Distinct lactate metabolism between hepatocytes and myotubes revealed by live cell imaging with genetically encoded indicators

The process of glycolysis breaks down glycogen stored in muscles, producing lactate through pyruvate to generate energy. Excess lactate is then released into the bloodstream. When lactate reaches the liver, it is converted to glucose, which muscles utilize as a substrate to generate ATP. Although th...

Full description

Saved in:
Bibliographic Details
Published inBiochemical and biophysical research communications Vol. 694; p. 149416
Main Authors Horikoshi, Mina, Harada, Kazuki, Tsuno, Saki, Kitaguchi, Tetsuya, Hirai, Masami Yokota, Matsumoto, Mitsuharu, Terada, Shin, Tsuboi, Takashi
Format Journal Article
LanguageEnglish
Published United States 29.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The process of glycolysis breaks down glycogen stored in muscles, producing lactate through pyruvate to generate energy. Excess lactate is then released into the bloodstream. When lactate reaches the liver, it is converted to glucose, which muscles utilize as a substrate to generate ATP. Although the biochemical study of lactate metabolism in hepatocytes and skeletal muscle cells has been extensive, the spatial and temporal dynamics of this metabolism in live cells are still unknown. We observed the dynamics of metabolism-related molecules in primary cultured hepatocytes and a skeletal muscle cell line upon lactate overload. Our observations revealed an increase in cytoplasmic pyruvate concentration in hepatocytes, which led to glucose release. Skeletal muscle cells exhibited elevated levels of lactate and pyruvate levels in both the cytoplasm and mitochondrial matrix. However, mitochondrial ATP levels remained unaffected, indicating that the increased lactate can be converted to pyruvate but is unlikely to be utilized for ATP production. The findings suggest that excess lactate in skeletal muscle cells is taken up into mitochondria with little contribution to ATP production. Meanwhile, lactate released into the bloodstream can be converted to glucose in hepatocytes for subsequent utilization in skeletal muscle cells.
AbstractList The process of glycolysis breaks down glycogen stored in muscles, producing lactate through pyruvate to generate energy. Excess lactate is then released into the bloodstream. When lactate reaches the liver, it is converted to glucose, which muscles utilize as a substrate to generate ATP. Although the biochemical study of lactate metabolism in hepatocytes and skeletal muscle cells has been extensive, the spatial and temporal dynamics of this metabolism in live cells are still unknown. We observed the dynamics of metabolism-related molecules in primary cultured hepatocytes and a skeletal muscle cell line upon lactate overload. Our observations revealed an increase in cytoplasmic pyruvate concentration in hepatocytes, which led to glucose release. Skeletal muscle cells exhibited elevated levels of lactate and pyruvate levels in both the cytoplasm and mitochondrial matrix. However, mitochondrial ATP levels remained unaffected, indicating that the increased lactate can be converted to pyruvate but is unlikely to be utilized for ATP production. The findings suggest that excess lactate in skeletal muscle cells is taken up into mitochondria with little contribution to ATP production. Meanwhile, lactate released into the bloodstream can be converted to glucose in hepatocytes for subsequent utilization in skeletal muscle cells.The process of glycolysis breaks down glycogen stored in muscles, producing lactate through pyruvate to generate energy. Excess lactate is then released into the bloodstream. When lactate reaches the liver, it is converted to glucose, which muscles utilize as a substrate to generate ATP. Although the biochemical study of lactate metabolism in hepatocytes and skeletal muscle cells has been extensive, the spatial and temporal dynamics of this metabolism in live cells are still unknown. We observed the dynamics of metabolism-related molecules in primary cultured hepatocytes and a skeletal muscle cell line upon lactate overload. Our observations revealed an increase in cytoplasmic pyruvate concentration in hepatocytes, which led to glucose release. Skeletal muscle cells exhibited elevated levels of lactate and pyruvate levels in both the cytoplasm and mitochondrial matrix. However, mitochondrial ATP levels remained unaffected, indicating that the increased lactate can be converted to pyruvate but is unlikely to be utilized for ATP production. The findings suggest that excess lactate in skeletal muscle cells is taken up into mitochondria with little contribution to ATP production. Meanwhile, lactate released into the bloodstream can be converted to glucose in hepatocytes for subsequent utilization in skeletal muscle cells.
The process of glycolysis breaks down glycogen stored in muscles, producing lactate through pyruvate to generate energy. Excess lactate is then released into the bloodstream. When lactate reaches the liver, it is converted to glucose, which muscles utilize as a substrate to generate ATP. Although the biochemical study of lactate metabolism in hepatocytes and skeletal muscle cells has been extensive, the spatial and temporal dynamics of this metabolism in live cells are still unknown. We observed the dynamics of metabolism-related molecules in primary cultured hepatocytes and a skeletal muscle cell line upon lactate overload. Our observations revealed an increase in cytoplasmic pyruvate concentration in hepatocytes, which led to glucose release. Skeletal muscle cells exhibited elevated levels of lactate and pyruvate levels in both the cytoplasm and mitochondrial matrix. However, mitochondrial ATP levels remained unaffected, indicating that the increased lactate can be converted to pyruvate but is unlikely to be utilized for ATP production. The findings suggest that excess lactate in skeletal muscle cells is taken up into mitochondria with little contribution to ATP production. Meanwhile, lactate released into the bloodstream can be converted to glucose in hepatocytes for subsequent utilization in skeletal muscle cells.
ArticleNumber 149416
Author Horikoshi, Mina
Terada, Shin
Tsuno, Saki
Harada, Kazuki
Hirai, Masami Yokota
Matsumoto, Mitsuharu
Kitaguchi, Tetsuya
Tsuboi, Takashi
Author_xml – sequence: 1
  givenname: Mina
  surname: Horikoshi
  fullname: Horikoshi, Mina
  organization: Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8654, Japan
– sequence: 2
  givenname: Kazuki
  surname: Harada
  fullname: Harada, Kazuki
  organization: Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
– sequence: 3
  givenname: Saki
  surname: Tsuno
  fullname: Tsuno, Saki
  organization: Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan; Dairy Science and Technology Institute, Kyodo Milk Industry Co., Ltd., 20-1 Hirai, Hinode, Tokyo 190-0182, Japan
– sequence: 4
  givenname: Tetsuya
  surname: Kitaguchi
  fullname: Kitaguchi, Tetsuya
  organization: Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
– sequence: 5
  givenname: Masami Yokota
  surname: Hirai
  fullname: Hirai, Masami Yokota
  organization: RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama-city, Kanagawa, 230-0045, Japan
– sequence: 6
  givenname: Mitsuharu
  surname: Matsumoto
  fullname: Matsumoto, Mitsuharu
  organization: Dairy Science and Technology Institute, Kyodo Milk Industry Co., Ltd., 20-1 Hirai, Hinode, Tokyo 190-0182, Japan
– sequence: 7
  givenname: Shin
  surname: Terada
  fullname: Terada, Shin
  organization: Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
– sequence: 8
  givenname: Takashi
  surname: Tsuboi
  fullname: Tsuboi, Takashi
  email: takatsuboi@bio.c.u-tokyo.ac.jp
  organization: Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8654, Japan; Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan. Electronic address: takatsuboi@bio.c.u-tokyo.ac.jp
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38147697$$D View this record in MEDLINE/PubMed
BookMark eNo9kEFv1DAQhS1URLeFP8AB-cgl2xnHcZIjKgUqVeICEjfLdiZbrxx7ib2tcuG3k9UWTqMZvfc077tiFzFFYuw9whYB1c1-a-3stgJEvUXZS1Sv2Aahh0ogyAu2AQBViR5_XbKrnPcAiFL1b9hl3aFsVd9u2J_PPhcfXeHBuGIK8YmKsSn4PHFL5Zko8kc6mJLcUihzEwc-Lakc7brM9EQm0MDtwoN_Iu4oBO4ns_Nxx599eeQ7ilS8MyEsnKJLw6r2cVgvJc35LXs9mpDp3cu8Zj-_3P24_VY9fP96f_vpoXKikaWiQdmhNgakko1p5bh27hHRYIPUgjXWdV09UgNda0XXDdJRa83Y2F6MALK-Zh_PuYc5_T5SLnry-fSsiZSOWYseVNvWQnWrVJylbk45zzTqw7w2mheNoE_c9V6fuOsTd33mvpo-vOQf7UTDf8s_0PVf8DmEXQ
Cites_doi 10.1152/ajpendo.00594.2005
10.1016/S0006-3495(00)76468-X
10.1016/j.crphys.2020.07.002
10.2330/joralbiosci1965.12.293
10.1038/s41598-020-76440-4
10.1002/anie.201804304
10.1007/s00421-017-3795-6
10.1016/j.redox.2019.101339
10.1083/jcb.51.3.621
10.1016/j.xpro.2020.100086
10.1113/JP278930
10.1016/j.chembiol.2021.06.002
10.1016/0003-9861(86)90323-1
10.1016/0003-9861(87)90507-8
10.1073/pnas.96.3.1129
10.3389/fnins.2015.00022
10.1152/jappl.1999.87.5.1713
10.1007/s00421-006-0334-2
10.1152/jappl.1988.65.2.509
10.1016/S0021-9258(18)84849-9
ContentType Journal Article
Copyright Copyright © 2023 Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2023 Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1016/j.bbrc.2023.149416
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1090-2104
ExternalDocumentID 10_1016_j_bbrc_2023_149416
38147697
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFFNX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CGR
CS3
CUY
CVF
D0L
DM4
EBS
ECM
EFBJH
EIF
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
LG5
LX2
M41
MO0
N9A
NPM
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
TWZ
WH7
XPP
XSW
ZMT
~02
~G-
.55
.GJ
.HR
1CY
3O-
9M8
AAQXK
AAYJJ
AAYXX
ABEFU
ABXDB
ACKIV
ADFGL
ADIYS
ADMUD
AGRDE
AHHHB
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
G8K
HLW
HVGLF
HZ~
MVM
OHT
R2-
SBG
UQL
WUQ
X7M
Y6R
ZGI
ZKB
~KM
7X8
ID FETCH-LOGICAL-c254t-ed6bd3aa04645a74f2029111a151e70babc883fe5087b288d4ce7baf5b92f0043
ISSN 0006-291X
1090-2104
IngestDate Mon Sep 09 17:30:31 EDT 2024
Thu Sep 26 17:02:57 EDT 2024
Wed Oct 23 10:16:35 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Hepatocytes
Lactate metabolism
L6 cells
Cori cycle
Live cell imaging
Language English
License Copyright © 2023 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c254t-ed6bd3aa04645a74f2029111a151e70babc883fe5087b288d4ce7baf5b92f0043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0004-9392-6204
PMID 38147697
PQID 2906773268
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2906773268
crossref_primary_10_1016_j_bbrc_2023_149416
pubmed_primary_38147697
PublicationCentury 2000
PublicationDate 2024-01-29
PublicationDateYYYYMMDD 2024-01-29
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-29
  day: 29
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biochemical and biophysical research communications
PublicationTitleAlternate Biochem Biophys Res Commun
PublicationYear 2024
References Katz (10.1016/j.bbrc.2023.149416_bib21) 1988; 65
Kline (10.1016/j.bbrc.2023.149416_bib3) 1986; 246
Mita (10.1016/j.bbrc.2023.149416_bib17) 2022; 29
Benelli (10.1016/j.bbrc.2023.149416_bib19) 2007; 99
Hashimoto (10.1016/j.bbrc.2023.149416_bib6) 2006; 290
Brooks (10.1016/j.bbrc.2023.149416_bib10) 1999; 87
Glancy (10.1016/j.bbrc.2023.149416_bib9) 2021; 599
Young (10.1016/j.bbrc.2023.149416_bib11) 2020; 28
Charni-Natan (10.1016/j.bbrc.2023.149416_bib13) 2020; 1
Brooks (10.1016/j.bbrc.2023.149416_bib5) 1999; 96
Ferguson (10.1016/j.bbrc.2023.149416_bib1) 2018; 118
Sankaranarayanan (10.1016/j.bbrc.2023.149416_bib14) 2000; 79
Takahashi (10.1016/j.bbrc.2023.149416_bib22) 2020; 3
Rogatzki (10.1016/j.bbrc.2023.149416_bib7) 2015; 9
Martín (10.1016/j.bbrc.2023.149416_bib15) 2013; 8
Brandt (10.1016/j.bbrc.2023.149416_bib4) 1987; 259
Cori (10.1016/j.bbrc.2023.149416_bib2) 1925; 65
Baba (10.1016/j.bbrc.2023.149416_bib8) 1971; 51
Tsuno (10.1016/j.bbrc.2023.149416_bib12) 2023
Harada (10.1016/j.bbrc.2023.149416_bib16) 2020; 10
Arai (10.1016/j.bbrc.2023.149416_bib18) 2018; 57
Suzuki (10.1016/j.bbrc.2023.149416_bib20) 1970; 12
References_xml – volume: 290
  start-page: E1237
  year: 2006
  ident: 10.1016/j.bbrc.2023.149416_bib6
  article-title: Colocalization of MCT1, CD147, and LDH in mitochondrial inner membrane of L6 muscle cells: evidence of a mitochondrial lactate oxidation complex
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00594.2005
  contributor:
    fullname: Hashimoto
– volume: 79
  start-page: 2199
  year: 2000
  ident: 10.1016/j.bbrc.2023.149416_bib14
  article-title: The use of pHluorins for optical measurements of presynaptic activity
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(00)76468-X
  contributor:
    fullname: Sankaranarayanan
– volume: 3
  start-page: 34
  year: 2020
  ident: 10.1016/j.bbrc.2023.149416_bib22
  article-title: Effect of post-exercise lactate administration on glycogen repletion and signaling activation in different types of mouse skeletal muscle
  publication-title: Curr. Res. Physiol.
  doi: 10.1016/j.crphys.2020.07.002
  contributor:
    fullname: Takahashi
– volume: 12
  start-page: 293
  year: 1970
  ident: 10.1016/j.bbrc.2023.149416_bib20
  article-title: Lactic dehydrogenase isoenzyme
  publication-title: Jap. J. Oral Biol.
  doi: 10.2330/joralbiosci1965.12.293
  contributor:
    fullname: Suzuki
– volume: 10
  year: 2020
  ident: 10.1016/j.bbrc.2023.149416_bib16
  article-title: Green fluorescent protein-based lactate and pyruvate indicators suitable for biochemical assays and live cell imaging
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-76440-4
  contributor:
    fullname: Harada
– volume: 57
  start-page: 10873
  year: 2018
  ident: 10.1016/j.bbrc.2023.149416_bib18
  article-title: RGB-color intensiometric indicators visualize spatiotemporal dynamics of ATP in single cells
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.201804304
  contributor:
    fullname: Arai
– volume: 118
  start-page: 691
  year: 2018
  ident: 10.1016/j.bbrc.2023.149416_bib1
  article-title: Lactate metabolism: historical context, prior misinterpretations, and current understanding
  publication-title: Eur. J. Appl. Physiol.
  doi: 10.1007/s00421-017-3795-6
  contributor:
    fullname: Ferguson
– volume: 28
  year: 2020
  ident: 10.1016/j.bbrc.2023.149416_bib11
  article-title: Lactate dehydrogenase supports lactate oxidation in mitochondria isolated from different mouse tissue
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2019.101339
  contributor:
    fullname: Young
– year: 2023
  ident: 10.1016/j.bbrc.2023.149416_bib12
  article-title: Mitochondrial ATP concentration decreases immediately after glucose administration to glucose-deprived hepatocytes
  publication-title: FEBS Open Bio
  contributor:
    fullname: Tsuno
– volume: 51
  start-page: 621
  year: 1971
  ident: 10.1016/j.bbrc.2023.149416_bib8
  article-title: Histochemistry of lactic dehydrogenase in heart and pectoralis muscles of rat
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.51.3.621
  contributor:
    fullname: Baba
– volume: 1
  year: 2020
  ident: 10.1016/j.bbrc.2023.149416_bib13
  article-title: Protocol for primary mouse hepatocyte isolation
  publication-title: STAR Protoc
  doi: 10.1016/j.xpro.2020.100086
  contributor:
    fullname: Charni-Natan
– volume: 599
  start-page: 863
  year: 2021
  ident: 10.1016/j.bbrc.2023.149416_bib9
  article-title: Mitochondrial lactate metabolism: history and implications for exercise and disease
  publication-title: J. Physiol.
  doi: 10.1113/JP278930
  contributor:
    fullname: Glancy
– volume: 8
  year: 2013
  ident: 10.1016/j.bbrc.2023.149416_bib15
  article-title: A genetically encoded FRET lactate sensor and its use to detect the Warburg effect in single cancer cells
  publication-title: PLoS One
  contributor:
    fullname: Martín
– volume: 29
  start-page: 98
  year: 2022
  ident: 10.1016/j.bbrc.2023.149416_bib17
  article-title: Development of red genetically encoded biosensor for visualization of intracellular glucose dynamics
  publication-title: Cell Chem. Biol.
  doi: 10.1016/j.chembiol.2021.06.002
  contributor:
    fullname: Mita
– volume: 246
  start-page: 673
  year: 1986
  ident: 10.1016/j.bbrc.2023.149416_bib3
  article-title: Localization of L-lactate dehydrogenase in mitochondria
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(86)90323-1
  contributor:
    fullname: Kline
– volume: 259
  start-page: 412
  year: 1987
  ident: 10.1016/j.bbrc.2023.149416_bib4
  article-title: Lactate dehydrogenase in rat mitochondria
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(87)90507-8
  contributor:
    fullname: Brandt
– volume: 96
  start-page: 1129
  year: 1999
  ident: 10.1016/j.bbrc.2023.149416_bib5
  article-title: Role of mitochondrial lactate dehydrogenase and lactate oxidation in the ‘intra-cellular lactate shuttle’
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.96.3.1129
  contributor:
    fullname: Brooks
– volume: 9
  start-page: 22
  year: 2015
  ident: 10.1016/j.bbrc.2023.149416_bib7
  article-title: Lactate is always the end product of glycolysis
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2015.00022
  contributor:
    fullname: Rogatzki
– volume: 87
  start-page: 1713
  year: 1999
  ident: 10.1016/j.bbrc.2023.149416_bib10
  article-title: MCT1 in cardiac and skeletal muscle mitochondria
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1999.87.5.1713
  contributor:
    fullname: Brooks
– volume: 99
  start-page: 685
  year: 2007
  ident: 10.1016/j.bbrc.2023.149416_bib19
  article-title: Assessment of post-competition peak blood lactate in male and female master swimmers aged 40–79 years and its relationship with swimming performance
  publication-title: Eur. J. Appl. Physiol.
  doi: 10.1007/s00421-006-0334-2
  contributor:
    fullname: Benelli
– volume: 65
  start-page: 509
  year: 1988
  ident: 10.1016/j.bbrc.2023.149416_bib21
  article-title: Regulation of lactic acid production during exercise
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1988.65.2.509
  contributor:
    fullname: Katz
– volume: 65
  start-page: 397
  year: 1925
  ident: 10.1016/j.bbrc.2023.149416_bib2
  article-title: The carbohydrate metabolism of tumors II. Changes in the sugar, lactic acid, and CO2- combining Power of Blood Passing through a tumor
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)84849-9
  contributor:
    fullname: Cori
SSID ssj0011469
Score 2.4891162
Snippet The process of glycolysis breaks down glycogen stored in muscles, producing lactate through pyruvate to generate energy. Excess lactate is then released into...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 149416
SubjectTerms Adenosine Triphosphate - metabolism
Glucose - metabolism
Hepatocytes - metabolism
Lactic Acid
Muscle Fibers, Skeletal - metabolism
Pyruvates
Title Distinct lactate metabolism between hepatocytes and myotubes revealed by live cell imaging with genetically encoded indicators
URI https://www.ncbi.nlm.nih.gov/pubmed/38147697
https://www.proquest.com/docview/2906773268/abstract/
Volume 694
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEIKXCTYuHRcZCfESpWoSN2kex9hUwTYeaKW-RXbiQLY2mdoEKXvYr-AHc47tNCkMafASRVabpPm-2sfn9hHyzvGk4_BQ2rFMQpslgtshzJWw53Ecjzsjkapu-2fn_mTGPs1H817vZydrqSrFIL6-ta7kf1CFMcAVq2T_AdnNRWEAzgFfOALCcLwTxh_xD5rHpbXgMRqNqAcNoC5Q-KJJwPoO601ZxDX6V9FJvqyLshISowU_0EhUBugC84fQh29lSy1bpPyzcGNd47ioLWx4mUjs1ISRHdTo2YoHZ6i81bYeEFlx1TDA9BPCDPdOMcrGlp8Uq-yyWCtxYevMqHnrSXHFE1Oxdl1dZhsnw7pSeuHWV94Ofs5K_g2FXRQBZbmuat71aLiYBWMbt4eehIfh0HaNLPFA3jJmZm4_ZJ25F_Z6TNdt_rEsaA_FxUCIFbatdL1B--HtHtznX6KT2elpND2eT--R-24QjjBRdHCzSRzCMu5QxdDNE5lSLJ01-Psdts2dv-xhlC0zfUx2zSaEHmpGPSE9me-R_cMcYF3W9D1VacEq3rJHHnxozh4eNeKA--SmoR411KMt9aihHu1QjwIpaEM92lCPipoi9ShSjxrqUaQe7VCPGurRlnpPyezkeHo0sY2Uhx27I1baMvFF4nGuAuk8YCm8IlxmYTZwZDAUXMTjsZdK2C4Ewh2PExbLQPB0JEI3xWj1M7KTF7l8QWjAWJq4sfQZXMeTXMCilMI6BaulL3wh-sRq3nh0pTu2RE0q40WE-ESIT6Tx6ZO3DSgRvEL8uTyXRbWOUAchCGB3M-6T5xqtzfXAzGWBHwYHd_j2S_KoJfkrslOuKvkaDNlSvFG8-gXf96Zo
link.rule.ids 315,786,790,27955,27956
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distinct+lactate+metabolism+between+hepatocytes+and+myotubes+revealed+by+live+cell+imaging+with+genetically+encoded+indicators&rft.jtitle=Biochemical+and+biophysical+research+communications&rft.au=Horikoshi%2C+Mina&rft.au=Harada%2C+Kazuki&rft.au=Tsuno%2C+Saki&rft.au=Kitaguchi%2C+Tetsuya&rft.date=2024-01-29&rft.issn=1090-2104&rft.eissn=1090-2104&rft.volume=694&rft.spage=149416&rft_id=info:doi/10.1016%2Fj.bbrc.2023.149416&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-291X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-291X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-291X&client=summon