Nonlinear dynamics of marine rotor-bearing system coupled with vibration isolation structure subject to ship rolling motion
•We considered the effect of ship rolling motion and nonlinear oil film force.•We considered the rotation of the raft and established a mathematical model.•We studied the nonlinear dynamic behaviors of the rotor and the raft frame. This study focuses on the nonlinear dynamic behavior of a marine rot...
Saved in:
Published in | Applied Mathematical Modelling Vol. 103; pp. 344 - 359 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Inc
01.03.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We considered the effect of ship rolling motion and nonlinear oil film force.•We considered the rotation of the raft and established a mathematical model.•We studied the nonlinear dynamic behaviors of the rotor and the raft frame.
This study focuses on the nonlinear dynamic behavior of a marine rotor-bearing system coupled with vibration isolation structure under ship rolling motion. After considering the effect of the nonlinear oil film force and the ship rolling motion, a mathematical model is established based on Lagrange's equation. By employing a numerical method, the dynamic steady-state response of the system is analyzed, such as the orbits of the rotor and its Poincaré maps, spectrum waterfall diagram, and the displacements and frequency spectrum diagram of the raft frame. We also studied the effects of the rotor speed, the amplitude and frequency of ship rolling on the marine rotor-bearing system coupled with isolation structure under ship rolling motion. The results indicates that response of the rotor shows obvious nonlinear dynamic behaviors such as amplitude jumping, bifurcation and chaos due to the influence of the nonlinear oil film force and the ship rolling motion. As the rotor speed increases, the motion of the rotor experiences the process of quasi-periodic and chaos vibration. Both the amplitude and frequency of ship rolling have effects on the amplitude of the rotor and the raft frame. Moreover, the rotation angle of the raft frame is greatly influenced by the amplitude and frequency of ship rolling, and it is necessary to control the vibration attitude of the raft frame. |
---|---|
AbstractList | •We considered the effect of ship rolling motion and nonlinear oil film force.•We considered the rotation of the raft and established a mathematical model.•We studied the nonlinear dynamic behaviors of the rotor and the raft frame.
This study focuses on the nonlinear dynamic behavior of a marine rotor-bearing system coupled with vibration isolation structure under ship rolling motion. After considering the effect of the nonlinear oil film force and the ship rolling motion, a mathematical model is established based on Lagrange's equation. By employing a numerical method, the dynamic steady-state response of the system is analyzed, such as the orbits of the rotor and its Poincaré maps, spectrum waterfall diagram, and the displacements and frequency spectrum diagram of the raft frame. We also studied the effects of the rotor speed, the amplitude and frequency of ship rolling on the marine rotor-bearing system coupled with isolation structure under ship rolling motion. The results indicates that response of the rotor shows obvious nonlinear dynamic behaviors such as amplitude jumping, bifurcation and chaos due to the influence of the nonlinear oil film force and the ship rolling motion. As the rotor speed increases, the motion of the rotor experiences the process of quasi-periodic and chaos vibration. Both the amplitude and frequency of ship rolling have effects on the amplitude of the rotor and the raft frame. Moreover, the rotation angle of the raft frame is greatly influenced by the amplitude and frequency of ship rolling, and it is necessary to control the vibration attitude of the raft frame. This study focuses on the nonlinear dynamic behavior of a marine rotor-bearing system coupled with vibration isolation structure under ship rolling motion. After considering the effect of the nonlinear oil film force and the ship rolling motion, a mathematical model is established based on Lagrange's equation. By employing a numerical method, the dynamic steady-state response of the system is analyzed, such as the orbits of the rotor and its Poincaré maps, spectrum waterfall diagram, and the displacements and frequency spectrum diagram of the raft frame. We also studied the effects of the rotor speed, the amplitude and frequency of ship rolling on the marine rotor-bearing system coupled with isolation structure under ship rolling motion. The results indicates that response of the rotor shows obvious nonlinear dynamic behaviors such as amplitude jumping, bifurcation and chaos due to the influence of the nonlinear oil film force and the ship rolling motion. As the rotor speed increases, the motion of the rotor experiences the process of quasi-periodic and chaos vibration. Both the amplitude and frequency of ship rolling have effects on the amplitude of the rotor and the raft frame. Moreover, the rotation angle of the raft frame is greatly influenced by the amplitude and frequency of ship rolling, and it is necessary to control the vibration attitude of the raft frame. |
Author | Du, Xiaolei Li, Ming Xie, Xuan |
Author_xml | – sequence: 1 givenname: Xuan orcidid: 0000-0003-4627-1298 surname: Xie fullname: Xie, Xuan organization: Department of Mechanics, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China – sequence: 2 givenname: Ming surname: Li fullname: Li, Ming email: limxust@xust.edu.cn organization: Department of Mechanics, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China – sequence: 3 givenname: Xiaolei surname: Du fullname: Du, Xiaolei organization: Department of Mechanics, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China |
BookMark | eNp9kEtLxDAUhYOM4Dj6A9wFXHdM0kdaXMngCwbdKLgLaXrrpLRNTdKRwT9v6rgQF7PKvYdzziXfKZr1pgeELihZUkKzq2Yph27JCKNhX5KkOEJzEhMeFSR5m_2ZT9Cpcw0hJA3bHH09mb7VPUiLq10vO60cNjXupA0itsYbG5Uwbe_Y7ZyHDiszDi1U-FP7Dd7q0kqvTY-1M-1-ct6Oyo8WsBvLBpTH3mC30UPoa9upqTOT8Qwd17J1cP77LtDr3e3L6iFaP98_rm7WkWJp6iMa85gXaQ11JWlJFCugYFWZpUlOc8WquqxSxWVWF0FRjPNc8lSVCWUprSGP4wW63PcO1nyM4LxozGj7cFKwLOZZxpO8CC66dylrnLNQi8HqwGEnKBETY9GIwFhMjCcpMA4Z_i-jtP-B4K3U7cHk9T4J4eNbDVY4paFXUGkbiInK6APpb3Bzm_o |
CitedBy_id | crossref_primary_10_1016_j_oceaneng_2023_116548 crossref_primary_10_1016_j_triboint_2024_110318 crossref_primary_10_1016_j_apm_2025_116112 crossref_primary_10_3390_app122412970 crossref_primary_10_1016_j_apm_2023_01_020 crossref_primary_10_1016_j_oceaneng_2024_119149 crossref_primary_10_1016_j_jsv_2023_117616 crossref_primary_10_1177_14644193221109793 crossref_primary_10_1021_acsomega_2c00273 crossref_primary_10_3390_app13074486 crossref_primary_10_1177_16878140211067367 |
Cites_doi | 10.1177/0954406215572434 10.1016/j.jsv.2013.07.025 10.3390/jmse8060415 10.1360/N092017-00094 10.1016/j.ijmecsci.2019.06.044 10.1016/j.mechmachtheory.2014.02.016 10.1177/0954410020942610 10.21595/jve.2019.20474 10.1142/S0218127420500777 10.1016/j.jsv.2019.115046 10.3901/JME.2018.17.226 10.1016/j.apm.2014.04.024 10.1007/s11431-013-5418-8 10.1016/j.ijnonlinmec.2014.12.012 10.1177/1461348419843024 10.1016/j.jsv.2017.05.032 10.1177/1461348420933381 10.1142/S0218127415500029 10.1109/TCST.2017.2679060 10.1016/j.jsv.2018.05.019 10.1016/j.apm.2014.10.064 10.1061/(ASCE)AS.1943-5525.0001197 10.1007/s10483-015-1992-7 10.1016/j.cja.2020.04.001 10.1016/j.jsv.2020.115551 10.1016/j.apm.2009.11.002 10.1016/j.measurement.2019.107406 10.1007/s40435-019-00591-0 10.1016/j.ijmecsci.2018.03.037 10.1109/TIE.2019.2898604 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Copyright Elsevier BV Mar 2022 |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright Elsevier BV Mar 2022 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.apm.2021.10.049 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Psychology |
EISSN | 0307-904X |
EndPage | 359 |
ExternalDocumentID | 10_1016_j_apm_2021_10_049 S0307904X21005254 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HZ~ IHE IXB J1W JJJVA KOM LG9 LY7 M26 M41 MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSW SSZ T5K TN5 WH7 WUQ XJT XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH -W8 .7I .GO .QK 0BK 2DF 53G 6J9 7SC 8FD 8VB AAGDL AAGZJ AAHIA AAHSB AAMFJ AAMIU AAPUL AATTQ AAZMC ABCCY ABDBF ABFIM ABIVO ABLIJ ABPEM ABRYG ABTAI ABXUL ABXYU ABZLS ACGOD ACHQT ACTIO ACTOA ACUHS ADAHI ADCVX ADKVQ ADYSH AECIN AEFOU AEGXH AEISY AEKEX AEMOZ AEMXT AEOZL AEPSL AEYOC AEZRU AFHDM AFRVT AGDLA AGMYJ AGRBW AHDZW AHQJS AIJEM AIYEW AJWEG AKBVH AKVCP ALQZU AVBZW AWYRJ BEJHT BLEHA BMOTO BOHLJ CCCUG CQ1 DGFLZ DKSSO EAP EBR EBU EDJ EMK EPL EPS EST ESX E~B E~C FEDTE G-F GTTXZ H13 HF~ HVGLF IPNFZ J.O JQ2 K1G KYCEM L7M LJTGL L~C L~D M4Z NA5 PQQKQ QWB RNANH ROSJB RSYQP S-F STATR TASJS TBQAZ TDBHL TEH TFH TFL TFW TH9 TNTFI TRJHH TUROJ TUS TWZ UPT UT5 UT9 VAE ZL0 ~01 ~S~ |
ID | FETCH-LOGICAL-c255t-1373795fefda1b0c29e92db654818c2dfbd5c7a6f9548c2778a75cb41251fe833 |
IEDL.DBID | .~1 |
ISSN | 0307-904X 1088-8691 |
IngestDate | Fri Jul 25 06:59:05 EDT 2025 Thu Apr 24 22:55:59 EDT 2025 Tue Jul 01 04:24:05 EDT 2025 Fri Feb 23 02:41:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Chaos Ship rolling motion Marine rotor-bearing system Vibration isolation structure Nonlinear dynamic |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c255t-1373795fefda1b0c29e92db654818c2dfbd5c7a6f9548c2778a75cb41251fe833 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4627-1298 |
PQID | 2637667489 |
PQPubID | 2045280 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2637667489 crossref_primary_10_1016_j_apm_2021_10_049 crossref_citationtrail_10_1016_j_apm_2021_10_049 elsevier_sciencedirect_doi_10_1016_j_apm_2021_10_049 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2022 2022-03-00 20220301 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Applied Mathematical Modelling |
PublicationYear | 2022 |
Publisher | Elsevier Inc Elsevier BV |
Publisher_xml | – name: Elsevier Inc – name: Elsevier BV |
References | Gao, Cao, Hou (bib0015) 2020; 153 Soni, Dutt, Das (bib0021) 2020; 67 Zhu, Chen (bib0006) 2009; 24 Han, Chu (bib0012) 2015; 39 Zhang, Liu, Ma (bib0018) 2013; 229 Liu, Ma, Li (bib0029) 2019; 39 Xu, Chen, Luo (bib0039) 2019; 8 Zhang, Liu, Cao (bib0019) 2012; 227 Das, Dutt, Ray (bib0033) 2010; 34 Xu, Chen, Luo (bib0036) 2020; 30 Huang, Luo (bib0038) 2015; 25 Gao, Cao, Sun (bib0014) 2020; 33 Yang, Wu, Li (bib0031) 2020; 40 Zhu, Chen (bib0005) 2006; 27 Zhang, Pei, Xu (bib0023) 2018; 48 Lu, Fang, Sun (bib0002) 2018; 26 Soni, Das, Dutt (bib0020) 2020; 467 Jung, DeSmidt (bib0028) 2018; 429 Li, Zhang (bib0030) 2020; 22 Xu, Chen, Luo (bib0037) 2019; 160 Yu, Hu, Jin (bib0004) 2000; 4 Chen, Wang, Han (bib0032) 2017; 404 Hou, Chen, Fu (bib0008) 2016; 78 Qiao, Zhao, Chen (bib0027) 2015; 230 Hou, Chen (bib0009) 2015; 36 Han, Li (bib0024) 2019; 2019 Du, Li (bib0025) 2021; 2021 Yu, Jin, Hu (bib0003) 2000; 2000 Han, Chu (bib0011) 2014; 78 Liu, Liu, Yu (bib0022) 2018; 54 Yang, Wang, Zhao (bib0035) 2014; 38 Han, Chu (bib0010) 2013; 332 Hou, Chen (bib0007) 2013; 57 Chen, Gan, Ren (bib0017) 2020; 485 Zhao, Li, Xiao (bib0026) 2015; 2015 Acanfora, Balsamo (bib0001) 2020; 8 Chen, Gan, Ren (bib0016) 2020; 235 Ma, Zhai, Wang (bib0034) 2021; 34 Qiu, Han, Chu (bib0013) 2018; 141 Hou (10.1016/j.apm.2021.10.049_bib0007) 2013; 57 Soni (10.1016/j.apm.2021.10.049_bib0020) 2020; 467 Ma (10.1016/j.apm.2021.10.049_bib0034) 2021; 34 Han (10.1016/j.apm.2021.10.049_bib0011) 2014; 78 Jung (10.1016/j.apm.2021.10.049_bib0028) 2018; 429 Hou (10.1016/j.apm.2021.10.049_bib0008) 2016; 78 Qiao (10.1016/j.apm.2021.10.049_bib0027) 2015; 230 Yu (10.1016/j.apm.2021.10.049_bib0003) 2000; 2000 Zhu (10.1016/j.apm.2021.10.049_bib0006) 2009; 24 Chen (10.1016/j.apm.2021.10.049_bib0016) 2020; 235 Liu (10.1016/j.apm.2021.10.049_bib0029) 2019; 39 Acanfora (10.1016/j.apm.2021.10.049_bib0001) 2020; 8 Huang (10.1016/j.apm.2021.10.049_bib0038) 2015; 25 Liu (10.1016/j.apm.2021.10.049_bib0022) 2018; 54 Soni (10.1016/j.apm.2021.10.049_bib0021) 2020; 67 Han (10.1016/j.apm.2021.10.049_bib0024) 2019; 2019 Yang (10.1016/j.apm.2021.10.049_bib0035) 2014; 38 Zhu (10.1016/j.apm.2021.10.049_bib0005) 2006; 27 Chen (10.1016/j.apm.2021.10.049_bib0032) 2017; 404 Xu (10.1016/j.apm.2021.10.049_bib0039) 2019; 8 Han (10.1016/j.apm.2021.10.049_bib0010) 2013; 332 Yu (10.1016/j.apm.2021.10.049_bib0004) 2000; 4 Hou (10.1016/j.apm.2021.10.049_bib0009) 2015; 36 Qiu (10.1016/j.apm.2021.10.049_bib0013) 2018; 141 Zhang (10.1016/j.apm.2021.10.049_bib0023) 2018; 48 Yang (10.1016/j.apm.2021.10.049_bib0031) 2020; 40 Xu (10.1016/j.apm.2021.10.049_bib0036) 2020; 30 Gao (10.1016/j.apm.2021.10.049_bib0015) 2020; 153 Li (10.1016/j.apm.2021.10.049_bib0030) 2020; 22 Chen (10.1016/j.apm.2021.10.049_bib0017) 2020; 485 Zhang (10.1016/j.apm.2021.10.049_bib0018) 2013; 229 Zhang (10.1016/j.apm.2021.10.049_bib0019) 2012; 227 Du (10.1016/j.apm.2021.10.049_bib0025) 2021; 2021 Xu (10.1016/j.apm.2021.10.049_bib0037) 2019; 160 Lu (10.1016/j.apm.2021.10.049_bib0002) 2018; 26 Han (10.1016/j.apm.2021.10.049_bib0012) 2015; 39 Gao (10.1016/j.apm.2021.10.049_bib0014) 2020; 33 Zhao (10.1016/j.apm.2021.10.049_bib0026) 2015; 2015 Das (10.1016/j.apm.2021.10.049_bib0033) 2010; 34 |
References_xml | – volume: 24 start-page: 371 year: 2009 end-page: 377 ident: bib0006 article-title: General dynamic model of aero-engine's rotor system during maneuvering flight publication-title: J. Aerosp. Power – volume: 33 start-page: 2633 year: 2020 end-page: 2648 ident: bib0014 article-title: Nonlinear dynamic behavior of a flexible asymmetric aero-engine rotor system in maneuvering flight publication-title: Chin. J. Aeronaut. – volume: 467 start-page: 1 year: 2020 end-page: 31 ident: bib0020 article-title: Active vibration control of ship mounted flexible rotor-shaft-bearing system during seakeeping publication-title: J. Sound Vib. – volume: 34 start-page: 2353 year: 2010 end-page: 2369 ident: bib0033 article-title: Active vibration control of unbalanced flexible rotor–shaft systems parametrically excited due to base motion publication-title: Appl. Math. Model. – volume: 27 start-page: 835 year: 2006 end-page: 841 ident: bib0005 article-title: Vibration characteristics of aero-engine's rotor system during maneuvering flight publication-title: Acta Aeronaut. Astronaut. Sin. – volume: 8 start-page: 1 year: 2020 end-page: 13 ident: bib0001 article-title: The smart detection of ship severe roll motions and decision-making for evasive actions publication-title: J. Mar. Sci. Eng. – volume: 153 start-page: 1 year: 2020 end-page: 14 ident: bib0015 article-title: An experimental study on the nonlinear vibration phenomenon of a rotor system subjected to barrel roll flight and coupled rub-impact faults publication-title: Measurement – volume: 25 start-page: 1 year: 2015 end-page: 34 ident: bib0038 article-title: Periodic motions and bifurcation trees in a buckled, nonlinear jeffcott rotor system publication-title: Int. J. Bifurcat. Chaos – volume: 2021 start-page: 1 year: 2021 end-page: 15 ident: bib0025 article-title: Nonlinear vibration mechanism of the marine rotating machinery with airbag isolation device under heaving motion publication-title: Shock Vib. – volume: 2000 start-page: 72 year: 2000 end-page: 75 ident: bib0003 article-title: Instability of ship roll with nonlinear heave-roll coupling publication-title: J. Shanghai Jiaotong Univ. – volume: 57 start-page: 203 year: 2013 end-page: 209 ident: bib0007 article-title: Analysis of 1/2 sub-harmonic resonance in a maneuvering rotor system publication-title: Sci. China Technol. Sci. – volume: 48 start-page: 369 year: 2018 end-page: 381 ident: bib0023 article-title: Safety and stability of two kinds of ship rotor bearing system under rolling condition publication-title: Sci. Sin. Technol. – volume: 67 start-page: 1160 year: 2020 end-page: 1170 ident: bib0021 article-title: Parametric stability analysis of active magnetic bearing supported rotor system with a novel control law subject to periodic base motion publication-title: IEEE Trans. Ind. Electron. – volume: 2019 start-page: 1 year: 2019 end-page: 16 ident: bib0024 article-title: Nonlinear dynamic characteristics of marine rotor-bearing system under heaving motion publication-title: Shock Vib. – volume: 229 start-page: 95 year: 2013 end-page: 107 ident: bib0018 article-title: Nonlinear dynamic characteristics of journal bearing–rotor system considering the pitching and rolling motion for marine turbo machinery publication-title: Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. – volume: 40 start-page: 1105 year: 2020 end-page: 1114 ident: bib0031 article-title: Combining active control and synchrophasing for vibration isolation of a floating raft system: an experimental demonstration publication-title: J. Low Freq. Noise Vib. Act. Control – volume: 78 start-page: 133 year: 2016 end-page: 141 ident: bib0008 article-title: Nonlinear response and bifurcation analysis of a Duffing type rotor model under sine maneuver load publication-title: Int. J. Nonlinear Mech. – volume: 38 start-page: 5239 year: 2014 end-page: 5255 ident: bib0035 article-title: A new nonlinear dynamic analysis method of rotor system supported by oil-film journal bearings publication-title: Appl. Math. Model. – volume: 30 start-page: 1 year: 2020 end-page: 24 ident: bib0036 article-title: Period-1 motion to chaos in a nonlinear flexible rotor system publication-title: Int. J. Bifurcat. Chaos – volume: 36 start-page: 1417 year: 2015 end-page: 1426 ident: bib0009 article-title: Bifurcation analysis of aero-engine's rotor system under constant maneuver load publication-title: Appl. Math. Mech. Engl. – volume: 404 start-page: 58 year: 2017 end-page: 83 ident: bib0032 article-title: Nonlinear dynamic modeling of a simple flexible rotor system subjected to time-variable base motions publication-title: J. Sound Vib. – volume: 26 start-page: 740 year: 2018 end-page: 747 ident: bib0002 article-title: Antiswing control of offshore boom cranes with ship roll disturbances publication-title: IEEE Trans. Control Syst. Technol. – volume: 8 start-page: 337 year: 2019 end-page: 351 ident: bib0039 article-title: An independent period-3 motion to chaos in a nonlinear flexible rotor system publication-title: Int. J. Dyn. Control – volume: 235 start-page: 308 year: 2020 end-page: 338 ident: bib0016 article-title: Effect of flight/structural parameters and operating conditions on dynamic behavior of a squeeze-film damped rotor system during diving–climbing maneuver publication-title: Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. – volume: 34 start-page: 1 year: 2021 end-page: 12 ident: bib0034 article-title: Unbalance vibration characteristics and sensitivity analysis of the dual-rotor system in aeroengines publication-title: J. Aerosp. Eng. – volume: 141 start-page: 31 year: 2018 end-page: 45 ident: bib0013 article-title: Dynamic modeling and analysis of the planetary gear under pitching base motion publication-title: Int. J. Mech. Sci. – volume: 429 start-page: 265 year: 2018 end-page: 286 ident: bib0028 article-title: Non-linear behaviors of off-centered planar eccentric rotor/autobalancer system mounted on asymmetric and rotational flexible foundation publication-title: J. Sound Vib. – volume: 39 start-page: 382 year: 2019 end-page: 392 ident: bib0029 article-title: Vibration control of a marine centrifugal pump using floating raft isolation system publication-title: J. Low Freq. Noise Vib. Act. Control – volume: 22 start-page: 267 year: 2020 end-page: 279 ident: bib0030 article-title: Stability analysis of floating raft system under multiexcitation condition publication-title: J. Vibroeng. – volume: 4 start-page: 73 year: 2000 end-page: 77 ident: bib0004 article-title: Current situation and trends in some aspects of research on nonlinear rolling of ships in waves publication-title: J. Ship Mech. – volume: 160 start-page: 429 year: 2019 end-page: 450 ident: bib0037 article-title: On bifurcation trees of period-1 to period-2 motions in a nonlinear Jeffcott rotor system publication-title: Int. J. Mech. Sci. – volume: 332 start-page: 6847 year: 2013 end-page: 6870 ident: bib0010 article-title: Dynamic response of cracked rotor-bearing system under time-dependent base movements publication-title: J. Sound Vib. – volume: 2015 start-page: 1 year: 2015 end-page: 18 ident: bib0026 article-title: Nonlinear dynamic behaviors of a marine rotor-bearing system coupled with air bag and floating-raft publication-title: Shock Vib. – volume: 227 start-page: 194 year: 2012 end-page: 207 ident: bib0019 article-title: Analytical model of self-acting journal bearing subjected to base excitation for marine engine system publication-title: Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. – volume: 485 start-page: 1 year: 2020 end-page: 49 ident: bib0017 article-title: Dynamic modeling and nonlinear analysis of a rotor system supported by squeeze film damper with variable static eccentricity under aircraft turning maneuver publication-title: J. Sound Vib. – volume: 230 start-page: 159 year: 2015 end-page: 173 ident: bib0027 article-title: The assessment of active vibration isolation performance of rotating machinery using power flow and vibrational energy: experimental investigation publication-title: Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. – volume: 39 start-page: 4511 year: 2015 end-page: 4522 ident: bib0012 article-title: Parametric instability of flexible rotor-bearing system under time-periodic base angular motions publication-title: Appl. Math. Model. – volume: 78 start-page: 1 year: 2014 end-page: 14 ident: bib0011 article-title: Dynamic behaviors of a geared rotor system under time-periodic base angular motions publication-title: Mech. Mach. Theory – volume: 54 start-page: 226 year: 2018 end-page: 234 ident: bib0022 article-title: Dynamic analysis of journal bearing-gear system under swing movement of the ship publication-title: J. Mech. Eng. – volume: 227 start-page: 194 year: 2012 ident: 10.1016/j.apm.2021.10.049_bib0019 article-title: Analytical model of self-acting journal bearing subjected to base excitation for marine engine system publication-title: Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. – volume: 27 start-page: 835 issue: 005 year: 2006 ident: 10.1016/j.apm.2021.10.049_bib0005 article-title: Vibration characteristics of aero-engine's rotor system during maneuvering flight publication-title: Acta Aeronaut. Astronaut. Sin. – volume: 230 start-page: 159 year: 2015 ident: 10.1016/j.apm.2021.10.049_bib0027 article-title: The assessment of active vibration isolation performance of rotating machinery using power flow and vibrational energy: experimental investigation publication-title: Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. doi: 10.1177/0954406215572434 – volume: 332 start-page: 6847 year: 2013 ident: 10.1016/j.apm.2021.10.049_bib0010 article-title: Dynamic response of cracked rotor-bearing system under time-dependent base movements publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2013.07.025 – volume: 8 start-page: 1 year: 2020 ident: 10.1016/j.apm.2021.10.049_bib0001 article-title: The smart detection of ship severe roll motions and decision-making for evasive actions publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse8060415 – volume: 2000 start-page: 72 issue: 01 year: 2000 ident: 10.1016/j.apm.2021.10.049_bib0003 article-title: Instability of ship roll with nonlinear heave-roll coupling publication-title: J. Shanghai Jiaotong Univ. – volume: 48 start-page: 369 year: 2018 ident: 10.1016/j.apm.2021.10.049_bib0023 article-title: Safety and stability of two kinds of ship rotor bearing system under rolling condition publication-title: Sci. Sin. Technol. doi: 10.1360/N092017-00094 – volume: 2015 start-page: 1 year: 2015 ident: 10.1016/j.apm.2021.10.049_bib0026 article-title: Nonlinear dynamic behaviors of a marine rotor-bearing system coupled with air bag and floating-raft publication-title: Shock Vib. – volume: 160 start-page: 429 year: 2019 ident: 10.1016/j.apm.2021.10.049_bib0037 article-title: On bifurcation trees of period-1 to period-2 motions in a nonlinear Jeffcott rotor system publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2019.06.044 – volume: 78 start-page: 1 year: 2014 ident: 10.1016/j.apm.2021.10.049_bib0011 article-title: Dynamic behaviors of a geared rotor system under time-periodic base angular motions publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2014.02.016 – volume: 235 start-page: 308 year: 2020 ident: 10.1016/j.apm.2021.10.049_bib0016 article-title: Effect of flight/structural parameters and operating conditions on dynamic behavior of a squeeze-film damped rotor system during diving–climbing maneuver publication-title: Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. doi: 10.1177/0954410020942610 – volume: 2019 start-page: 1 year: 2019 ident: 10.1016/j.apm.2021.10.049_bib0024 article-title: Nonlinear dynamic characteristics of marine rotor-bearing system under heaving motion publication-title: Shock Vib. – volume: 22 start-page: 267 year: 2020 ident: 10.1016/j.apm.2021.10.049_bib0030 article-title: Stability analysis of floating raft system under multiexcitation condition publication-title: J. Vibroeng. doi: 10.21595/jve.2019.20474 – volume: 30 start-page: 1 year: 2020 ident: 10.1016/j.apm.2021.10.049_bib0036 article-title: Period-1 motion to chaos in a nonlinear flexible rotor system publication-title: Int. J. Bifurcat. Chaos doi: 10.1142/S0218127420500777 – volume: 467 start-page: 1 year: 2020 ident: 10.1016/j.apm.2021.10.049_bib0020 article-title: Active vibration control of ship mounted flexible rotor-shaft-bearing system during seakeeping publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2019.115046 – volume: 54 start-page: 226 year: 2018 ident: 10.1016/j.apm.2021.10.049_bib0022 article-title: Dynamic analysis of journal bearing-gear system under swing movement of the ship publication-title: J. Mech. Eng. doi: 10.3901/JME.2018.17.226 – volume: 38 start-page: 5239 year: 2014 ident: 10.1016/j.apm.2021.10.049_bib0035 article-title: A new nonlinear dynamic analysis method of rotor system supported by oil-film journal bearings publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2014.04.024 – volume: 57 start-page: 203 year: 2013 ident: 10.1016/j.apm.2021.10.049_bib0007 article-title: Analysis of 1/2 sub-harmonic resonance in a maneuvering rotor system publication-title: Sci. China Technol. Sci. doi: 10.1007/s11431-013-5418-8 – volume: 78 start-page: 133 year: 2016 ident: 10.1016/j.apm.2021.10.049_bib0008 article-title: Nonlinear response and bifurcation analysis of a Duffing type rotor model under sine maneuver load publication-title: Int. J. Nonlinear Mech. doi: 10.1016/j.ijnonlinmec.2014.12.012 – volume: 39 start-page: 382 year: 2019 ident: 10.1016/j.apm.2021.10.049_bib0029 article-title: Vibration control of a marine centrifugal pump using floating raft isolation system publication-title: J. Low Freq. Noise Vib. Act. Control doi: 10.1177/1461348419843024 – volume: 404 start-page: 58 year: 2017 ident: 10.1016/j.apm.2021.10.049_bib0032 article-title: Nonlinear dynamic modeling of a simple flexible rotor system subjected to time-variable base motions publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2017.05.032 – volume: 40 start-page: 1105 year: 2020 ident: 10.1016/j.apm.2021.10.049_bib0031 article-title: Combining active control and synchrophasing for vibration isolation of a floating raft system: an experimental demonstration publication-title: J. Low Freq. Noise Vib. Act. Control doi: 10.1177/1461348420933381 – volume: 25 start-page: 1 year: 2015 ident: 10.1016/j.apm.2021.10.049_bib0038 article-title: Periodic motions and bifurcation trees in a buckled, nonlinear jeffcott rotor system publication-title: Int. J. Bifurcat. Chaos doi: 10.1142/S0218127415500029 – volume: 229 start-page: 95 year: 2013 ident: 10.1016/j.apm.2021.10.049_bib0018 article-title: Nonlinear dynamic characteristics of journal bearing–rotor system considering the pitching and rolling motion for marine turbo machinery publication-title: Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. – volume: 26 start-page: 740 year: 2018 ident: 10.1016/j.apm.2021.10.049_bib0002 article-title: Antiswing control of offshore boom cranes with ship roll disturbances publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2017.2679060 – volume: 429 start-page: 265 year: 2018 ident: 10.1016/j.apm.2021.10.049_bib0028 article-title: Non-linear behaviors of off-centered planar eccentric rotor/autobalancer system mounted on asymmetric and rotational flexible foundation publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2018.05.019 – volume: 39 start-page: 4511 year: 2015 ident: 10.1016/j.apm.2021.10.049_bib0012 article-title: Parametric instability of flexible rotor-bearing system under time-periodic base angular motions publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2014.10.064 – volume: 34 start-page: 1 year: 2021 ident: 10.1016/j.apm.2021.10.049_bib0034 article-title: Unbalance vibration characteristics and sensitivity analysis of the dual-rotor system in aeroengines publication-title: J. Aerosp. Eng. doi: 10.1061/(ASCE)AS.1943-5525.0001197 – volume: 36 start-page: 1417 issue: 11 year: 2015 ident: 10.1016/j.apm.2021.10.049_bib0009 article-title: Bifurcation analysis of aero-engine's rotor system under constant maneuver load publication-title: Appl. Math. Mech. Engl. doi: 10.1007/s10483-015-1992-7 – volume: 33 start-page: 2633 year: 2020 ident: 10.1016/j.apm.2021.10.049_bib0014 article-title: Nonlinear dynamic behavior of a flexible asymmetric aero-engine rotor system in maneuvering flight publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2020.04.001 – volume: 485 start-page: 1 year: 2020 ident: 10.1016/j.apm.2021.10.049_bib0017 article-title: Dynamic modeling and nonlinear analysis of a rotor system supported by squeeze film damper with variable static eccentricity under aircraft turning maneuver publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2020.115551 – volume: 34 start-page: 2353 year: 2010 ident: 10.1016/j.apm.2021.10.049_bib0033 article-title: Active vibration control of unbalanced flexible rotor–shaft systems parametrically excited due to base motion publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2009.11.002 – volume: 153 start-page: 1 year: 2020 ident: 10.1016/j.apm.2021.10.049_bib0015 article-title: An experimental study on the nonlinear vibration phenomenon of a rotor system subjected to barrel roll flight and coupled rub-impact faults publication-title: Measurement doi: 10.1016/j.measurement.2019.107406 – volume: 24 start-page: 371 issue: 02 year: 2009 ident: 10.1016/j.apm.2021.10.049_bib0006 article-title: General dynamic model of aero-engine's rotor system during maneuvering flight publication-title: J. Aerosp. Power – volume: 8 start-page: 337 year: 2019 ident: 10.1016/j.apm.2021.10.049_bib0039 article-title: An independent period-3 motion to chaos in a nonlinear flexible rotor system publication-title: Int. J. Dyn. Control doi: 10.1007/s40435-019-00591-0 – volume: 2021 start-page: 1 year: 2021 ident: 10.1016/j.apm.2021.10.049_bib0025 article-title: Nonlinear vibration mechanism of the marine rotating machinery with airbag isolation device under heaving motion publication-title: Shock Vib. – volume: 141 start-page: 31 year: 2018 ident: 10.1016/j.apm.2021.10.049_bib0013 article-title: Dynamic modeling and analysis of the planetary gear under pitching base motion publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2018.03.037 – volume: 67 start-page: 1160 year: 2020 ident: 10.1016/j.apm.2021.10.049_bib0021 article-title: Parametric stability analysis of active magnetic bearing supported rotor system with a novel control law subject to periodic base motion publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2019.2898604 – volume: 4 start-page: 73 issue: 1 year: 2000 ident: 10.1016/j.apm.2021.10.049_bib0004 article-title: Current situation and trends in some aspects of research on nonlinear rolling of ships in waves publication-title: J. Ship Mech. |
SSID | ssj0005904 ssj0012860 |
Score | 2.4072897 |
Snippet | •We considered the effect of ship rolling motion and nonlinear oil film force.•We considered the rotation of the raft and established a mathematical model.•We... This study focuses on the nonlinear dynamic behavior of a marine rotor-bearing system coupled with vibration isolation structure under ship rolling motion.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 344 |
SubjectTerms | Amplitudes Chaos Dynamical systems Euler-Lagrange equation Frequency spectrum Marine rotor-bearing system Nonlinear dynamic Nonlinear dynamics Numerical methods Poincare maps Rolling motion Rotor speed Rotor-bearing systems Ship rolling motion Vibration analysis Vibration isolation structure Waterfalls |
Title | Nonlinear dynamics of marine rotor-bearing system coupled with vibration isolation structure subject to ship rolling motion |
URI | https://dx.doi.org/10.1016/j.apm.2021.10.049 https://www.proquest.com/docview/2637667489 |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBelvayHsa4b_VrRYaeCG1tWJOtYyoKbkRy2BHIz-iwpXRySppfB_va9Z9mhLaWHnmwLSRj9nt_Tk9_7PUK-i0IqA8oxcSG4hDuVJyoUWWI8LzzYl-AFJiePxqKc8uGsP9sh110uDIZVtro_6vRGW7ctvXY1e8v5vPcbxVOlfAZOCxZjQ05QziVK-eW_J2EeKuUdGSL27v5sNjFeeonJ6Cy7xAAvpNN83Ta90NKN6Rl8Ih_bPSO9iq91QHb84jPZH20JV9eH5O84Ul7oFXWxxvya1oH-0ZjcR1c1eNawMPh0SyN5M7X1ZnnvHcWTWPqIXjNiROcgjPEuUstuVp6uNwaPa-hDTTG4C-ZrmLxpLAH0hUwHPybXZdLWVUgsOBBYfV7mUvWDD05nJrVMecWcwQryWWGZC8b1rdQiIBmcZVIWWvYtIAp7oeCLPP9Kdhf1wh8RynKfhcxqIVLHhXNaS6Gd1J5bU7DMHJO0W9HKtqTjWPvivuqiy-4qAKFCELAJQDgmF9shy8i48VZn3sFUPRObCizCW8POOkir9ptdV0yAssXaK-rkfbOekg8MkyOaCLUzsgso-W-wZXkw541MnpO9q5uf5Riuk1_DsvwPYDzwLA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5dByQNCHeLY-9FQp3cRx7PiIEGgp7F4AaW-Wn9VWdLPaZbnw5_HECVUrxKG3xIqtyN9kxnZmvg_gK6-FNNE5Zi4ElzEny0yGusiMZ7WP8SV4jsXJ4wkf3bIf02q6Aad9LQymVXa-P_n01lt3LcNuNoeL2Wx4jeYpczaNmxYUY2NvYBPZqaoBbJ5cXI4mfzI9ZM56PkTs0P_cbNO89ALr0WnxHXO8kFHz5fD0j6Nuo8_5Dmx3y0Zykt5sFzb8_D1sjZ85V1cf4HGSWC_0krgkM78iTSC_Ndb3kWUTN9dxbvDuJ0n8zcQ268WddwQPY8kDbpwRJjKL9piuErvseunJam3wxIbcNwTzu-J4LZk3SSpAH-H2_OzmdJR10gqZjXsIFKAXpZBV8MHpwuSWSi-pMygiX9SWumBcZYXmAfngLBWi1qKyEdS4HAq-LstPMJg3c78HhJa-CIXVnOeOcee0Flw7oT2zpqaF2Ye8n1FlO95xlL-4U32C2S8VQVAIAjZFEPbh23OXRSLdeO1h1sOk_rIcFYPCa92OekhV99muFOXR36L8ijz4v1G_wNvRzfhKXV1MLg_hHcVaiTZh7QgGETF_HFcw9-ZzZ6FPDu7xOg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+dynamics+of+marine+rotor-bearing+system+coupled+with+vibration+isolation+structure+subject+to+ship+rolling+motion&rft.jtitle=Applied+mathematical+modelling&rft.au=Xie%2C+Xuan&rft.au=Li%2C+Ming&rft.au=Du%2C+Xiaolei&rft.date=2022-03-01&rft.issn=0307-904X&rft.volume=103&rft.spage=344&rft.epage=359&rft_id=info:doi/10.1016%2Fj.apm.2021.10.049&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apm_2021_10_049 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon |