Strain energy in human tibia during different exercises with adjustable leg weights: a subject-specific computational model analysis
Physical exercise is recommended to improve tibia strength, a common site for stress injuries, while identifying optimal training regimens remains a significant challenge. This study investigated tibial responses to varied exercise regimens using a subject-specific computational modeling approach. A...
Saved in:
Published in | Medical & biological engineering & computing |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
07.03.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Physical exercise is recommended to improve tibia strength, a common site for stress injuries, while identifying optimal training regimens remains a significant challenge. This study investigated tibial responses to varied exercise regimens using a subject-specific computational modeling approach. A subject-specific neuro-musculoskeletal model was combined with a finite element model to assess the effects of various exercises (jumping, landing, squatting, and walking) on tibial strain energy density (SED), as well as the impact of adjustable leg weights placed at different sites (shank versus thigh). The temporal relationship between joint/muscular loads and SED was then analyzed. A non-linear relationship between load weights and SED increase was observed, with 4% body weight load being the optimal load weight. Additionally, load carriage sites significantly influenced SED levels, emphasizing the necessity for individualized training regimens. The gastrocnemius, soleus, and peroneal muscles were identified as key contributors to tibial SED, with the highest correlations observed during various activities. This study underscored the utility of the subject-specific computational model in assessing the biomechanical impact of varied load weights, load sites, and exercise types. For a target bone site, it is beneficial to customize exercise programs based on individual biomechanical properties in order to maximize training benefits and meanwhile reduce risks of injuries. |
---|---|
AbstractList | Physical exercise is recommended to improve tibia strength, a common site for stress injuries, while identifying optimal training regimens remains a significant challenge. This study investigated tibial responses to varied exercise regimens using a subject-specific computational modeling approach. A subject-specific neuro-musculoskeletal model was combined with a finite element model to assess the effects of various exercises (jumping, landing, squatting, and walking) on tibial strain energy density (SED), as well as the impact of adjustable leg weights placed at different sites (shank versus thigh). The temporal relationship between joint/muscular loads and SED was then analyzed. A non-linear relationship between load weights and SED increase was observed, with 4% body weight load being the optimal load weight. Additionally, load carriage sites significantly influenced SED levels, emphasizing the necessity for individualized training regimens. The gastrocnemius, soleus, and peroneal muscles were identified as key contributors to tibial SED, with the highest correlations observed during various activities. This study underscored the utility of the subject-specific computational model in assessing the biomechanical impact of varied load weights, load sites, and exercise types. For a target bone site, it is beneficial to customize exercise programs based on individual biomechanical properties in order to maximize training benefits and meanwhile reduce risks of injuries. Physical exercise is recommended to improve tibia strength, a common site for stress injuries, while identifying optimal training regimens remains a significant challenge. This study investigated tibial responses to varied exercise regimens using a subject-specific computational modeling approach. A subject-specific neuro-musculoskeletal model was combined with a finite element model to assess the effects of various exercises (jumping, landing, squatting, and walking) on tibial strain energy density (SED), as well as the impact of adjustable leg weights placed at different sites (shank versus thigh). The temporal relationship between joint/muscular loads and SED was then analyzed. A non-linear relationship between load weights and SED increase was observed, with 4% body weight load being the optimal load weight. Additionally, load carriage sites significantly influenced SED levels, emphasizing the necessity for individualized training regimens. The gastrocnemius, soleus, and peroneal muscles were identified as key contributors to tibial SED, with the highest correlations observed during various activities. This study underscored the utility of the subject-specific computational model in assessing the biomechanical impact of varied load weights, load sites, and exercise types. For a target bone site, it is beneficial to customize exercise programs based on individual biomechanical properties in order to maximize training benefits and meanwhile reduce risks of injuries.Physical exercise is recommended to improve tibia strength, a common site for stress injuries, while identifying optimal training regimens remains a significant challenge. This study investigated tibial responses to varied exercise regimens using a subject-specific computational modeling approach. A subject-specific neuro-musculoskeletal model was combined with a finite element model to assess the effects of various exercises (jumping, landing, squatting, and walking) on tibial strain energy density (SED), as well as the impact of adjustable leg weights placed at different sites (shank versus thigh). The temporal relationship between joint/muscular loads and SED was then analyzed. A non-linear relationship between load weights and SED increase was observed, with 4% body weight load being the optimal load weight. Additionally, load carriage sites significantly influenced SED levels, emphasizing the necessity for individualized training regimens. The gastrocnemius, soleus, and peroneal muscles were identified as key contributors to tibial SED, with the highest correlations observed during various activities. This study underscored the utility of the subject-specific computational model in assessing the biomechanical impact of varied load weights, load sites, and exercise types. For a target bone site, it is beneficial to customize exercise programs based on individual biomechanical properties in order to maximize training benefits and meanwhile reduce risks of injuries. |
Author | Geng, Xiang Zhang, Zhenming Chen, Wen-Ming Ma, Xin Xu, XinSheng Guo, Xuan |
Author_xml | – sequence: 1 givenname: Xuan surname: Guo fullname: Guo, Xuan – sequence: 2 givenname: XinSheng surname: Xu fullname: Xu, XinSheng – sequence: 3 givenname: Xiang surname: Geng fullname: Geng, Xiang – sequence: 4 givenname: Zhenming surname: Zhang fullname: Zhang, Zhenming – sequence: 5 givenname: Xin surname: Ma fullname: Ma, Xin – sequence: 6 givenname: Wen-Ming orcidid: 0000-0003-0409-5118 surname: Chen fullname: Chen, Wen-Ming |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40053302$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kU1PGzEQhi2Uqgm0f6AH5GMvpv6M494qRFskpB7gbnnt2cTRrjfYXkHu_PCaBnqa9_BoRvM-52iRpgQIfWH0ilGqvxXGFNOEckWoEEIRc4ZWTEtGqJRygVaUSUooY5slOi9lTylnisuPaCkpVUJQvkIv9zW7mDAkyNsjbmk3jy7hGrvocJhzTFscYt9DhlQxPEP2sUDBT7HusAv7uVTXDYAH2OIniNtdLd-xw2Xu9uArKQfwsY8e-2k8zNXVOCU34HEKMGDX4rHE8gl96N1Q4PPbvEAPP28ern-Tuz-_bq9_3BHPlayk18Ybw-Q6mABBCeiMZpuOM270mhmtqPSGgzZcB9XI3q2d81LDplOhPXyBvp7WHvL0OEOpdozFwzC4BNNcrGjdbVi7IBp6-YbO3QjBHnIcXT7a9-IawE-Az1MpGfr_CKP21Y492bHNjv1nxxrxF3-Vg8A |
Cites_doi | 10.1016/S8756-3282(02)00815-3 10.1038/ncomms5855 10.1080/17461391.2021.1949637 10.1186/s12891-019-2513-4 10.1186/1741-7015-8-47 10.1016/j.bone.2022.116392 10.1097/00003677-200301000-00009 10.1359/JBMR.041222 10.1109/TBME.2023.3248504 10.1115/1.4029258 10.3389/fphys.2022.803219 10.1016/j.csm.2014.06.002 10.1007/s11657-017-0362-z 10.1186/s12891-017-1481-9 10.1136/bjsm.34.1.18 10.1038/s41598-023-35742-z 10.1007/s40279-022-01726-8 10.1016/S8756-3282(98)00118-5 10.1016/j.jshs.2016.08.012 10.2106/00004623-198466030-00010 10.1002/jor.24205 10.1016/j.bone.2008.05.012 10.1002/ar.1049 10.1007/s11517-024-03134-8 10.1007/s11517-023-03010-x 10.1097/00042752-199604000-00005 10.1016/j.jsams.2018.05.026 10.1016/j.jshs.2023.06.005 10.1016/8756-3282(96)00028-2 10.7205/MILMED-D-15-00571 10.1115/1.4055756 10.1115/1.4034216 10.3389/fbioe.2023.1250937 10.1016/j.jelekin.2011.08.005 10.1002/cnm.3310 10.1016/j.jbiomech.2013.06.020 10.1038/s41598-021-81401-6 10.1152/japplphysiol.00189.2005 10.1519/JSC.0b013e318215f779 10.1016/j.bone.2020.115696 10.3390/medicina56020056 10.1152/jn.1978.41.5.1203 10.1016/j.pmrj.2014.09.017 10.1016/j.bonr.2022.101170 10.1016/0021-9290(87)90030-3 10.1186/s12891023-06897-7 10.1093/ageing/afab071 10.1016/0021-9290(86)90184-3 10.1109/TBME.2019.2917415 |
ContentType | Journal Article |
Copyright | 2025. International Federation for Medical and Biological Engineering. |
Copyright_xml | – notice: 2025. International Federation for Medical and Biological Engineering. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1007/s11517-025-03335-9 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1741-0444 |
ExternalDocumentID | 40053302 10_1007_s11517_025_03335_9 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Shanghai Science and Technology Development Foundation grantid: No. 21511102200 – fundername: National Natural Science Foundation of China grantid: No. 12372322 |
GroupedDBID | --- -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 203 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 36B 4.4 406 408 40D 40E 5GY 5RE 5VS 67Z 6NX 7RV 7WY 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYXX AAYZH ABAKF ABBBX ABBRH ABDBE ABDBF ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSTC ACZOJ ADBBV ADHHG ADHIR ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ AKMHD AKVCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ATHPR AXYYD AYFIA AZFZN B-. BA0 BBNVY BENPR BGNMA BHPHI BMSDO BSONS CITATION CS3 CSCUP DDRTE DNIVK DPUIP DU5 EAP EBLON EBR EBS EBU EDO EHE EIOEI EMB ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 HCIFZ HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ K60 K6~ KDC KOV L7B LLZTM M43 M4Y M7P MA- N9A NAPCQ NB0 NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P2P P9P PF0 PT4 PT5 QOK QOR QOS QWB R89 R9I RHV ROL RPX RSV RXW S16 S1Z S27 S3B SAP SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TSG TSK TSV TUC U2A U9L UG4 UOJIU UTJUX VC2 W23 W48 WK8 YLTOR Z45 ZL0 ZMTXR ZOVNA ~EX ~KM NPM 7X8 |
ID | FETCH-LOGICAL-c254t-f79c99146d9ded53eb9718b212976197504c92e7927d5c99fa6aac47e8b5d053 |
ISSN | 0140-0118 1741-0444 |
IngestDate | Fri Jul 11 07:46:19 EDT 2025 Thu Apr 03 07:04:34 EDT 2025 Tue Jul 01 05:21:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Biomechanics Strain energy density Physical activities Bone Computational model |
Language | English |
License | 2025. International Federation for Medical and Biological Engineering. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c254t-f79c99146d9ded53eb9718b212976197504c92e7927d5c99fa6aac47e8b5d053 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0409-5118 |
PMID | 40053302 |
PQID | 3174819913 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3174819913 pubmed_primary_40053302 crossref_primary_10_1007_s11517_025_03335_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-07 |
PublicationDateYYYYMMDD | 2025-03-07 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Medical & biological engineering & computing |
PublicationTitleAlternate | Med Biol Eng Comput |
PublicationYear | 2025 |
References | JM Hughes (3335_CR5) 2022; 22 MI Carter (3335_CR14) 2014; 111 M Ishikawa (3335_CR50) 2005; 99 Y Wang (3335_CR51) 2021; 11 CH Turner (3335_CR40) 2003; 31 M Zoran (3335_CR23) 2022; 52 D Burr (3335_CR37) 2002; 31 T Liu (3335_CR31) 2024; 62 B Walmsley (3335_CR48) 1978; 41 HM Frost (3335_CR11) 2001; 262 J Tong (3335_CR20) 2023; 70 R Nikander (3335_CR13) 2010; 8 3335_CR46 BR Waterman (3335_CR1) 2016; 181 CT Rubin (3335_CR45) 1984; 66 A Silder (3335_CR44) 2013; 46 MF Bobbert (3335_CR49) 1986; 19 SJ Warden (3335_CR4) 2005; 20 A Khassetarash (3335_CR29) 2022; 145 H Wang (3335_CR27) 2019; 8 R Huiskes (3335_CR36) 1987; 20 CH Turner (3335_CR38) 1998; 23 M Martyn-St James (3335_CR22) 2008; 43 JM Hughes (3335_CR26) 2019; 22 C Xu (3335_CR28) 2017; 18 C Xu (3335_CR30) 2016; 138 MA Marra (3335_CR32) 2015; 137 JM Jacobs (3335_CR7) 2014; 33 JC Mcleod (3335_CR18) 2023; 13 C Milgrom (3335_CR25) 2022; 16 IS Moideen (3335_CR35) 2020; 36 C Bregoli (3335_CR16) 2024; 62 A Gómez-Bruton (3335_CR41) 2017; 12 AS Tenforde (3335_CR6) 2015; 7 K Watanabe (3335_CR34) 2020; 56 Y Zhu (3335_CR33) 2023; 24 E Rhodes (3335_CR17) 2000; 34 H Pihlajamäki (3335_CR8) 2019; 20 V Glatt (3335_CR42) 2019; 37 C Xu (3335_CR21) 2019; 67 P Christen (3335_CR12) 2014; 5 R Yanovich (3335_CR3) 2011; 25 M Kistler-Fischbacher (3335_CR9) 2021; 143 C Yan (3335_CR39) 2022; 159 DB Burr (3335_CR24) 1996; 18 Y Gimmon (3335_CR47) 2011; 21 P Brukner (3335_CR2) 1996; 6 JE Rubio (3335_CR19) 2023; 11 S Aloraibi (3335_CR43) 2021; 50 Z Lin (3335_CR10) 2023; 13 KJ Koltun (3335_CR15) 2022; 13 |
References_xml | – volume: 31 start-page: 8 issue: 1 year: 2002 ident: 3335_CR37 publication-title: Bone doi: 10.1016/S8756-3282(02)00815-3 – volume: 111 start-page: 59 issue: 1 year: 2014 ident: 3335_CR14 publication-title: Mo Med – volume: 5 start-page: 4855 issue: 1 year: 2014 ident: 3335_CR12 publication-title: Nat Commun doi: 10.1038/ncomms5855 – volume: 22 start-page: 4 issue: 1 year: 2022 ident: 3335_CR5 publication-title: Eur J Sport Sci doi: 10.1080/17461391.2021.1949637 – volume: 20 start-page: 1 year: 2019 ident: 3335_CR8 publication-title: BMC Musculoskelet Disord doi: 10.1186/s12891-019-2513-4 – volume: 8 start-page: 47 issue: 1 year: 2010 ident: 3335_CR13 publication-title: BMC Med doi: 10.1186/1741-7015-8-47 – volume: 159 start-page: 116392 year: 2022 ident: 3335_CR39 publication-title: Bone doi: 10.1016/j.bone.2022.116392 – volume: 31 start-page: 45 issue: 1 year: 2003 ident: 3335_CR40 publication-title: Exerc Sport Sci Rev doi: 10.1097/00003677-200301000-00009 – volume: 20 start-page: 809 issue: 5 year: 2005 ident: 3335_CR4 publication-title: J Bone Miner Res doi: 10.1359/JBMR.041222 – volume: 70 start-page: 2445 issue: 8 year: 2023 ident: 3335_CR20 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2023.3248504 – volume: 137 start-page: 020904 issue: 2 year: 2015 ident: 3335_CR32 publication-title: J Biomech Eng doi: 10.1115/1.4029258 – volume: 13 start-page: 135 year: 2022 ident: 3335_CR15 publication-title: Front Physiol doi: 10.3389/fphys.2022.803219 – volume: 33 start-page: 591 issue: 4 year: 2014 ident: 3335_CR7 publication-title: Clin Sports Med doi: 10.1016/j.csm.2014.06.002 – volume: 12 start-page: 1 issue: 69 year: 2017 ident: 3335_CR41 publication-title: Arch Osteoporos doi: 10.1007/s11657-017-0362-z – volume: 18 start-page: 1 issue: 1 year: 2017 ident: 3335_CR28 publication-title: BMC Musculoskelet Disord doi: 10.1186/s12891-017-1481-9 – volume: 34 start-page: 18 issue: 1 year: 2000 ident: 3335_CR17 publication-title: Br J Sports Med doi: 10.1136/bjsm.34.1.18 – volume: 13 start-page: 10054 issue: 1 year: 2023 ident: 3335_CR10 publication-title: Sci Rep doi: 10.1038/s41598-023-35742-z – volume: 52 start-page: 3021 issue: 12 year: 2022 ident: 3335_CR23 publication-title: Sports medicine (Auckland, NZ) doi: 10.1007/s40279-022-01726-8 – volume: 23 start-page: 399 issue: 5 year: 1998 ident: 3335_CR38 publication-title: Bone doi: 10.1016/S8756-3282(98)00118-5 – volume: 8 start-page: 478 issue: 5 year: 2019 ident: 3335_CR27 publication-title: J Sport Health Sci doi: 10.1016/j.jshs.2016.08.012 – volume: 66 start-page: 397 issue: 3 year: 1984 ident: 3335_CR45 publication-title: J Bone Joint Surg doi: 10.2106/00004623-198466030-00010 – volume: 37 start-page: 1263 issue: 6 year: 2019 ident: 3335_CR42 publication-title: J Orthop Res doi: 10.1002/jor.24205 – volume: 43 start-page: 521 issue: 3 year: 2008 ident: 3335_CR22 publication-title: Bone doi: 10.1016/j.bone.2008.05.012 – volume: 262 start-page: 398 issue: 4 year: 2001 ident: 3335_CR11 publication-title: Anat Rec doi: 10.1002/ar.1049 – volume: 62 start-page: 3263 issue: 11 year: 2024 ident: 3335_CR16 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-024-03134-8 – volume: 62 start-page: 1395 issue: 5 year: 2024 ident: 3335_CR31 publication-title: Med Biol Eng Compu doi: 10.1007/s11517-023-03010-x – volume: 6 start-page: 85 issue: 2 year: 1996 ident: 3335_CR2 publication-title: Clin J Sport Med doi: 10.1097/00042752-199604000-00005 – volume: 22 start-page: 48 issue: 1 year: 2019 ident: 3335_CR26 publication-title: J Sci Med Sport doi: 10.1016/j.jsams.2018.05.026 – volume: 13 start-page: 47 issue: 1 year: 2023 ident: 3335_CR18 publication-title: J Sport Health Sci doi: 10.1016/j.jshs.2023.06.005 – volume: 18 start-page: 405 issue: 5 year: 1996 ident: 3335_CR24 publication-title: Bone doi: 10.1016/8756-3282(96)00028-2 – volume: 181 start-page: 1308 issue: 10 year: 2016 ident: 3335_CR1 publication-title: Mil Med doi: 10.7205/MILMED-D-15-00571 – volume: 145 start-page: 041007 issue: 4 year: 2022 ident: 3335_CR29 publication-title: J Biomech Eng doi: 10.1115/1.4055756 – volume: 138 start-page: 101001 issue: 10 year: 2016 ident: 3335_CR30 publication-title: J Biomech Eng doi: 10.1115/1.4034216 – volume: 11 start-page: 1250937 year: 2023 ident: 3335_CR19 publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2023.1250937 – volume: 21 start-page: 922 issue: 6 year: 2011 ident: 3335_CR47 publication-title: J Electromyogr Kinesiol doi: 10.1016/j.jelekin.2011.08.005 – volume: 36 start-page: 3310 issue: 3 year: 2020 ident: 3335_CR35 publication-title: Int J Numer Methods Biomed Eng doi: 10.1002/cnm.3310 – volume: 46 start-page: 2522 issue: 14 year: 2013 ident: 3335_CR44 publication-title: J Biomech doi: 10.1016/j.jbiomech.2013.06.020 – volume: 11 start-page: 1781 issue: 1 year: 2021 ident: 3335_CR51 publication-title: Sci Rep doi: 10.1038/s41598-021-81401-6 – volume: 99 start-page: 603 issue: 2 year: 2005 ident: 3335_CR50 publication-title: J Appl Physiol doi: 10.1152/japplphysiol.00189.2005 – ident: 3335_CR46 – volume: 25 start-page: 3412 issue: 12 year: 2011 ident: 3335_CR3 publication-title: J Strength Cond Res doi: 10.1519/JSC.0b013e318215f779 – volume: 143 start-page: 115696 year: 2021 ident: 3335_CR9 publication-title: Bone doi: 10.1016/j.bone.2020.115696 – volume: 56 start-page: 56 issue: 2 year: 2020 ident: 3335_CR34 publication-title: Medicina doi: 10.3390/medicina56020056 – volume: 41 start-page: 1203 issue: 5 year: 1978 ident: 3335_CR48 publication-title: J Neurophysiol doi: 10.1152/jn.1978.41.5.1203 – volume: 7 start-page: 222 issue: 2 year: 2015 ident: 3335_CR6 publication-title: PM&R doi: 10.1016/j.pmrj.2014.09.017 – volume: 16 start-page: 101170 year: 2022 ident: 3335_CR25 publication-title: Bone Rep doi: 10.1016/j.bonr.2022.101170 – volume: 20 start-page: 1135 issue: 11–12 year: 1987 ident: 3335_CR36 publication-title: J Biomech doi: 10.1016/0021-9290(87)90030-3 – volume: 24 start-page: 775 issue: 1 year: 2023 ident: 3335_CR33 publication-title: BMC Musculoskelet Disord doi: 10.1186/s12891023-06897-7 – volume: 50 start-page: 1129 issue: 4 year: 2021 ident: 3335_CR43 publication-title: Age Ageing doi: 10.1093/ageing/afab071 – volume: 19 start-page: 887 issue: 11 year: 1986 ident: 3335_CR49 publication-title: J Biomech doi: 10.1016/0021-9290(86)90184-3 – volume: 67 start-page: 545 issue: 2 year: 2019 ident: 3335_CR21 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2019.2917415 |
SSID | ssj0021524 |
Score | 2.4192612 |
SecondaryResourceType | online_first |
Snippet | Physical exercise is recommended to improve tibia strength, a common site for stress injuries, while identifying optimal training regimens remains a... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database |
Title | Strain energy in human tibia during different exercises with adjustable leg weights: a subject-specific computational model analysis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40053302 https://www.proquest.com/docview/3174819913 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbbDZReQvreNi0q9LaorGXJsnpLSkMoJJdswfRiZFtuG1qnZG0KPfcn5Adn9PTukkDTi_Fqxdh4PqSZ0XwzCL2lrUpE1lZEsFYTVukFkRwcV5a1XDULzXluiMInp9nxZ_ap4MVkcrWWtTT01bv6z428kv_RKoyBXg1L9g6ajUJhAO5Bv3AFDcP1n3R8Zhs8zHXk77mOe5YGEgiIoQNKH7srBUJbc27IU4Y59UN_nf-2MdKVIz-vhsrEZ4jhYZpcIpt5PvQhcGjb58yVr2eybt-Gcx8DKFffyf7UY9VD-5cTF3ZNk_4z2JBtMYxgLQY78r07-6bXJmq3OBUA6zgYo95fYOrPINbHMii3yVxiI7xp0uT8iqzdkgw2DzFV7W5c8BeeAA2GiyBOYppyIsftLRzpb-16MRdxrNtsZJQgo7QySnkP7VBwPugU7RwcHR6eRkcebB4WU2PhbT0Zy1Eyt99k0-C5xYux1sxyD-16NwQfOEw9RBPdPUL3T3yixWP010ELO2hhuLPQwhZa2EELR2jhCC1soIVHaGGAFvbQeo8V3gYW3gAWtsDCAVhP0PLo4_LDMfENO0hNOetJK2QN_gbLGtnohqe6kmD6VGAdSRMtM50Eakm1kFQ0HGa2KlOqZkLnFW9gN3iKpt1Fp58jnOR5nrEkUaJuWJ1QBVLrlqZZriomMjlD8_BRy1-uLEt5uyJn6E347iWsnuZITHX6YliVYD2z3GT_pTP0zCkkymOWp76gL-70rJfowYjsfTTtLwf9CuzWvnrtYXQNl8eX1Q |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strain+energy+in+human+tibia+during+different+exercises+with+adjustable+leg+weights%3A+a+subject-specific+computational+model+analysis&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Guo%2C+Xuan&rft.au=Xu%2C+XinSheng&rft.au=Geng%2C+Xiang&rft.au=Zhang%2C+Zhenming&rft.date=2025-03-07&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007%2Fs11517-025-03335-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11517_025_03335_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon |