Privacy Preserving Back-Propagation Neural Network Learning Made Practical with Cloud Computing
To improve the accuracy of learning result, in practice multiple parties may collaborate through conducting joint Back-Propagation neural network learning on the union of their respective data sets. During this process no party wants to disclose her/his private data to others. Existing schemes suppo...
Saved in:
Published in | IEEE transactions on parallel and distributed systems Vol. 25; no. 1; pp. 212 - 221 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.01.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To improve the accuracy of learning result, in practice multiple parties may collaborate through conducting joint Back-Propagation neural network learning on the union of their respective data sets. During this process no party wants to disclose her/his private data to others. Existing schemes supporting this kind of collaborative learning are either limited in the way of data partition or just consider two parties. There lacks a solution that allows two or more parties, each with an arbitrarily partitioned data set, to collaboratively conduct the learning. This paper solves this open problem by utilizing the power of cloud computing. In our proposed scheme, each party encrypts his/her private data locally and uploads the ciphertexts into the cloud. The cloud then executes most of the operations pertaining to the learning algorithms over ciphertexts without knowing the original private data. By securely offloading the expensive operations to the cloud, we keep the computation and communication costs on each party minimal and independent to the number of participants. To support flexible operations over ciphertexts, we adopt and tailor the BGN "doubly homomorphic" encryption algorithm for the multiparty setting. Numerical analysis and experiments on commodity cloud show that our scheme is secure, efficient, and accurate. |
---|---|
AbstractList | To improve the accuracy of learning result, in practice multiple parties may collaborate through conducting joint Back-Propagation neural network learning on the union of their respective data sets. During this process no party wants to disclose her/his private data to others. Existing schemes supporting this kind of collaborative learning are either limited in the way of data partition or just consider two parties. There lacks a solution that allows two or more parties, each with an arbitrarily partitioned data set, to collaboratively conduct the learning. This paper solves this open problem by utilizing the power of cloud computing. In our proposed scheme, each party encrypts his/her private data locally and uploads the ciphertexts into the cloud. The cloud then executes most of the operations pertaining to the learning algorithms over ciphertexts without knowing the original private data. By securely offloading the expensive operations to the cloud, we keep the computation and communication costs on each party minimal and independent to the number of participants. To support flexible operations over ciphertexts, we adopt and tailor the BGN "doubly homomorphic" encryption algorithm for the multiparty setting. Numerical analysis and experiments on commodity cloud show that our scheme is secure, efficient, and accurate. |
Author | Jiawei Yuan Shucheng Yu |
Author_xml | – sequence: 1 surname: Jiawei Yuan fullname: Jiawei Yuan email: jxyuan@ualr.edu organization: Dept. of Comput. Sci., Univ. of Arkansas at Little Rock, Little Rock, AR, USA – sequence: 2 surname: Shucheng Yu fullname: Shucheng Yu email: sxyu1@ualr.edu organization: Dept. of Comput. Sci., Univ. of Arkansas at Little Rock, Little Rock, AR, USA |
BookMark | eNp1kD1PwzAURT0UibawsbHkB5DiFztfIwQKSAUiUWbLdZ6LaRpXjtuq_56EIgYkpju8c6707ogMGtsgIRdAJwA0v56Xd2-TiAKbQDYgQ6A8DvMI8lMyattPSoHHlA-JKJ3ZSXUISoctup1plsGtVKuwdHYjl9Ib2wQvuHWy7sLvrVsFM5Su6cFnWWEnSuWN6u574z-CorbbKijserP1HXNGTrSsWzz_yTF5n97Pi8dw9vrwVNzMQhXFsQ9BA2iteZ7kFKtMLxjTCuOU5zzKcllpwCTTwCslJdMLhWmqGU0yVCqFBBdsTK6OvcrZtnWoxcaZtXQHAVT0g4h-ENEPIiDr8OgProz_ftY7aer_pMujZBDxtz_hQBnE7As2wnMF |
CODEN | ITDSEO |
CitedBy_id | crossref_primary_10_1142_S0129054117400135 crossref_primary_10_1109_TIFS_2023_3283104 crossref_primary_10_1109_JIOT_2020_3022911 crossref_primary_10_3390_s21175805 crossref_primary_10_1016_j_engappai_2023_107180 crossref_primary_10_1109_ACCESS_2018_2851599 crossref_primary_10_2196_14064 crossref_primary_10_1109_TIT_2023_3345270 crossref_primary_10_1109_ACCESS_2021_3054129 crossref_primary_10_1007_s11227_018_2691_0 crossref_primary_10_1016_j_ins_2018_05_005 crossref_primary_10_1016_j_ins_2020_03_074 crossref_primary_10_1016_j_knosys_2023_110527 crossref_primary_10_3390_su8080735 crossref_primary_10_1109_TC_2015_2470255 crossref_primary_10_1186_s13677_024_00717_6 crossref_primary_10_1109_TCOMM_2023_3308954 crossref_primary_10_1109_TSUSC_2018_2881241 crossref_primary_10_1016_j_neucom_2024_127345 crossref_primary_10_1080_10739149_2015_1025280 crossref_primary_10_1089_big_2018_0166 crossref_primary_10_1049_iet_wss_2013_0055 crossref_primary_10_1145_3298981 crossref_primary_10_3390_fi13040094 crossref_primary_10_1109_ACCESS_2019_2901219 crossref_primary_10_3390_s150511402 crossref_primary_10_1016_j_jnca_2024_103996 crossref_primary_10_1109_TNSE_2020_3040704 crossref_primary_10_1109_TASE_2019_2892081 crossref_primary_10_1109_TSMC_2016_2635804 crossref_primary_10_1016_j_sysarc_2024_103067 crossref_primary_10_1109_TNSM_2019_2933358 crossref_primary_10_3390_app13095270 crossref_primary_10_1007_s10015_021_00683_1 crossref_primary_10_1007_s11280_020_00780_4 crossref_primary_10_2174_1872212117666230112110257 crossref_primary_10_1016_j_future_2025_107719 crossref_primary_10_3390_electronics12204364 crossref_primary_10_3390_electronics10141614 crossref_primary_10_1109_ACCESS_2024_3378126 crossref_primary_10_3233_JIFS_179158 crossref_primary_10_1007_s10766_016_0401_1 crossref_primary_10_3934_mbe_2021151 crossref_primary_10_1109_TIFS_2017_2763126 crossref_primary_10_3390_s20195450 crossref_primary_10_1016_j_jnca_2018_09_018 crossref_primary_10_3233_JHS_180594 crossref_primary_10_1109_JSTSP_2015_2426677 crossref_primary_10_1007_s10586_017_1238_0 crossref_primary_10_1016_j_ins_2019_07_047 crossref_primary_10_1007_s40565_016_0209_4 crossref_primary_10_1016_j_jnca_2017_12_021 crossref_primary_10_1007_s12083_022_01354_z crossref_primary_10_1515_jisys_2016_0113 crossref_primary_10_1007_s10586_017_0849_9 crossref_primary_10_1109_TDSC_2016_2626288 crossref_primary_10_3934_mbe_2021243 crossref_primary_10_1016_j_geoderma_2019_114083 crossref_primary_10_1007_s11042_023_16543_y crossref_primary_10_1007_s11280_023_01159_x crossref_primary_10_1109_TCC_2021_3099720 crossref_primary_10_1109_TDSC_2019_2952332 crossref_primary_10_1109_TDSC_2020_2971598 crossref_primary_10_1016_j_ins_2018_02_056 crossref_primary_10_1109_TR_2023_3246563 crossref_primary_10_1109_TSC_2018_2868750 crossref_primary_10_1049_itr2_12404 crossref_primary_10_1016_j_cose_2016_12_006 crossref_primary_10_3934_mfc_2021013 crossref_primary_10_1145_3464419 crossref_primary_10_1109_TDSC_2019_2913362 crossref_primary_10_1109_ACCESS_2020_3027841 crossref_primary_10_1109_TIT_2024_3441509 crossref_primary_10_1109_JIOT_2020_2999594 crossref_primary_10_1016_j_jksuci_2022_08_035 crossref_primary_10_1109_TDSC_2022_3208706 crossref_primary_10_1109_TBDATA_2017_2701816 crossref_primary_10_1109_TDSC_2022_3186672 crossref_primary_10_1016_j_future_2017_02_006 crossref_primary_10_1145_3687473 crossref_primary_10_1016_j_future_2017_03_018 crossref_primary_10_1109_TCC_2017_2656895 crossref_primary_10_1007_s11042_021_11751_w crossref_primary_10_1109_JSYST_2021_3078637 crossref_primary_10_1088_1742_6596_1486_5_052027 crossref_primary_10_1109_TCC_2015_2415776 crossref_primary_10_1109_TKDE_2018_2866097 crossref_primary_10_3390_electronics9010097 crossref_primary_10_1109_JPROC_2023_3306773 crossref_primary_10_1016_j_neucom_2017_02_077 crossref_primary_10_1109_ACCESS_2018_2816558 crossref_primary_10_14778_3407790_3407794 crossref_primary_10_3390_s17081829 crossref_primary_10_1145_3524104 crossref_primary_10_3233_HIS_220006 crossref_primary_10_1007_s11831_023_10011_4 crossref_primary_10_1109_TCE_2015_7389812 crossref_primary_10_1109_TPDS_2024_3439709 crossref_primary_10_3390_electronics11233958 crossref_primary_10_1145_3501809 crossref_primary_10_1109_LSP_2017_2765895 crossref_primary_10_1109_JSAIT_2021_3053220 crossref_primary_10_1109_ACCESS_2018_2866971 crossref_primary_10_1109_ACCESS_2021_3124020 crossref_primary_10_35940_ijrte_F5385_039621 |
Cites_doi | 10.1007/s00521-012-1000-8 10.1007/s00521-010-0346-z 10.1007/3-540-39568-7_2 10.1109/MITP.2009.40 10.1145/1401890.1402000 10.1016/S0261-5177(99)00067-9 10.1109/SFCS.1982.38 10.1007/978-3-540-30576-7_18 10.1109/TNN.2009.2026902 10.1007/11539087_24 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TPDS.2013.18 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EndPage | 221 |
ExternalDocumentID | 10_1109_TPDS_2013_18 6410315 |
Genre | orig-research |
GroupedDBID | --Z -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RZB TN5 TWZ UHB VH1 AAYOK AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c255t-1f11fff49690ed8fb33fce57494289adf1e68f14dcaa3fbce77f3068ecc716eb3 |
IEDL.DBID | RIE |
ISSN | 1045-9219 |
IngestDate | Tue Jul 01 02:18:10 EDT 2025 Thu Apr 24 23:03:46 EDT 2025 Wed Aug 27 02:52:19 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c255t-1f11fff49690ed8fb33fce57494289adf1e68f14dcaa3fbce77f3068ecc716eb3 |
PageCount | 10 |
ParticipantIDs | ieee_primary_6410315 crossref_primary_10_1109_TPDS_2013_18 crossref_citationtrail_10_1109_TPDS_2013_18 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-Jan. 2014-1-00 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 01 year: 2014 text: 2014-Jan. |
PublicationDecade | 2010 |
PublicationTitle | IEEE transactions on parallel and distributed systems |
PublicationTitleAbbrev | TPDS |
PublicationYear | 2014 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 (ref15) 2008 ref24 flouri (ref11) 2006 ref14 stolfo (ref20) 1997 ref22 ref21 abramowitz (ref3) 1964 ref16 (ref2) 2013 frank (ref12) 2010 menezes (ref17) 1997 ref9 ref4 schlitter (ref19) 2008 ref6 cun (ref7) 1990 ref5 di vimercati (ref8) 2007 (ref1) 2013 yuan (ref23) 2012 fahlman (ref10) 1988 rumelhart (ref18) 1986 |
References_xml | – start-page: 318 year: 1986 ident: ref18 article-title: Learning Internal Representations by Error Propagation publication-title: Parallel Distributed Processing Explorations in the Microstructure of Cognition – start-page: 38 year: 1988 ident: ref10 publication-title: Faster-learning variations on back-propagation An empirical study – start-page: 396 year: 1990 ident: ref7 article-title: Handwritten Digit Recognition with a Back-Propagation Network publication-title: Proc Advances in Neural Information Processing Systems – year: 2013 ident: ref2 article-title: National Standards to Protect the Privacy of Personal Health Information – ident: ref24 doi: 10.1007/s00521-012-1000-8 – ident: ref4 doi: 10.1007/s00521-010-0346-z – year: 2013 ident: ref1 article-title: The Health Insurance Portability and Accountability Act of Privacy and Security Rules – ident: ref9 doi: 10.1007/3-540-39568-7_2 – ident: ref14 doi: 10.1109/MITP.2009.40 – start-page: 123 year: 2007 ident: ref8 article-title: Over-Encryption: Management of Access Control Evolution on Outsourced Data publication-title: Proc 33rd Int'l Conf Very Large Data Bases (VLDB '07) – start-page: 74 year: 1997 ident: ref20 article-title: JAM: Java Agents for Meta-Learning over Distributed Databases publication-title: Proc Third Int'l Conf Knowledge Discovery and Data Mining – year: 1964 ident: ref3 publication-title: Handbook of mathe matical functions with formulas graphs and mathematical tables – ident: ref13 doi: 10.1145/1401890.1402000 – ident: ref16 doi: 10.1016/S0261-5177(99)00067-9 – year: 2008 ident: ref19 article-title: A Protocol for Privacy Preserving Neural Network Learning on Horizontal Partitioned Data publication-title: Proc Privacy Statistics in Databases (PSD '08) – ident: ref22 doi: 10.1109/SFCS.1982.38 – year: 2010 ident: ref12 publication-title: UCI Machine Learning Repository – ident: ref5 doi: 10.1007/978-3-540-30576-7_18 – start-page: 1 year: 2006 ident: ref11 article-title: Training a SVM-Based Classifier in Distributed Sensor Networks publication-title: Proc 14th European Signal Processing Conf – year: 1997 ident: ref17 publication-title: Handbook of Applied Cryptography – ident: ref6 doi: 10.1109/TNN.2009.2026902 – ident: ref21 doi: 10.1007/11539087_24 – year: 2008 ident: ref15 publication-title: Amazon Elastic Compute Cloud (Amazon EC2) – year: 2012 ident: ref23 article-title: Privacy Preserving Back-Propagation Learning Made Practical with Cloud Computing publication-title: Proc Eighth Int'l ICST Conf Security and Privacy in Comm Networks (SecureComm '12) |
SSID | ssj0014504 |
Score | 2.5214474 |
Snippet | To improve the accuracy of learning result, in practice multiple parties may collaborate through conducting joint Back-Propagation neural network learning on... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 212 |
SubjectTerms | Algorithm design and analysis Approximation algorithms back-propagation cloud computing computation outsource Data privacy Encryption Feeds learning neural network Neural networks Privacy reserving |
Title | Privacy Preserving Back-Propagation Neural Network Learning Made Practical with Cloud Computing |
URI | https://ieeexplore.ieee.org/document/6410315 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qT3qw2irWF3vQkyZtkk2THLVaitBSsIXeQvZVpCWVkgj6653dpKGIguQSwuwDZja73-633wDccFfLmCnfipjvWdT3GA4pisA16MowlAIfw7YY94Yz-jL35zW4r-7CSCkN-Uza-tWc5Ys1z_VWWadHTVKCPdhD4Fbc1apODKhvUgUiusB2cRhWJPeoM508vWoSl2fr1B47089OPhUznQwaMNp2pGCRLO08Yzb_-qHR-N-eHsFhua4kD0UgHENNpk1obHM2kHIIN-FgR4CwBfFk8_aR8E-imRj6r5EuyGPCl9Zkg2B6YbxGtH4HVj0uCOOkVGRdkFEiJCn0jtDRRO_okv5qnQtSNIs2JzAbPE_7Q6tMuWBxxBaZ5SjHUUrRCEGzFKFinqe49AMaIUyJEqEc2QuVQwVPEk8xLoNAIegIMRAQeCEwP4V6uk7lGRCv6yaIXhSu-ASVboDBoBjau0wprN1rw93WEzEv9ch1WoxVbHBJN4q132Ltt9gJ23BbWb8XOhx_2LW0Nyqb0hHnv3--gH0sR4stlUuoZ5tcXuEiI2PXJrq-ARfz0H4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH7MeVAPTjfF-TMHPWm3tUnX9qjTMXUbAzfwVto0GbLRyWgF_et9SbsyREF6KeWRBN57Tb7ky_cALrmlZMykbXihTQ1m0xBTiiFwdVrCdUWEj2ZbDNu9CXt6tV9LcFPchRFCaPKZaKhXfZYfLXiqtsqabaaLEmzAJs77tpnd1irODJitiwUivsCeMRELmrvXHI_uXxSNizZUcY-1CWitooqeULoVGKyGkvFIZo00CRv864dK43_Huge7-cqS3GahsA8lEVehsqraQPIkrsLOmgRhDfzR8u0j4J9EcTHUfyOekruAz4zREuH0VPuNKAUPbHqYUcZJrsk6JYMgEiRTPEJXE7WnSzrzRRqRrFu0OYBJ92Hc6Rl50QWDI7pIDFOappSSeQibReTKkFLJhe0wD4GKF0TSFG1XmiziQUBlyIXjSIQdLoYCQi-E5odQjhexOAJCW1aA-EXimi9iwnIwHGSI9lYoJbZO63C98oTPc0VyVRhj7mtk0vJ85Tdf-c033TpcFdbvmRLHH3Y15Y3CJnfE8e-fL2CrNx70_f7j8PkEtrENlm2wnEI5WabiDJccSXiuI-0bID7Txw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Privacy+Preserving+Back-Propagation+Neural+Network+Learning+Made+Practical+with+Cloud+Computing&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Jiawei+Yuan&rft.au=Shucheng+Yu&rft.date=2014-01-01&rft.pub=IEEE&rft.issn=1045-9219&rft.volume=25&rft.issue=1&rft.spage=212&rft.epage=221&rft_id=info:doi/10.1109%2FTPDS.2013.18&rft.externalDocID=6410315 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon |