Strain energy in human tibia during different exercises with adjustable leg weights: a subject-specific computational model analysis

Physical exercise is recommended to improve tibia strength, a common site for stress injuries, while identifying optimal training regimens remains a significant challenge. This study investigated tibial responses to varied exercise regimens using a subject-specific computational modeling approach. A...

Full description

Saved in:
Bibliographic Details
Published inMedical & biological engineering & computing
Main Authors Guo, Xuan, Xu, XinSheng, Geng, Xiang, Zhang, Zhenming, Ma, Xin, Chen, Wen-Ming
Format Journal Article
LanguageEnglish
Published United States 07.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Physical exercise is recommended to improve tibia strength, a common site for stress injuries, while identifying optimal training regimens remains a significant challenge. This study investigated tibial responses to varied exercise regimens using a subject-specific computational modeling approach. A subject-specific neuro-musculoskeletal model was combined with a finite element model to assess the effects of various exercises (jumping, landing, squatting, and walking) on tibial strain energy density (SED), as well as the impact of adjustable leg weights placed at different sites (shank versus thigh). The temporal relationship between joint/muscular loads and SED was then analyzed. A non-linear relationship between load weights and SED increase was observed, with 4% body weight load being the optimal load weight. Additionally, load carriage sites significantly influenced SED levels, emphasizing the necessity for individualized training regimens. The gastrocnemius, soleus, and peroneal muscles were identified as key contributors to tibial SED, with the highest correlations observed during various activities. This study underscored the utility of the subject-specific computational model in assessing the biomechanical impact of varied load weights, load sites, and exercise types. For a target bone site, it is beneficial to customize exercise programs based on individual biomechanical properties in order to maximize training benefits and meanwhile reduce risks of injuries.
AbstractList Physical exercise is recommended to improve tibia strength, a common site for stress injuries, while identifying optimal training regimens remains a significant challenge. This study investigated tibial responses to varied exercise regimens using a subject-specific computational modeling approach. A subject-specific neuro-musculoskeletal model was combined with a finite element model to assess the effects of various exercises (jumping, landing, squatting, and walking) on tibial strain energy density (SED), as well as the impact of adjustable leg weights placed at different sites (shank versus thigh). The temporal relationship between joint/muscular loads and SED was then analyzed. A non-linear relationship between load weights and SED increase was observed, with 4% body weight load being the optimal load weight. Additionally, load carriage sites significantly influenced SED levels, emphasizing the necessity for individualized training regimens. The gastrocnemius, soleus, and peroneal muscles were identified as key contributors to tibial SED, with the highest correlations observed during various activities. This study underscored the utility of the subject-specific computational model in assessing the biomechanical impact of varied load weights, load sites, and exercise types. For a target bone site, it is beneficial to customize exercise programs based on individual biomechanical properties in order to maximize training benefits and meanwhile reduce risks of injuries.
Physical exercise is recommended to improve tibia strength, a common site for stress injuries, while identifying optimal training regimens remains a significant challenge. This study investigated tibial responses to varied exercise regimens using a subject-specific computational modeling approach. A subject-specific neuro-musculoskeletal model was combined with a finite element model to assess the effects of various exercises (jumping, landing, squatting, and walking) on tibial strain energy density (SED), as well as the impact of adjustable leg weights placed at different sites (shank versus thigh). The temporal relationship between joint/muscular loads and SED was then analyzed. A non-linear relationship between load weights and SED increase was observed, with 4% body weight load being the optimal load weight. Additionally, load carriage sites significantly influenced SED levels, emphasizing the necessity for individualized training regimens. The gastrocnemius, soleus, and peroneal muscles were identified as key contributors to tibial SED, with the highest correlations observed during various activities. This study underscored the utility of the subject-specific computational model in assessing the biomechanical impact of varied load weights, load sites, and exercise types. For a target bone site, it is beneficial to customize exercise programs based on individual biomechanical properties in order to maximize training benefits and meanwhile reduce risks of injuries.Physical exercise is recommended to improve tibia strength, a common site for stress injuries, while identifying optimal training regimens remains a significant challenge. This study investigated tibial responses to varied exercise regimens using a subject-specific computational modeling approach. A subject-specific neuro-musculoskeletal model was combined with a finite element model to assess the effects of various exercises (jumping, landing, squatting, and walking) on tibial strain energy density (SED), as well as the impact of adjustable leg weights placed at different sites (shank versus thigh). The temporal relationship between joint/muscular loads and SED was then analyzed. A non-linear relationship between load weights and SED increase was observed, with 4% body weight load being the optimal load weight. Additionally, load carriage sites significantly influenced SED levels, emphasizing the necessity for individualized training regimens. The gastrocnemius, soleus, and peroneal muscles were identified as key contributors to tibial SED, with the highest correlations observed during various activities. This study underscored the utility of the subject-specific computational model in assessing the biomechanical impact of varied load weights, load sites, and exercise types. For a target bone site, it is beneficial to customize exercise programs based on individual biomechanical properties in order to maximize training benefits and meanwhile reduce risks of injuries.
Author Geng, Xiang
Zhang, Zhenming
Chen, Wen-Ming
Ma, Xin
Xu, XinSheng
Guo, Xuan
Author_xml – sequence: 1
  givenname: Xuan
  surname: Guo
  fullname: Guo, Xuan
– sequence: 2
  givenname: XinSheng
  surname: Xu
  fullname: Xu, XinSheng
– sequence: 3
  givenname: Xiang
  surname: Geng
  fullname: Geng, Xiang
– sequence: 4
  givenname: Zhenming
  surname: Zhang
  fullname: Zhang, Zhenming
– sequence: 5
  givenname: Xin
  surname: Ma
  fullname: Ma, Xin
– sequence: 6
  givenname: Wen-Ming
  orcidid: 0000-0003-0409-5118
  surname: Chen
  fullname: Chen, Wen-Ming
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40053302$$D View this record in MEDLINE/PubMed
BookMark eNo9kU1PGzEQhi2Uqgm0f6AH5GMvpv6M494qRFskpB7gbnnt2cTRrjfYXkHu_PCaBnqa9_BoRvM-52iRpgQIfWH0ilGqvxXGFNOEckWoEEIRc4ZWTEtGqJRygVaUSUooY5slOi9lTylnisuPaCkpVUJQvkIv9zW7mDAkyNsjbmk3jy7hGrvocJhzTFscYt9DhlQxPEP2sUDBT7HusAv7uVTXDYAH2OIniNtdLd-xw2Xu9uArKQfwsY8e-2k8zNXVOCU34HEKMGDX4rHE8gl96N1Q4PPbvEAPP28ern-Tuz-_bq9_3BHPlayk18Ybw-Q6mABBCeiMZpuOM270mhmtqPSGgzZcB9XI3q2d81LDplOhPXyBvp7WHvL0OEOpdozFwzC4BNNcrGjdbVi7IBp6-YbO3QjBHnIcXT7a9-IawE-Az1MpGfr_CKP21Y492bHNjv1nxxrxF3-Vg8A
Cites_doi 10.1016/S8756-3282(02)00815-3
10.1038/ncomms5855
10.1080/17461391.2021.1949637
10.1186/s12891-019-2513-4
10.1186/1741-7015-8-47
10.1016/j.bone.2022.116392
10.1097/00003677-200301000-00009
10.1359/JBMR.041222
10.1109/TBME.2023.3248504
10.1115/1.4029258
10.3389/fphys.2022.803219
10.1016/j.csm.2014.06.002
10.1007/s11657-017-0362-z
10.1186/s12891-017-1481-9
10.1136/bjsm.34.1.18
10.1038/s41598-023-35742-z
10.1007/s40279-022-01726-8
10.1016/S8756-3282(98)00118-5
10.1016/j.jshs.2016.08.012
10.2106/00004623-198466030-00010
10.1002/jor.24205
10.1016/j.bone.2008.05.012
10.1002/ar.1049
10.1007/s11517-024-03134-8
10.1007/s11517-023-03010-x
10.1097/00042752-199604000-00005
10.1016/j.jsams.2018.05.026
10.1016/j.jshs.2023.06.005
10.1016/8756-3282(96)00028-2
10.7205/MILMED-D-15-00571
10.1115/1.4055756
10.1115/1.4034216
10.3389/fbioe.2023.1250937
10.1016/j.jelekin.2011.08.005
10.1002/cnm.3310
10.1016/j.jbiomech.2013.06.020
10.1038/s41598-021-81401-6
10.1152/japplphysiol.00189.2005
10.1519/JSC.0b013e318215f779
10.1016/j.bone.2020.115696
10.3390/medicina56020056
10.1152/jn.1978.41.5.1203
10.1016/j.pmrj.2014.09.017
10.1016/j.bonr.2022.101170
10.1016/0021-9290(87)90030-3
10.1186/s12891023-06897-7
10.1093/ageing/afab071
10.1016/0021-9290(86)90184-3
10.1109/TBME.2019.2917415
ContentType Journal Article
Copyright 2025. International Federation for Medical and Biological Engineering.
Copyright_xml – notice: 2025. International Federation for Medical and Biological Engineering.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1007/s11517-025-03335-9
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1741-0444
ExternalDocumentID 40053302
10_1007_s11517_025_03335_9
Genre Journal Article
GrantInformation_xml – fundername: Shanghai Science and Technology Development Foundation
  grantid: No. 21511102200
– fundername: National Natural Science Foundation of China
  grantid: No. 12372322
GroupedDBID ---
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
203
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
36B
4.4
406
408
40D
40E
5GY
5RE
5VS
67Z
6NX
7RV
7WY
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSTC
ACZOJ
ADBBV
ADHHG
ADHIR
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
AKMHD
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ATHPR
AXYYD
AYFIA
AZFZN
B-.
BA0
BBNVY
BENPR
BGNMA
BHPHI
BMSDO
BSONS
CITATION
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EAP
EBLON
EBR
EBS
EBU
EDO
EHE
EIOEI
EMB
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
HCIFZ
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K60
K6~
KDC
KOV
L7B
LLZTM
M43
M4Y
M7P
MA-
N9A
NAPCQ
NB0
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
P9P
PF0
PT4
PT5
QOK
QOR
QOS
QWB
R89
R9I
RHV
ROL
RPX
RSV
RXW
S16
S1Z
S27
S3B
SAP
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UOJIU
UTJUX
VC2
W23
W48
WK8
YLTOR
Z45
ZL0
ZMTXR
ZOVNA
~EX
~KM
NPM
7X8
ID FETCH-LOGICAL-c254t-f79c99146d9ded53eb9718b212976197504c92e7927d5c99fa6aac47e8b5d053
ISSN 0140-0118
1741-0444
IngestDate Fri Jul 11 07:46:19 EDT 2025
Thu Apr 03 07:04:34 EDT 2025
Tue Jul 01 05:21:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Biomechanics
Strain energy density
Physical activities
Bone
Computational model
Language English
License 2025. International Federation for Medical and Biological Engineering.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c254t-f79c99146d9ded53eb9718b212976197504c92e7927d5c99fa6aac47e8b5d053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0409-5118
PMID 40053302
PQID 3174819913
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3174819913
pubmed_primary_40053302
crossref_primary_10_1007_s11517_025_03335_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-07
PublicationDateYYYYMMDD 2025-03-07
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-07
  day: 07
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical & biological engineering & computing
PublicationTitleAlternate Med Biol Eng Comput
PublicationYear 2025
References JM Hughes (3335_CR5) 2022; 22
MI Carter (3335_CR14) 2014; 111
M Ishikawa (3335_CR50) 2005; 99
Y Wang (3335_CR51) 2021; 11
CH Turner (3335_CR40) 2003; 31
M Zoran (3335_CR23) 2022; 52
D Burr (3335_CR37) 2002; 31
T Liu (3335_CR31) 2024; 62
B Walmsley (3335_CR48) 1978; 41
HM Frost (3335_CR11) 2001; 262
J Tong (3335_CR20) 2023; 70
R Nikander (3335_CR13) 2010; 8
3335_CR46
BR Waterman (3335_CR1) 2016; 181
CT Rubin (3335_CR45) 1984; 66
A Silder (3335_CR44) 2013; 46
MF Bobbert (3335_CR49) 1986; 19
SJ Warden (3335_CR4) 2005; 20
A Khassetarash (3335_CR29) 2022; 145
H Wang (3335_CR27) 2019; 8
R Huiskes (3335_CR36) 1987; 20
CH Turner (3335_CR38) 1998; 23
M Martyn-St James (3335_CR22) 2008; 43
JM Hughes (3335_CR26) 2019; 22
C Xu (3335_CR28) 2017; 18
C Xu (3335_CR30) 2016; 138
MA Marra (3335_CR32) 2015; 137
JM Jacobs (3335_CR7) 2014; 33
JC Mcleod (3335_CR18) 2023; 13
C Milgrom (3335_CR25) 2022; 16
IS Moideen (3335_CR35) 2020; 36
C Bregoli (3335_CR16) 2024; 62
A Gómez-Bruton (3335_CR41) 2017; 12
AS Tenforde (3335_CR6) 2015; 7
K Watanabe (3335_CR34) 2020; 56
Y Zhu (3335_CR33) 2023; 24
E Rhodes (3335_CR17) 2000; 34
H Pihlajamäki (3335_CR8) 2019; 20
V Glatt (3335_CR42) 2019; 37
C Xu (3335_CR21) 2019; 67
P Christen (3335_CR12) 2014; 5
R Yanovich (3335_CR3) 2011; 25
M Kistler-Fischbacher (3335_CR9) 2021; 143
C Yan (3335_CR39) 2022; 159
DB Burr (3335_CR24) 1996; 18
Y Gimmon (3335_CR47) 2011; 21
P Brukner (3335_CR2) 1996; 6
JE Rubio (3335_CR19) 2023; 11
S Aloraibi (3335_CR43) 2021; 50
Z Lin (3335_CR10) 2023; 13
KJ Koltun (3335_CR15) 2022; 13
References_xml – volume: 31
  start-page: 8
  issue: 1
  year: 2002
  ident: 3335_CR37
  publication-title: Bone
  doi: 10.1016/S8756-3282(02)00815-3
– volume: 111
  start-page: 59
  issue: 1
  year: 2014
  ident: 3335_CR14
  publication-title: Mo Med
– volume: 5
  start-page: 4855
  issue: 1
  year: 2014
  ident: 3335_CR12
  publication-title: Nat Commun
  doi: 10.1038/ncomms5855
– volume: 22
  start-page: 4
  issue: 1
  year: 2022
  ident: 3335_CR5
  publication-title: Eur J Sport Sci
  doi: 10.1080/17461391.2021.1949637
– volume: 20
  start-page: 1
  year: 2019
  ident: 3335_CR8
  publication-title: BMC Musculoskelet Disord
  doi: 10.1186/s12891-019-2513-4
– volume: 8
  start-page: 47
  issue: 1
  year: 2010
  ident: 3335_CR13
  publication-title: BMC Med
  doi: 10.1186/1741-7015-8-47
– volume: 159
  start-page: 116392
  year: 2022
  ident: 3335_CR39
  publication-title: Bone
  doi: 10.1016/j.bone.2022.116392
– volume: 31
  start-page: 45
  issue: 1
  year: 2003
  ident: 3335_CR40
  publication-title: Exerc Sport Sci Rev
  doi: 10.1097/00003677-200301000-00009
– volume: 20
  start-page: 809
  issue: 5
  year: 2005
  ident: 3335_CR4
  publication-title: J Bone Miner Res
  doi: 10.1359/JBMR.041222
– volume: 70
  start-page: 2445
  issue: 8
  year: 2023
  ident: 3335_CR20
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2023.3248504
– volume: 137
  start-page: 020904
  issue: 2
  year: 2015
  ident: 3335_CR32
  publication-title: J Biomech Eng
  doi: 10.1115/1.4029258
– volume: 13
  start-page: 135
  year: 2022
  ident: 3335_CR15
  publication-title: Front Physiol
  doi: 10.3389/fphys.2022.803219
– volume: 33
  start-page: 591
  issue: 4
  year: 2014
  ident: 3335_CR7
  publication-title: Clin Sports Med
  doi: 10.1016/j.csm.2014.06.002
– volume: 12
  start-page: 1
  issue: 69
  year: 2017
  ident: 3335_CR41
  publication-title: Arch Osteoporos
  doi: 10.1007/s11657-017-0362-z
– volume: 18
  start-page: 1
  issue: 1
  year: 2017
  ident: 3335_CR28
  publication-title: BMC Musculoskelet Disord
  doi: 10.1186/s12891-017-1481-9
– volume: 34
  start-page: 18
  issue: 1
  year: 2000
  ident: 3335_CR17
  publication-title: Br J Sports Med
  doi: 10.1136/bjsm.34.1.18
– volume: 13
  start-page: 10054
  issue: 1
  year: 2023
  ident: 3335_CR10
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-35742-z
– volume: 52
  start-page: 3021
  issue: 12
  year: 2022
  ident: 3335_CR23
  publication-title: Sports medicine (Auckland, NZ)
  doi: 10.1007/s40279-022-01726-8
– volume: 23
  start-page: 399
  issue: 5
  year: 1998
  ident: 3335_CR38
  publication-title: Bone
  doi: 10.1016/S8756-3282(98)00118-5
– volume: 8
  start-page: 478
  issue: 5
  year: 2019
  ident: 3335_CR27
  publication-title: J Sport Health Sci
  doi: 10.1016/j.jshs.2016.08.012
– volume: 66
  start-page: 397
  issue: 3
  year: 1984
  ident: 3335_CR45
  publication-title: J Bone Joint Surg
  doi: 10.2106/00004623-198466030-00010
– volume: 37
  start-page: 1263
  issue: 6
  year: 2019
  ident: 3335_CR42
  publication-title: J Orthop Res
  doi: 10.1002/jor.24205
– volume: 43
  start-page: 521
  issue: 3
  year: 2008
  ident: 3335_CR22
  publication-title: Bone
  doi: 10.1016/j.bone.2008.05.012
– volume: 262
  start-page: 398
  issue: 4
  year: 2001
  ident: 3335_CR11
  publication-title: Anat Rec
  doi: 10.1002/ar.1049
– volume: 62
  start-page: 3263
  issue: 11
  year: 2024
  ident: 3335_CR16
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-024-03134-8
– volume: 62
  start-page: 1395
  issue: 5
  year: 2024
  ident: 3335_CR31
  publication-title: Med Biol Eng Compu
  doi: 10.1007/s11517-023-03010-x
– volume: 6
  start-page: 85
  issue: 2
  year: 1996
  ident: 3335_CR2
  publication-title: Clin J Sport Med
  doi: 10.1097/00042752-199604000-00005
– volume: 22
  start-page: 48
  issue: 1
  year: 2019
  ident: 3335_CR26
  publication-title: J Sci Med Sport
  doi: 10.1016/j.jsams.2018.05.026
– volume: 13
  start-page: 47
  issue: 1
  year: 2023
  ident: 3335_CR18
  publication-title: J Sport Health Sci
  doi: 10.1016/j.jshs.2023.06.005
– volume: 18
  start-page: 405
  issue: 5
  year: 1996
  ident: 3335_CR24
  publication-title: Bone
  doi: 10.1016/8756-3282(96)00028-2
– volume: 181
  start-page: 1308
  issue: 10
  year: 2016
  ident: 3335_CR1
  publication-title: Mil Med
  doi: 10.7205/MILMED-D-15-00571
– volume: 145
  start-page: 041007
  issue: 4
  year: 2022
  ident: 3335_CR29
  publication-title: J Biomech Eng
  doi: 10.1115/1.4055756
– volume: 138
  start-page: 101001
  issue: 10
  year: 2016
  ident: 3335_CR30
  publication-title: J Biomech Eng
  doi: 10.1115/1.4034216
– volume: 11
  start-page: 1250937
  year: 2023
  ident: 3335_CR19
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2023.1250937
– volume: 21
  start-page: 922
  issue: 6
  year: 2011
  ident: 3335_CR47
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/j.jelekin.2011.08.005
– volume: 36
  start-page: 3310
  issue: 3
  year: 2020
  ident: 3335_CR35
  publication-title: Int J Numer Methods Biomed Eng
  doi: 10.1002/cnm.3310
– volume: 46
  start-page: 2522
  issue: 14
  year: 2013
  ident: 3335_CR44
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2013.06.020
– volume: 11
  start-page: 1781
  issue: 1
  year: 2021
  ident: 3335_CR51
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-81401-6
– volume: 99
  start-page: 603
  issue: 2
  year: 2005
  ident: 3335_CR50
  publication-title: J Appl Physiol
  doi: 10.1152/japplphysiol.00189.2005
– ident: 3335_CR46
– volume: 25
  start-page: 3412
  issue: 12
  year: 2011
  ident: 3335_CR3
  publication-title: J Strength Cond Res
  doi: 10.1519/JSC.0b013e318215f779
– volume: 143
  start-page: 115696
  year: 2021
  ident: 3335_CR9
  publication-title: Bone
  doi: 10.1016/j.bone.2020.115696
– volume: 56
  start-page: 56
  issue: 2
  year: 2020
  ident: 3335_CR34
  publication-title: Medicina
  doi: 10.3390/medicina56020056
– volume: 41
  start-page: 1203
  issue: 5
  year: 1978
  ident: 3335_CR48
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1978.41.5.1203
– volume: 7
  start-page: 222
  issue: 2
  year: 2015
  ident: 3335_CR6
  publication-title: PM&R
  doi: 10.1016/j.pmrj.2014.09.017
– volume: 16
  start-page: 101170
  year: 2022
  ident: 3335_CR25
  publication-title: Bone Rep
  doi: 10.1016/j.bonr.2022.101170
– volume: 20
  start-page: 1135
  issue: 11–12
  year: 1987
  ident: 3335_CR36
  publication-title: J Biomech
  doi: 10.1016/0021-9290(87)90030-3
– volume: 24
  start-page: 775
  issue: 1
  year: 2023
  ident: 3335_CR33
  publication-title: BMC Musculoskelet Disord
  doi: 10.1186/s12891023-06897-7
– volume: 50
  start-page: 1129
  issue: 4
  year: 2021
  ident: 3335_CR43
  publication-title: Age Ageing
  doi: 10.1093/ageing/afab071
– volume: 19
  start-page: 887
  issue: 11
  year: 1986
  ident: 3335_CR49
  publication-title: J Biomech
  doi: 10.1016/0021-9290(86)90184-3
– volume: 67
  start-page: 545
  issue: 2
  year: 2019
  ident: 3335_CR21
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2019.2917415
SSID ssj0021524
Score 2.4192612
SecondaryResourceType online_first
Snippet Physical exercise is recommended to improve tibia strength, a common site for stress injuries, while identifying optimal training regimens remains a...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Title Strain energy in human tibia during different exercises with adjustable leg weights: a subject-specific computational model analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/40053302
https://www.proquest.com/docview/3174819913
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbbDZReQvreNi0q9LaorGXJsnpLSkMoJJdswfRiZFtuG1qnZG0KPfcn5Adn9PTukkDTi_Fqxdh4PqSZ0XwzCL2lrUpE1lZEsFYTVukFkRwcV5a1XDULzXluiMInp9nxZ_ap4MVkcrWWtTT01bv6z428kv_RKoyBXg1L9g6ajUJhAO5Bv3AFDcP1n3R8Zhs8zHXk77mOe5YGEgiIoQNKH7srBUJbc27IU4Y59UN_nf-2MdKVIz-vhsrEZ4jhYZpcIpt5PvQhcGjb58yVr2eybt-Gcx8DKFffyf7UY9VD-5cTF3ZNk_4z2JBtMYxgLQY78r07-6bXJmq3OBUA6zgYo95fYOrPINbHMii3yVxiI7xp0uT8iqzdkgw2DzFV7W5c8BeeAA2GiyBOYppyIsftLRzpb-16MRdxrNtsZJQgo7QySnkP7VBwPugU7RwcHR6eRkcebB4WU2PhbT0Zy1Eyt99k0-C5xYux1sxyD-16NwQfOEw9RBPdPUL3T3yixWP010ELO2hhuLPQwhZa2EELR2jhCC1soIVHaGGAFvbQeo8V3gYW3gAWtsDCAVhP0PLo4_LDMfENO0hNOetJK2QN_gbLGtnohqe6kmD6VGAdSRMtM50Eakm1kFQ0HGa2KlOqZkLnFW9gN3iKpt1Fp58jnOR5nrEkUaJuWJ1QBVLrlqZZriomMjlD8_BRy1-uLEt5uyJn6E347iWsnuZITHX6YliVYD2z3GT_pTP0zCkkymOWp76gL-70rJfowYjsfTTtLwf9CuzWvnrtYXQNl8eX1Q
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strain+energy+in+human+tibia+during+different+exercises+with+adjustable+leg+weights%3A+a+subject-specific+computational+model+analysis&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Guo%2C+Xuan&rft.au=Xu%2C+XinSheng&rft.au=Geng%2C+Xiang&rft.au=Zhang%2C+Zhenming&rft.date=2025-03-07&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007%2Fs11517-025-03335-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11517_025_03335_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon