Multi-strategy improved sand cat optimization algorithm-based workflow scheduling mechanism for heterogeneous edge computing environment
Edge computing is one of the predominant technologies which facilitates the option of bringing out the computing resources closer to the location of the end users when they are utilized by them. This facility offered by edge computing technology need to reduce the utilization of network bandwidth an...
Saved in:
Published in | Sustainable computing informatics and systems Vol. 43; p. 101014 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.09.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2210-5379 |
DOI | 10.1016/j.suscom.2024.101014 |
Cover
Loading…
Abstract | Edge computing is one of the predominant technologies which facilitates the option of bringing out the computing resources closer to the location of the end users when they are utilized by them. This facility offered by edge computing technology need to reduce the utilization of network bandwidth and response time with respect to the user’s workflow. In this paper, Multi-Strategy Improved Sand Cat Swarm Optimisation Algorithm (MSISCSOA)-based workflow scheduling mechanism is proposed for handling the challenges of workflow scheduling in cloud-edge computing environment. The core objective of this MSISCSOA-based workflow scheduling algorithm targets on minimizing the execution latency and energy consumption to facilitate timely and on-demand end users’ satisfaction of resources. This MSISCSOA scheme is adopted with the improvement introduced using random variation and elite collaborative strategies, such that well-balanced the trade-off between exploration and exploitation is achieved. This improvement is introduced over Sand Cat Optimization Algorithm (SCOA) using the merits of dynamic random search and joint opposite selection strategies that accelerates the convergence of the algorithm with increased global optimization and searching efficiency. It specifically improved SCOA using random variation for escaping from the local point of optimality. It also used well distributed pareto fronts and population evolution multi-strategy that aids in searching solutions with maximized diversity. The simulation experiments conducted using the datasets of Montage, Cybershake, LIGO and SIPHT an average confirmed minimized execution latency of 21.38 % and energy consumptions of 19.56 %, better than the baseline Ant Colony Optimization Algorithm-Based Workflow Scheduling (IACOAWS), Quadratic Penalty Function-based Particle Swarm Optimization Algorithm (QPF-PSOA), Biogeography Optimization (BBO) Algorithm based Multi-Objective Task Scheduling (BBOAMOTS) and Different Evolution-based Task Clustering and Scheduling (DETCS) approaches used for comparative investigation.
•In this paper, Multi-Strategy Improved Sand Cat Swarm Optimisation Algorithm (MSISCSOA)-based workflow scheduling mechanism is proposed for handling the challenges of workflow scheduling in cloud-edge computing environment.•The core objective of this MSISCSOA-based workflow scheduling algorithm targets on minimizing the execution latency and energy consumption to facilitate timely and on-demand end users’ satisfaction of resources.•This MSISCSOA scheme is adopted with the improvement introduced using random variation and elite collaborative strategies, such that well-balanced the trade-off between exploration and exploitation is achieved.•This improvement is introduced over Sand Cat Optimization Algorithm (SCOA) using the merits of dynamic random search and joint opposite selection strategies that accelerates the convergence of the algorithm with increased global optimization and searching efficiency.•The simulation experiments conducted using the datasets of Montage, Cybershake, LIGO and SIPHT an average confirmed minimized execution latency of 21.38 % and energy consumptions of 19.56 % better than the baseline approaches used for comparative investigation. |
---|---|
AbstractList | Edge computing is one of the predominant technologies which facilitates the option of bringing out the computing resources closer to the location of the end users when they are utilized by them. This facility offered by edge computing technology need to reduce the utilization of network bandwidth and response time with respect to the user’s workflow. In this paper, Multi-Strategy Improved Sand Cat Swarm Optimisation Algorithm (MSISCSOA)-based workflow scheduling mechanism is proposed for handling the challenges of workflow scheduling in cloud-edge computing environment. The core objective of this MSISCSOA-based workflow scheduling algorithm targets on minimizing the execution latency and energy consumption to facilitate timely and on-demand end users’ satisfaction of resources. This MSISCSOA scheme is adopted with the improvement introduced using random variation and elite collaborative strategies, such that well-balanced the trade-off between exploration and exploitation is achieved. This improvement is introduced over Sand Cat Optimization Algorithm (SCOA) using the merits of dynamic random search and joint opposite selection strategies that accelerates the convergence of the algorithm with increased global optimization and searching efficiency. It specifically improved SCOA using random variation for escaping from the local point of optimality. It also used well distributed pareto fronts and population evolution multi-strategy that aids in searching solutions with maximized diversity. The simulation experiments conducted using the datasets of Montage, Cybershake, LIGO and SIPHT an average confirmed minimized execution latency of 21.38 % and energy consumptions of 19.56 %, better than the baseline Ant Colony Optimization Algorithm-Based Workflow Scheduling (IACOAWS), Quadratic Penalty Function-based Particle Swarm Optimization Algorithm (QPF-PSOA), Biogeography Optimization (BBO) Algorithm based Multi-Objective Task Scheduling (BBOAMOTS) and Different Evolution-based Task Clustering and Scheduling (DETCS) approaches used for comparative investigation.
•In this paper, Multi-Strategy Improved Sand Cat Swarm Optimisation Algorithm (MSISCSOA)-based workflow scheduling mechanism is proposed for handling the challenges of workflow scheduling in cloud-edge computing environment.•The core objective of this MSISCSOA-based workflow scheduling algorithm targets on minimizing the execution latency and energy consumption to facilitate timely and on-demand end users’ satisfaction of resources.•This MSISCSOA scheme is adopted with the improvement introduced using random variation and elite collaborative strategies, such that well-balanced the trade-off between exploration and exploitation is achieved.•This improvement is introduced over Sand Cat Optimization Algorithm (SCOA) using the merits of dynamic random search and joint opposite selection strategies that accelerates the convergence of the algorithm with increased global optimization and searching efficiency.•The simulation experiments conducted using the datasets of Montage, Cybershake, LIGO and SIPHT an average confirmed minimized execution latency of 21.38 % and energy consumptions of 19.56 % better than the baseline approaches used for comparative investigation. |
ArticleNumber | 101014 |
Author | Ramesh, S.S. Subashka Jayalakshmi, P. |
Author_xml | – sequence: 1 givenname: P. surname: Jayalakshmi fullname: Jayalakshmi, P. email: jayakalai07@gmail.com – sequence: 2 givenname: S.S. Subashka surname: Ramesh fullname: Ramesh, S.S. Subashka email: subashka@gmail.com |
BookMark | eNp9kE1OwzAQhb0oEgV6Axa-QIrj_G-QUMWfVMQG1pbtTBKX2I5sp1U5AccmUVgzm5FG7z29-a7QylgDCN3GZBuTOL87bP3opdVbSmg6n0icrtCa0phEWVJUl2jj_YFMk-VxlaRr9PM29kFFPjgeoD1jpQdnj1Bjz02NJQ_YDkFp9c2DsgbzvrVOhU5HgvtJdbLuq-ntCXvZQT32yrRYg-y4UV7jxjrcQQBnWzBgR4-hbgFPBYcxzFIwR-Ws0WDCDbpoeO9h87ev0efT48fuJdq_P7_uHvaRpFkWIpqKBtI8ETHN8lqWouG8ScsiE0SmFeQgq6KhZSVzUVYJTaYni6wqi0LURAguk2uULrnSWe8dNGxwSnN3ZjFhM0R2YAtENkNkC8TJdr_YYOp2VOCYlwqMhFo5kIHVVv0f8Avfl4XH |
Cites_doi | 10.1016/j.apm.2006.08.015 10.1016/j.ijepes.2015.11.067 10.1186/s13677-022-00284-8 10.1007/s11227-016-1789-5 10.1109/71.993206 10.1007/s00500-020-04834-7 10.1016/j.eswa.2021.116001 10.1007/s10723-024-09744-8 10.1109/ACCESS.2022.3201147 10.1109/ACCESS.2021.3116716 10.1016/j.eswa.2022.119246 10.1007/s11227-018-2604-2 10.1007/978-981-99-3932-9_39 10.4218/etrij.2021-0312 10.1016/j.amc.2005.05.002 10.1007/s00607-019-00740-5 10.1109/CIMCA.2005.1631345 10.3390/math10224350 10.1002/ett.4902 10.1016/j.jpdc.2018.11.006 10.1109/ACCESS.2020.2970475 10.1109/4235.996017 10.1016/j.knosys.2019.104966 10.1109/JIOT.2018.2869226 10.1109/JIOT.2023.3241222 10.1007/s00521-022-06925-y 10.1109/JIOT.2019.2943373 10.1109/TVT.2022.3174906 10.1109/ACCESS.2022.3227510 10.3390/electronics12122599 10.1109/TSC.2023.3284492 10.1109/TII.2019.2961237 10.1007/s11277-021-08875-5 10.1109/JIOT.2020.2992522 10.3390/fi15080254 10.1016/j.iot.2023.100868 10.1109/JIOT.2023.3303356 10.1109/TEVC.2004.826067 10.1007/s11227-013-1059-8 10.1007/s10586-022-03809-7 10.1016/j.comnet.2022.108937 10.1007/s00366-022-01604-x 10.1016/j.advengsoft.2023.103423 10.1016/j.knosys.2021.107804 10.1002/cpe.6455 10.1016/j.future.2019.03.005 10.3390/math12020281 10.1016/j.jpdc.2022.10.003 10.1109/TII.2019.2944839 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Inc. |
Copyright_xml | – notice: 2024 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.suscom.2024.101014 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_suscom_2024_101014 S2210537924000593 |
GroupedDBID | --K --M .~1 0R~ 1~. 4.4 457 4G. 7-5 8P~ AACTN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO AAYFN ABBOA ABMAC ABXDB ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BELTK BKOJK BLXMC EBS EFJIC EJD FDB FIRID FNPLU FYGXN GBLVA GBOLZ HZ~ J1W JARJE KOM M41 MO0 N9A O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SES SPC SPCBC SSR SSV SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c255t-24bfe463b1256dc8bfaaf4875b0c49e6ec97f289c6b89323934759877bd0bbac3 |
IEDL.DBID | .~1 |
ISSN | 2210-5379 |
IngestDate | Tue Jul 01 01:35:21 EDT 2025 Sat Aug 24 15:41:17 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Keywords | Pareto optimal solutions Multi-strategies improved sand cat optimization algorithm Cloud-edge computing Workflow scheduling Execution latency Energy consumptions |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c255t-24bfe463b1256dc8bfaaf4875b0c49e6ec97f289c6b89323934759877bd0bbac3 |
ParticipantIDs | crossref_primary_10_1016_j_suscom_2024_101014 elsevier_sciencedirect_doi_10_1016_j_suscom_2024_101014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2024 2024-09-00 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: September 2024 |
PublicationDecade | 2020 |
PublicationTitle | Sustainable computing informatics and systems |
PublicationYear | 2024 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Xue, Wang, Zhang, Wang (bib8) 2020; 2020 Hosseinzadeh, Masdari, Rahmani, Mohammadi, Aldalwie, Majeed, Karim (bib24) 2021; 19 Gao, Tao, Wang, Wang, Sun, Song (bib5) 2023 Li, Wang (bib17) 2022; 10 Avan, Azim, Mahmoud (bib2) 2023; 12 Basu (bib45) 2016; 78 Chen, Lin, Lin (bib28) 2023 Deldari, Naghibzadeh, Abrishami (bib55) 2017; 73 Li, Qi, Xing, Hu (bib20) 2023 Cui, Xu, Yang, Huang, Li, Wang, Lu (bib33) 2018; 6 Topcuoglu, Hariri, Wu (bib36) 2002; 13 Chai, Huang (bib13) 2024; 22 Garg, Singh (bib40) 2014; 68 Abd Elaziz, Attiya, Abualigah, Iqbal, Ali, Al-Fuqaha, El-Sappagh (bib15) 2023 Xie, Zhu, Wang, Cheng, Xu, Sani, Yang (bib21) 2019; 97 Shu, Zhao, Han, Min, Duan (bib32) 2019; 7 Janakiraman, Priya (bib60) 2023; 38 Li, Shang, Qin, Yang, Cheng, Gao, Kwak (bib26) 2022; 71 Hamzaçebi, Kutay (bib41) 2007; 31 H.R. TizhooshOpposition-based learning: a new scheme for machine intelligence IEEE , Vol. 1 International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce (CIMCA-IAWTIC'06) (November) , 2005, , 695–701, (November). Xu, Yang, Li, Kang, Yang (bib50) 2020; 188 Deb, Pratap, Agarwal, Meyarivan (bib38) 2002; 6 Li, Zheng, Wang, Wang, Liu (bib29) 2023; 26 Vivekanandan, Gnanasekaran (bib23) 2021; 33 Bacanin, Zivkovic, Bezdan, Venkatachalam, Abouhawwash (bib25) 2022; 34 Wang, Ding, Yang, Li, Guan, Bao (bib44) 2022 2024, 728 LNNS, pp. 457–470. Wang, Yu, Xu, Wang (bib10) 2022 Jayalakshmi, P., Subashka Ramesh, S.S. Rezaeian, Naghibzadeh, Epema (bib57) 2019; 75 Arini, Chiewchanwattana, Soomlek, Sunat (bib48) 2022; 188 Chen, Zhang, Wu, Qi, Chen, Shen (bib34) 2020; 7 Li, Bai, Tang (bib14) 2019; 125 Hamzaçebi, Kutay (bib42) 2006; 173 Zhao, Wu, Tan, Wu, Cui, Wang (bib47) 2023; 213 Wu, Rao, Wen, Jia, Liu, Abualigah (bib18) 2022 Niu, Chen, Zhang, Zhu, Yin, Wu, Cao (bib7) 2023 Yousif, Bashir, Ali (bib30) 2024; 12 Fan, Chen, Xia (bib51) 2020; 24 Zivkovic, Bezdan, Strumberger, Bacanin, Venkatachalam (bib12) 2021 Liu, Mao, Zhang, Letaief (bib9) 2016 Chaudhuri, Sahu (bib46) 2022; 236 Alsurdeh, Calheiros, Matawie, Javadi (bib22) 2021; 9 Mousavi Nik, Naghibzadeh, Sedaghat (bib56) 2020; 102 Ren, Hou, Wang, Tian, Wei, Zheng, Zhang (bib3) 2021 Khojasteh Toussi, Naghibzadeh (bib54) 2021 Kiani, Anka, Erenel (bib19) 2023; 178 Coello, Pulido, Lechuga (bib37) 2004; 8 Arini, Sunat, Soomlek (bib49) 2022; 10 Maray, Mustafa, Shuja, Bilal (bib6) 2023; 23 Dasgupta, Ghosh, Mirjalili, Sarkar (bib52) 2020; 151 Li, Shi, Shi, Wei, Lu (bib4) 2022; 210 Farid, Latip, Hussin, Hamid (bib39) 2020; 8 Seyyedabbasi, Kiani (bib16) 2023 Khojasteh Toussi, Naghibzadeh, Abrishami, Taheri, Abrishami (bib53) 2022; 11 Nithiavathy, Janakiraman, Deva Priya (bib61) 2024; 35 Jayalakshmi, Sridevi, Janakiraman (bib62) 2021; 121 Lin, Huang, Zhang, Hu, Chen, Li (bib35) 2019; 16 Taheri, Abrishami, Naghibzadeh (bib58) 2023 Liu, Yang, Chen (bib27) 2023; 172 Patsias, Amanatidis, Karampatzakis, Lagkas, Michalakopoulou, Nikitas (bib1) 2023; 15 Wu, Shi, Qian, Hou, Cai, Shen (bib31) 2019; 16 Xie, Song, Cao, Xu (bib11) 2022; 44 Shu (10.1016/j.suscom.2024.101014_bib32) 2019; 7 Khojasteh Toussi (10.1016/j.suscom.2024.101014_bib54) 2021 Deb (10.1016/j.suscom.2024.101014_bib38) 2002; 6 Cui (10.1016/j.suscom.2024.101014_bib33) 2018; 6 Yousif (10.1016/j.suscom.2024.101014_bib30) 2024; 12 Bacanin (10.1016/j.suscom.2024.101014_bib25) 2022; 34 Ren (10.1016/j.suscom.2024.101014_bib3) 2021 Seyyedabbasi (10.1016/j.suscom.2024.101014_bib16) 2023; 39 Li (10.1016/j.suscom.2024.101014_bib14) 2019; 125 Garg (10.1016/j.suscom.2024.101014_bib40) 2014; 68 Janakiraman (10.1016/j.suscom.2024.101014_bib60) 2023; 38 Chai (10.1016/j.suscom.2024.101014_bib13) 2024; 22 Lin (10.1016/j.suscom.2024.101014_bib35) 2019; 16 Dasgupta (10.1016/j.suscom.2024.101014_bib52) 2020; 151 Maray (10.1016/j.suscom.2024.101014_bib6) 2023; 23 Mousavi Nik (10.1016/j.suscom.2024.101014_bib56) 2020; 102 Wu (10.1016/j.suscom.2024.101014_bib31) 2019; 16 Xie (10.1016/j.suscom.2024.101014_bib11) 2022; 44 Li (10.1016/j.suscom.2024.101014_bib20) 2023 Hamzaçebi (10.1016/j.suscom.2024.101014_bib41) 2007; 31 Basu (10.1016/j.suscom.2024.101014_bib45) 2016; 78 Abd Elaziz (10.1016/j.suscom.2024.101014_bib15) 2023 Xue (10.1016/j.suscom.2024.101014_bib8) 2020; 2020 Wang (10.1016/j.suscom.2024.101014_bib44) 2022 Fan (10.1016/j.suscom.2024.101014_bib51) 2020; 24 Li (10.1016/j.suscom.2024.101014_bib17) 2022; 10 Arini (10.1016/j.suscom.2024.101014_bib49) 2022; 10 Li (10.1016/j.suscom.2024.101014_bib29) 2023; 26 Zivkovic (10.1016/j.suscom.2024.101014_bib12) 2021 Kiani (10.1016/j.suscom.2024.101014_bib19) 2023; 178 Topcuoglu (10.1016/j.suscom.2024.101014_bib36) 2002; 13 Hosseinzadeh (10.1016/j.suscom.2024.101014_bib24) 2021; 19 Chen (10.1016/j.suscom.2024.101014_bib34) 2020; 7 Vivekanandan (10.1016/j.suscom.2024.101014_bib23) 2021; 33 10.1016/j.suscom.2024.101014_bib59 Niu (10.1016/j.suscom.2024.101014_bib7) 2023 Alsurdeh (10.1016/j.suscom.2024.101014_bib22) 2021; 9 Gao (10.1016/j.suscom.2024.101014_bib5) 2023 Rezaeian (10.1016/j.suscom.2024.101014_bib57) 2019; 75 Chaudhuri (10.1016/j.suscom.2024.101014_bib46) 2022; 236 Avan (10.1016/j.suscom.2024.101014_bib2) 2023; 12 Li (10.1016/j.suscom.2024.101014_bib26) 2022; 71 Khojasteh Toussi (10.1016/j.suscom.2024.101014_bib53) 2022; 11 Arini (10.1016/j.suscom.2024.101014_bib48) 2022; 188 Taheri (10.1016/j.suscom.2024.101014_bib58) 2023 Wu (10.1016/j.suscom.2024.101014_bib18) 2022; 10 Wang (10.1016/j.suscom.2024.101014_bib10) 2022 10.1016/j.suscom.2024.101014_bib43 Coello (10.1016/j.suscom.2024.101014_bib37) 2004; 8 Liu (10.1016/j.suscom.2024.101014_bib27) 2023; 172 Nithiavathy (10.1016/j.suscom.2024.101014_bib61) 2024; 35 Xu (10.1016/j.suscom.2024.101014_bib50) 2020; 188 Jayalakshmi (10.1016/j.suscom.2024.101014_bib62) 2021; 121 Patsias (10.1016/j.suscom.2024.101014_bib1) 2023; 15 Xie (10.1016/j.suscom.2024.101014_bib21) 2019; 97 Deldari (10.1016/j.suscom.2024.101014_bib55) 2017; 73 Li (10.1016/j.suscom.2024.101014_bib4) 2022; 210 Zhao (10.1016/j.suscom.2024.101014_bib47) 2023; 213 Farid (10.1016/j.suscom.2024.101014_bib39) 2020; 8 Hamzaçebi (10.1016/j.suscom.2024.101014_bib42) 2006; 173 Liu (10.1016/j.suscom.2024.101014_bib9) 2016 Chen (10.1016/j.suscom.2024.101014_bib28) 2023 |
References_xml | – volume: 213 year: 2023 ident: bib47 article-title: QQLMPA: a quasi-opposition learning and Q-learning based marine predators algorithm publication-title: Expert Syst. Appl. – volume: 210 year: 2022 ident: bib4 article-title: Task offloading strategy to maximize task completion rate in heterogeneous edge computing environment publication-title: Comput. Netw. – year: 2022 ident: bib10 article-title: Energy efficient task scheduling based on traffic mapping in heterogeneous mobile edge computing: a green IoT perspective publication-title: IEEE Trans. Green. Commun. Netw. – volume: 9 start-page: 134783 year: 2021 end-page: 134799 ident: bib22 article-title: Hybrid workflow scheduling on edge cloud computing systems publication-title: IEEE Access – volume: 8 start-page: 256 year: 2004 end-page: 279 ident: bib37 article-title: Handling multiple objectives with particle swarm optimization publication-title: IEEE Trans. Evolut. Comput. – volume: 172 start-page: 84 year: 2023 end-page: 96 ident: bib27 article-title: Intelligent energy-efficient scheduling with ant colony techniques for heterogeneous edge computing publication-title: J. Parallel Distrib. Comput. – volume: 78 start-page: 29 year: 2016 end-page: 40 ident: bib45 article-title: Quasi-oppositional differential evolution for optimal reactive power dispatch publication-title: Int. J. Electr. Power Energy Syst. – year: 2023 ident: bib15 article-title: Hybrid enhanced optimization-based intelligent task scheduling for sustainable edge computing publication-title: IEEE Trans. Consum. Electron. – volume: 19 start-page: 1 year: 2021 end-page: 27 ident: bib24 article-title: Improved butterfly optimization algorithm for data placement and scheduling in edge computing environments publication-title: J. Grid Comput. – volume: 7 start-page: 1678 year: 2019 end-page: 1689 ident: bib32 article-title: Multi-user offloading for edge computing networks: a dependency-aware and latency-optimal approach publication-title: IEEE Internet Things J. – start-page: 1 year: 2021 end-page: 13 ident: bib3 article-title: Collaborative task offloading and resource scheduling framework for heterogeneous edge computing publication-title: Wirel. Netw. – volume: 188 year: 2020 ident: bib50 article-title: Dynamic opposite learning enhanced teaching–learning-based optimization. publication-title: Knowl. -Based Syst. – reference: Jayalakshmi, P., Subashka Ramesh, S.S. – volume: 71 start-page: 8955 year: 2022 end-page: 8966 ident: bib26 article-title: Mult objective oriented task scheduling in heterogeneous mobile edge computing networks publication-title: IEEE Trans. Veh. Technol. – volume: 16 start-page: 5456 year: 2019 end-page: 5466 ident: bib35 article-title: Cost-driven off-loading for DNN-based applications over cloud, edge, and end devices publication-title: IEEE Trans. Ind. Inform. – start-page: 1451 year: 2016 end-page: 1455 ident: bib9 article-title: Delay-optimal computation task scheduling for mobile-edge computing systems. In 2016 publication-title: IEEE international symposium on information theory (ISIT) – volume: 236 year: 2022 ident: bib46 article-title: Multi-objective feature selection based on quasi-oppositional based Jaya algorithm for microarray data publication-title: Knowl. -Based Syst. – volume: 12 start-page: 2599 year: 2023 ident: bib2 article-title: A state-of-the-art review of task scheduling for edge computing: a delay-sensitive application perspective publication-title: Electronics – volume: 7 start-page: 8419 year: 2020 end-page: 8429 ident: bib34 article-title: Joint task scheduling and energy management for heterogeneous mobile edge computing with hybrid energy supply publication-title: IEEE Internet Things J. – volume: 31 start-page: 2189 year: 2007 end-page: 2198 ident: bib41 article-title: Continuous functions minimization by dynamic random search technique publication-title: Appl. Math. Model. – volume: 75 start-page: 746 year: 2019 end-page: 769 ident: bib57 article-title: Fair multiple-workflow scheduling with different quality-of-service goals publication-title: J. Supercomput. – volume: 10 start-page: 89989 year: 2022 end-page: 90003 ident: bib17 article-title: Sand cat swarm optimization based on stochastic variation with elite collaboration publication-title: IEEE Access – volume: 15 start-page: 254 year: 2023 ident: bib1 article-title: Task allocation methods and optimization techniques in edge computing: a systematic review of the literature publication-title: Future Internet – volume: 33 year: 2021 ident: bib23 article-title: Hybrid Harris Hawk-Salp swarm optimization algorithm-based integrated optimal data placement and task scheduling for improving the user experience in edge computing. publication-title: Concurr. Comput.: Pract. Exp. – start-page: 4350 year: 2022 ident: bib18 article-title: Modified sand cat swarm optimization algorithm for solving constrained engineering optimization problems publication-title: Mathematics – volume: 178 year: 2023 ident: bib19 article-title: PSCSO: enhanced sand cat swarm optimization inspired by the political system to solve complex problems publication-title: Adv. Eng. Softw. – volume: 16 start-page: 4811 year: 2019 end-page: 4822 ident: bib31 article-title: Energy-efficient multi-task multi-access computation offloading via NOMA transmission for IoTs publication-title: IEEE Trans. Ind. Inform. – volume: 188 year: 2022 ident: bib48 article-title: Joint Opposite Selection (JOS): a premiere joint of selective leading opposition and dynamic opposite enhanced Harris’ hawks optimization for solving single-objective problems publication-title: Expert Syst. Appl. – volume: 13 start-page: 260 year: 2002 end-page: 274 ident: bib36 article-title: Performance-effective and low-complexity task scheduling for heterogeneous computing publication-title: IEEE Trans. Parallel Distrib. Syst. – year: 2023 ident: bib5 article-title: Joint server deployment and task scheduling for the maximal profit in mobile edge computing publication-title: IEEE Internet Things J. – volume: 8 start-page: 24309 year: 2020 end-page: 24322 ident: bib39 article-title: Scheduling scientific workflow using multi-objective algorithm with fuzzy resource utilization in multi-cloud environment publication-title: IEEE Access – year: 2023 ident: bib58 article-title: A cloud broker for executing deadline-constrained periodic scientific workflows publication-title: IEEE Trans. Serv. Comput. – year: 2023 ident: bib7 article-title: Multi-agent meta-reinforcement learning for optimized task scheduling in heterogeneous edge computing systems publication-title: IEEE Internet Things J. – volume: 68 start-page: 709 year: 2014 end-page: 732 ident: bib40 article-title: Multi-objective workflow grid scheduling using ε-fuzzy dominance sort based discrete particle swarm optimization publication-title: J. Supercomput. – volume: 10 start-page: 128800 year: 2022 end-page: 128823 ident: bib49 article-title: Golden jackal optimization with joint opposite selection: an enhanced nature-inspired optimization algorithm for solving optimization problems publication-title: IEEE Access – volume: 6 start-page: 4791 year: 2018 end-page: 4803 ident: bib33 article-title: Joint optimization of energy consumption and latency in mobile edge computing for Internet of Things publication-title: IEEE Internet Things J. – start-page: 1 year: 2022 end-page: 43 ident: bib44 article-title: Rank-driven salp swarm algorithm with orthogonal opposition-based learning for global optimization publication-title: Appl. Intell. – volume: 34 start-page: 9043 year: 2022 end-page: 9068 ident: bib25 article-title: Modified firefly algorithm for workflow scheduling in cloud-edge environment publication-title: Neural Comput. Appl. – year: 2023 ident: bib28 article-title: An intelligent workflow scheduling scheme for complex network robustness in fuzzy edge-cloud environments publication-title: IEEE Trans. Netw. Sci. Eng. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: bib38 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evolut. Comput. – start-page: 1 year: 2021 end-page: 23 ident: bib54 article-title: A divide and conquer approach to deadline constrained cost-optimization workflow scheduling for the cloud publication-title: Clust. Comput. – volume: 2020 start-page: 1 year: 2020 end-page: 12 ident: bib8 article-title: Task allocation optimization scheme based on queuing theory for mobile edge computing in 5G heterogeneous networks publication-title: Mob. Inf. Syst. – start-page: 87 year: 2021 end-page: 102 ident: bib12 article-title: Improved harris hawks optimization algorithm for workflow scheduling challenge in cloud–edge environment publication-title: In Computer Networks, Big Data and IoT: Proceedings of ICCBI 2020 – volume: 121 start-page: 3263 year: 2021 end-page: 3279 ident: bib62 article-title: A hybrid artificial bee colony and harmony search algorithm-based metahueristic approach for efficient routing in WSNs publication-title: Wireless Personal Communications – volume: 173 start-page: 1323 year: 2006 end-page: 1333 ident: bib42 article-title: A heuristic approach for finding the global minimum: Adaptive random search technique publication-title: Appl. Math. Comput. – volume: 11 start-page: 13 year: 2022 ident: bib53 article-title: EDQWS: an enhanced divide and conquer algorithm for workflow scheduling in cloud publication-title: J. Cloud Comput. – volume: 38 start-page: 100875 year: 2023 ident: bib60 article-title: Hybrid grey wolf and improved particle swarm optimization with adaptive intertial weight-based multi-dimensional learning strategy for load balancing in cloud environments publication-title: Sustainable Computing: Informatics and Systems – volume: 73 start-page: 756 year: 2017 end-page: 781 ident: bib55 article-title: CCA: a deadline-constrained workflow scheduling algorithm for multicore resources on the cloud publication-title: J. Supercomput. – volume: 125 start-page: 93 year: 2019 end-page: 105 ident: bib14 article-title: Joint optimization of data placement and scheduling for improving user experience in edge computing publication-title: J. Parallel Distrib. Comput. – volume: 26 start-page: 4051 year: 2023 end-page: 4067 ident: bib29 article-title: A multi-objective task offloading based on BBO algorithm under deadline constrain in mobile edge computing publication-title: Clust. Comput. – volume: 23 year: 2023 ident: bib6 article-title: Dependent task offloading with deadline-aware scheduling in mobile edge networks publication-title: Internet Things – start-page: 2627 year: 2023 end-page: 2651 ident: bib16 article-title: Sand Cat swarm optimization: a nature-inspired algorithm to solve global optimization problems publication-title: Eng. Comput. – volume: 151 year: 2020 ident: bib52 article-title: Selective opposition based grey wolf optimization publication-title: Expert Syst. Appl. – volume: 97 start-page: 361 year: 2019 end-page: 378 ident: bib21 article-title: A novel directional and non-local-convergent particle swarm optimization based workflow scheduling in cloud–edge environment. publication-title: Future Gener. Comput. Syst. – volume: 102 start-page: 477 year: 2020 end-page: 500 ident: bib56 article-title: Cost-driven workflow scheduling on the cloud with deadline and reliability constraints publication-title: Computing – volume: 35 start-page: e4902 year: 2024 ident: bib61 article-title: Adaptive Guided Differential Evolution‐based Slime Mould Algorithm‐based efficient Multi‐objective Task Scheduling for Cloud Computing Environments publication-title: Transactions on Emerging Telecommunications Technologies – volume: 44 start-page: 746 year: 2022 end-page: 758 ident: bib11 article-title: Energy efficiency task scheduling for battery level-aware mobile edge computing in heterogeneous networks publication-title: ETRI J. – reference: H.R. TizhooshOpposition-based learning: a new scheme for machine intelligence IEEE , Vol. 1 International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce (CIMCA-IAWTIC'06) (November) , 2005, , 695–701, (November). – reference: , 2024, 728 LNNS, pp. 457–470. – volume: 22 start-page: 27 year: 2024 ident: bib13 article-title: Dependent task scheduling using parallel deep neural networks in mobile edge computing publication-title: J. Grid Comput. – year: 2023 ident: bib20 article-title: IMSCSO: an intensified sand cat swarm optimization with multi-strategy for solving global and engineering optimization problems publication-title: IEEE Access – volume: 12 start-page: 281 year: 2024 ident: bib30 article-title: An evolutionary algorithm for task clustering and scheduling in IoT edge computing publication-title: Mathematics – volume: 24 start-page: 14825 year: 2020 end-page: 14843 ident: bib51 article-title: A novel quasi-reflected Harris hawks optimization algorithm for global optimization problems publication-title: Soft Comput. – volume: 31 start-page: 2189 issue: 10 year: 2007 ident: 10.1016/j.suscom.2024.101014_bib41 article-title: Continuous functions minimization by dynamic random search technique publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2006.08.015 – volume: 78 start-page: 29 year: 2016 ident: 10.1016/j.suscom.2024.101014_bib45 article-title: Quasi-oppositional differential evolution for optimal reactive power dispatch publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2015.11.067 – volume: 11 start-page: 13 issue: 1 year: 2022 ident: 10.1016/j.suscom.2024.101014_bib53 article-title: EDQWS: an enhanced divide and conquer algorithm for workflow scheduling in cloud publication-title: J. Cloud Comput. doi: 10.1186/s13677-022-00284-8 – volume: 73 start-page: 756 year: 2017 ident: 10.1016/j.suscom.2024.101014_bib55 article-title: CCA: a deadline-constrained workflow scheduling algorithm for multicore resources on the cloud publication-title: J. Supercomput. doi: 10.1007/s11227-016-1789-5 – volume: 13 start-page: 260 issue: 3 year: 2002 ident: 10.1016/j.suscom.2024.101014_bib36 article-title: Performance-effective and low-complexity task scheduling for heterogeneous computing publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/71.993206 – volume: 24 start-page: 14825 year: 2020 ident: 10.1016/j.suscom.2024.101014_bib51 article-title: A novel quasi-reflected Harris hawks optimization algorithm for global optimization problems publication-title: Soft Comput. doi: 10.1007/s00500-020-04834-7 – volume: 188 year: 2022 ident: 10.1016/j.suscom.2024.101014_bib48 article-title: Joint Opposite Selection (JOS): a premiere joint of selective leading opposition and dynamic opposite enhanced Harris’ hawks optimization for solving single-objective problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116001 – start-page: 87 year: 2021 ident: 10.1016/j.suscom.2024.101014_bib12 article-title: Improved harris hawks optimization algorithm for workflow scheduling challenge in cloud–edge environment – start-page: 1 year: 2022 ident: 10.1016/j.suscom.2024.101014_bib44 article-title: Rank-driven salp swarm algorithm with orthogonal opposition-based learning for global optimization publication-title: Appl. Intell. – volume: 22 start-page: 27 issue: 1 year: 2024 ident: 10.1016/j.suscom.2024.101014_bib13 article-title: Dependent task scheduling using parallel deep neural networks in mobile edge computing publication-title: J. Grid Comput. doi: 10.1007/s10723-024-09744-8 – year: 2023 ident: 10.1016/j.suscom.2024.101014_bib28 article-title: An intelligent workflow scheduling scheme for complex network robustness in fuzzy edge-cloud environments publication-title: IEEE Trans. Netw. Sci. Eng. – volume: 10 start-page: 89989 year: 2022 ident: 10.1016/j.suscom.2024.101014_bib17 article-title: Sand cat swarm optimization based on stochastic variation with elite collaboration publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3201147 – volume: 9 start-page: 134783 year: 2021 ident: 10.1016/j.suscom.2024.101014_bib22 article-title: Hybrid workflow scheduling on edge cloud computing systems publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3116716 – volume: 19 start-page: 1 year: 2021 ident: 10.1016/j.suscom.2024.101014_bib24 article-title: Improved butterfly optimization algorithm for data placement and scheduling in edge computing environments publication-title: J. Grid Comput. – volume: 213 year: 2023 ident: 10.1016/j.suscom.2024.101014_bib47 article-title: QQLMPA: a quasi-opposition learning and Q-learning based marine predators algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.119246 – volume: 75 start-page: 746 year: 2019 ident: 10.1016/j.suscom.2024.101014_bib57 article-title: Fair multiple-workflow scheduling with different quality-of-service goals publication-title: J. Supercomput. doi: 10.1007/s11227-018-2604-2 – ident: 10.1016/j.suscom.2024.101014_bib59 doi: 10.1007/978-981-99-3932-9_39 – volume: 44 start-page: 746 issue: 5 year: 2022 ident: 10.1016/j.suscom.2024.101014_bib11 article-title: Energy efficiency task scheduling for battery level-aware mobile edge computing in heterogeneous networks publication-title: ETRI J. doi: 10.4218/etrij.2021-0312 – volume: 173 start-page: 1323 issue: 2 year: 2006 ident: 10.1016/j.suscom.2024.101014_bib42 article-title: A heuristic approach for finding the global minimum: Adaptive random search technique publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2005.05.002 – start-page: 1451 year: 2016 ident: 10.1016/j.suscom.2024.101014_bib9 article-title: Delay-optimal computation task scheduling for mobile-edge computing systems. In 2016 – volume: 102 start-page: 477 issue: 2 year: 2020 ident: 10.1016/j.suscom.2024.101014_bib56 article-title: Cost-driven workflow scheduling on the cloud with deadline and reliability constraints publication-title: Computing doi: 10.1007/s00607-019-00740-5 – ident: 10.1016/j.suscom.2024.101014_bib43 doi: 10.1109/CIMCA.2005.1631345 – volume: 10 start-page: 4350 issue: 22 year: 2022 ident: 10.1016/j.suscom.2024.101014_bib18 article-title: Modified sand cat swarm optimization algorithm for solving constrained engineering optimization problems publication-title: Mathematics doi: 10.3390/math10224350 – volume: 35 start-page: e4902 issue: 1 year: 2024 ident: 10.1016/j.suscom.2024.101014_bib61 article-title: Adaptive Guided Differential Evolution‐based Slime Mould Algorithm‐based efficient Multi‐objective Task Scheduling for Cloud Computing Environments publication-title: Transactions on Emerging Telecommunications Technologies doi: 10.1002/ett.4902 – year: 2022 ident: 10.1016/j.suscom.2024.101014_bib10 article-title: Energy efficient task scheduling based on traffic mapping in heterogeneous mobile edge computing: a green IoT perspective publication-title: IEEE Trans. Green. Commun. Netw. – year: 2023 ident: 10.1016/j.suscom.2024.101014_bib15 article-title: Hybrid enhanced optimization-based intelligent task scheduling for sustainable edge computing publication-title: IEEE Trans. Consum. Electron. – volume: 125 start-page: 93 year: 2019 ident: 10.1016/j.suscom.2024.101014_bib14 article-title: Joint optimization of data placement and scheduling for improving user experience in edge computing publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2018.11.006 – volume: 8 start-page: 24309 year: 2020 ident: 10.1016/j.suscom.2024.101014_bib39 article-title: Scheduling scientific workflow using multi-objective algorithm with fuzzy resource utilization in multi-cloud environment publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2970475 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.suscom.2024.101014_bib38 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evolut. Comput. doi: 10.1109/4235.996017 – volume: 188 year: 2020 ident: 10.1016/j.suscom.2024.101014_bib50 article-title: Dynamic opposite learning enhanced teaching–learning-based optimization. publication-title: Knowl. -Based Syst. doi: 10.1016/j.knosys.2019.104966 – volume: 6 start-page: 4791 issue: 3 year: 2018 ident: 10.1016/j.suscom.2024.101014_bib33 article-title: Joint optimization of energy consumption and latency in mobile edge computing for Internet of Things publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2869226 – year: 2023 ident: 10.1016/j.suscom.2024.101014_bib7 article-title: Multi-agent meta-reinforcement learning for optimized task scheduling in heterogeneous edge computing systems publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2023.3241222 – volume: 34 start-page: 9043 issue: 11 year: 2022 ident: 10.1016/j.suscom.2024.101014_bib25 article-title: Modified firefly algorithm for workflow scheduling in cloud-edge environment publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-06925-y – volume: 7 start-page: 1678 issue: 3 year: 2019 ident: 10.1016/j.suscom.2024.101014_bib32 article-title: Multi-user offloading for edge computing networks: a dependency-aware and latency-optimal approach publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2019.2943373 – volume: 71 start-page: 8955 issue: 8 year: 2022 ident: 10.1016/j.suscom.2024.101014_bib26 article-title: Mult objective oriented task scheduling in heterogeneous mobile edge computing networks publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2022.3174906 – volume: 10 start-page: 128800 year: 2022 ident: 10.1016/j.suscom.2024.101014_bib49 article-title: Golden jackal optimization with joint opposite selection: an enhanced nature-inspired optimization algorithm for solving optimization problems publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3227510 – start-page: 1 year: 2021 ident: 10.1016/j.suscom.2024.101014_bib3 article-title: Collaborative task offloading and resource scheduling framework for heterogeneous edge computing publication-title: Wirel. Netw. – volume: 12 start-page: 2599 issue: 12 year: 2023 ident: 10.1016/j.suscom.2024.101014_bib2 article-title: A state-of-the-art review of task scheduling for edge computing: a delay-sensitive application perspective publication-title: Electronics doi: 10.3390/electronics12122599 – year: 2023 ident: 10.1016/j.suscom.2024.101014_bib20 article-title: IMSCSO: an intensified sand cat swarm optimization with multi-strategy for solving global and engineering optimization problems publication-title: IEEE Access – volume: 151 year: 2020 ident: 10.1016/j.suscom.2024.101014_bib52 article-title: Selective opposition based grey wolf optimization publication-title: Expert Syst. Appl. – year: 2023 ident: 10.1016/j.suscom.2024.101014_bib58 article-title: A cloud broker for executing deadline-constrained periodic scientific workflows publication-title: IEEE Trans. Serv. Comput. doi: 10.1109/TSC.2023.3284492 – volume: 38 start-page: 100875 year: 2023 ident: 10.1016/j.suscom.2024.101014_bib60 article-title: Hybrid grey wolf and improved particle swarm optimization with adaptive intertial weight-based multi-dimensional learning strategy for load balancing in cloud environments publication-title: Sustainable Computing: Informatics and Systems – volume: 16 start-page: 5456 issue: 8 year: 2019 ident: 10.1016/j.suscom.2024.101014_bib35 article-title: Cost-driven off-loading for DNN-based applications over cloud, edge, and end devices publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2019.2961237 – start-page: 1 year: 2021 ident: 10.1016/j.suscom.2024.101014_bib54 article-title: A divide and conquer approach to deadline constrained cost-optimization workflow scheduling for the cloud publication-title: Clust. Comput. – volume: 121 start-page: 3263 issue: 4 year: 2021 ident: 10.1016/j.suscom.2024.101014_bib62 article-title: A hybrid artificial bee colony and harmony search algorithm-based metahueristic approach for efficient routing in WSNs publication-title: Wireless Personal Communications doi: 10.1007/s11277-021-08875-5 – volume: 7 start-page: 8419 issue: 9 year: 2020 ident: 10.1016/j.suscom.2024.101014_bib34 article-title: Joint task scheduling and energy management for heterogeneous mobile edge computing with hybrid energy supply publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.2992522 – volume: 15 start-page: 254 issue: 8 year: 2023 ident: 10.1016/j.suscom.2024.101014_bib1 article-title: Task allocation methods and optimization techniques in edge computing: a systematic review of the literature publication-title: Future Internet doi: 10.3390/fi15080254 – volume: 23 year: 2023 ident: 10.1016/j.suscom.2024.101014_bib6 article-title: Dependent task offloading with deadline-aware scheduling in mobile edge networks publication-title: Internet Things doi: 10.1016/j.iot.2023.100868 – year: 2023 ident: 10.1016/j.suscom.2024.101014_bib5 article-title: Joint server deployment and task scheduling for the maximal profit in mobile edge computing publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2023.3303356 – volume: 8 start-page: 256 issue: 3 year: 2004 ident: 10.1016/j.suscom.2024.101014_bib37 article-title: Handling multiple objectives with particle swarm optimization publication-title: IEEE Trans. Evolut. Comput. doi: 10.1109/TEVC.2004.826067 – volume: 2020 start-page: 1 year: 2020 ident: 10.1016/j.suscom.2024.101014_bib8 article-title: Task allocation optimization scheme based on queuing theory for mobile edge computing in 5G heterogeneous networks publication-title: Mob. Inf. Syst. – volume: 68 start-page: 709 issue: 2 year: 2014 ident: 10.1016/j.suscom.2024.101014_bib40 article-title: Multi-objective workflow grid scheduling using ε-fuzzy dominance sort based discrete particle swarm optimization publication-title: J. Supercomput. doi: 10.1007/s11227-013-1059-8 – volume: 26 start-page: 4051 issue: 6 year: 2023 ident: 10.1016/j.suscom.2024.101014_bib29 article-title: A multi-objective task offloading based on BBO algorithm under deadline constrain in mobile edge computing publication-title: Clust. Comput. doi: 10.1007/s10586-022-03809-7 – volume: 210 year: 2022 ident: 10.1016/j.suscom.2024.101014_bib4 article-title: Task offloading strategy to maximize task completion rate in heterogeneous edge computing environment publication-title: Comput. Netw. doi: 10.1016/j.comnet.2022.108937 – volume: 39 start-page: 2627 issue: 4 year: 2023 ident: 10.1016/j.suscom.2024.101014_bib16 article-title: Sand Cat swarm optimization: a nature-inspired algorithm to solve global optimization problems publication-title: Eng. Comput. doi: 10.1007/s00366-022-01604-x – volume: 178 year: 2023 ident: 10.1016/j.suscom.2024.101014_bib19 article-title: PSCSO: enhanced sand cat swarm optimization inspired by the political system to solve complex problems publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2023.103423 – volume: 236 year: 2022 ident: 10.1016/j.suscom.2024.101014_bib46 article-title: Multi-objective feature selection based on quasi-oppositional based Jaya algorithm for microarray data publication-title: Knowl. -Based Syst. doi: 10.1016/j.knosys.2021.107804 – volume: 33 issue: 24 year: 2021 ident: 10.1016/j.suscom.2024.101014_bib23 article-title: Hybrid Harris Hawk-Salp swarm optimization algorithm-based integrated optimal data placement and task scheduling for improving the user experience in edge computing. publication-title: Concurr. Comput.: Pract. Exp. doi: 10.1002/cpe.6455 – volume: 97 start-page: 361 year: 2019 ident: 10.1016/j.suscom.2024.101014_bib21 article-title: A novel directional and non-local-convergent particle swarm optimization based workflow scheduling in cloud–edge environment. publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.03.005 – volume: 12 start-page: 281 issue: 2 year: 2024 ident: 10.1016/j.suscom.2024.101014_bib30 article-title: An evolutionary algorithm for task clustering and scheduling in IoT edge computing publication-title: Mathematics doi: 10.3390/math12020281 – volume: 172 start-page: 84 year: 2023 ident: 10.1016/j.suscom.2024.101014_bib27 article-title: Intelligent energy-efficient scheduling with ant colony techniques for heterogeneous edge computing publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2022.10.003 – volume: 16 start-page: 4811 issue: 7 year: 2019 ident: 10.1016/j.suscom.2024.101014_bib31 article-title: Energy-efficient multi-task multi-access computation offloading via NOMA transmission for IoTs publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2019.2944839 |
SSID | ssj0000561934 |
Score | 2.335132 |
Snippet | Edge computing is one of the predominant technologies which facilitates the option of bringing out the computing resources closer to the location of the end... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 101014 |
SubjectTerms | Cloud-edge computing Energy consumptions Execution latency Multi-strategies improved sand cat optimization algorithm Pareto optimal solutions Workflow scheduling |
Title | Multi-strategy improved sand cat optimization algorithm-based workflow scheduling mechanism for heterogeneous edge computing environment |
URI | https://dx.doi.org/10.1016/j.suscom.2024.101014 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRH5YHVNA8nTsaqoiogukClbpHt2DSoSaomFWJh5mfjywMVCTEwxrIlyz7ffed83xmha64l05wxYgs7IFSYhJXHgSJSCM_mXhAKB7TDj1N_MqP3c2_eQaNWCwO0ysb31z698tZNy6BZzcEqSQZPjslWPJeFwIKEh-lAwU4ZWPnNh_19zwIIOax-LkN_AgNaBV1F8yo2BdBGHBOroMmy6e8RaivqjA_QXgMX8bCe0SHqqOwI7bdPMeDmZB6jz0pIS4q61uw7Tqq7AhXjgmcxlrzEufENaSO6xHz5kq-TcpESiGIxBnaWXuZv2OS6JvaARB2nCkTBSZFig2vxAmgzubE2lW8KDJdwWFazgK5barkTNBvfPo8mpHlkgUiTTZTEoUIr6rvCIB0_loHQnGvIYoQlaah8JUOmTVYmfWGgDRRMgwqBAWMitoTg0j1F3SzP1BnC1JK2FNT3QsqopcPQUQZguo6kLve5cnqItAsbrepaGlFLMnuN6o2IYCOieiN6iLWrH_2wici4-z9Hnv975AXaha-aRXaJuuV6o64M7ChFv7KrPtoZ3j1Mpl9oX9wr |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2VcoALO6KsPnC1msWJk2OFQC1LL1Cpt8h2HBrUNIikQvwBn40nCyoS4sDVyUiWPZl547w3BrgUieKJ4Jza0g4ok6ZgFXGgqZLSs4UXhNJB7fDD2B9O2O3Um3bgqtXCIK2yif11TK-idTPSb1az_5qm_UfHVCuey0NkQeLFdGuwjt2pvC6sD0Z3w_H3UQuC5LD6v4wmFG1aEV3F9CqWBTJHHJOucMiy2e9JaiXx3OzAVoMYyaCe1C509GIPttvbGEjzce7DZ6WlpUXdbvaDpNVxgY5JIRYxUaIkuQkPWaO7JGL-nL-l5SyjmMhiggStZJ6_E1PumvSDKnWSadQFp0VGDLQlM2TO5MbhdL4sCJ7DEVXNAl9dEcwdwOTm-ulqSJt7FqgyBUVJHSYTzXxXGrDjxyqQiRAJFjLSUizUvlYhT0xhpnxp0A32TMMmgQHnMrakFMo9hO4iX-gjIMxStpLM90LGmZWEoaMNxnQdxVzhC-30gLYLG73W7TSilmf2EtUbEeFGRPVG9IC3qx_9cIvIRPw_LY__bXkBG8Onh_vofjS-O4FNfFKTyk6hW74t9ZlBIaU8b7zsC_V13tw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-strategy+improved+sand+cat+optimization+algorithm-based+workflow+scheduling+mechanism+for+heterogeneous+edge+computing+environment&rft.jtitle=Sustainable+computing+informatics+and+systems&rft.au=Jayalakshmi%2C+P.&rft.au=Ramesh%2C+S.S.+Subashka&rft.date=2024-09-01&rft.issn=2210-5379&rft.volume=43&rft.spage=101014&rft_id=info:doi/10.1016%2Fj.suscom.2024.101014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_suscom_2024_101014 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-5379&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-5379&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-5379&client=summon |