG1BWF6FjH6ZC94f3jZPoNLufPgQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1VIAQXxCrK6gMc0yVx4-TAoSqgsl4Aqbdgx7YotElpWlVc-Cl-EI-TSCAhDki9JrKVPI9mkd_MAzhuMKYUd6nDBPUcSkXD4TQQjtfSHpV-0FJWM_L2zu8-0qteq1eBz7IXBmmVhe_Pfbr11sWTeoFmfdTv1--RQM_wooBiA2iTFczKa_U-M3Vbdnp5Zg75xHUvzh86XaeQFnBik0NPHFc2Q-0xaSzS5UGgQ-X7OgiUMPlJyKTbCFXMwthTtMk5FYzK2IsZFSJQTGqBE5iM31-kxl2gbELt4xuvpGXl2uxAcfy8sl_PksqGOGn7zZSlLq1haoFdVL_Fw28x7mINVovklLTz_1-Hiko2YLlTasJtwJIljMbZJvTbZIJhDtspScKTNDOHrYgepDNi1XWIyYYJH7xy40tJXMiCmjhJ-slzOkyN3ap0muULRngjMMbRroQnkljlIJJNxxr5YlvwOBdst2EhSRO1A0RzzqVgnvSlKUSlCIPYp8zupH2f0yo4JXjRKJ_OEZW0tZcoBztCsKMc7CqwEuHoh5VFJoD8uXL33yuPYLn7cHsT3VzeXe_BCr7JCYT7sDAZT9WBSWom4tAaEYGneVvtF-9iC_Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+transient+nanoscale+flow+model+for+alkanes+considering+inhomogeneous+flow+properties+and+rough+surfaces&rft.jtitle=Journal+of+molecular+liquids&rft.au=Cao%2C+Cheng&rft.au=Chang%2C+Bin&rft.au=Yang%2C+Zhao&rft.au=Yong%2C+Longquan&rft.date=2024-08-01&rft.pub=Elsevier+B.V&rft.issn=0167-7322&rft.volume=407&rft_id=info:doi/10.1016%2Fj.molliq.2024.125145&rft.externalDocID=S0167732224012017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7322&client=summon