Machine learning-driven classification of hydraulic flow units for enhanced reservoir characterization
This study focuses on the classification of Hydraulic Flow Units (HFUs) within the Lower Goru reservoir using a hybrid modeling approach for a more precise and data-driven reservoir characterization. The methodology begins with K-means clustering, which groups the reservoir into distinct HFUs based...
Saved in:
Published in | Physics of fluids (1994) Vol. 37; no. 3 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.03.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study focuses on the classification of Hydraulic Flow Units (HFUs) within the Lower Goru reservoir using a hybrid modeling approach for a more precise and data-driven reservoir characterization. The methodology begins with K-means clustering, which groups the reservoir into distinct HFUs based on reservoir properties. To enhance the accuracy of this classification, Particle Swarm Optimization (PSO) is employed to optimize the clustering process. The flow capacity and rock quality of each HFU are then assessed using two key indicators: the flow zone indicator (FZI) and the rock quality index (RQI). The results reveal four distinct HFUs: Clean Sandstone, Clayey Sandstone, Shaly Sandstone, and Shale. Among these, HFU 1 (Clean Sandstone) exhibits the highest FZI and RQI values, indicating excellent rock quality and flow capacity, while HFU 2 (Clayey Sandstone) demonstrates moderate FZI and RQI values, suggesting good reservoir potential. In contrast, HFUs 3 (Shaly Sandstone) and 4 (Shale) show progressively lower FZI and RQI values, reflecting poorer rock quality and reduced flow potential. This integrated approach significantly improves the precision of reservoir characterization by combining K-means clustering, PSO optimization, and petrophysical indicators such as FZI and RQI. The study's findings not only provide valuable understanding of reservoir dynamics and fluid flow potential but also enhance our comprehension of the spatial distribution and petrophysical properties of each HFU, offering a solid foundation for optimizing hydrocarbon recovery and enhancing reservoir management approaches. |
---|---|
AbstractList | This study focuses on the classification of Hydraulic Flow Units (HFUs) within the Lower Goru reservoir using a hybrid modeling approach for a more precise and data-driven reservoir characterization. The methodology begins with K-means clustering, which groups the reservoir into distinct HFUs based on reservoir properties. To enhance the accuracy of this classification, Particle Swarm Optimization (PSO) is employed to optimize the clustering process. The flow capacity and rock quality of each HFU are then assessed using two key indicators: the flow zone indicator (FZI) and the rock quality index (RQI). The results reveal four distinct HFUs: Clean Sandstone, Clayey Sandstone, Shaly Sandstone, and Shale. Among these, HFU 1 (Clean Sandstone) exhibits the highest FZI and RQI values, indicating excellent rock quality and flow capacity, while HFU 2 (Clayey Sandstone) demonstrates moderate FZI and RQI values, suggesting good reservoir potential. In contrast, HFUs 3 (Shaly Sandstone) and 4 (Shale) show progressively lower FZI and RQI values, reflecting poorer rock quality and reduced flow potential. This integrated approach significantly improves the precision of reservoir characterization by combining K-means clustering, PSO optimization, and petrophysical indicators such as FZI and RQI. The study's findings not only provide valuable understanding of reservoir dynamics and fluid flow potential but also enhance our comprehension of the spatial distribution and petrophysical properties of each HFU, offering a solid foundation for optimizing hydrocarbon recovery and enhancing reservoir management approaches. |
Author | Ali, Muhammad Abelly, Elieneza Nicodemus Nyakilla, Edwin E AL-khulaidi, Ghamdan Sadiq, Izhar Kasala, Erasto E Ali, Sajid Hussain, Saddam Hussain, Wakeel |
Author_xml | – sequence: 1 givenname: Wakeel surname: Hussain fullname: Hussain, Wakeel organization: 9Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China – sequence: 2 givenname: Muhammad surname: Ali fullname: Ali, Muhammad organization: State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences – sequence: 3 givenname: Erasto E surname: Kasala fullname: Kasala, Erasto E organization: 9Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China – sequence: 4 givenname: Sajid surname: Ali fullname: Ali, Sajid organization: Faculty of Engineering, Department of Geological Resources and Engineering, China University of Geosciences – sequence: 5 givenname: Ghamdan surname: AL-khulaidi fullname: AL-khulaidi, Ghamdan organization: Key Laboratory of Theory and Technology of Petroleum Exploration and Development in Hubei Province, China University of Geosciences – sequence: 6 givenname: Izhar surname: Sadiq fullname: Sadiq, Izhar organization: College of Marine Resources and Environment, Ocean College, Zhejiang University – sequence: 7 givenname: Edwin E surname: Nyakilla fullname: Nyakilla, Edwin E organization: State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences – sequence: 8 givenname: Saddam surname: Hussain fullname: Hussain, Saddam organization: Department of Geotechnical Engineering, College of Civil Engineering, Tongji University – sequence: 9 givenname: Elieneza Nicodemus surname: Abelly fullname: Abelly, Elieneza Nicodemus organization: Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences |
BookMark | eNp9kD1PwzAQhi1UJNrCwD-wxARSih3HdjyiigJSEQvM0cWxiatgFzspKr-efs1M9w7P3at7JmjkgzcIXVMyo0Swez4jOVeiVGdoTEmpMimEGO2zJJkQjF6gSUorQghTuRgj-wq6dd7gzkD0zn9mTXQb47HuICVnnYbeBY-Dxe22iTB0TmPbhR88eNcnbEPExrfgtWlwNMnETXAR6xYi6N5E93vYv0TnFrpkrk5zij4Wj-_z52z59vQyf1hmOudFn2nZaE5KymspCiDMMgFAVWNA1NyCAi51XRY5FIIXQssyV0qBkYbVXBMp2RTdHO-uY_geTOqrVRii31VWjJZEskLuLE3R7ZHSMaQUja3W0X1B3FaUVHuNFa9OGnfs3ZFN2vWHX_6B_wC7sXV5 |
CODEN | PHFLE6 |
Cites_doi | 10.1007/s13202-024-01774-y 10.1007/s12665-024-11676-1 10.1007/s11004-024-10171-4 10.1016/j.jappgeo.2024.105414 10.1144/SP406.6 10.3390/en16062721 10.1016/j.pce.2024.103640 10.55699/ijogr.2023.0301.1040 10.1016/j.swevo.2021.100868 10.1016/j.asoc.2020.106250 10.1016/j.petlm.2018.03.013 10.1016/j.asoc.2009.08.029 10.9734/BJAST/2014/3089 10.1016/j.heliyon.2023.e15621 10.1108/09685220610648364 10.1007/s11721-007-0002-0 10.1016/j.jappgeo.2024.105502 10.1016/S0263-8762(97)80003-2 10.1016/j.petrol.2011.11.003 10.1016/j.asoc.2023.110843 10.1016/j.petrol.2020.107461 10.1007/s11053-021-09851-3 10.1007/s11053-023-10184-6 10.1007/s40808-024-02049-5 10.18637/jss.v059.i10 10.1007/s13146-021-00692-y 10.3923/jas.2009.1801.1816 10.2118/12016-PA 10.1007/s12517-022-10902-z 10.1016/0165-0114(86)90004-7 10.48084/etasr.2861 |
ContentType | Journal Article |
Copyright | Author(s) 2025 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2025 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0259689 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1089-7666 |
ExternalDocumentID | 10_1063_5_0259689 |
GrantInformation_xml | – fundername: China's National Key R&D Program grantid: 2023YFB4104200 – fundername: National Natural Science Foundation of China grantid: 72243011 |
GroupedDBID | -~X 0ZJ 1UP 2-P 29O 2WC 4.4 5VS 6TJ AAAAW AABDS AAPUP AAYIH ABJGX ABJNI ACBRY ACGFS ACLYJ ACNCT ACZLF ADCTM ADMLS AEJMO AENEX AFATG AFFNX AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS ATXIE AWQPM BDMKI BPZLN CS3 DU5 EBS EJD F5P FDOHQ FFFMQ HAM H~9 M6X M71 M73 NEUPN NPSNA O-B P2P RDFOP RIP RNS ROL RQS SC5 TN5 UQL WH7 XJT ~02 AAGWI AAYXX CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c254t-c7dc50815b764a03f36aa19dea6b5fa9a57cb842a46546c782999ae7e3b5c0773 |
ISSN | 1070-6631 |
IngestDate | Mon Jun 30 12:06:41 EDT 2025 Tue Jul 01 05:11:45 EDT 2025 Tue Mar 25 04:04:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Published under an exclusive license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c254t-c7dc50815b764a03f36aa19dea6b5fa9a57cb842a46546c782999ae7e3b5c0773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9795-1117 0000-0003-4735-3869 |
PQID | 3180734706 |
PQPubID | 2050667 |
PageCount | 19 |
ParticipantIDs | crossref_primary_10_1063_5_0259689 scitation_primary_10_1063_5_0259689 proquest_journals_3180734706 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250300 2025-03-01 20250301 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 20250300 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Physics of fluids (1994) |
PublicationYear | 2025 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Skalinski, Kenter (c12) 2015 Itani, Lecron, Fortemps (c23) 2020 Ali, Alrazzaq (c16) 2023 Houssein, Gad, Hussain, Suganthan (c36) 2021 Hussain, Liu, Hussain, Liu, Hussain, Ashraf (c13) 2024 Hussain, Ali, Sadaf, Al-Khafaji, Sadiq, Hu, Daud, Ahmed (c25) 2024 Sokhal, Benaissa, Ouadfeul, Boudella (c31) 2019 Kassab, Abbas, Osman, Eid (c15) 2024 Ali, Zhu, Jiang, Huolin, Ehsan, Hussain, Zhang, Ashraf, Ullah (c21) 2023 Amar, Zeraibi, Redouane (c38) 2018 Hussain, Pan, Wang, Saqlain, Ali, Sadaf (c8) 2022 Hussain, Ehsan, Pan, Wang, Ali, Din, Hussain, Jawad, Chen, Liang (c9) 2023 der Maaten, Hinton (c29) 2008 Poli, Kennedy, Blackwell (c37) 2007 Ali, Zhu, Huolin, Pan, Abbas, Ashraf, Ullah, Jiang, Zhang (c27) 2023 Barach, Jaafar, Gaafar, Agi, Junin (c14) 2021 Pedersen, Chipperfield (c39) 2010 Orodu, Tang, Fei (c7) 2009 Gowan, Mathieu, Hey (c35) 2006 Ali, Ma, Pan, Ashraf, Jiang (c2) 2020 Hearn, Ebanks, Tye, Ranganathan (c5) 1984 Singh, Yemez, Sotomayor (c1) 2013 Hussain, Atta, Guo, Hussain, Ali, Cheng, Fnais, Tariq (c10) 2024 Ajana, Enaworu, Orodu (c4) 2016 Ehsan, Toor, Hajana, Al-Ansari, Ali, Elbeltagi (c18) 2023 Hussain, Luo, Ali, Hussain, Ali, Iqbal, Nyakilla, Asghar (c3) 2024 Wickham (c19) 2014 Hussain, Luo, Ali, Rizvi, Al-Khafaji, Ali, Ahmed (c24) 2025 Carman (c32) 1997 Hussain, Luo, Ali, Al-Khafaji, Hussain, Hussain, Ahmed (c6) 2024 Sadeghi, Moussavi-Harami, Kadkhodaie, Mahboubi, Ashtari (c33) 2021 Bezdek, Chuah, Leep (c28) 1986 Nooruddin, Hossain (c34) 2011 (2025032412223284300_c7) 2009; 9 (2025032412223284300_c37) 2007; 1 (2025032412223284300_c3) 2024; 83 (2025032412223284300_c22) 2018 (2025032412223284300_c21) 2023; 148 (2025032412223284300_c29) 2008; 9 (2025032412223284300_c17) 1977 (2025032412223284300_c25) 2024; 10 (2025032412223284300_c4) 2016; 58 (2025032412223284300_c27) 2023; 32 (2025032412223284300_c2) 2020; 194 (2025032412223284300_c11) 2018 (2025032412223284300_c38) 2018; 4 (2025032412223284300_c40) 2007 (2025032412223284300_c34) 2011; 80 (2025032412223284300_c39) 2010; 10 (2025032412223284300_c30) 1993 (2025032412223284300_c12) 2015; 406 (2025032412223284300_c35) 2006; 14 (2025032412223284300_c13) 2024; 230 (2025032412223284300_c31) 2019; 9 (2025032412223284300_c14) 2021; 30 (2025032412223284300_c16) 2023; 3 (2025032412223284300_c9) 2023; 16 (2025032412223284300_c15) 2024; 14 (2025032412223284300_c19) 2014; 59 (2025032412223284300_c26) 1999 (2025032412223284300_c24) 2025 (2025032412223284300_c6) 2024; 226 (2025032412223284300_c33) 2021; 36 (2025032412223284300_c10) 2024; 135 (2025032412223284300_c1) 2013; 3 (2025032412223284300_c32) 1997; 75 (2025032412223284300_c20) 2017 (2025032412223284300_c5) 1984; 36 (2025032412223284300_c36) 2021; 63 (2025032412223284300_c28) 1986; 18 (2025032412223284300_c23) 2020; 91 (2025032412223284300_c8) 2022; 15 (2025032412223284300_c18) 2023; 9 |
References_xml | – start-page: 640 year: 2016 ident: c4 article-title: Permeability prediction in wells using flow zone indicator (FZI) publication-title: Pet. Coal – start-page: 103640 year: 2024 ident: c10 article-title: A comprehensive study on optimizing reservoir potential: Advanced geophysical log analysis of Zamzama gas field, southern Indus basin, Pakistan publication-title: Phys. Chem. Earth, Parts A/B/C – start-page: 110843 year: 2023 ident: c21 article-title: Reservoir characterization through comprehensive modeling of elastic logs prediction in heterogeneous rocks using unsupervised clustering and class-based ensemble machine learning publication-title: Appl. Soft Comput. – start-page: 1 year: 2021 ident: c33 article-title: Reservoir rock typing of the Asmari Formation using integrating geological and petrophysical data for unraveling the reservoir heterogeneity: A case study from the Ramshir oilfield, southwest Iran publication-title: Carbonates Evaporites – start-page: 1801 year: 2009 ident: c7 article-title: Hydraulic (flow) unit determination and permeability prediction: A case study of block Shen-95, Liaohe Oilfield, North-East China publication-title: J. Appl. Sci. – start-page: 1 year: 2024 ident: c3 article-title: Rock physics modeling to evaluate clastic reservoirs: A case study from the Lower Goru Formation, Middle Indus Basin, Pakistan publication-title: Environ. Earth Sci. – start-page: 33 year: 2007 ident: c37 article-title: Particle swarm optimization: An overview publication-title: Swarm Intell. – start-page: e15621 year: 2023 ident: c18 article-title: An integrated study for seismic structural interpretation and reservoir estimation of Sawan gas field, Lower Indus Basin, Pakistan publication-title: Heliyon – start-page: 1 year: 2014 ident: c19 article-title: Tidy data publication-title: J. Stat. Soft. – start-page: 237 year: 1986 ident: c28 article-title: Generalized k-nearest neighbor rules publication-title: Fuzzy Sets Syst. – start-page: 2497 year: 2021 ident: c14 article-title: Development and identification of petrophysical rock types for effective reservoir characterization: Case study of the Kristine Field, Offshore Sabah publication-title: Nat. Resour. Res. – start-page: 1635 year: 2022 ident: c8 article-title: Evaluation of unconventional hydrocarbon reserves using petrophysical analysis to characterize the Yageliemu Formation in the Yakela gas condensate field, Tarim Basin, China publication-title: Arab. J. Geosci. – start-page: 107 year: 2011 ident: c34 article-title: Modified Kozeny–Carmen correlation for enhanced hydraulic flow unit characterization publication-title: J. Pet. Sci. Eng. – start-page: 229 year: 2015 ident: c12 article-title: Carbonate petrophysical rock typing: Integrating geological attributes and petrophysical properties while linking with dynamic behaviour publication-title: SP. – start-page: 94 year: 2023 ident: c16 article-title: Applying facies characterization to build 3D rock-type model for Khasib Formation, Amara Oil Field publication-title: Iraqi J. Oil Gas Res – start-page: 1335 year: 1984 ident: c5 article-title: Geological factors influencing reservoir performance of the Hartzog Draw Field, Wyoming publication-title: J. Pet. Technol. – start-page: 5043 year: 2024 ident: c25 article-title: Advanced AI approach for enhanced predictive modeling in reservoir characterization within complex geological environments publication-title: Model. Earth Syst. Environ. – start-page: 106250 year: 2020 ident: c23 article-title: A one-class classification decision tree based on kernel density estimation publication-title: Appl. Soft Comput. – start-page: 1047 year: 2023 ident: c27 article-title: A Novel machine learning approach for detecting outliers, rebuilding well logs, and enhancing reservoir characterization publication-title: Nat. Resour. Res. – start-page: 618 year: 2010 ident: c39 article-title: Simplifying particle swarm optimization publication-title: Appl. Soft Comput. – start-page: 1395 year: 2024 ident: c15 article-title: Reservoir rock typing for optimum permeability prediction of Nubia formation in October Field, Gulf of Suez, Egypt publication-title: J. Pet. Explor. Prod. Technol. – start-page: 2579 year: 2008 ident: c29 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – start-page: 1 year: 2025 ident: c24 article-title: Advanced permeability prediction through two-dimensional geological feature image extraction with CNN regression from well logs data publication-title: Math. Geosci. – start-page: 2721 year: 2023 ident: c9 article-title: Prospect evaluation of the cretaceous Yageliemu Clastic reservoir based on geophysical log data: A case study from the Yakela Gas Condensate Field, Tarim Basin, China publication-title: Energies – start-page: 376 year: 2013 ident: c1 article-title: Key factors affecting 3D reservoir interpretation and modelling outcomes: Industry perspectives publication-title: Br. J. Appl. Sci. Technol. – start-page: 419 year: 2018 ident: c38 article-title: Bottom hole pressure estimation using hybridization neural networks and grey wolves optimization publication-title: Petroleum – start-page: 105414 year: 2024 ident: c6 article-title: A Gamma-ray spectroscopy approach to evaluate clay mineral composition and depositional environment: A case study from the lower Goru Formation, Southern Indus Basin, Pakistan publication-title: J. Appl. Geophys. – start-page: 100868 year: 2021 ident: c36 article-title: Major advances in particle swarm optimization: Theory, analysis, and application publication-title: Swarm Evol. Comput. – start-page: S32 year: 1997 ident: c32 article-title: Fluid flow through granular beds publication-title: Chem. Eng. Res. Des. – start-page: 107461 year: 2020 ident: c2 article-title: Building a rock physics model for the formation evaluation of the Lower Goru sand reservoir of the Southern Indus Basin in Pakistan publication-title: J. Pet. Sci. Eng. – start-page: 105502 year: 2024 ident: c13 article-title: Application of deep learning for reservoir porosity prediction and self organizing map for lithofacies prediction publication-title: J. Appl. Geophys. – start-page: 37 year: 2006 ident: c35 article-title: Earned value management in a data warehouse project publication-title: Inf. Manag. Comput. Secur. – start-page: 4397 year: 2019 ident: c31 article-title: Dynamic rock type characterization using artificial neural networks in Hamra quartzites reservoir: A multidisciplinary approach publication-title: Eng. Technol. Appl. Sci. Res. – volume: 14 start-page: 1395 year: 2024 ident: 2025032412223284300_c15 article-title: Reservoir rock typing for optimum permeability prediction of Nubia formation in October Field, Gulf of Suez, Egypt publication-title: J. Pet. Explor. Prod. Technol. doi: 10.1007/s13202-024-01774-y – volume: 83 start-page: 1 issue: 12 year: 2024 ident: 2025032412223284300_c3 article-title: Rock physics modeling to evaluate clastic reservoirs: A case study from the Lower Goru Formation, Middle Indus Basin, Pakistan publication-title: Environ. Earth Sci. doi: 10.1007/s12665-024-11676-1 – start-page: 1 year: 2025 ident: 2025032412223284300_c24 article-title: Advanced permeability prediction through two-dimensional geological feature image extraction with CNN regression from well logs data publication-title: Math. Geosci. doi: 10.1007/s11004-024-10171-4 – volume: 226 start-page: 105414 year: 2024 ident: 2025032412223284300_c6 article-title: A Gamma-ray spectroscopy approach to evaluate clay mineral composition and depositional environment: A case study from the lower Goru Formation, Southern Indus Basin, Pakistan publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2024.105414 – volume: 406 start-page: 229 issue: 1 year: 2015 ident: 2025032412223284300_c12 article-title: Carbonate petrophysical rock typing: Integrating geological attributes and petrophysical properties while linking with dynamic behaviour publication-title: SP. doi: 10.1144/SP406.6 – volume: 9 start-page: 2579 issue: 11 year: 2008 ident: 2025032412223284300_c29 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 58 start-page: 640 issue: 6 year: 2016 ident: 2025032412223284300_c4 article-title: Permeability prediction in wells using flow zone indicator (FZI) publication-title: Pet. Coal – volume: 16 start-page: 2721 issue: 6 year: 2023 ident: 2025032412223284300_c9 article-title: Prospect evaluation of the cretaceous Yageliemu Clastic reservoir based on geophysical log data: A case study from the Yakela Gas Condensate Field, Tarim Basin, China publication-title: Energies doi: 10.3390/en16062721 – volume: 135 start-page: 103640 year: 2024 ident: 2025032412223284300_c10 article-title: A comprehensive study on optimizing reservoir potential: Advanced geophysical log analysis of Zamzama gas field, southern Indus basin, Pakistan publication-title: Phys. Chem. Earth, Parts A/B/C doi: 10.1016/j.pce.2024.103640 – volume: 3 start-page: 94 issue: 1 year: 2023 ident: 2025032412223284300_c16 article-title: Applying facies characterization to build 3D rock-type model for Khasib Formation, Amara Oil Field publication-title: Iraqi J. Oil Gas Res doi: 10.55699/ijogr.2023.0301.1040 – volume: 63 start-page: 100868 year: 2021 ident: 2025032412223284300_c36 article-title: Major advances in particle swarm optimization: Theory, analysis, and application publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2021.100868 – volume: 91 start-page: 106250 year: 2020 ident: 2025032412223284300_c23 article-title: A one-class classification decision tree based on kernel density estimation publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106250 – volume: 4 start-page: 419 issue: 4 year: 2018 ident: 2025032412223284300_c38 article-title: Bottom hole pressure estimation using hybridization neural networks and grey wolves optimization publication-title: Petroleum doi: 10.1016/j.petlm.2018.03.013 – volume: 10 start-page: 618 issue: 2 year: 2010 ident: 2025032412223284300_c39 article-title: Simplifying particle swarm optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2009.08.029 – volume: 3 start-page: 376 issue: 3 year: 2013 ident: 2025032412223284300_c1 article-title: Key factors affecting 3D reservoir interpretation and modelling outcomes: Industry perspectives publication-title: Br. J. Appl. Sci. Technol. doi: 10.9734/BJAST/2014/3089 – volume: 9 start-page: e15621 issue: 5 year: 2023 ident: 2025032412223284300_c18 article-title: An integrated study for seismic structural interpretation and reservoir estimation of Sawan gas field, Lower Indus Basin, Pakistan publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e15621 – year: 2017 ident: 2025032412223284300_c20 article-title: Self-normalizing neural networks – volume: 14 start-page: 37 issue: 1 year: 2006 ident: 2025032412223284300_c35 article-title: Earned value management in a data warehouse project publication-title: Inf. Manag. Comput. Secur. doi: 10.1108/09685220610648364 – volume: 1 start-page: 33 year: 2007 ident: 2025032412223284300_c37 article-title: Particle swarm optimization: An overview publication-title: Swarm Intell. doi: 10.1007/s11721-007-0002-0 – volume: 230 start-page: 105502 year: 2024 ident: 2025032412223284300_c13 article-title: Application of deep learning for reservoir porosity prediction and self organizing map for lithofacies prediction publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2024.105502 – volume: 75 start-page: S32 year: 1997 ident: 2025032412223284300_c32 article-title: Fluid flow through granular beds publication-title: Chem. Eng. Res. Des. doi: 10.1016/S0263-8762(97)80003-2 – volume: 80 start-page: 107 issue: 1 year: 2011 ident: 2025032412223284300_c34 article-title: Modified Kozeny–Carmen correlation for enhanced hydraulic flow unit characterization publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2011.11.003 – volume: 148 start-page: 110843 year: 2023 ident: 2025032412223284300_c21 article-title: Reservoir characterization through comprehensive modeling of elastic logs prediction in heterogeneous rocks using unsupervised clustering and class-based ensemble machine learning publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110843 – volume: 194 start-page: 107461 year: 2020 ident: 2025032412223284300_c2 article-title: Building a rock physics model for the formation evaluation of the Lower Goru sand reservoir of the Southern Indus Basin in Pakistan publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2020.107461 – volume: 30 start-page: 2497 year: 2021 ident: 2025032412223284300_c14 article-title: Development and identification of petrophysical rock types for effective reservoir characterization: Case study of the Kristine Field, Offshore Sabah publication-title: Nat. Resour. Res. doi: 10.1007/s11053-021-09851-3 – volume: 32 start-page: 1047 year: 2023 ident: 2025032412223284300_c27 article-title: A Novel machine learning approach for detecting outliers, rebuilding well logs, and enhancing reservoir characterization publication-title: Nat. Resour. Res. doi: 10.1007/s11053-023-10184-6 – year: 2018 ident: 2025032412223284300_c22 article-title: Accelerating and enhancing petrophysical analysis with machine learning: A case study of an automated system for well log outlier detection and reconstruction – volume: 10 start-page: 5043 year: 2024 ident: 2025032412223284300_c25 article-title: Advanced AI approach for enhanced predictive modeling in reservoir characterization within complex geological environments publication-title: Model. Earth Syst. Environ. doi: 10.1007/s40808-024-02049-5 – volume: 59 start-page: 1 issue: 10 year: 2014 ident: 2025032412223284300_c19 article-title: Tidy data publication-title: J. Stat. Soft. doi: 10.18637/jss.v059.i10 – volume: 36 start-page: 1 year: 2021 ident: 2025032412223284300_c33 article-title: Reservoir rock typing of the Asmari Formation using integrating geological and petrophysical data for unraveling the reservoir heterogeneity: A case study from the Ramshir oilfield, southwest Iran publication-title: Carbonates Evaporites doi: 10.1007/s13146-021-00692-y – volume: 9 start-page: 1801 issue: 10 year: 2009 ident: 2025032412223284300_c7 article-title: Hydraulic (flow) unit determination and permeability prediction: A case study of block Shen-95, Liaohe Oilfield, North-East China publication-title: J. Appl. Sci. doi: 10.3923/jas.2009.1801.1816 – volume-title: Evolutionary Algorithms for Solving Multi-objective Problems year: 2007 ident: 2025032412223284300_c40 – volume: 36 start-page: 1335 issue: 08 year: 1984 ident: 2025032412223284300_c5 article-title: Geological factors influencing reservoir performance of the Hartzog Draw Field, Wyoming publication-title: J. Pet. Technol. doi: 10.2118/12016-PA – start-page: SPE-26436 year: 1993 ident: 2025032412223284300_c30 article-title: Enhanced reservoir description using core and log data to identify hydraulic (Flow) units and predict permeability in uncored intervals/wells – volume-title: Exploratory Data Analysis year: 1977 ident: 2025032412223284300_c17 – volume-title: Geological Core Analysis: Application to Reservoir Characterization year: 2018 ident: 2025032412223284300_c11 – volume: 15 start-page: 1635 year: 2022 ident: 2025032412223284300_c8 article-title: Evaluation of unconventional hydrocarbon reserves using petrophysical analysis to characterize the Yageliemu Formation in the Yakela gas condensate field, Tarim Basin, China publication-title: Arab. J. Geosci. doi: 10.1007/s12517-022-10902-z – volume: 18 start-page: 237 issue: 3 year: 1986 ident: 2025032412223284300_c28 article-title: Generalized k-nearest neighbor rules publication-title: Fuzzy Sets Syst. doi: 10.1016/0165-0114(86)90004-7 – volume: 9 start-page: 4397 issue: 4 year: 2019 ident: 2025032412223284300_c31 article-title: Dynamic rock type characterization using artificial neural networks in Hamra quartzites reservoir: A multidisciplinary approach publication-title: Eng. Technol. Appl. Sci. Res. doi: 10.48084/etasr.2861 – volume-title: Advances in Kernel Methods: Support Vector Learning year: 1999 ident: 2025032412223284300_c26 |
SSID | ssj0003926 |
Score | 2.4724221 |
Snippet | This study focuses on the classification of Hydraulic Flow Units (HFUs) within the Lower Goru reservoir using a hybrid modeling approach for a more precise and... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Classification Cluster analysis Clustering Fluid flow Indicators Machine learning Particle swarm optimization Reservoirs Sandstone Shales Spatial distribution Vector quantization |
Title | Machine learning-driven classification of hydraulic flow units for enhanced reservoir characterization |
URI | http://dx.doi.org/10.1063/5.0259689 https://www.proquest.com/docview/3180734706 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgCNELHwXEQkEWcKtSkvgrOVYItEJaLrSit2jsOLRlu4uSTRH99YxjJ-kuRSpcoshS4sjz8vycvBkT8hb5rspynkWqzFXEdakirXUeKZdkmcRGKOUSnGef5fSIfzoWx6N1qMsuWel9c3ltXsn_RBXbMK4uS_YfIjvcFBvwHOOLR4wwHm8U41nnhLT91g_forJ25LVnnCR2HqBRD_4qa2hdQetqvvy51y7c_4Ku2vfixHsAXBpSfbE8rV0ucKjhfDmGLejXzjBqOvtHNW9PS1_oKc_5lS8K07ZpwJcm-ArfrR08HAc-FXvWnsD5OZQD10MDc_CkDKhFx-SIcMEXOAu--_B5IhWjPyswKnJKhLLGN9nQliEapN9upadhX_slwI1dy-4opzAkYh-7yaXfeWi9gvbGzDb4Dbs_7ZIVogiX3iZ3UlxXsM7rOXqCUCxKb1L1z9yXopLs3dDruoAZVyX3ULJ498QVgXL4kNwPKwt64GHyiNyyix3yIKwyaODwZofcDTF8TKqAH7qBH7qOH7qs6IAf6vBDO_xQxA_t8UMH_NBN_DwhRx8_HL6fRmHfjcikgq8io0qDuj0RWkkOMauYBEjy0oLUooIchDI64ym4WnzSoMbEVQZYZZkWJlaKPSVbi-XCPiNUKG3iBLJUVTGvMg2a5cxopjjXSRbbCXndD2bxw5dXKf4I1oTs9sNchLevKXAuwtmJI6dMyJth6P9-k-c36ekF2R4xvEu2VnVrX6LoXOlXHVB-A4jzgek |
linkProvider | American Institute of Physics |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-driven+classification+of+hydraulic+flow+units+for+enhanced+reservoir+characterization&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Hussain%2C+Wakeel&rft.au=Ali%2C+Muhammad&rft.au=Kasala%2C+Erasto+E&rft.au=Ali%2C+Sajid&rft.date=2025-03-01&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=37&rft.issue=3&rft_id=info:doi/10.1063%2F5.0259689&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0259689 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon |