Multi-strategy improved sand cat optimization algorithm-based workflow scheduling mechanism for heterogeneous edge computing environment

Edge computing is one of the predominant technologies which facilitates the option of bringing out the computing resources closer to the location of the end users when they are utilized by them. This facility offered by edge computing technology need to reduce the utilization of network bandwidth an...

Full description

Saved in:
Bibliographic Details
Published inSustainable computing informatics and systems Vol. 43; p. 101014
Main Authors Jayalakshmi, P., Ramesh, S.S. Subashka
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.09.2024
Subjects
Online AccessGet full text
ISSN2210-5379
DOI10.1016/j.suscom.2024.101014

Cover

Loading…
Abstract Edge computing is one of the predominant technologies which facilitates the option of bringing out the computing resources closer to the location of the end users when they are utilized by them. This facility offered by edge computing technology need to reduce the utilization of network bandwidth and response time with respect to the user’s workflow. In this paper, Multi-Strategy Improved Sand Cat Swarm Optimisation Algorithm (MSISCSOA)-based workflow scheduling mechanism is proposed for handling the challenges of workflow scheduling in cloud-edge computing environment. The core objective of this MSISCSOA-based workflow scheduling algorithm targets on minimizing the execution latency and energy consumption to facilitate timely and on-demand end users’ satisfaction of resources. This MSISCSOA scheme is adopted with the improvement introduced using random variation and elite collaborative strategies, such that well-balanced the trade-off between exploration and exploitation is achieved. This improvement is introduced over Sand Cat Optimization Algorithm (SCOA) using the merits of dynamic random search and joint opposite selection strategies that accelerates the convergence of the algorithm with increased global optimization and searching efficiency. It specifically improved SCOA using random variation for escaping from the local point of optimality. It also used well distributed pareto fronts and population evolution multi-strategy that aids in searching solutions with maximized diversity. The simulation experiments conducted using the datasets of Montage, Cybershake, LIGO and SIPHT an average confirmed minimized execution latency of 21.38 % and energy consumptions of 19.56 %, better than the baseline Ant Colony Optimization Algorithm-Based Workflow Scheduling (IACOAWS), Quadratic Penalty Function-based Particle Swarm Optimization Algorithm (QPF-PSOA), Biogeography Optimization (BBO) Algorithm based Multi-Objective Task Scheduling (BBOAMOTS) and Different Evolution-based Task Clustering and Scheduling (DETCS) approaches used for comparative investigation. •In this paper, Multi-Strategy Improved Sand Cat Swarm Optimisation Algorithm (MSISCSOA)-based workflow scheduling mechanism is proposed for handling the challenges of workflow scheduling in cloud-edge computing environment.•The core objective of this MSISCSOA-based workflow scheduling algorithm targets on minimizing the execution latency and energy consumption to facilitate timely and on-demand end users’ satisfaction of resources.•This MSISCSOA scheme is adopted with the improvement introduced using random variation and elite collaborative strategies, such that well-balanced the trade-off between exploration and exploitation is achieved.•This improvement is introduced over Sand Cat Optimization Algorithm (SCOA) using the merits of dynamic random search and joint opposite selection strategies that accelerates the convergence of the algorithm with increased global optimization and searching efficiency.•The simulation experiments conducted using the datasets of Montage, Cybershake, LIGO and SIPHT an average confirmed minimized execution latency of 21.38 % and energy consumptions of 19.56 % better than the baseline approaches used for comparative investigation.
AbstractList Edge computing is one of the predominant technologies which facilitates the option of bringing out the computing resources closer to the location of the end users when they are utilized by them. This facility offered by edge computing technology need to reduce the utilization of network bandwidth and response time with respect to the user’s workflow. In this paper, Multi-Strategy Improved Sand Cat Swarm Optimisation Algorithm (MSISCSOA)-based workflow scheduling mechanism is proposed for handling the challenges of workflow scheduling in cloud-edge computing environment. The core objective of this MSISCSOA-based workflow scheduling algorithm targets on minimizing the execution latency and energy consumption to facilitate timely and on-demand end users’ satisfaction of resources. This MSISCSOA scheme is adopted with the improvement introduced using random variation and elite collaborative strategies, such that well-balanced the trade-off between exploration and exploitation is achieved. This improvement is introduced over Sand Cat Optimization Algorithm (SCOA) using the merits of dynamic random search and joint opposite selection strategies that accelerates the convergence of the algorithm with increased global optimization and searching efficiency. It specifically improved SCOA using random variation for escaping from the local point of optimality. It also used well distributed pareto fronts and population evolution multi-strategy that aids in searching solutions with maximized diversity. The simulation experiments conducted using the datasets of Montage, Cybershake, LIGO and SIPHT an average confirmed minimized execution latency of 21.38 % and energy consumptions of 19.56 %, better than the baseline Ant Colony Optimization Algorithm-Based Workflow Scheduling (IACOAWS), Quadratic Penalty Function-based Particle Swarm Optimization Algorithm (QPF-PSOA), Biogeography Optimization (BBO) Algorithm based Multi-Objective Task Scheduling (BBOAMOTS) and Different Evolution-based Task Clustering and Scheduling (DETCS) approaches used for comparative investigation. •In this paper, Multi-Strategy Improved Sand Cat Swarm Optimisation Algorithm (MSISCSOA)-based workflow scheduling mechanism is proposed for handling the challenges of workflow scheduling in cloud-edge computing environment.•The core objective of this MSISCSOA-based workflow scheduling algorithm targets on minimizing the execution latency and energy consumption to facilitate timely and on-demand end users’ satisfaction of resources.•This MSISCSOA scheme is adopted with the improvement introduced using random variation and elite collaborative strategies, such that well-balanced the trade-off between exploration and exploitation is achieved.•This improvement is introduced over Sand Cat Optimization Algorithm (SCOA) using the merits of dynamic random search and joint opposite selection strategies that accelerates the convergence of the algorithm with increased global optimization and searching efficiency.•The simulation experiments conducted using the datasets of Montage, Cybershake, LIGO and SIPHT an average confirmed minimized execution latency of 21.38 % and energy consumptions of 19.56 % better than the baseline approaches used for comparative investigation.
ArticleNumber 101014
Author Ramesh, S.S. Subashka
Jayalakshmi, P.
Author_xml – sequence: 1
  givenname: P.
  surname: Jayalakshmi
  fullname: Jayalakshmi, P.
  email: jayakalai07@gmail.com
– sequence: 2
  givenname: S.S. Subashka
  surname: Ramesh
  fullname: Ramesh, S.S. Subashka
  email: subashka@gmail.com
BookMark eNp9kE1OwzAQhb0oEgV6Axa-QIrj_G-QUMWfVMQG1pbtTBKX2I5sp1U5AccmUVgzm5FG7z29-a7QylgDCN3GZBuTOL87bP3opdVbSmg6n0icrtCa0phEWVJUl2jj_YFMk-VxlaRr9PM29kFFPjgeoD1jpQdnj1Bjz02NJQ_YDkFp9c2DsgbzvrVOhU5HgvtJdbLuq-ntCXvZQT32yrRYg-y4UV7jxjrcQQBnWzBgR4-hbgFPBYcxzFIwR-Ws0WDCDbpoeO9h87ev0efT48fuJdq_P7_uHvaRpFkWIpqKBtI8ETHN8lqWouG8ScsiE0SmFeQgq6KhZSVzUVYJTaYni6wqi0LURAguk2uULrnSWe8dNGxwSnN3ZjFhM0R2YAtENkNkC8TJdr_YYOp2VOCYlwqMhFo5kIHVVv0f8Avfl4XH
Cites_doi 10.1016/j.apm.2006.08.015
10.1016/j.ijepes.2015.11.067
10.1186/s13677-022-00284-8
10.1007/s11227-016-1789-5
10.1109/71.993206
10.1007/s00500-020-04834-7
10.1016/j.eswa.2021.116001
10.1007/s10723-024-09744-8
10.1109/ACCESS.2022.3201147
10.1109/ACCESS.2021.3116716
10.1016/j.eswa.2022.119246
10.1007/s11227-018-2604-2
10.1007/978-981-99-3932-9_39
10.4218/etrij.2021-0312
10.1016/j.amc.2005.05.002
10.1007/s00607-019-00740-5
10.1109/CIMCA.2005.1631345
10.3390/math10224350
10.1002/ett.4902
10.1016/j.jpdc.2018.11.006
10.1109/ACCESS.2020.2970475
10.1109/4235.996017
10.1016/j.knosys.2019.104966
10.1109/JIOT.2018.2869226
10.1109/JIOT.2023.3241222
10.1007/s00521-022-06925-y
10.1109/JIOT.2019.2943373
10.1109/TVT.2022.3174906
10.1109/ACCESS.2022.3227510
10.3390/electronics12122599
10.1109/TSC.2023.3284492
10.1109/TII.2019.2961237
10.1007/s11277-021-08875-5
10.1109/JIOT.2020.2992522
10.3390/fi15080254
10.1016/j.iot.2023.100868
10.1109/JIOT.2023.3303356
10.1109/TEVC.2004.826067
10.1007/s11227-013-1059-8
10.1007/s10586-022-03809-7
10.1016/j.comnet.2022.108937
10.1007/s00366-022-01604-x
10.1016/j.advengsoft.2023.103423
10.1016/j.knosys.2021.107804
10.1002/cpe.6455
10.1016/j.future.2019.03.005
10.3390/math12020281
10.1016/j.jpdc.2022.10.003
10.1109/TII.2019.2944839
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright_xml – notice: 2024 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.suscom.2024.101014
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_suscom_2024_101014
S2210537924000593
GroupedDBID --K
--M
.~1
0R~
1~.
4.4
457
4G.
7-5
8P~
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HZ~
J1W
JARJE
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSR
SSV
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c255t-24bfe463b1256dc8bfaaf4875b0c49e6ec97f289c6b89323934759877bd0bbac3
IEDL.DBID .~1
ISSN 2210-5379
IngestDate Tue Jul 01 01:35:21 EDT 2025
Sat Aug 24 15:41:17 EDT 2024
IsPeerReviewed false
IsScholarly true
Keywords Pareto optimal solutions
Multi-strategies improved sand cat optimization algorithm
Cloud-edge computing
Workflow scheduling
Execution latency
Energy consumptions
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c255t-24bfe463b1256dc8bfaaf4875b0c49e6ec97f289c6b89323934759877bd0bbac3
ParticipantIDs crossref_primary_10_1016_j_suscom_2024_101014
elsevier_sciencedirect_doi_10_1016_j_suscom_2024_101014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationTitle Sustainable computing informatics and systems
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Xue, Wang, Zhang, Wang (bib8) 2020; 2020
Hosseinzadeh, Masdari, Rahmani, Mohammadi, Aldalwie, Majeed, Karim (bib24) 2021; 19
Gao, Tao, Wang, Wang, Sun, Song (bib5) 2023
Li, Wang (bib17) 2022; 10
Avan, Azim, Mahmoud (bib2) 2023; 12
Basu (bib45) 2016; 78
Chen, Lin, Lin (bib28) 2023
Deldari, Naghibzadeh, Abrishami (bib55) 2017; 73
Li, Qi, Xing, Hu (bib20) 2023
Cui, Xu, Yang, Huang, Li, Wang, Lu (bib33) 2018; 6
Topcuoglu, Hariri, Wu (bib36) 2002; 13
Chai, Huang (bib13) 2024; 22
Garg, Singh (bib40) 2014; 68
Abd Elaziz, Attiya, Abualigah, Iqbal, Ali, Al-Fuqaha, El-Sappagh (bib15) 2023
Xie, Zhu, Wang, Cheng, Xu, Sani, Yang (bib21) 2019; 97
Shu, Zhao, Han, Min, Duan (bib32) 2019; 7
Janakiraman, Priya (bib60) 2023; 38
Li, Shang, Qin, Yang, Cheng, Gao, Kwak (bib26) 2022; 71
Hamzaçebi, Kutay (bib41) 2007; 31
H.R. TizhooshOpposition-based learning: a new scheme for machine intelligence IEEE , Vol. 1 International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce (CIMCA-IAWTIC'06) (November) , 2005, , 695–701, (November).
Xu, Yang, Li, Kang, Yang (bib50) 2020; 188
Deb, Pratap, Agarwal, Meyarivan (bib38) 2002; 6
Li, Zheng, Wang, Wang, Liu (bib29) 2023; 26
Vivekanandan, Gnanasekaran (bib23) 2021; 33
Bacanin, Zivkovic, Bezdan, Venkatachalam, Abouhawwash (bib25) 2022; 34
Wang, Ding, Yang, Li, Guan, Bao (bib44) 2022
2024, 728 LNNS, pp. 457–470.
Wang, Yu, Xu, Wang (bib10) 2022
Jayalakshmi, P., Subashka Ramesh, S.S.
Rezaeian, Naghibzadeh, Epema (bib57) 2019; 75
Arini, Chiewchanwattana, Soomlek, Sunat (bib48) 2022; 188
Chen, Zhang, Wu, Qi, Chen, Shen (bib34) 2020; 7
Li, Bai, Tang (bib14) 2019; 125
Hamzaçebi, Kutay (bib42) 2006; 173
Zhao, Wu, Tan, Wu, Cui, Wang (bib47) 2023; 213
Wu, Rao, Wen, Jia, Liu, Abualigah (bib18) 2022
Niu, Chen, Zhang, Zhu, Yin, Wu, Cao (bib7) 2023
Yousif, Bashir, Ali (bib30) 2024; 12
Fan, Chen, Xia (bib51) 2020; 24
Zivkovic, Bezdan, Strumberger, Bacanin, Venkatachalam (bib12) 2021
Liu, Mao, Zhang, Letaief (bib9) 2016
Chaudhuri, Sahu (bib46) 2022; 236
Alsurdeh, Calheiros, Matawie, Javadi (bib22) 2021; 9
Mousavi Nik, Naghibzadeh, Sedaghat (bib56) 2020; 102
Ren, Hou, Wang, Tian, Wei, Zheng, Zhang (bib3) 2021
Khojasteh Toussi, Naghibzadeh (bib54) 2021
Kiani, Anka, Erenel (bib19) 2023; 178
Coello, Pulido, Lechuga (bib37) 2004; 8
Arini, Sunat, Soomlek (bib49) 2022; 10
Maray, Mustafa, Shuja, Bilal (bib6) 2023; 23
Dasgupta, Ghosh, Mirjalili, Sarkar (bib52) 2020; 151
Li, Shi, Shi, Wei, Lu (bib4) 2022; 210
Farid, Latip, Hussin, Hamid (bib39) 2020; 8
Seyyedabbasi, Kiani (bib16) 2023
Khojasteh Toussi, Naghibzadeh, Abrishami, Taheri, Abrishami (bib53) 2022; 11
Nithiavathy, Janakiraman, Deva Priya (bib61) 2024; 35
Jayalakshmi, Sridevi, Janakiraman (bib62) 2021; 121
Lin, Huang, Zhang, Hu, Chen, Li (bib35) 2019; 16
Taheri, Abrishami, Naghibzadeh (bib58) 2023
Liu, Yang, Chen (bib27) 2023; 172
Patsias, Amanatidis, Karampatzakis, Lagkas, Michalakopoulou, Nikitas (bib1) 2023; 15
Wu, Shi, Qian, Hou, Cai, Shen (bib31) 2019; 16
Xie, Song, Cao, Xu (bib11) 2022; 44
Shu (10.1016/j.suscom.2024.101014_bib32) 2019; 7
Khojasteh Toussi (10.1016/j.suscom.2024.101014_bib54) 2021
Deb (10.1016/j.suscom.2024.101014_bib38) 2002; 6
Cui (10.1016/j.suscom.2024.101014_bib33) 2018; 6
Yousif (10.1016/j.suscom.2024.101014_bib30) 2024; 12
Bacanin (10.1016/j.suscom.2024.101014_bib25) 2022; 34
Ren (10.1016/j.suscom.2024.101014_bib3) 2021
Seyyedabbasi (10.1016/j.suscom.2024.101014_bib16) 2023; 39
Li (10.1016/j.suscom.2024.101014_bib14) 2019; 125
Garg (10.1016/j.suscom.2024.101014_bib40) 2014; 68
Janakiraman (10.1016/j.suscom.2024.101014_bib60) 2023; 38
Chai (10.1016/j.suscom.2024.101014_bib13) 2024; 22
Lin (10.1016/j.suscom.2024.101014_bib35) 2019; 16
Dasgupta (10.1016/j.suscom.2024.101014_bib52) 2020; 151
Maray (10.1016/j.suscom.2024.101014_bib6) 2023; 23
Mousavi Nik (10.1016/j.suscom.2024.101014_bib56) 2020; 102
Wu (10.1016/j.suscom.2024.101014_bib31) 2019; 16
Xie (10.1016/j.suscom.2024.101014_bib11) 2022; 44
Li (10.1016/j.suscom.2024.101014_bib20) 2023
Hamzaçebi (10.1016/j.suscom.2024.101014_bib41) 2007; 31
Basu (10.1016/j.suscom.2024.101014_bib45) 2016; 78
Abd Elaziz (10.1016/j.suscom.2024.101014_bib15) 2023
Xue (10.1016/j.suscom.2024.101014_bib8) 2020; 2020
Wang (10.1016/j.suscom.2024.101014_bib44) 2022
Fan (10.1016/j.suscom.2024.101014_bib51) 2020; 24
Li (10.1016/j.suscom.2024.101014_bib17) 2022; 10
Arini (10.1016/j.suscom.2024.101014_bib49) 2022; 10
Li (10.1016/j.suscom.2024.101014_bib29) 2023; 26
Zivkovic (10.1016/j.suscom.2024.101014_bib12) 2021
Kiani (10.1016/j.suscom.2024.101014_bib19) 2023; 178
Topcuoglu (10.1016/j.suscom.2024.101014_bib36) 2002; 13
Hosseinzadeh (10.1016/j.suscom.2024.101014_bib24) 2021; 19
Chen (10.1016/j.suscom.2024.101014_bib34) 2020; 7
Vivekanandan (10.1016/j.suscom.2024.101014_bib23) 2021; 33
10.1016/j.suscom.2024.101014_bib59
Niu (10.1016/j.suscom.2024.101014_bib7) 2023
Alsurdeh (10.1016/j.suscom.2024.101014_bib22) 2021; 9
Gao (10.1016/j.suscom.2024.101014_bib5) 2023
Rezaeian (10.1016/j.suscom.2024.101014_bib57) 2019; 75
Chaudhuri (10.1016/j.suscom.2024.101014_bib46) 2022; 236
Avan (10.1016/j.suscom.2024.101014_bib2) 2023; 12
Li (10.1016/j.suscom.2024.101014_bib26) 2022; 71
Khojasteh Toussi (10.1016/j.suscom.2024.101014_bib53) 2022; 11
Arini (10.1016/j.suscom.2024.101014_bib48) 2022; 188
Taheri (10.1016/j.suscom.2024.101014_bib58) 2023
Wu (10.1016/j.suscom.2024.101014_bib18) 2022; 10
Wang (10.1016/j.suscom.2024.101014_bib10) 2022
10.1016/j.suscom.2024.101014_bib43
Coello (10.1016/j.suscom.2024.101014_bib37) 2004; 8
Liu (10.1016/j.suscom.2024.101014_bib27) 2023; 172
Nithiavathy (10.1016/j.suscom.2024.101014_bib61) 2024; 35
Xu (10.1016/j.suscom.2024.101014_bib50) 2020; 188
Jayalakshmi (10.1016/j.suscom.2024.101014_bib62) 2021; 121
Patsias (10.1016/j.suscom.2024.101014_bib1) 2023; 15
Xie (10.1016/j.suscom.2024.101014_bib21) 2019; 97
Deldari (10.1016/j.suscom.2024.101014_bib55) 2017; 73
Li (10.1016/j.suscom.2024.101014_bib4) 2022; 210
Zhao (10.1016/j.suscom.2024.101014_bib47) 2023; 213
Farid (10.1016/j.suscom.2024.101014_bib39) 2020; 8
Hamzaçebi (10.1016/j.suscom.2024.101014_bib42) 2006; 173
Liu (10.1016/j.suscom.2024.101014_bib9) 2016
Chen (10.1016/j.suscom.2024.101014_bib28) 2023
References_xml – volume: 213
  year: 2023
  ident: bib47
  article-title: QQLMPA: a quasi-opposition learning and Q-learning based marine predators algorithm
  publication-title: Expert Syst. Appl.
– volume: 210
  year: 2022
  ident: bib4
  article-title: Task offloading strategy to maximize task completion rate in heterogeneous edge computing environment
  publication-title: Comput. Netw.
– year: 2022
  ident: bib10
  article-title: Energy efficient task scheduling based on traffic mapping in heterogeneous mobile edge computing: a green IoT perspective
  publication-title: IEEE Trans. Green. Commun. Netw.
– volume: 9
  start-page: 134783
  year: 2021
  end-page: 134799
  ident: bib22
  article-title: Hybrid workflow scheduling on edge cloud computing systems
  publication-title: IEEE Access
– volume: 8
  start-page: 256
  year: 2004
  end-page: 279
  ident: bib37
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Trans. Evolut. Comput.
– volume: 172
  start-page: 84
  year: 2023
  end-page: 96
  ident: bib27
  article-title: Intelligent energy-efficient scheduling with ant colony techniques for heterogeneous edge computing
  publication-title: J. Parallel Distrib. Comput.
– volume: 78
  start-page: 29
  year: 2016
  end-page: 40
  ident: bib45
  article-title: Quasi-oppositional differential evolution for optimal reactive power dispatch
  publication-title: Int. J. Electr. Power Energy Syst.
– year: 2023
  ident: bib15
  article-title: Hybrid enhanced optimization-based intelligent task scheduling for sustainable edge computing
  publication-title: IEEE Trans. Consum. Electron.
– volume: 19
  start-page: 1
  year: 2021
  end-page: 27
  ident: bib24
  article-title: Improved butterfly optimization algorithm for data placement and scheduling in edge computing environments
  publication-title: J. Grid Comput.
– volume: 7
  start-page: 1678
  year: 2019
  end-page: 1689
  ident: bib32
  article-title: Multi-user offloading for edge computing networks: a dependency-aware and latency-optimal approach
  publication-title: IEEE Internet Things J.
– start-page: 1
  year: 2021
  end-page: 13
  ident: bib3
  article-title: Collaborative task offloading and resource scheduling framework for heterogeneous edge computing
  publication-title: Wirel. Netw.
– volume: 188
  year: 2020
  ident: bib50
  article-title: Dynamic opposite learning enhanced teaching–learning-based optimization.
  publication-title: Knowl. -Based Syst.
– reference: Jayalakshmi, P., Subashka Ramesh, S.S.
– volume: 71
  start-page: 8955
  year: 2022
  end-page: 8966
  ident: bib26
  article-title: Mult objective oriented task scheduling in heterogeneous mobile edge computing networks
  publication-title: IEEE Trans. Veh. Technol.
– volume: 16
  start-page: 5456
  year: 2019
  end-page: 5466
  ident: bib35
  article-title: Cost-driven off-loading for DNN-based applications over cloud, edge, and end devices
  publication-title: IEEE Trans. Ind. Inform.
– start-page: 1451
  year: 2016
  end-page: 1455
  ident: bib9
  article-title: Delay-optimal computation task scheduling for mobile-edge computing systems. In 2016
  publication-title: IEEE international symposium on information theory (ISIT)
– volume: 236
  year: 2022
  ident: bib46
  article-title: Multi-objective feature selection based on quasi-oppositional based Jaya algorithm for microarray data
  publication-title: Knowl. -Based Syst.
– volume: 12
  start-page: 2599
  year: 2023
  ident: bib2
  article-title: A state-of-the-art review of task scheduling for edge computing: a delay-sensitive application perspective
  publication-title: Electronics
– volume: 7
  start-page: 8419
  year: 2020
  end-page: 8429
  ident: bib34
  article-title: Joint task scheduling and energy management for heterogeneous mobile edge computing with hybrid energy supply
  publication-title: IEEE Internet Things J.
– volume: 31
  start-page: 2189
  year: 2007
  end-page: 2198
  ident: bib41
  article-title: Continuous functions minimization by dynamic random search technique
  publication-title: Appl. Math. Model.
– volume: 75
  start-page: 746
  year: 2019
  end-page: 769
  ident: bib57
  article-title: Fair multiple-workflow scheduling with different quality-of-service goals
  publication-title: J. Supercomput.
– volume: 10
  start-page: 89989
  year: 2022
  end-page: 90003
  ident: bib17
  article-title: Sand cat swarm optimization based on stochastic variation with elite collaboration
  publication-title: IEEE Access
– volume: 15
  start-page: 254
  year: 2023
  ident: bib1
  article-title: Task allocation methods and optimization techniques in edge computing: a systematic review of the literature
  publication-title: Future Internet
– volume: 33
  year: 2021
  ident: bib23
  article-title: Hybrid Harris Hawk-Salp swarm optimization algorithm-based integrated optimal data placement and task scheduling for improving the user experience in edge computing.
  publication-title: Concurr. Comput.: Pract. Exp.
– start-page: 4350
  year: 2022
  ident: bib18
  article-title: Modified sand cat swarm optimization algorithm for solving constrained engineering optimization problems
  publication-title: Mathematics
– volume: 178
  year: 2023
  ident: bib19
  article-title: PSCSO: enhanced sand cat swarm optimization inspired by the political system to solve complex problems
  publication-title: Adv. Eng. Softw.
– volume: 16
  start-page: 4811
  year: 2019
  end-page: 4822
  ident: bib31
  article-title: Energy-efficient multi-task multi-access computation offloading via NOMA transmission for IoTs
  publication-title: IEEE Trans. Ind. Inform.
– volume: 188
  year: 2022
  ident: bib48
  article-title: Joint Opposite Selection (JOS): a premiere joint of selective leading opposition and dynamic opposite enhanced Harris’ hawks optimization for solving single-objective problems
  publication-title: Expert Syst. Appl.
– volume: 13
  start-page: 260
  year: 2002
  end-page: 274
  ident: bib36
  article-title: Performance-effective and low-complexity task scheduling for heterogeneous computing
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– year: 2023
  ident: bib5
  article-title: Joint server deployment and task scheduling for the maximal profit in mobile edge computing
  publication-title: IEEE Internet Things J.
– volume: 8
  start-page: 24309
  year: 2020
  end-page: 24322
  ident: bib39
  article-title: Scheduling scientific workflow using multi-objective algorithm with fuzzy resource utilization in multi-cloud environment
  publication-title: IEEE Access
– year: 2023
  ident: bib58
  article-title: A cloud broker for executing deadline-constrained periodic scientific workflows
  publication-title: IEEE Trans. Serv. Comput.
– year: 2023
  ident: bib7
  article-title: Multi-agent meta-reinforcement learning for optimized task scheduling in heterogeneous edge computing systems
  publication-title: IEEE Internet Things J.
– volume: 68
  start-page: 709
  year: 2014
  end-page: 732
  ident: bib40
  article-title: Multi-objective workflow grid scheduling using ε-fuzzy dominance sort based discrete particle swarm optimization
  publication-title: J. Supercomput.
– volume: 10
  start-page: 128800
  year: 2022
  end-page: 128823
  ident: bib49
  article-title: Golden jackal optimization with joint opposite selection: an enhanced nature-inspired optimization algorithm for solving optimization problems
  publication-title: IEEE Access
– volume: 6
  start-page: 4791
  year: 2018
  end-page: 4803
  ident: bib33
  article-title: Joint optimization of energy consumption and latency in mobile edge computing for Internet of Things
  publication-title: IEEE Internet Things J.
– start-page: 1
  year: 2022
  end-page: 43
  ident: bib44
  article-title: Rank-driven salp swarm algorithm with orthogonal opposition-based learning for global optimization
  publication-title: Appl. Intell.
– volume: 34
  start-page: 9043
  year: 2022
  end-page: 9068
  ident: bib25
  article-title: Modified firefly algorithm for workflow scheduling in cloud-edge environment
  publication-title: Neural Comput. Appl.
– year: 2023
  ident: bib28
  article-title: An intelligent workflow scheduling scheme for complex network robustness in fuzzy edge-cloud environments
  publication-title: IEEE Trans. Netw. Sci. Eng.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib38
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evolut. Comput.
– start-page: 1
  year: 2021
  end-page: 23
  ident: bib54
  article-title: A divide and conquer approach to deadline constrained cost-optimization workflow scheduling for the cloud
  publication-title: Clust. Comput.
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 12
  ident: bib8
  article-title: Task allocation optimization scheme based on queuing theory for mobile edge computing in 5G heterogeneous networks
  publication-title: Mob. Inf. Syst.
– start-page: 87
  year: 2021
  end-page: 102
  ident: bib12
  article-title: Improved harris hawks optimization algorithm for workflow scheduling challenge in cloud–edge environment
  publication-title: In Computer Networks, Big Data and IoT: Proceedings of ICCBI 2020
– volume: 121
  start-page: 3263
  year: 2021
  end-page: 3279
  ident: bib62
  article-title: A hybrid artificial bee colony and harmony search algorithm-based metahueristic approach for efficient routing in WSNs
  publication-title: Wireless Personal Communications
– volume: 173
  start-page: 1323
  year: 2006
  end-page: 1333
  ident: bib42
  article-title: A heuristic approach for finding the global minimum: Adaptive random search technique
  publication-title: Appl. Math. Comput.
– volume: 11
  start-page: 13
  year: 2022
  ident: bib53
  article-title: EDQWS: an enhanced divide and conquer algorithm for workflow scheduling in cloud
  publication-title: J. Cloud Comput.
– volume: 38
  start-page: 100875
  year: 2023
  ident: bib60
  article-title: Hybrid grey wolf and improved particle swarm optimization with adaptive intertial weight-based multi-dimensional learning strategy for load balancing in cloud environments
  publication-title: Sustainable Computing: Informatics and Systems
– volume: 73
  start-page: 756
  year: 2017
  end-page: 781
  ident: bib55
  article-title: CCA: a deadline-constrained workflow scheduling algorithm for multicore resources on the cloud
  publication-title: J. Supercomput.
– volume: 125
  start-page: 93
  year: 2019
  end-page: 105
  ident: bib14
  article-title: Joint optimization of data placement and scheduling for improving user experience in edge computing
  publication-title: J. Parallel Distrib. Comput.
– volume: 26
  start-page: 4051
  year: 2023
  end-page: 4067
  ident: bib29
  article-title: A multi-objective task offloading based on BBO algorithm under deadline constrain in mobile edge computing
  publication-title: Clust. Comput.
– volume: 23
  year: 2023
  ident: bib6
  article-title: Dependent task offloading with deadline-aware scheduling in mobile edge networks
  publication-title: Internet Things
– start-page: 2627
  year: 2023
  end-page: 2651
  ident: bib16
  article-title: Sand Cat swarm optimization: a nature-inspired algorithm to solve global optimization problems
  publication-title: Eng. Comput.
– volume: 151
  year: 2020
  ident: bib52
  article-title: Selective opposition based grey wolf optimization
  publication-title: Expert Syst. Appl.
– volume: 97
  start-page: 361
  year: 2019
  end-page: 378
  ident: bib21
  article-title: A novel directional and non-local-convergent particle swarm optimization based workflow scheduling in cloud–edge environment.
  publication-title: Future Gener. Comput. Syst.
– volume: 102
  start-page: 477
  year: 2020
  end-page: 500
  ident: bib56
  article-title: Cost-driven workflow scheduling on the cloud with deadline and reliability constraints
  publication-title: Computing
– volume: 35
  start-page: e4902
  year: 2024
  ident: bib61
  article-title: Adaptive Guided Differential Evolution‐based Slime Mould Algorithm‐based efficient Multi‐objective Task Scheduling for Cloud Computing Environments
  publication-title: Transactions on Emerging Telecommunications Technologies
– volume: 44
  start-page: 746
  year: 2022
  end-page: 758
  ident: bib11
  article-title: Energy efficiency task scheduling for battery level-aware mobile edge computing in heterogeneous networks
  publication-title: ETRI J.
– reference: H.R. TizhooshOpposition-based learning: a new scheme for machine intelligence IEEE , Vol. 1 International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce (CIMCA-IAWTIC'06) (November) , 2005, , 695–701, (November).
– reference: , 2024, 728 LNNS, pp. 457–470.
– volume: 22
  start-page: 27
  year: 2024
  ident: bib13
  article-title: Dependent task scheduling using parallel deep neural networks in mobile edge computing
  publication-title: J. Grid Comput.
– year: 2023
  ident: bib20
  article-title: IMSCSO: an intensified sand cat swarm optimization with multi-strategy for solving global and engineering optimization problems
  publication-title: IEEE Access
– volume: 12
  start-page: 281
  year: 2024
  ident: bib30
  article-title: An evolutionary algorithm for task clustering and scheduling in IoT edge computing
  publication-title: Mathematics
– volume: 24
  start-page: 14825
  year: 2020
  end-page: 14843
  ident: bib51
  article-title: A novel quasi-reflected Harris hawks optimization algorithm for global optimization problems
  publication-title: Soft Comput.
– volume: 31
  start-page: 2189
  issue: 10
  year: 2007
  ident: 10.1016/j.suscom.2024.101014_bib41
  article-title: Continuous functions minimization by dynamic random search technique
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2006.08.015
– volume: 78
  start-page: 29
  year: 2016
  ident: 10.1016/j.suscom.2024.101014_bib45
  article-title: Quasi-oppositional differential evolution for optimal reactive power dispatch
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2015.11.067
– volume: 11
  start-page: 13
  issue: 1
  year: 2022
  ident: 10.1016/j.suscom.2024.101014_bib53
  article-title: EDQWS: an enhanced divide and conquer algorithm for workflow scheduling in cloud
  publication-title: J. Cloud Comput.
  doi: 10.1186/s13677-022-00284-8
– volume: 73
  start-page: 756
  year: 2017
  ident: 10.1016/j.suscom.2024.101014_bib55
  article-title: CCA: a deadline-constrained workflow scheduling algorithm for multicore resources on the cloud
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-016-1789-5
– volume: 13
  start-page: 260
  issue: 3
  year: 2002
  ident: 10.1016/j.suscom.2024.101014_bib36
  article-title: Performance-effective and low-complexity task scheduling for heterogeneous computing
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/71.993206
– volume: 24
  start-page: 14825
  year: 2020
  ident: 10.1016/j.suscom.2024.101014_bib51
  article-title: A novel quasi-reflected Harris hawks optimization algorithm for global optimization problems
  publication-title: Soft Comput.
  doi: 10.1007/s00500-020-04834-7
– volume: 188
  year: 2022
  ident: 10.1016/j.suscom.2024.101014_bib48
  article-title: Joint Opposite Selection (JOS): a premiere joint of selective leading opposition and dynamic opposite enhanced Harris’ hawks optimization for solving single-objective problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116001
– start-page: 87
  year: 2021
  ident: 10.1016/j.suscom.2024.101014_bib12
  article-title: Improved harris hawks optimization algorithm for workflow scheduling challenge in cloud–edge environment
– start-page: 1
  year: 2022
  ident: 10.1016/j.suscom.2024.101014_bib44
  article-title: Rank-driven salp swarm algorithm with orthogonal opposition-based learning for global optimization
  publication-title: Appl. Intell.
– volume: 22
  start-page: 27
  issue: 1
  year: 2024
  ident: 10.1016/j.suscom.2024.101014_bib13
  article-title: Dependent task scheduling using parallel deep neural networks in mobile edge computing
  publication-title: J. Grid Comput.
  doi: 10.1007/s10723-024-09744-8
– year: 2023
  ident: 10.1016/j.suscom.2024.101014_bib28
  article-title: An intelligent workflow scheduling scheme for complex network robustness in fuzzy edge-cloud environments
  publication-title: IEEE Trans. Netw. Sci. Eng.
– volume: 10
  start-page: 89989
  year: 2022
  ident: 10.1016/j.suscom.2024.101014_bib17
  article-title: Sand cat swarm optimization based on stochastic variation with elite collaboration
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3201147
– volume: 9
  start-page: 134783
  year: 2021
  ident: 10.1016/j.suscom.2024.101014_bib22
  article-title: Hybrid workflow scheduling on edge cloud computing systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3116716
– volume: 19
  start-page: 1
  year: 2021
  ident: 10.1016/j.suscom.2024.101014_bib24
  article-title: Improved butterfly optimization algorithm for data placement and scheduling in edge computing environments
  publication-title: J. Grid Comput.
– volume: 213
  year: 2023
  ident: 10.1016/j.suscom.2024.101014_bib47
  article-title: QQLMPA: a quasi-opposition learning and Q-learning based marine predators algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.119246
– volume: 75
  start-page: 746
  year: 2019
  ident: 10.1016/j.suscom.2024.101014_bib57
  article-title: Fair multiple-workflow scheduling with different quality-of-service goals
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-018-2604-2
– ident: 10.1016/j.suscom.2024.101014_bib59
  doi: 10.1007/978-981-99-3932-9_39
– volume: 44
  start-page: 746
  issue: 5
  year: 2022
  ident: 10.1016/j.suscom.2024.101014_bib11
  article-title: Energy efficiency task scheduling for battery level-aware mobile edge computing in heterogeneous networks
  publication-title: ETRI J.
  doi: 10.4218/etrij.2021-0312
– volume: 173
  start-page: 1323
  issue: 2
  year: 2006
  ident: 10.1016/j.suscom.2024.101014_bib42
  article-title: A heuristic approach for finding the global minimum: Adaptive random search technique
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2005.05.002
– start-page: 1451
  year: 2016
  ident: 10.1016/j.suscom.2024.101014_bib9
  article-title: Delay-optimal computation task scheduling for mobile-edge computing systems. In 2016
– volume: 102
  start-page: 477
  issue: 2
  year: 2020
  ident: 10.1016/j.suscom.2024.101014_bib56
  article-title: Cost-driven workflow scheduling on the cloud with deadline and reliability constraints
  publication-title: Computing
  doi: 10.1007/s00607-019-00740-5
– ident: 10.1016/j.suscom.2024.101014_bib43
  doi: 10.1109/CIMCA.2005.1631345
– volume: 10
  start-page: 4350
  issue: 22
  year: 2022
  ident: 10.1016/j.suscom.2024.101014_bib18
  article-title: Modified sand cat swarm optimization algorithm for solving constrained engineering optimization problems
  publication-title: Mathematics
  doi: 10.3390/math10224350
– volume: 35
  start-page: e4902
  issue: 1
  year: 2024
  ident: 10.1016/j.suscom.2024.101014_bib61
  article-title: Adaptive Guided Differential Evolution‐based Slime Mould Algorithm‐based efficient Multi‐objective Task Scheduling for Cloud Computing Environments
  publication-title: Transactions on Emerging Telecommunications Technologies
  doi: 10.1002/ett.4902
– year: 2022
  ident: 10.1016/j.suscom.2024.101014_bib10
  article-title: Energy efficient task scheduling based on traffic mapping in heterogeneous mobile edge computing: a green IoT perspective
  publication-title: IEEE Trans. Green. Commun. Netw.
– year: 2023
  ident: 10.1016/j.suscom.2024.101014_bib15
  article-title: Hybrid enhanced optimization-based intelligent task scheduling for sustainable edge computing
  publication-title: IEEE Trans. Consum. Electron.
– volume: 125
  start-page: 93
  year: 2019
  ident: 10.1016/j.suscom.2024.101014_bib14
  article-title: Joint optimization of data placement and scheduling for improving user experience in edge computing
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2018.11.006
– volume: 8
  start-page: 24309
  year: 2020
  ident: 10.1016/j.suscom.2024.101014_bib39
  article-title: Scheduling scientific workflow using multi-objective algorithm with fuzzy resource utilization in multi-cloud environment
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2970475
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.suscom.2024.101014_bib38
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/4235.996017
– volume: 188
  year: 2020
  ident: 10.1016/j.suscom.2024.101014_bib50
  article-title: Dynamic opposite learning enhanced teaching–learning-based optimization.
  publication-title: Knowl. -Based Syst.
  doi: 10.1016/j.knosys.2019.104966
– volume: 6
  start-page: 4791
  issue: 3
  year: 2018
  ident: 10.1016/j.suscom.2024.101014_bib33
  article-title: Joint optimization of energy consumption and latency in mobile edge computing for Internet of Things
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2869226
– year: 2023
  ident: 10.1016/j.suscom.2024.101014_bib7
  article-title: Multi-agent meta-reinforcement learning for optimized task scheduling in heterogeneous edge computing systems
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2023.3241222
– volume: 34
  start-page: 9043
  issue: 11
  year: 2022
  ident: 10.1016/j.suscom.2024.101014_bib25
  article-title: Modified firefly algorithm for workflow scheduling in cloud-edge environment
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-06925-y
– volume: 7
  start-page: 1678
  issue: 3
  year: 2019
  ident: 10.1016/j.suscom.2024.101014_bib32
  article-title: Multi-user offloading for edge computing networks: a dependency-aware and latency-optimal approach
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2943373
– volume: 71
  start-page: 8955
  issue: 8
  year: 2022
  ident: 10.1016/j.suscom.2024.101014_bib26
  article-title: Mult objective oriented task scheduling in heterogeneous mobile edge computing networks
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2022.3174906
– volume: 10
  start-page: 128800
  year: 2022
  ident: 10.1016/j.suscom.2024.101014_bib49
  article-title: Golden jackal optimization with joint opposite selection: an enhanced nature-inspired optimization algorithm for solving optimization problems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3227510
– start-page: 1
  year: 2021
  ident: 10.1016/j.suscom.2024.101014_bib3
  article-title: Collaborative task offloading and resource scheduling framework for heterogeneous edge computing
  publication-title: Wirel. Netw.
– volume: 12
  start-page: 2599
  issue: 12
  year: 2023
  ident: 10.1016/j.suscom.2024.101014_bib2
  article-title: A state-of-the-art review of task scheduling for edge computing: a delay-sensitive application perspective
  publication-title: Electronics
  doi: 10.3390/electronics12122599
– year: 2023
  ident: 10.1016/j.suscom.2024.101014_bib20
  article-title: IMSCSO: an intensified sand cat swarm optimization with multi-strategy for solving global and engineering optimization problems
  publication-title: IEEE Access
– volume: 151
  year: 2020
  ident: 10.1016/j.suscom.2024.101014_bib52
  article-title: Selective opposition based grey wolf optimization
  publication-title: Expert Syst. Appl.
– year: 2023
  ident: 10.1016/j.suscom.2024.101014_bib58
  article-title: A cloud broker for executing deadline-constrained periodic scientific workflows
  publication-title: IEEE Trans. Serv. Comput.
  doi: 10.1109/TSC.2023.3284492
– volume: 38
  start-page: 100875
  year: 2023
  ident: 10.1016/j.suscom.2024.101014_bib60
  article-title: Hybrid grey wolf and improved particle swarm optimization with adaptive intertial weight-based multi-dimensional learning strategy for load balancing in cloud environments
  publication-title: Sustainable Computing: Informatics and Systems
– volume: 16
  start-page: 5456
  issue: 8
  year: 2019
  ident: 10.1016/j.suscom.2024.101014_bib35
  article-title: Cost-driven off-loading for DNN-based applications over cloud, edge, and end devices
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2019.2961237
– start-page: 1
  year: 2021
  ident: 10.1016/j.suscom.2024.101014_bib54
  article-title: A divide and conquer approach to deadline constrained cost-optimization workflow scheduling for the cloud
  publication-title: Clust. Comput.
– volume: 121
  start-page: 3263
  issue: 4
  year: 2021
  ident: 10.1016/j.suscom.2024.101014_bib62
  article-title: A hybrid artificial bee colony and harmony search algorithm-based metahueristic approach for efficient routing in WSNs
  publication-title: Wireless Personal Communications
  doi: 10.1007/s11277-021-08875-5
– volume: 7
  start-page: 8419
  issue: 9
  year: 2020
  ident: 10.1016/j.suscom.2024.101014_bib34
  article-title: Joint task scheduling and energy management for heterogeneous mobile edge computing with hybrid energy supply
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.2992522
– volume: 15
  start-page: 254
  issue: 8
  year: 2023
  ident: 10.1016/j.suscom.2024.101014_bib1
  article-title: Task allocation methods and optimization techniques in edge computing: a systematic review of the literature
  publication-title: Future Internet
  doi: 10.3390/fi15080254
– volume: 23
  year: 2023
  ident: 10.1016/j.suscom.2024.101014_bib6
  article-title: Dependent task offloading with deadline-aware scheduling in mobile edge networks
  publication-title: Internet Things
  doi: 10.1016/j.iot.2023.100868
– year: 2023
  ident: 10.1016/j.suscom.2024.101014_bib5
  article-title: Joint server deployment and task scheduling for the maximal profit in mobile edge computing
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2023.3303356
– volume: 8
  start-page: 256
  issue: 3
  year: 2004
  ident: 10.1016/j.suscom.2024.101014_bib37
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/TEVC.2004.826067
– volume: 2020
  start-page: 1
  year: 2020
  ident: 10.1016/j.suscom.2024.101014_bib8
  article-title: Task allocation optimization scheme based on queuing theory for mobile edge computing in 5G heterogeneous networks
  publication-title: Mob. Inf. Syst.
– volume: 68
  start-page: 709
  issue: 2
  year: 2014
  ident: 10.1016/j.suscom.2024.101014_bib40
  article-title: Multi-objective workflow grid scheduling using ε-fuzzy dominance sort based discrete particle swarm optimization
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-013-1059-8
– volume: 26
  start-page: 4051
  issue: 6
  year: 2023
  ident: 10.1016/j.suscom.2024.101014_bib29
  article-title: A multi-objective task offloading based on BBO algorithm under deadline constrain in mobile edge computing
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-022-03809-7
– volume: 210
  year: 2022
  ident: 10.1016/j.suscom.2024.101014_bib4
  article-title: Task offloading strategy to maximize task completion rate in heterogeneous edge computing environment
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2022.108937
– volume: 39
  start-page: 2627
  issue: 4
  year: 2023
  ident: 10.1016/j.suscom.2024.101014_bib16
  article-title: Sand Cat swarm optimization: a nature-inspired algorithm to solve global optimization problems
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-022-01604-x
– volume: 178
  year: 2023
  ident: 10.1016/j.suscom.2024.101014_bib19
  article-title: PSCSO: enhanced sand cat swarm optimization inspired by the political system to solve complex problems
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2023.103423
– volume: 236
  year: 2022
  ident: 10.1016/j.suscom.2024.101014_bib46
  article-title: Multi-objective feature selection based on quasi-oppositional based Jaya algorithm for microarray data
  publication-title: Knowl. -Based Syst.
  doi: 10.1016/j.knosys.2021.107804
– volume: 33
  issue: 24
  year: 2021
  ident: 10.1016/j.suscom.2024.101014_bib23
  article-title: Hybrid Harris Hawk-Salp swarm optimization algorithm-based integrated optimal data placement and task scheduling for improving the user experience in edge computing.
  publication-title: Concurr. Comput.: Pract. Exp.
  doi: 10.1002/cpe.6455
– volume: 97
  start-page: 361
  year: 2019
  ident: 10.1016/j.suscom.2024.101014_bib21
  article-title: A novel directional and non-local-convergent particle swarm optimization based workflow scheduling in cloud–edge environment.
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.03.005
– volume: 12
  start-page: 281
  issue: 2
  year: 2024
  ident: 10.1016/j.suscom.2024.101014_bib30
  article-title: An evolutionary algorithm for task clustering and scheduling in IoT edge computing
  publication-title: Mathematics
  doi: 10.3390/math12020281
– volume: 172
  start-page: 84
  year: 2023
  ident: 10.1016/j.suscom.2024.101014_bib27
  article-title: Intelligent energy-efficient scheduling with ant colony techniques for heterogeneous edge computing
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2022.10.003
– volume: 16
  start-page: 4811
  issue: 7
  year: 2019
  ident: 10.1016/j.suscom.2024.101014_bib31
  article-title: Energy-efficient multi-task multi-access computation offloading via NOMA transmission for IoTs
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2019.2944839
SSID ssj0000561934
Score 2.335132
Snippet Edge computing is one of the predominant technologies which facilitates the option of bringing out the computing resources closer to the location of the end...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 101014
SubjectTerms Cloud-edge computing
Energy consumptions
Execution latency
Multi-strategies improved sand cat optimization algorithm
Pareto optimal solutions
Workflow scheduling
Title Multi-strategy improved sand cat optimization algorithm-based workflow scheduling mechanism for heterogeneous edge computing environment
URI https://dx.doi.org/10.1016/j.suscom.2024.101014
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRH5YHVNA8nTsaqoiogukClbpHt2DSoSaomFWJh5mfjywMVCTEwxrIlyz7ffed83xmha64l05wxYgs7IFSYhJXHgSJSCM_mXhAKB7TDj1N_MqP3c2_eQaNWCwO0ysb31z698tZNy6BZzcEqSQZPjslWPJeFwIKEh-lAwU4ZWPnNh_19zwIIOax-LkN_AgNaBV1F8yo2BdBGHBOroMmy6e8RaivqjA_QXgMX8bCe0SHqqOwI7bdPMeDmZB6jz0pIS4q61uw7Tqq7AhXjgmcxlrzEufENaSO6xHz5kq-TcpESiGIxBnaWXuZv2OS6JvaARB2nCkTBSZFig2vxAmgzubE2lW8KDJdwWFazgK5barkTNBvfPo8mpHlkgUiTTZTEoUIr6rvCIB0_loHQnGvIYoQlaah8JUOmTVYmfWGgDRRMgwqBAWMitoTg0j1F3SzP1BnC1JK2FNT3QsqopcPQUQZguo6kLve5cnqItAsbrepaGlFLMnuN6o2IYCOieiN6iLWrH_2wici4-z9Hnv975AXaha-aRXaJuuV6o64M7ChFv7KrPtoZ3j1Mpl9oX9wr
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2VcoALO6KsPnC1msWJk2OFQC1LL1Cpt8h2HBrUNIikQvwBn40nCyoS4sDVyUiWPZl547w3BrgUieKJ4Jza0g4ok6ZgFXGgqZLSs4UXhNJB7fDD2B9O2O3Um3bgqtXCIK2yif11TK-idTPSb1az_5qm_UfHVCuey0NkQeLFdGuwjt2pvC6sD0Z3w_H3UQuC5LD6v4wmFG1aEV3F9CqWBTJHHJOucMiy2e9JaiXx3OzAVoMYyaCe1C509GIPttvbGEjzce7DZ6WlpUXdbvaDpNVxgY5JIRYxUaIkuQkPWaO7JGL-nL-l5SyjmMhiggStZJ6_E1PumvSDKnWSadQFp0VGDLQlM2TO5MbhdL4sCJ7DEVXNAl9dEcwdwOTm-ulqSJt7FqgyBUVJHSYTzXxXGrDjxyqQiRAJFjLSUizUvlYhT0xhpnxp0A32TMMmgQHnMrakFMo9hO4iX-gjIMxStpLM90LGmZWEoaMNxnQdxVzhC-30gLYLG73W7TSilmf2EtUbEeFGRPVG9IC3qx_9cIvIRPw_LY__bXkBG8Onh_vofjS-O4FNfFKTyk6hW74t9ZlBIaU8b7zsC_V13tw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-strategy+improved+sand+cat+optimization+algorithm-based+workflow+scheduling+mechanism+for+heterogeneous+edge+computing+environment&rft.jtitle=Sustainable+computing+informatics+and+systems&rft.au=Jayalakshmi%2C+P.&rft.au=Ramesh%2C+S.S.+Subashka&rft.date=2024-09-01&rft.issn=2210-5379&rft.volume=43&rft.spage=101014&rft_id=info:doi/10.1016%2Fj.suscom.2024.101014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_suscom_2024_101014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-5379&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-5379&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-5379&client=summon