A multi-source classification framework with invariant representation reconstruction for dual-target RSVP-BCI tasks in cross-subject scenario

The Rapid Serial Visual Presentation (RSVP) is a widely used paradigm for target detection tasks in Brain-Computer Interface (BCI) by decoding Electroencephalogram (EEG) signals. One major issue concerns the time-consuming calibration in cross-subject scenarios, which worsens in dual-target RSVP-BCI...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 620; p. 129239
Main Authors Chen, Hongying, Wang, Dan, Xu, Meng, Chen, Jiaming, Zhang, Yueqi, Chen, Yuanfang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Rapid Serial Visual Presentation (RSVP) is a widely used paradigm for target detection tasks in Brain-Computer Interface (BCI) by decoding Electroencephalogram (EEG) signals. One major issue concerns the time-consuming calibration in cross-subject scenarios, which worsens in dual-target RSVP-BCI tasks. A new method is desperately needed to detect two targets further with less calibration time. This paper proposed a novel framework named Cross-subject Invariant Representation Extraction-Targeted Stacked Convolutional Autoencoder (CS-IRE-TSCAE) based on reconstructing the invariant representation. After filtering the source subjects, the CS-TSCAE alleviates the subject-dependent effect by reconstructing the invariant representation generated by CS-IRE. It was validated on the ERP datasets from the BCI Controlled Robot Contest 2022. The experimental result showed that CS-IRE-TSCAE obtained the highest Recall, F1 and Average ACC with significant differences both in subject-dependent and inter-subject experiments. It demonstrated that CS-IRE-TSCAE achieved a higher classification performance for dual-target RSVP with less calibration time. Our framework drives the application development of target detection in RSVP-BCI by facilitating multiple target detection in cross-subject scenarios, which has practical significance, especially in fast-deployment scenarios.
AbstractList The Rapid Serial Visual Presentation (RSVP) is a widely used paradigm for target detection tasks in Brain-Computer Interface (BCI) by decoding Electroencephalogram (EEG) signals. One major issue concerns the time-consuming calibration in cross-subject scenarios, which worsens in dual-target RSVP-BCI tasks. A new method is desperately needed to detect two targets further with less calibration time. This paper proposed a novel framework named Cross-subject Invariant Representation Extraction-Targeted Stacked Convolutional Autoencoder (CS-IRE-TSCAE) based on reconstructing the invariant representation. After filtering the source subjects, the CS-TSCAE alleviates the subject-dependent effect by reconstructing the invariant representation generated by CS-IRE. It was validated on the ERP datasets from the BCI Controlled Robot Contest 2022. The experimental result showed that CS-IRE-TSCAE obtained the highest Recall, F1 and Average ACC with significant differences both in subject-dependent and inter-subject experiments. It demonstrated that CS-IRE-TSCAE achieved a higher classification performance for dual-target RSVP with less calibration time. Our framework drives the application development of target detection in RSVP-BCI by facilitating multiple target detection in cross-subject scenarios, which has practical significance, especially in fast-deployment scenarios.
ArticleNumber 129239
Author Zhang, Yueqi
Chen, Hongying
Chen, Yuanfang
Wang, Dan
Chen, Jiaming
Xu, Meng
Author_xml – sequence: 1
  givenname: Hongying
  orcidid: 0000-0001-8367-6791
  surname: Chen
  fullname: Chen, Hongying
  organization: the Beijing University of Technology, China
– sequence: 2
  givenname: Dan
  surname: Wang
  fullname: Wang, Dan
  email: wangdan@bjut.edu.cn
  organization: the Beijing University of Technology, China
– sequence: 3
  givenname: Meng
  surname: Xu
  fullname: Xu, Meng
  organization: the Beijing University of Technology, China
– sequence: 4
  givenname: Jiaming
  surname: Chen
  fullname: Chen, Jiaming
  organization: the Beijing University of Technology, China
– sequence: 5
  givenname: Yueqi
  surname: Zhang
  fullname: Zhang, Yueqi
  organization: the Beijing University of Technology, China
– sequence: 6
  givenname: Yuanfang
  surname: Chen
  fullname: Chen, Yuanfang
  organization: the Beijing Machine and Equipment Institute, China
BookMark eNp9kEtOwzAURT0oEm1hBwy8gRTb-ZBMkErFp1IlEL-p5djP4DSxK9tpxSLYMylhzOgN7rtHV2eGJtZZQOiCkgUltLhsFhZ66boFIyxbUFaxtJqgKalYnrCUslM0C6EhhF4N2RR9L3HXt9EkwfVeApatCMFoI0U0zmLtRQcH57f4YOInNnYvvBE2Yg87DwFsHP88SGdD9L0ca85j1Ys2icJ_QMTPL-9Pyc1qjaMI2zBgsPQuhCT0dQMy4iDBDmB3hk60aAOc_905eru7fV09JJvH-_VquUkky_OYsBqYFlTpUpG0qGgqs1KJVFUFVaQstFSMQFHqPBfZkEBdlTIVORS51FVdVOkcZSP3d4YHzXfedMJ_cUr4USNv-KiRHzXyUeNQux5rMGzbG_A8SANWgjKDgMiVM_8DfgC874Yh
Cites_doi 10.1109/TNSRE.2019.2956488
10.1109/TBME.2021.3137184
10.1109/TNSRE.2020.2980299
10.1088/1741-2552/aa9817
10.1109/TBME.2018.2889705
10.1109/TBCAS.2019.2929053
10.26599/BSA.2022.9050007
10.1109/TCDS.2020.3007453
10.1037/0096-1523.7.5.937
10.1002/hbm.23730
10.1007/978-3-319-58628-1_4
10.1109/TNSRE.2020.3023761
10.1109/TNSRE.2022.3145515
10.1109/EMBC.2019.8857082
10.1109/TPAMI.2009.57
10.1088/1741-2552/aace8c
10.1109/TSP.2019.2894801
10.1109/TBME.2019.2913914
10.1109/TBME.2020.2965178
10.1109/MSP.2008.4408447
10.1109/TCYB.2018.2821764
10.1016/j.asoc.2019.105689
10.1088/1741-2552/ab598f
10.1109/CBS.2018.8612222
10.1109/TBME.2017.2742541
10.1109/TMRB.2019.2959559
10.3390/s22093331
10.1109/NER.2017.8008395
10.1109/NER.2015.7146596
10.1038/s41928-022-00913-9
10.1109/TPAMI.2018.2868685
10.1109/PRNI.2018.8423951
10.1109/ACCESS.2019.2930958
10.1109/IWW-BCI.2018.8311491
10.1109/CISP-BMEI53629.2021.9624450
10.3389/fnhum.2019.00210
10.1109/CVPR.2010.5539857
10.1016/j.neucom.2020.09.017
10.1109/ICOT.2017.8336126
10.1186/s12911-018-0693-8
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2024.129239
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_neucom_2024_129239
S0925231224020101
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
LG9
M41
R2-
RIG
SBC
SSH
WUQ
XPP
ID FETCH-LOGICAL-c255t-2be2fa1df8d036913c48da3d961d086fcd20e68f55a448deb98c3a5e65cf9b693
IEDL.DBID .~1
ISSN 0925-2312
IngestDate Tue Jul 01 04:25:02 EDT 2025
Sat Feb 01 16:08:14 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Brain-Computer Interface
Transfer Learning
Calibration
Autoencoder
RSVP
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c255t-2be2fa1df8d036913c48da3d961d086fcd20e68f55a448deb98c3a5e65cf9b693
ORCID 0000-0001-8367-6791
ParticipantIDs crossref_primary_10_1016_j_neucom_2024_129239
elsevier_sciencedirect_doi_10_1016_j_neucom_2024_129239
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-01
2025-03-00
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wei (bib38) Dec. 2018; 18
M. Völker et al., Deep transfer learning for error decoding from non-invasive EEG,2018 6th International Conference on Brain-Computer Interface (BCI). vol., no., pp. 1-6, 15-17, Jan. 2018.
Xu (bib18) 2022; 30
Lees (bib10) Apr. 2018; 15
Schirrmeister (bib41) Dec. 2017; 38
Tang (bib1) Feb. 2023; 6
Xie (bib15) 2019; 49
Värbu (bib3) 2022; 22
Ono, Fau - Weber, Weber (bib7) 1995; 7
Rodrigues (bib28) 2019; 66
Y. Tan et al., A Convolution Network of Multi-Windows Spatial-Temporal Feature Analysis For Single-trial EEG Classification in RSVP Task,2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). vol., no., pp. 1-6, 23-25 Oct. 2021.
J. He et al., Boosting Transfer Learning Improves Performance of Driving Drowsiness Classification Using EEG,2018 International Workshop on Pattern Recognition in Neuroimaging (PRNI). pp. 1-4, 12-14 June. 2018.
E. Tzeng et al., Deep Domain Confusion: Maximizing for Domain Invariance,ArXiv. vol. abs/1412.3474, 2014.
Zanini (bib27) 2018; 65
Zhang (bib11) Jun. 2022; 8
Y. Wang et al., Epileptic Signal Classification with Deep Transfer Learning Feature on Mean Amplitude Spectrum,2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). vol., no., pp. 2392-2395, 23-27 July. 2019.
M. Xu et al., Inter-subject information contributes to the ERP classification in the P300 speller,2015 7th International IEEE/EMBS Conference on Neural Engineering (NER). pp. 206-209, 22-24 April. 2015.
Yair (bib29) 2019; 67
Y. Liu et al., The Application of Transfer Learning in P300 Detection,2018 IEEE International Conference on Cyborg and Bionic Systems (CBS). vol., no., pp. 412-417, 25-27 Oct. 2018.
He, Wu (bib31) 2020; 28
Ming (bib17) Dec. 2019; 84
Y.M. Jin et al., EEG-based emotion recognition using domain adaptation network,2017 International Conference on Orange Technologies (ICOT). vol., no., pp. 222-225, 8-10 Dec. 2017.
J. Hou et al., Improving the P300-based brain-computer interface with transfer learning,2017 8th International IEEE/EMBS Conference on Neural Engineering (NER). vol., no., pp. 485-488, 25-28 May. 2017.
He, Fau - Wu, Wu (bib30) 2020; 67
Jin, Fau - Chen (bib5) 2020; 67
C. a S. Tan, Fuchun and Zhang, Wenchang, Deep Transfer Learning for EEG-based Brain Computer Interface,ICASSP, 2018.
Y. Yao and G. Doretto, Boosting for transfer learning with multiple sources,2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. vol., no., pp. 1855-1862, 13-18 June. 2010.
Bruzzone, Marconcini (bib24) 2010; 32
Lawhern (bib40) Jul. 2018; 15
Autthasan (bib4) Jun. 2022; 69
Wei (bib12) 2020; 28
Hajinoroozi (bib43) 2017
Parra (bib6) 2008; 25
Wang (bib9) 2020; 17
A. Barachant and M. Congedo, A Plug&Play P300 BCI Using Information Geometry,ArXiv. vol. abs/1409.0107, no., pp., 2014.
Yang (bib23) 2020; 1601
Xu (bib33) 2019; 7
Kundu, Ari (bib37) 2020; 2
Daoud, Bayoumi (bib35) 2019; 13
Wu (bib26) 2022; 14
Vourvopoulos (bib2) 2019; 13
Long (bib13) 2019; 41
Jin (bib8) 2020; 28
Wan (bib32) Jan. 2021; 421
Rodrigues (10.1016/j.neucom.2024.129239_bib28) 2019; 66
Xu (10.1016/j.neucom.2024.129239_bib33) 2019; 7
Xie (10.1016/j.neucom.2024.129239_bib15) 2019; 49
Long (10.1016/j.neucom.2024.129239_bib13) 2019; 41
Schirrmeister (10.1016/j.neucom.2024.129239_bib41) 2017; 38
Xu (10.1016/j.neucom.2024.129239_bib18) 2022; 30
10.1016/j.neucom.2024.129239_bib25
Ono (10.1016/j.neucom.2024.129239_bib7) 1995; 7
Bruzzone (10.1016/j.neucom.2024.129239_bib24) 2010; 32
Wan (10.1016/j.neucom.2024.129239_bib32) 2021; 421
Lees (10.1016/j.neucom.2024.129239_bib10) 2018; 15
Jin (10.1016/j.neucom.2024.129239_bib8) 2020; 28
Zanini (10.1016/j.neucom.2024.129239_bib27) 2018; 65
Lawhern (10.1016/j.neucom.2024.129239_bib40) 2018; 15
Yair (10.1016/j.neucom.2024.129239_bib29) 2019; 67
Jin (10.1016/j.neucom.2024.129239_bib5) 2020; 67
Zhang (10.1016/j.neucom.2024.129239_bib11) 2022; 8
Tang (10.1016/j.neucom.2024.129239_bib1) 2023; 6
Wang (10.1016/j.neucom.2024.129239_bib9) 2020; 17
10.1016/j.neucom.2024.129239_bib19
Hajinoroozi (10.1016/j.neucom.2024.129239_bib43) 2017
He (10.1016/j.neucom.2024.129239_bib31) 2020; 28
Wei (10.1016/j.neucom.2024.129239_bib38) 2018; 18
Wei (10.1016/j.neucom.2024.129239_bib12) 2020; 28
10.1016/j.neucom.2024.129239_bib39
10.1016/j.neucom.2024.129239_bib16
Ming (10.1016/j.neucom.2024.129239_bib17) 2019; 84
Wu (10.1016/j.neucom.2024.129239_bib26) 2022; 14
10.1016/j.neucom.2024.129239_bib14
10.1016/j.neucom.2024.129239_bib36
10.1016/j.neucom.2024.129239_bib34
10.1016/j.neucom.2024.129239_bib22
10.1016/j.neucom.2024.129239_bib44
10.1016/j.neucom.2024.129239_bib21
Yang (10.1016/j.neucom.2024.129239_bib23) 2020; 1601
10.1016/j.neucom.2024.129239_bib20
10.1016/j.neucom.2024.129239_bib42
Värbu (10.1016/j.neucom.2024.129239_bib3) 2022; 22
Parra (10.1016/j.neucom.2024.129239_bib6) 2008; 25
Autthasan (10.1016/j.neucom.2024.129239_bib4) 2022; 69
Kundu (10.1016/j.neucom.2024.129239_bib37) 2020; 2
He (10.1016/j.neucom.2024.129239_bib30) 2020; 67
Daoud (10.1016/j.neucom.2024.129239_bib35) 2019; 13
Vourvopoulos (10.1016/j.neucom.2024.129239_bib2) 2019; 13
References_xml – volume: 15
  year: Jul. 2018
  ident: bib40
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces
  publication-title: J. Neural Eng.
– reference: C. a S. Tan, Fuchun and Zhang, Wenchang, Deep Transfer Learning for EEG-based Brain Computer Interface,ICASSP, 2018.
– start-page: 45
  year: 2017
  end-page: 55
  ident: bib43
  article-title: Deep Transfer Learning for Cross-subject and Cross-experiment Prediction of Image Rapid Serial Visual Presentation Events from EEG Data
  publication-title: Augment. Cogn. Neurocognition Mach. Learn.
– volume: 15
  year: Apr. 2018
  ident: bib10
  article-title: A review of rapid serial visual presentation-based brain-computer interfaces
  publication-title: J. Neural Eng.
– volume: 2
  start-page: 86
  year: 2020
  end-page: 93
  ident: bib37
  article-title: MsCNN: A Deep Learning Framework for P300-Based Brain–Computer Interface Speller
  publication-title: IEEE Trans. Med. Robot. Bionics
– reference: Y. Liu et al., The Application of Transfer Learning in P300 Detection,2018 IEEE International Conference on Cyborg and Bionic Systems (CBS). vol., no., pp. 412-417, 25-27 Oct. 2018.
– reference: M. Xu et al., Inter-subject information contributes to the ERP classification in the P300 speller,2015 7th International IEEE/EMBS Conference on Neural Engineering (NER). pp. 206-209, 22-24 April. 2015.
– reference: A. Barachant and M. Congedo, A Plug&Play P300 BCI Using Information Geometry,ArXiv. vol. abs/1409.0107, no., pp., 2014.
– volume: 65
  start-page: 1107
  year: 2018
  end-page: 1116
  ident: bib27
  article-title: Transfer Learning: A Riemannian Geometry Framework With Applications to Brain–Computer Interfaces
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 38
  start-page: 5391
  year: Dec. 2017
  end-page: 5420
  ident: bib41
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Hum. Brain Mapp.
– volume: 69
  start-page: 2105
  year: Jun. 2022
  end-page: 2118
  ident: bib4
  article-title: MIN2Net: End-to-End Multi-Task Learning for Subject-Independent Motor Imagery EEG Classification
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 28
  start-page: 1091
  year: 2020
  end-page: 1108
  ident: bib31
  article-title: Different Set Domain Adaptation for Brain-Computer Interfaces: A Label Alignment Approach
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 67
  start-page: 2585
  year: 2020
  end-page: 2593
  ident: bib5
  article-title: Developing a Novel Tactile P300 Brain-Computer Interface With a Cheeks-Stim Paradigm
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 25
  start-page: 107
  year: 2008
  end-page: 115
  ident: bib6
  article-title: Spatiotemporal Linear Decoding of Brain State
  publication-title: IEEE Signal Process. Mag.
– volume: 421
  start-page: 1
  year: Jan. 2021
  end-page: 14
  ident: bib32
  article-title: A review on transfer learning in EEG signal analysis
  publication-title: Neurocomputing
– volume: 13
  year: 2019
  ident: bib2
  article-title: Effects of a brain-computer interface with virtual reality (VR) neurofeedback: a pilot study in chronic stroke patients
  publication-title: Front. Hum. Neurosci.
– volume: 17
  year: 2020
  ident: bib9
  article-title: Enhance decoding of pre-movement EEG patterns for brain-computer interfaces
  publication-title: J. Neural Eng.
– volume: 18
  start-page: 111
  year: Dec. 2018
  ident: bib38
  article-title: Automatic seizure detection using three-dimensional CNN based on multi-channel EEG
  publication-title: BMC Med. Inform. Decis. Mak.
– volume: 32
  start-page: 770
  year: 2010
  end-page: 787
  ident: bib24
  article-title: Domain Adaptation Problems: A DASVM Classification Technique and a Circular Validation Strategy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: E. Tzeng et al., Deep Domain Confusion: Maximizing for Domain Invariance,ArXiv. vol. abs/1412.3474, 2014.
– volume: 22
  start-page: 3331
  year: 2022
  ident: bib3
  article-title: past, present, and future of EEG-based BCI applications
  publication-title: Sensors
– volume: 28
  start-page: 3
  year: 2020
  end-page: 12
  ident: bib8
  article-title: The Study of Generic Model Set for Reducing Calibration Time in P300-Based Brain–Computer Interface
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– reference: J. Hou et al., Improving the P300-based brain-computer interface with transfer learning,2017 8th International IEEE/EMBS Conference on Neural Engineering (NER). vol., no., pp. 485-488, 25-28 May. 2017.
– volume: 67
  start-page: 1797
  year: 2019
  end-page: 1811
  ident: bib29
  article-title: Parallel Transport on the Cone Manifold of SPD Matrices for Domain Adaptation
  publication-title: IEEE Trans. Signal Process.
– reference: Y. Wang et al., Epileptic Signal Classification with Deep Transfer Learning Feature on Mean Amplitude Spectrum,2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). vol., no., pp. 2392-2395, 23-27 July. 2019.
– volume: 7
  start-page: 112767
  year: 2019
  end-page: 112776
  ident: bib33
  article-title: A Deep Transfer Convolutional Neural Network Framework for EEG Signal Classification
  publication-title: IEEE Access
– volume: 7
  start-page: 937
  year: 1995
  end-page: 947
  ident: bib7
  article-title: Journal of experimental psychology: human perception and performance
  publication-title: J. Exp. Psychol. Hum. Percept. Perform.
– reference: J. He et al., Boosting Transfer Learning Improves Performance of Driving Drowsiness Classification Using EEG,2018 International Workshop on Pattern Recognition in Neuroimaging (PRNI). pp. 1-4, 12-14 June. 2018.
– volume: 67
  start-page: 399
  year: 2020
  end-page: 410
  ident: bib30
  article-title: Transfer Learning for Brain-Computer Interfaces: A Euclidean Space Data Alignment Approach
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 8
  start-page: 111
  year: Jun. 2022
  end-page: 126
  ident: bib11
  article-title: An improved EEGNet for single-trial EEG classification in rapid serial visual presentation task
  publication-title: Brain Sci. Adv.
– volume: 49
  start-page: 2200
  year: 2019
  end-page: 2214
  ident: bib15
  article-title: Generalized Hidden-Mapping Transductive Transfer Learning for Recognition of Epileptic Electroencephalogram Signals
  publication-title: IEEE Trans. Cybern.
– volume: 1601
  year: 2020
  ident: bib23
  article-title: Improving Session-to-session Transfer Performance of Emotion Recognition Using Adaptive Support Vector Machine
  publication-title: J. Phys.: Conf. Ser.
– reference: M. Völker et al., Deep transfer learning for error decoding from non-invasive EEG,2018 6th International Conference on Brain-Computer Interface (BCI). vol., no., pp. 1-6, 15-17, Jan. 2018.
– volume: 28
  start-page: 2344
  year: 2020
  end-page: 2355
  ident: bib12
  article-title: Reducing Calibration Efforts in RSVP Tasks With Multi-Source Adversarial Domain Adaptation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 6
  start-page: 109
  year: Feb. 2023
  end-page: 118
  ident: bib1
  article-title: Flexible brain–computer interfaces
  publication-title: Nat. Electron.
– volume: 30
  start-page: 251
  year: 2022
  end-page: 263
  ident: bib18
  article-title: BWGAN-GP: An EEG Data Generation Method for Class Imbalance Problem in RSVP Tasks
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 41
  start-page: 3071
  year: 2019
  end-page: 3085
  ident: bib13
  article-title: Transferable Representation Learning with Deep Adaptation Networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 84
  year: Dec. 2019
  ident: bib17
  article-title: Subject adaptation network for EEG data analysis
  publication-title: Appl. Soft Comput.
– volume: 14
  start-page: 4
  year: 2022
  end-page: 19
  ident: bib26
  article-title: Transfer Learning for EEG-Based Brain–Computer Interfaces: A Review of Progress Made Since 2016
  publication-title: IEEE Trans. Cogn. Dev. Syst.
– reference: Y.M. Jin et al., EEG-based emotion recognition using domain adaptation network,2017 International Conference on Orange Technologies (ICOT). vol., no., pp. 222-225, 8-10 Dec. 2017.
– volume: 13
  start-page: 804
  year: 2019
  end-page: 813
  ident: bib35
  article-title: Efficient Epileptic Seizure Prediction Based on Deep Learning
  publication-title: IEEE Trans. Biomed. Circuits Syst.
– reference: Y. Tan et al., A Convolution Network of Multi-Windows Spatial-Temporal Feature Analysis For Single-trial EEG Classification in RSVP Task,2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). vol., no., pp. 1-6, 23-25 Oct. 2021.
– reference: Y. Yao and G. Doretto, Boosting for transfer learning with multiple sources,2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. vol., no., pp. 1855-1862, 13-18 June. 2010.
– volume: 66
  start-page: 2390
  year: 2019
  end-page: 2401
  ident: bib28
  article-title: Riemannian Procrustes Analysis: Transfer Learning for Brain–Computer Interfaces
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 28
  start-page: 3
  issue: 1
  year: 2020
  ident: 10.1016/j.neucom.2024.129239_bib8
  article-title: The Study of Generic Model Set for Reducing Calibration Time in P300-Based Brain–Computer Interface
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2956488
– volume: 69
  start-page: 2105
  issue: 6
  year: 2022
  ident: 10.1016/j.neucom.2024.129239_bib4
  article-title: MIN2Net: End-to-End Multi-Task Learning for Subject-Independent Motor Imagery EEG Classification
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2021.3137184
– volume: 1601
  year: 2020
  ident: 10.1016/j.neucom.2024.129239_bib23
  article-title: Improving Session-to-session Transfer Performance of Emotion Recognition Using Adaptive Support Vector Machine
  publication-title: J. Phys.: Conf. Ser.
– volume: 28
  start-page: 1091
  issue: 5
  year: 2020
  ident: 10.1016/j.neucom.2024.129239_bib31
  article-title: Different Set Domain Adaptation for Brain-Computer Interfaces: A Label Alignment Approach
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.2980299
– volume: 15
  issue: 2
  year: 2018
  ident: 10.1016/j.neucom.2024.129239_bib10
  article-title: A review of rapid serial visual presentation-based brain-computer interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aa9817
– volume: 66
  start-page: 2390
  issue: 8
  year: 2019
  ident: 10.1016/j.neucom.2024.129239_bib28
  article-title: Riemannian Procrustes Analysis: Transfer Learning for Brain–Computer Interfaces
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2889705
– volume: 13
  start-page: 804
  issue: 5
  year: 2019
  ident: 10.1016/j.neucom.2024.129239_bib35
  article-title: Efficient Epileptic Seizure Prediction Based on Deep Learning
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/TBCAS.2019.2929053
– volume: 8
  start-page: 111
  issue: 2
  year: 2022
  ident: 10.1016/j.neucom.2024.129239_bib11
  article-title: An improved EEGNet for single-trial EEG classification in rapid serial visual presentation task
  publication-title: Brain Sci. Adv.
  doi: 10.26599/BSA.2022.9050007
– volume: 14
  start-page: 4
  issue: 1
  year: 2022
  ident: 10.1016/j.neucom.2024.129239_bib26
  article-title: Transfer Learning for EEG-Based Brain–Computer Interfaces: A Review of Progress Made Since 2016
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2020.3007453
– volume: 7
  start-page: 937
  issue: 5
  year: 1995
  ident: 10.1016/j.neucom.2024.129239_bib7
  article-title: Journal of experimental psychology: human perception and performance
  publication-title: J. Exp. Psychol. Hum. Percept. Perform.
  doi: 10.1037/0096-1523.7.5.937
– volume: 38
  start-page: 5391
  issue: 11
  year: 2017
  ident: 10.1016/j.neucom.2024.129239_bib41
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23730
– start-page: 45
  year: 2017
  ident: 10.1016/j.neucom.2024.129239_bib43
  article-title: Deep Transfer Learning for Cross-subject and Cross-experiment Prediction of Image Rapid Serial Visual Presentation Events from EEG Data
  publication-title: Augment. Cogn. Neurocognition Mach. Learn.
  doi: 10.1007/978-3-319-58628-1_4
– volume: 28
  start-page: 2344
  issue: 11
  year: 2020
  ident: 10.1016/j.neucom.2024.129239_bib12
  article-title: Reducing Calibration Efforts in RSVP Tasks With Multi-Source Adversarial Domain Adaptation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.3023761
– volume: 30
  start-page: 251
  year: 2022
  ident: 10.1016/j.neucom.2024.129239_bib18
  article-title: BWGAN-GP: An EEG Data Generation Method for Class Imbalance Problem in RSVP Tasks
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3145515
– ident: 10.1016/j.neucom.2024.129239_bib36
  doi: 10.1109/EMBC.2019.8857082
– volume: 32
  start-page: 770
  issue: 5
  year: 2010
  ident: 10.1016/j.neucom.2024.129239_bib24
  article-title: Domain Adaptation Problems: A DASVM Classification Technique and a Circular Validation Strategy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2009.57
– volume: 15
  issue: 5
  year: 2018
  ident: 10.1016/j.neucom.2024.129239_bib40
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aace8c
– volume: 67
  start-page: 1797
  issue: 7
  year: 2019
  ident: 10.1016/j.neucom.2024.129239_bib29
  article-title: Parallel Transport on the Cone Manifold of SPD Matrices for Domain Adaptation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2019.2894801
– volume: 67
  start-page: 399
  issue: 2
  year: 2020
  ident: 10.1016/j.neucom.2024.129239_bib30
  article-title: Transfer Learning for Brain-Computer Interfaces: A Euclidean Space Data Alignment Approach
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2019.2913914
– volume: 67
  start-page: 2585
  issue: 9
  year: 2020
  ident: 10.1016/j.neucom.2024.129239_bib5
  article-title: Developing a Novel Tactile P300 Brain-Computer Interface With a Cheeks-Stim Paradigm
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2020.2965178
– volume: 25
  start-page: 107
  issue: 1
  year: 2008
  ident: 10.1016/j.neucom.2024.129239_bib6
  article-title: Spatiotemporal Linear Decoding of Brain State
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2008.4408447
– ident: 10.1016/j.neucom.2024.129239_bib44
– volume: 49
  start-page: 2200
  issue: 6
  year: 2019
  ident: 10.1016/j.neucom.2024.129239_bib15
  article-title: Generalized Hidden-Mapping Transductive Transfer Learning for Recognition of Epileptic Electroencephalogram Signals
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2821764
– volume: 84
  year: 2019
  ident: 10.1016/j.neucom.2024.129239_bib17
  article-title: Subject adaptation network for EEG data analysis
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105689
– volume: 17
  issue: 1
  year: 2020
  ident: 10.1016/j.neucom.2024.129239_bib9
  article-title: Enhance decoding of pre-movement EEG patterns for brain-computer interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab598f
– ident: 10.1016/j.neucom.2024.129239_bib16
– ident: 10.1016/j.neucom.2024.129239_bib20
  doi: 10.1109/CBS.2018.8612222
– volume: 65
  start-page: 1107
  issue: 5
  year: 2018
  ident: 10.1016/j.neucom.2024.129239_bib27
  article-title: Transfer Learning: A Riemannian Geometry Framework With Applications to Brain–Computer Interfaces
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2742541
– volume: 2
  start-page: 86
  issue: 1
  year: 2020
  ident: 10.1016/j.neucom.2024.129239_bib37
  article-title: MsCNN: A Deep Learning Framework for P300-Based Brain–Computer Interface Speller
  publication-title: IEEE Trans. Med. Robot. Bionics
  doi: 10.1109/TMRB.2019.2959559
– volume: 22
  start-page: 3331
  issue: 9
  year: 2022
  ident: 10.1016/j.neucom.2024.129239_bib3
  article-title: past, present, and future of EEG-based BCI applications
  publication-title: Sensors
  doi: 10.3390/s22093331
– ident: 10.1016/j.neucom.2024.129239_bib19
  doi: 10.1109/NER.2017.8008395
– ident: 10.1016/j.neucom.2024.129239_bib25
  doi: 10.1109/NER.2015.7146596
– ident: 10.1016/j.neucom.2024.129239_bib39
– volume: 6
  start-page: 109
  issue: 2
  year: 2023
  ident: 10.1016/j.neucom.2024.129239_bib1
  article-title: Flexible brain–computer interfaces
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-022-00913-9
– volume: 41
  start-page: 3071
  issue: 12
  year: 2019
  ident: 10.1016/j.neucom.2024.129239_bib13
  article-title: Transferable Representation Learning with Deep Adaptation Networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2868685
– ident: 10.1016/j.neucom.2024.129239_bib22
  doi: 10.1109/PRNI.2018.8423951
– volume: 7
  start-page: 112767
  year: 2019
  ident: 10.1016/j.neucom.2024.129239_bib33
  article-title: A Deep Transfer Convolutional Neural Network Framework for EEG Signal Classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2930958
– ident: 10.1016/j.neucom.2024.129239_bib34
  doi: 10.1109/IWW-BCI.2018.8311491
– ident: 10.1016/j.neucom.2024.129239_bib42
  doi: 10.1109/CISP-BMEI53629.2021.9624450
– volume: 13
  year: 2019
  ident: 10.1016/j.neucom.2024.129239_bib2
  article-title: Effects of a brain-computer interface with virtual reality (VR) neurofeedback: a pilot study in chronic stroke patients
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2019.00210
– ident: 10.1016/j.neucom.2024.129239_bib21
  doi: 10.1109/CVPR.2010.5539857
– volume: 421
  start-page: 1
  year: 2021
  ident: 10.1016/j.neucom.2024.129239_bib32
  article-title: A review on transfer learning in EEG signal analysis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.09.017
– ident: 10.1016/j.neucom.2024.129239_bib14
  doi: 10.1109/ICOT.2017.8336126
– volume: 18
  start-page: 111
  issue: 5
  year: 2018
  ident: 10.1016/j.neucom.2024.129239_bib38
  article-title: Automatic seizure detection using three-dimensional CNN based on multi-channel EEG
  publication-title: BMC Med. Inform. Decis. Mak.
  doi: 10.1186/s12911-018-0693-8
SSID ssj0017129
Score 2.4348123
Snippet The Rapid Serial Visual Presentation (RSVP) is a widely used paradigm for target detection tasks in Brain-Computer Interface (BCI) by decoding...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 129239
SubjectTerms Autoencoder
Brain-Computer Interface
Calibration
RSVP
Transfer Learning
Title A multi-source classification framework with invariant representation reconstruction for dual-target RSVP-BCI tasks in cross-subject scenario
URI https://dx.doi.org/10.1016/j.neucom.2024.129239
Volume 620
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRH5YHVbezESTyWiqoFUSFKUbcothOpIKWV2jLyD_jP3DlJBRJiYI0cK7nPvof93R0h1z4PrIggOjEiNBCgKMl0rlPYeEpo39O5UZgo_DAOh9PgbiZnDdKvc2GQVlnp_lKnO21dPelW0uwu5_PuxFMCoii8GfLwStdlsAcRrvLOx5bmwSMuynp7QjIcXafPOY5XkW2QMyLAUHVgnMCW4b-Zp28mZ3BA9ipfkfbKzzkkjaw4Ivt1HwZabctj8tmjjhfIypN4atAjRgqQkzrNa_4VxUNXOi_eIT4GgVJX0LJOPiqoi4239WQpeLMUE7VYSRanT5OXR3bTH9F1unpbwTTU_QJbbTSe5VAsCwUTL07IdHD73B-yqs0C4CPlmgmdiTzlNo8tmDPFfRPENvWtCrmFgCc3VnhZGOdSphDL2Uyr2PipzEJpcqVD5Z-SZrEosjNCAVihpbKWeyn4aRrw5kpqrPIWS6FMi7BausmyrKaR1DSz16REI0E0khKNFolqCJIfqyIBhf_nm-f_fvOC7Ars8et4ZpekCWLPrsDxWOu2W1ltstMb3Q_HXw4s3AA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWq9gAXdkRZfeBqmjh1Gh9LRdXSRYi2iFsUL5EKUlqpLX_BPzPjJBVIiAPXKLaSefYs9psZQm4Dv2l4C6ITzUMNAYoUTKUqgY0nuQo8lWqJicKjcdibNR9fxWuFdMpcGKRVFro_1-lOWxdPGoU0G8v5vDHxJIcoCm-GPLzShRCohtWpRJXU2v1Bb7y9TGj5PC-5xwXDAWUGnaN5ZXaDtBEOtuoO3uPYNfw3C_XN6nQPyF7hLtJ2_kWHpGKzI7JftmKgxc48Jp9t6qiBLD-MpxqdYmQBOcHTtKRgUTx3pfPsA0JkkCl1NS3L_KOMuvB4W1KWgkNLMVeL5Xxx-jx5eWL3nT5dJ6v3FUxD3S-w1UbhcQ7FylAw8eKEzLoP006PFZ0WACIh1owry9PEN2lkwKJJP9DNyCSBkaFvIOZJteGeDaNUiATCOWOVjHSQCBsKnUoVyuCUVLNFZs8IBWy5EtIY30vAVVMAuS-FwkJvkeBS1wkrpRsv84Iacck0e4tzNGJEI87RqJNWCUH8Y2HEoPP_HHn-75E3ZKc3HQ3jYX88uCC7HFv-OtrZJakCBPYK_JC1ui7W2ReZyd6x
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-source+classification+framework+with+invariant+representation+reconstruction+for+dual-target+RSVP-BCI+tasks+in+cross-subject+scenario&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Chen%2C+Hongying&rft.au=Wang%2C+Dan&rft.au=Xu%2C+Meng&rft.au=Chen%2C+Jiaming&rft.date=2025-03-01&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.volume=620&rft_id=info:doi/10.1016%2Fj.neucom.2024.129239&rft.externalDocID=S0925231224020101
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon