Privacy Preserving Back-Propagation Neural Network Learning Made Practical with Cloud Computing

To improve the accuracy of learning result, in practice multiple parties may collaborate through conducting joint Back-Propagation neural network learning on the union of their respective data sets. During this process no party wants to disclose her/his private data to others. Existing schemes suppo...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on parallel and distributed systems Vol. 25; no. 1; pp. 212 - 221
Main Authors Jiawei Yuan, Shucheng Yu
Format Journal Article
LanguageEnglish
Published IEEE 01.01.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To improve the accuracy of learning result, in practice multiple parties may collaborate through conducting joint Back-Propagation neural network learning on the union of their respective data sets. During this process no party wants to disclose her/his private data to others. Existing schemes supporting this kind of collaborative learning are either limited in the way of data partition or just consider two parties. There lacks a solution that allows two or more parties, each with an arbitrarily partitioned data set, to collaboratively conduct the learning. This paper solves this open problem by utilizing the power of cloud computing. In our proposed scheme, each party encrypts his/her private data locally and uploads the ciphertexts into the cloud. The cloud then executes most of the operations pertaining to the learning algorithms over ciphertexts without knowing the original private data. By securely offloading the expensive operations to the cloud, we keep the computation and communication costs on each party minimal and independent to the number of participants. To support flexible operations over ciphertexts, we adopt and tailor the BGN "doubly homomorphic" encryption algorithm for the multiparty setting. Numerical analysis and experiments on commodity cloud show that our scheme is secure, efficient, and accurate.
AbstractList To improve the accuracy of learning result, in practice multiple parties may collaborate through conducting joint Back-Propagation neural network learning on the union of their respective data sets. During this process no party wants to disclose her/his private data to others. Existing schemes supporting this kind of collaborative learning are either limited in the way of data partition or just consider two parties. There lacks a solution that allows two or more parties, each with an arbitrarily partitioned data set, to collaboratively conduct the learning. This paper solves this open problem by utilizing the power of cloud computing. In our proposed scheme, each party encrypts his/her private data locally and uploads the ciphertexts into the cloud. The cloud then executes most of the operations pertaining to the learning algorithms over ciphertexts without knowing the original private data. By securely offloading the expensive operations to the cloud, we keep the computation and communication costs on each party minimal and independent to the number of participants. To support flexible operations over ciphertexts, we adopt and tailor the BGN "doubly homomorphic" encryption algorithm for the multiparty setting. Numerical analysis and experiments on commodity cloud show that our scheme is secure, efficient, and accurate.
Author Jiawei Yuan
Shucheng Yu
Author_xml – sequence: 1
  surname: Jiawei Yuan
  fullname: Jiawei Yuan
  email: jxyuan@ualr.edu
  organization: Dept. of Comput. Sci., Univ. of Arkansas at Little Rock, Little Rock, AR, USA
– sequence: 2
  surname: Shucheng Yu
  fullname: Shucheng Yu
  email: sxyu1@ualr.edu
  organization: Dept. of Comput. Sci., Univ. of Arkansas at Little Rock, Little Rock, AR, USA
BookMark eNp1kD1PwzAURT0UibawsbHkB5DiFztfIwQKSAUiUWbLdZ6LaRpXjtuq_56EIgYkpju8c6707ogMGtsgIRdAJwA0v56Xd2-TiAKbQDYgQ6A8DvMI8lMyattPSoHHlA-JKJ3ZSXUISoctup1plsGtVKuwdHYjl9Ib2wQvuHWy7sLvrVsFM5Su6cFnWWEnSuWN6u574z-CorbbKijserP1HXNGTrSsWzz_yTF5n97Pi8dw9vrwVNzMQhXFsQ9BA2iteZ7kFKtMLxjTCuOU5zzKcllpwCTTwCslJdMLhWmqGU0yVCqFBBdsTK6OvcrZtnWoxcaZtXQHAVT0g4h-ENEPIiDr8OgProz_ftY7aer_pMujZBDxtz_hQBnE7As2wnMF
CODEN ITDSEO
CitedBy_id crossref_primary_10_1142_S0129054117400135
crossref_primary_10_1109_TIFS_2023_3283104
crossref_primary_10_1109_JIOT_2020_3022911
crossref_primary_10_3390_s21175805
crossref_primary_10_1016_j_engappai_2023_107180
crossref_primary_10_1109_ACCESS_2018_2851599
crossref_primary_10_2196_14064
crossref_primary_10_1109_TIT_2023_3345270
crossref_primary_10_1109_ACCESS_2021_3054129
crossref_primary_10_1007_s11227_018_2691_0
crossref_primary_10_1016_j_ins_2018_05_005
crossref_primary_10_1016_j_ins_2020_03_074
crossref_primary_10_1016_j_knosys_2023_110527
crossref_primary_10_3390_su8080735
crossref_primary_10_1109_TC_2015_2470255
crossref_primary_10_1186_s13677_024_00717_6
crossref_primary_10_1109_TCOMM_2023_3308954
crossref_primary_10_1109_TSUSC_2018_2881241
crossref_primary_10_1016_j_neucom_2024_127345
crossref_primary_10_1080_10739149_2015_1025280
crossref_primary_10_1089_big_2018_0166
crossref_primary_10_1049_iet_wss_2013_0055
crossref_primary_10_1145_3298981
crossref_primary_10_3390_fi13040094
crossref_primary_10_1109_ACCESS_2019_2901219
crossref_primary_10_3390_s150511402
crossref_primary_10_1016_j_jnca_2024_103996
crossref_primary_10_1109_TNSE_2020_3040704
crossref_primary_10_1109_TASE_2019_2892081
crossref_primary_10_1109_TSMC_2016_2635804
crossref_primary_10_1016_j_sysarc_2024_103067
crossref_primary_10_1109_TNSM_2019_2933358
crossref_primary_10_3390_app13095270
crossref_primary_10_1007_s10015_021_00683_1
crossref_primary_10_1007_s11280_020_00780_4
crossref_primary_10_2174_1872212117666230112110257
crossref_primary_10_1016_j_future_2025_107719
crossref_primary_10_3390_electronics12204364
crossref_primary_10_3390_electronics10141614
crossref_primary_10_1109_ACCESS_2024_3378126
crossref_primary_10_3233_JIFS_179158
crossref_primary_10_1007_s10766_016_0401_1
crossref_primary_10_3934_mbe_2021151
crossref_primary_10_1109_TIFS_2017_2763126
crossref_primary_10_3390_s20195450
crossref_primary_10_1016_j_jnca_2018_09_018
crossref_primary_10_3233_JHS_180594
crossref_primary_10_1109_JSTSP_2015_2426677
crossref_primary_10_1007_s10586_017_1238_0
crossref_primary_10_1016_j_ins_2019_07_047
crossref_primary_10_1007_s40565_016_0209_4
crossref_primary_10_1016_j_jnca_2017_12_021
crossref_primary_10_1007_s12083_022_01354_z
crossref_primary_10_1515_jisys_2016_0113
crossref_primary_10_1007_s10586_017_0849_9
crossref_primary_10_1109_TDSC_2016_2626288
crossref_primary_10_3934_mbe_2021243
crossref_primary_10_1016_j_geoderma_2019_114083
crossref_primary_10_1007_s11042_023_16543_y
crossref_primary_10_1007_s11280_023_01159_x
crossref_primary_10_1109_TCC_2021_3099720
crossref_primary_10_1109_TDSC_2019_2952332
crossref_primary_10_1109_TDSC_2020_2971598
crossref_primary_10_1016_j_ins_2018_02_056
crossref_primary_10_1109_TR_2023_3246563
crossref_primary_10_1109_TSC_2018_2868750
crossref_primary_10_1049_itr2_12404
crossref_primary_10_1016_j_cose_2016_12_006
crossref_primary_10_3934_mfc_2021013
crossref_primary_10_1145_3464419
crossref_primary_10_1109_TDSC_2019_2913362
crossref_primary_10_1109_ACCESS_2020_3027841
crossref_primary_10_1109_TIT_2024_3441509
crossref_primary_10_1109_JIOT_2020_2999594
crossref_primary_10_1016_j_jksuci_2022_08_035
crossref_primary_10_1109_TDSC_2022_3208706
crossref_primary_10_1109_TBDATA_2017_2701816
crossref_primary_10_1109_TDSC_2022_3186672
crossref_primary_10_1016_j_future_2017_02_006
crossref_primary_10_1145_3687473
crossref_primary_10_1016_j_future_2017_03_018
crossref_primary_10_1109_TCC_2017_2656895
crossref_primary_10_1007_s11042_021_11751_w
crossref_primary_10_1109_JSYST_2021_3078637
crossref_primary_10_1088_1742_6596_1486_5_052027
crossref_primary_10_1109_TCC_2015_2415776
crossref_primary_10_1109_TKDE_2018_2866097
crossref_primary_10_3390_electronics9010097
crossref_primary_10_1109_JPROC_2023_3306773
crossref_primary_10_1016_j_neucom_2017_02_077
crossref_primary_10_1109_ACCESS_2018_2816558
crossref_primary_10_14778_3407790_3407794
crossref_primary_10_3390_s17081829
crossref_primary_10_1145_3524104
crossref_primary_10_3233_HIS_220006
crossref_primary_10_1007_s11831_023_10011_4
crossref_primary_10_1109_TCE_2015_7389812
crossref_primary_10_1109_TPDS_2024_3439709
crossref_primary_10_3390_electronics11233958
crossref_primary_10_1145_3501809
crossref_primary_10_1109_LSP_2017_2765895
crossref_primary_10_1109_JSAIT_2021_3053220
crossref_primary_10_1109_ACCESS_2018_2866971
crossref_primary_10_1109_ACCESS_2021_3124020
crossref_primary_10_35940_ijrte_F5385_039621
Cites_doi 10.1007/s00521-012-1000-8
10.1007/s00521-010-0346-z
10.1007/3-540-39568-7_2
10.1109/MITP.2009.40
10.1145/1401890.1402000
10.1016/S0261-5177(99)00067-9
10.1109/SFCS.1982.38
10.1007/978-3-540-30576-7_18
10.1109/TNN.2009.2026902
10.1007/11539087_24
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TPDS.2013.18
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EndPage 221
ExternalDocumentID 10_1109_TPDS_2013_18
6410315
Genre orig-research
GroupedDBID --Z
-~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RZB
TN5
TWZ
UHB
VH1
AAYOK
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c255t-1f11fff49690ed8fb33fce57494289adf1e68f14dcaa3fbce77f3068ecc716eb3
IEDL.DBID RIE
ISSN 1045-9219
IngestDate Tue Jul 01 02:18:10 EDT 2025
Thu Apr 24 23:03:46 EDT 2025
Wed Aug 27 02:52:19 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c255t-1f11fff49690ed8fb33fce57494289adf1e68f14dcaa3fbce77f3068ecc716eb3
PageCount 10
ParticipantIDs ieee_primary_6410315
crossref_primary_10_1109_TPDS_2013_18
crossref_citationtrail_10_1109_TPDS_2013_18
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-Jan.
2014-1-00
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-Jan.
PublicationDecade 2010
PublicationTitle IEEE transactions on parallel and distributed systems
PublicationTitleAbbrev TPDS
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
(ref15) 2008
ref24
flouri (ref11) 2006
ref14
stolfo (ref20) 1997
ref22
ref21
abramowitz (ref3) 1964
ref16
(ref2) 2013
frank (ref12) 2010
menezes (ref17) 1997
ref9
ref4
schlitter (ref19) 2008
ref6
cun (ref7) 1990
ref5
di vimercati (ref8) 2007
(ref1) 2013
yuan (ref23) 2012
fahlman (ref10) 1988
rumelhart (ref18) 1986
References_xml – start-page: 318
  year: 1986
  ident: ref18
  article-title: Learning Internal Representations by Error Propagation
  publication-title: Parallel Distributed Processing Explorations in the Microstructure of Cognition
– start-page: 38
  year: 1988
  ident: ref10
  publication-title: Faster-learning variations on back-propagation An empirical study
– start-page: 396
  year: 1990
  ident: ref7
  article-title: Handwritten Digit Recognition with a Back-Propagation Network
  publication-title: Proc Advances in Neural Information Processing Systems
– year: 2013
  ident: ref2
  article-title: National Standards to Protect the Privacy of Personal Health Information
– ident: ref24
  doi: 10.1007/s00521-012-1000-8
– ident: ref4
  doi: 10.1007/s00521-010-0346-z
– year: 2013
  ident: ref1
  article-title: The Health Insurance Portability and Accountability Act of Privacy and Security Rules
– ident: ref9
  doi: 10.1007/3-540-39568-7_2
– ident: ref14
  doi: 10.1109/MITP.2009.40
– start-page: 123
  year: 2007
  ident: ref8
  article-title: Over-Encryption: Management of Access Control Evolution on Outsourced Data
  publication-title: Proc 33rd Int'l Conf Very Large Data Bases (VLDB '07)
– start-page: 74
  year: 1997
  ident: ref20
  article-title: JAM: Java Agents for Meta-Learning over Distributed Databases
  publication-title: Proc Third Int'l Conf Knowledge Discovery and Data Mining
– year: 1964
  ident: ref3
  publication-title: Handbook of mathe matical functions with formulas graphs and mathematical tables
– ident: ref13
  doi: 10.1145/1401890.1402000
– ident: ref16
  doi: 10.1016/S0261-5177(99)00067-9
– year: 2008
  ident: ref19
  article-title: A Protocol for Privacy Preserving Neural Network Learning on Horizontal Partitioned Data
  publication-title: Proc Privacy Statistics in Databases (PSD '08)
– ident: ref22
  doi: 10.1109/SFCS.1982.38
– year: 2010
  ident: ref12
  publication-title: UCI Machine Learning Repository
– ident: ref5
  doi: 10.1007/978-3-540-30576-7_18
– start-page: 1
  year: 2006
  ident: ref11
  article-title: Training a SVM-Based Classifier in Distributed Sensor Networks
  publication-title: Proc 14th European Signal Processing Conf
– year: 1997
  ident: ref17
  publication-title: Handbook of Applied Cryptography
– ident: ref6
  doi: 10.1109/TNN.2009.2026902
– ident: ref21
  doi: 10.1007/11539087_24
– year: 2008
  ident: ref15
  publication-title: Amazon Elastic Compute Cloud (Amazon EC2)
– year: 2012
  ident: ref23
  article-title: Privacy Preserving Back-Propagation Learning Made Practical with Cloud Computing
  publication-title: Proc Eighth Int'l ICST Conf Security and Privacy in Comm Networks (SecureComm '12)
SSID ssj0014504
Score 2.5214474
Snippet To improve the accuracy of learning result, in practice multiple parties may collaborate through conducting joint Back-Propagation neural network learning on...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 212
SubjectTerms Algorithm design and analysis
Approximation algorithms
back-propagation
cloud computing
computation outsource
Data privacy
Encryption
Feeds
learning
neural network
Neural networks
Privacy reserving
Title Privacy Preserving Back-Propagation Neural Network Learning Made Practical with Cloud Computing
URI https://ieeexplore.ieee.org/document/6410315
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qT3qw2irWF3vQkyZtkk2THLVaitBSsIXeQvZVpCWVkgj6653dpKGIguQSwuwDZja73-633wDccFfLmCnfipjvWdT3GA4pisA16MowlAIfw7YY94Yz-jL35zW4r-7CSCkN-Uza-tWc5Ys1z_VWWadHTVKCPdhD4Fbc1apODKhvUgUiusB2cRhWJPeoM508vWoSl2fr1B47089OPhUznQwaMNp2pGCRLO08Yzb_-qHR-N-eHsFhua4kD0UgHENNpk1obHM2kHIIN-FgR4CwBfFk8_aR8E-imRj6r5EuyGPCl9Zkg2B6YbxGtH4HVj0uCOOkVGRdkFEiJCn0jtDRRO_okv5qnQtSNIs2JzAbPE_7Q6tMuWBxxBaZ5SjHUUrRCEGzFKFinqe49AMaIUyJEqEc2QuVQwVPEk8xLoNAIegIMRAQeCEwP4V6uk7lGRCv6yaIXhSu-ASVboDBoBjau0wprN1rw93WEzEv9ch1WoxVbHBJN4q132Ltt9gJ23BbWb8XOhx_2LW0Nyqb0hHnv3--gH0sR4stlUuoZ5tcXuEiI2PXJrq-ARfz0H4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH7MeVAPTjfF-TMHPWm3tUnX9qjTMXUbAzfwVto0GbLRyWgF_et9SbsyREF6KeWRBN57Tb7ky_cALrmlZMykbXihTQ1m0xBTiiFwdVrCdUWEj2ZbDNu9CXt6tV9LcFPchRFCaPKZaKhXfZYfLXiqtsqabaaLEmzAJs77tpnd1irODJitiwUivsCeMRELmrvXHI_uXxSNizZUcY-1CWitooqeULoVGKyGkvFIZo00CRv864dK43_Huge7-cqS3GahsA8lEVehsqraQPIkrsLOmgRhDfzR8u0j4J9EcTHUfyOekruAz4zREuH0VPuNKAUPbHqYUcZJrsk6JYMgEiRTPEJXE7WnSzrzRRqRrFu0OYBJ92Hc6Rl50QWDI7pIDFOappSSeQibReTKkFLJhe0wD4GKF0TSFG1XmiziQUBlyIXjSIQdLoYCQi-E5odQjhexOAJCW1aA-EXimi9iwnIwHGSI9lYoJbZO63C98oTPc0VyVRhj7mtk0vJ85Tdf-c033TpcFdbvmRLHH3Y15Y3CJnfE8e-fL2CrNx70_f7j8PkEtrENlm2wnEI5WabiDJccSXiuI-0bID7Txw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Privacy+Preserving+Back-Propagation+Neural+Network+Learning+Made+Practical+with+Cloud+Computing&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Jiawei+Yuan&rft.au=Shucheng+Yu&rft.date=2014-01-01&rft.pub=IEEE&rft.issn=1045-9219&rft.volume=25&rft.issue=1&rft.spage=212&rft.epage=221&rft_id=info:doi/10.1109%2FTPDS.2013.18&rft.externalDocID=6410315
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon