Biomaterial scaffolds for tissue engineering
Reconstruction and regeneration of new tissues are challenges facing scientists, technologists and clinicians. This review describes strategies of selection and design of biomaterials having significant impact on various possible synthesis routes for scaffold fabrication. The criteria for three-dime...
Saved in:
Published in | Frontiers in bioscience (Elite edition) Vol. 5; no. 1; p. 341 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Singapore
01.01.2013
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | Reconstruction and regeneration of new tissues are challenges facing scientists, technologists and clinicians. This review describes strategies of selection and design of biomaterials having significant impact on various possible synthesis routes for scaffold fabrication. The criteria for three-dimensional (3D) scaffold architectures are explored in tandem with biomaterial properties such as porosity, interconnectivity and mechanical integrity. The cell-surface biointerface is outlined in terms of biomaterial composition, target tissues and biological evaluation with emphasis on bone tissue engineering. Comparative merits and demerits of conventional and rapid prototyping (RP) approaches of fabrication are discussed. The conventional methods are often simple to design, inexpensive and flexible to optimise or modulate physicochemical properties. Despite being expensive and suffering from certain drawbacks of choice of materials and capital costs many generic RP techniques are extremely attractive in their ability to mimic new tissue structures and possibility of incorporating pharmaceutical agents. The future directions include scaffold development using nanobiomaterial based biosystems /biointerfaces where cell biology including genetically modified tissue engineering approaches can play a cross-disciplinary role for the success of tissue augmentation. |
---|---|
AbstractList | Reconstruction and regeneration of new tissues are challenges facing scientists, technologists and clinicians. This review describes strategies of selection and design of biomaterials having significant impact on various possible synthesis routes for scaffold fabrication. The criteria for three-dimensional (3D) scaffold architectures are explored in tandem with biomaterial properties such as porosity, interconnectivity and mechanical integrity. The cell-surface biointerface is outlined in terms of biomaterial composition, target tissues and biological evaluation with emphasis on bone tissue engineering. Comparative merits and demerits of conventional and rapid prototyping (RP) approaches of fabrication are discussed. The conventional methods are often simple to design, inexpensive and flexible to optimise or modulate physicochemical properties. Despite being expensive and suffering from certain drawbacks of choice of materials and capital costs many generic RP techniques are extremely attractive in their ability to mimic new tissue structures and possibility of incorporating pharmaceutical agents. The future directions include scaffold development using nanobiomaterial based biosystems /biointerfaces where cell biology including genetically modified tissue engineering approaches can play a cross-disciplinary role for the success of tissue augmentation. |
Author | Mallick, Kajal K Cox, Sophie C |
Author_xml | – sequence: 1 givenname: Kajal K surname: Mallick fullname: Mallick, Kajal K email: k.k.mallick@warwick.ac.uk organization: Warwick Manufacturing Group, School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom. k.k.mallick@warwick.ac.uk – sequence: 2 givenname: Sophie C surname: Cox fullname: Cox, Sophie C |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23276994$$D View this record in MEDLINE/PubMed |
BookMark | eNo1jltLAzEUhA-i2OtfkP0Brp6czfVRS71AoS_6XJJsUiK72bJpH_z3LqjzMszHMMwCrvOQA8CK4QMpzh63kvAK5sxwUaNAPYN1KV84SQrWGH0LM2pISWP4HO6f09DbcxiT7aribYxD15YqDmN1TqVcQhXyMeUwFfJxBTfRdiWs_3wJny_bj81bvdu_vm-edrUnIbA2ZNvotIyGNLoptFxKhcxpxZRXE7YyGELRGGa9sY2UFKJXxJAHFR0t4e5393RxfWgPpzH1dvw-_N-mH8hMQY0 |
CitedBy_id | crossref_primary_10_1631_jzus_B1500036 crossref_primary_10_3389_fbioe_2023_1150764 crossref_primary_10_3390_bioengineering10050532 crossref_primary_10_3390_ijms242216316 crossref_primary_10_1111_febs_13704 crossref_primary_10_3389_fncel_2020_558381 crossref_primary_10_3390_polym13193321 crossref_primary_10_1002_adhm_202304196 crossref_primary_10_1016_j_jconrel_2014_04_011 crossref_primary_10_1007_s40005_019_00433_3 crossref_primary_10_1016_j_msec_2017_03_264 crossref_primary_10_21823_2311_2905_2021_27_1_53_65 crossref_primary_10_3390_ma11081374 crossref_primary_10_1016_j_carbpol_2017_04_089 crossref_primary_10_1038_s41536_022_00236_5 crossref_primary_10_1088_1758_5090_7_3_035007 crossref_primary_10_3390_molecules27248830 crossref_primary_10_3390_ma11071116 crossref_primary_10_1371_journal_pone_0204677 crossref_primary_10_3389_fbioe_2022_889481 crossref_primary_10_1039_C9GC02391G crossref_primary_10_1371_journal_pone_0110251 crossref_primary_10_1186_s12958_024_01219_5 crossref_primary_10_3389_fphys_2016_00062 crossref_primary_10_1016_j_ijpharm_2015_03_048 crossref_primary_10_1016_j_actbio_2014_01_019 crossref_primary_10_1016_j_msec_2020_110939 crossref_primary_10_3390_polym12040844 crossref_primary_10_1016_j_carbpol_2016_07_118 crossref_primary_10_4161_21592527_2014_955386 crossref_primary_10_1002_jbm_b_33509 crossref_primary_10_3390_md21030189 crossref_primary_10_1021_acs_biomac_8b01137 crossref_primary_10_1016_j_biomaterials_2014_10_028 crossref_primary_10_1016_j_coms_2016_08_003 crossref_primary_10_1002_jbm_a_35035 crossref_primary_10_1016_j_carbpol_2016_05_074 crossref_primary_10_1517_14712598_2015_1070825 crossref_primary_10_1002_jbm_b_35140 crossref_primary_10_2217_nnm_2021_0224 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.2741/E620 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1945-0508 |
ExternalDocumentID | 23276994 |
Genre | Journal Article Review |
GroupedDBID | --- 3IV 53G ALMA_UNASSIGNED_HOLDINGS CGR CUY CVF ECM EIF F5P GROUPED_DOAJ NPM |
ID | FETCH-LOGICAL-c2550-92adfb86f9280b2add466701b8717c7f92a6e9205391ac9a3662efc72104e7fb2 |
IngestDate | Sat Sep 28 08:21:29 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2550-92adfb86f9280b2add466701b8717c7f92a6e9205391ac9a3662efc72104e7fb2 |
OpenAccessLink | https://www.imrpress.com/journal/FBE/5/1/10.2741/E620/pdf |
PMID | 23276994 |
ParticipantIDs | pubmed_primary_23276994 |
PublicationCentury | 2000 |
PublicationDate | 2013-01-01 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Frontiers in bioscience (Elite edition) |
PublicationTitleAlternate | Front Biosci (Elite Ed) |
PublicationYear | 2013 |
SSID | ssj0000651398 |
Score | 2.2040718 |
SecondaryResourceType | review_article |
Snippet | Reconstruction and regeneration of new tissues are challenges facing scientists, technologists and clinicians. This review describes strategies of selection... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 341 |
SubjectTerms | Biocompatible Materials - chemistry Ceramics - chemistry Extracellular Matrix - chemistry Polymers - chemistry Tissue Engineering - instrumentation Tissue Engineering - methods Tissue Scaffolds - chemistry |
Title | Biomaterial scaffolds for tissue engineering |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23276994 |
Volume | 5 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5OYYgg3u_SB99mte2atHlU2RjK9uIGexu54mSug-3JX-9Jk3ZlXlBfSpvQJM2XnnznkHMOQlcqJFgBMfA1F8KPlUh8FuPAByoiWVOKUKXGG7nbI51B_DjEwyK9u_MuWfAb8f6lX8l_UIUywNV4yf4B2bJRKIB7wBeugDBcf4Xx_TgDwpn31JgLpnU2kXN7cDCfz4ZaRhusstC2iVpgcmAbawcfZ4VvD7DNlvFJbsCOlh_6WJoJumwycUnXn9gr9FeaR12m4uds9jJWzujqzAgmpUNpRlBW9NEY-wEO0qpsxJ-WgJVzTRutalX-mlg4MGktkju4LSoQzN5yDIC_JYTatMY_165EwS6qaqiWpEae9ZxVxu64GIhsWkdbbgy3ZgQmzrN7a0VnyLlDfwdtO9Lv3VkEd9Gamu6hetcda9hH1xUgvRJID4D0LJBeBcgDNGi3-g8d36Wx8AXoa7DsIyY1T4mmURpweJAxIUkQctBVE5FAMSOKRiANacgEZU1CIqUFqOZBrBLNo0O0Ps2m6hh5FHMOjIvBFgaNSEojqWITYY2JlEgZnaAj-52jmY1VMipm4PTbmjO0uVwP52hDw8-hLoBpLfhlPs0fmKQngA |
link.rule.ids | 783 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biomaterial+scaffolds+for+tissue+engineering&rft.jtitle=Frontiers+in+bioscience+%28Elite+edition%29&rft.au=Mallick%2C+Kajal+K&rft.au=Cox%2C+Sophie+C&rft.date=2013-01-01&rft.eissn=1945-0508&rft.volume=5&rft.issue=1&rft.spage=341&rft_id=info:doi/10.2741%2FE620&rft_id=info%3Apmid%2F23276994&rft_id=info%3Apmid%2F23276994&rft.externalDocID=23276994 |