Machine learning-driven classification of hydraulic flow units for enhanced reservoir characterization

This study focuses on the classification of Hydraulic Flow Units (HFUs) within the Lower Goru reservoir using a hybrid modeling approach for a more precise and data-driven reservoir characterization. The methodology begins with K-means clustering, which groups the reservoir into distinct HFUs based...

Full description

Saved in:
Bibliographic Details
Published inPhysics of fluids (1994) Vol. 37; no. 3
Main Authors Hussain, Wakeel, Ali, Muhammad, Kasala, Erasto E, Ali, Sajid, AL-khulaidi, Ghamdan, Sadiq, Izhar, Nyakilla, Edwin E, Hussain, Saddam, Abelly, Elieneza Nicodemus
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study focuses on the classification of Hydraulic Flow Units (HFUs) within the Lower Goru reservoir using a hybrid modeling approach for a more precise and data-driven reservoir characterization. The methodology begins with K-means clustering, which groups the reservoir into distinct HFUs based on reservoir properties. To enhance the accuracy of this classification, Particle Swarm Optimization (PSO) is employed to optimize the clustering process. The flow capacity and rock quality of each HFU are then assessed using two key indicators: the flow zone indicator (FZI) and the rock quality index (RQI). The results reveal four distinct HFUs: Clean Sandstone, Clayey Sandstone, Shaly Sandstone, and Shale. Among these, HFU 1 (Clean Sandstone) exhibits the highest FZI and RQI values, indicating excellent rock quality and flow capacity, while HFU 2 (Clayey Sandstone) demonstrates moderate FZI and RQI values, suggesting good reservoir potential. In contrast, HFUs 3 (Shaly Sandstone) and 4 (Shale) show progressively lower FZI and RQI values, reflecting poorer rock quality and reduced flow potential. This integrated approach significantly improves the precision of reservoir characterization by combining K-means clustering, PSO optimization, and petrophysical indicators such as FZI and RQI. The study's findings not only provide valuable understanding of reservoir dynamics and fluid flow potential but also enhance our comprehension of the spatial distribution and petrophysical properties of each HFU, offering a solid foundation for optimizing hydrocarbon recovery and enhancing reservoir management approaches.
AbstractList This study focuses on the classification of Hydraulic Flow Units (HFUs) within the Lower Goru reservoir using a hybrid modeling approach for a more precise and data-driven reservoir characterization. The methodology begins with K-means clustering, which groups the reservoir into distinct HFUs based on reservoir properties. To enhance the accuracy of this classification, Particle Swarm Optimization (PSO) is employed to optimize the clustering process. The flow capacity and rock quality of each HFU are then assessed using two key indicators: the flow zone indicator (FZI) and the rock quality index (RQI). The results reveal four distinct HFUs: Clean Sandstone, Clayey Sandstone, Shaly Sandstone, and Shale. Among these, HFU 1 (Clean Sandstone) exhibits the highest FZI and RQI values, indicating excellent rock quality and flow capacity, while HFU 2 (Clayey Sandstone) demonstrates moderate FZI and RQI values, suggesting good reservoir potential. In contrast, HFUs 3 (Shaly Sandstone) and 4 (Shale) show progressively lower FZI and RQI values, reflecting poorer rock quality and reduced flow potential. This integrated approach significantly improves the precision of reservoir characterization by combining K-means clustering, PSO optimization, and petrophysical indicators such as FZI and RQI. The study's findings not only provide valuable understanding of reservoir dynamics and fluid flow potential but also enhance our comprehension of the spatial distribution and petrophysical properties of each HFU, offering a solid foundation for optimizing hydrocarbon recovery and enhancing reservoir management approaches.
Author Ali, Muhammad
Abelly, Elieneza Nicodemus
Nyakilla, Edwin E
AL-khulaidi, Ghamdan
Sadiq, Izhar
Kasala, Erasto E
Ali, Sajid
Hussain, Saddam
Hussain, Wakeel
Author_xml – sequence: 1
  givenname: Wakeel
  surname: Hussain
  fullname: Hussain, Wakeel
  organization: 9Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
– sequence: 2
  givenname: Muhammad
  surname: Ali
  fullname: Ali, Muhammad
  organization: State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences
– sequence: 3
  givenname: Erasto E
  surname: Kasala
  fullname: Kasala, Erasto E
  organization: 9Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
– sequence: 4
  givenname: Sajid
  surname: Ali
  fullname: Ali, Sajid
  organization: Faculty of Engineering, Department of Geological Resources and Engineering, China University of Geosciences
– sequence: 5
  givenname: Ghamdan
  surname: AL-khulaidi
  fullname: AL-khulaidi, Ghamdan
  organization: Key Laboratory of Theory and Technology of Petroleum Exploration and Development in Hubei Province, China University of Geosciences
– sequence: 6
  givenname: Izhar
  surname: Sadiq
  fullname: Sadiq, Izhar
  organization: College of Marine Resources and Environment, Ocean College, Zhejiang University
– sequence: 7
  givenname: Edwin E
  surname: Nyakilla
  fullname: Nyakilla, Edwin E
  organization: State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences
– sequence: 8
  givenname: Saddam
  surname: Hussain
  fullname: Hussain, Saddam
  organization: Department of Geotechnical Engineering, College of Civil Engineering, Tongji University
– sequence: 9
  givenname: Elieneza Nicodemus
  surname: Abelly
  fullname: Abelly, Elieneza Nicodemus
  organization: Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences
BookMark eNp9kD1PwzAQhi1UJNrCwD-wxARSih3HdjyiigJSEQvM0cWxiatgFzspKr-efs1M9w7P3at7JmjkgzcIXVMyo0Swez4jOVeiVGdoTEmpMimEGO2zJJkQjF6gSUorQghTuRgj-wq6dd7gzkD0zn9mTXQb47HuICVnnYbeBY-Dxe22iTB0TmPbhR88eNcnbEPExrfgtWlwNMnETXAR6xYi6N5E93vYv0TnFrpkrk5zij4Wj-_z52z59vQyf1hmOudFn2nZaE5KymspCiDMMgFAVWNA1NyCAi51XRY5FIIXQssyV0qBkYbVXBMp2RTdHO-uY_geTOqrVRii31VWjJZEskLuLE3R7ZHSMaQUja3W0X1B3FaUVHuNFa9OGnfs3ZFN2vWHX_6B_wC7sXV5
CODEN PHFLE6
Cites_doi 10.1007/s13202-024-01774-y
10.1007/s12665-024-11676-1
10.1007/s11004-024-10171-4
10.1016/j.jappgeo.2024.105414
10.1144/SP406.6
10.3390/en16062721
10.1016/j.pce.2024.103640
10.55699/ijogr.2023.0301.1040
10.1016/j.swevo.2021.100868
10.1016/j.asoc.2020.106250
10.1016/j.petlm.2018.03.013
10.1016/j.asoc.2009.08.029
10.9734/BJAST/2014/3089
10.1016/j.heliyon.2023.e15621
10.1108/09685220610648364
10.1007/s11721-007-0002-0
10.1016/j.jappgeo.2024.105502
10.1016/S0263-8762(97)80003-2
10.1016/j.petrol.2011.11.003
10.1016/j.asoc.2023.110843
10.1016/j.petrol.2020.107461
10.1007/s11053-021-09851-3
10.1007/s11053-023-10184-6
10.1007/s40808-024-02049-5
10.18637/jss.v059.i10
10.1007/s13146-021-00692-y
10.3923/jas.2009.1801.1816
10.2118/12016-PA
10.1007/s12517-022-10902-z
10.1016/0165-0114(86)90004-7
10.48084/etasr.2861
ContentType Journal Article
Copyright Author(s)
2025 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2025 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0259689
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1089-7666
ExternalDocumentID 10_1063_5_0259689
GrantInformation_xml – fundername: China's National Key R&D Program
  grantid: 2023YFB4104200
– fundername: National Natural Science Foundation of China
  grantid: 72243011
GroupedDBID -~X
0ZJ
1UP
2-P
29O
2WC
4.4
5VS
6TJ
AAAAW
AABDS
AAPUP
AAYIH
ABJGX
ABJNI
ACBRY
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
AEJMO
AENEX
AFATG
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BDMKI
BPZLN
CS3
DU5
EBS
EJD
F5P
FDOHQ
FFFMQ
HAM
H~9
M6X
M71
M73
NEUPN
NPSNA
O-B
P2P
RDFOP
RIP
RNS
ROL
RQS
SC5
TN5
UQL
WH7
XJT
~02
AAGWI
AAYXX
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c254t-c7dc50815b764a03f36aa19dea6b5fa9a57cb842a46546c782999ae7e3b5c0773
ISSN 1070-6631
IngestDate Mon Jun 30 12:06:41 EDT 2025
Tue Jul 01 05:11:45 EDT 2025
Tue Mar 25 04:04:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c254t-c7dc50815b764a03f36aa19dea6b5fa9a57cb842a46546c782999ae7e3b5c0773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9795-1117
0000-0003-4735-3869
PQID 3180734706
PQPubID 2050667
PageCount 19
ParticipantIDs crossref_primary_10_1063_5_0259689
scitation_primary_10_1063_5_0259689
proquest_journals_3180734706
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250300
2025-03-01
20250301
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 20250300
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Physics of fluids (1994)
PublicationYear 2025
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Skalinski, Kenter (c12) 2015
Itani, Lecron, Fortemps (c23) 2020
Ali, Alrazzaq (c16) 2023
Houssein, Gad, Hussain, Suganthan (c36) 2021
Hussain, Liu, Hussain, Liu, Hussain, Ashraf (c13) 2024
Hussain, Ali, Sadaf, Al-Khafaji, Sadiq, Hu, Daud, Ahmed (c25) 2024
Sokhal, Benaissa, Ouadfeul, Boudella (c31) 2019
Kassab, Abbas, Osman, Eid (c15) 2024
Ali, Zhu, Jiang, Huolin, Ehsan, Hussain, Zhang, Ashraf, Ullah (c21) 2023
Amar, Zeraibi, Redouane (c38) 2018
Hussain, Pan, Wang, Saqlain, Ali, Sadaf (c8) 2022
Hussain, Ehsan, Pan, Wang, Ali, Din, Hussain, Jawad, Chen, Liang (c9) 2023
der Maaten, Hinton (c29) 2008
Poli, Kennedy, Blackwell (c37) 2007
Ali, Zhu, Huolin, Pan, Abbas, Ashraf, Ullah, Jiang, Zhang (c27) 2023
Barach, Jaafar, Gaafar, Agi, Junin (c14) 2021
Pedersen, Chipperfield (c39) 2010
Orodu, Tang, Fei (c7) 2009
Gowan, Mathieu, Hey (c35) 2006
Ali, Ma, Pan, Ashraf, Jiang (c2) 2020
Hearn, Ebanks, Tye, Ranganathan (c5) 1984
Singh, Yemez, Sotomayor (c1) 2013
Hussain, Atta, Guo, Hussain, Ali, Cheng, Fnais, Tariq (c10) 2024
Ajana, Enaworu, Orodu (c4) 2016
Ehsan, Toor, Hajana, Al-Ansari, Ali, Elbeltagi (c18) 2023
Hussain, Luo, Ali, Hussain, Ali, Iqbal, Nyakilla, Asghar (c3) 2024
Wickham (c19) 2014
Hussain, Luo, Ali, Rizvi, Al-Khafaji, Ali, Ahmed (c24) 2025
Carman (c32) 1997
Hussain, Luo, Ali, Al-Khafaji, Hussain, Hussain, Ahmed (c6) 2024
Sadeghi, Moussavi-Harami, Kadkhodaie, Mahboubi, Ashtari (c33) 2021
Bezdek, Chuah, Leep (c28) 1986
Nooruddin, Hossain (c34) 2011
(2025032412223284300_c7) 2009; 9
(2025032412223284300_c37) 2007; 1
(2025032412223284300_c3) 2024; 83
(2025032412223284300_c22) 2018
(2025032412223284300_c21) 2023; 148
(2025032412223284300_c29) 2008; 9
(2025032412223284300_c17) 1977
(2025032412223284300_c25) 2024; 10
(2025032412223284300_c4) 2016; 58
(2025032412223284300_c27) 2023; 32
(2025032412223284300_c2) 2020; 194
(2025032412223284300_c11) 2018
(2025032412223284300_c38) 2018; 4
(2025032412223284300_c40) 2007
(2025032412223284300_c34) 2011; 80
(2025032412223284300_c39) 2010; 10
(2025032412223284300_c30) 1993
(2025032412223284300_c12) 2015; 406
(2025032412223284300_c35) 2006; 14
(2025032412223284300_c13) 2024; 230
(2025032412223284300_c31) 2019; 9
(2025032412223284300_c14) 2021; 30
(2025032412223284300_c16) 2023; 3
(2025032412223284300_c9) 2023; 16
(2025032412223284300_c15) 2024; 14
(2025032412223284300_c19) 2014; 59
(2025032412223284300_c26) 1999
(2025032412223284300_c24) 2025
(2025032412223284300_c6) 2024; 226
(2025032412223284300_c33) 2021; 36
(2025032412223284300_c10) 2024; 135
(2025032412223284300_c1) 2013; 3
(2025032412223284300_c32) 1997; 75
(2025032412223284300_c20) 2017
(2025032412223284300_c5) 1984; 36
(2025032412223284300_c36) 2021; 63
(2025032412223284300_c28) 1986; 18
(2025032412223284300_c23) 2020; 91
(2025032412223284300_c8) 2022; 15
(2025032412223284300_c18) 2023; 9
References_xml – start-page: 640
  year: 2016
  ident: c4
  article-title: Permeability prediction in wells using flow zone indicator (FZI)
  publication-title: Pet. Coal
– start-page: 103640
  year: 2024
  ident: c10
  article-title: A comprehensive study on optimizing reservoir potential: Advanced geophysical log analysis of Zamzama gas field, southern Indus basin, Pakistan
  publication-title: Phys. Chem. Earth, Parts A/B/C
– start-page: 110843
  year: 2023
  ident: c21
  article-title: Reservoir characterization through comprehensive modeling of elastic logs prediction in heterogeneous rocks using unsupervised clustering and class-based ensemble machine learning
  publication-title: Appl. Soft Comput.
– start-page: 1
  year: 2021
  ident: c33
  article-title: Reservoir rock typing of the Asmari Formation using integrating geological and petrophysical data for unraveling the reservoir heterogeneity: A case study from the Ramshir oilfield, southwest Iran
  publication-title: Carbonates Evaporites
– start-page: 1801
  year: 2009
  ident: c7
  article-title: Hydraulic (flow) unit determination and permeability prediction: A case study of block Shen-95, Liaohe Oilfield, North-East China
  publication-title: J. Appl. Sci.
– start-page: 1
  year: 2024
  ident: c3
  article-title: Rock physics modeling to evaluate clastic reservoirs: A case study from the Lower Goru Formation, Middle Indus Basin, Pakistan
  publication-title: Environ. Earth Sci.
– start-page: 33
  year: 2007
  ident: c37
  article-title: Particle swarm optimization: An overview
  publication-title: Swarm Intell.
– start-page: e15621
  year: 2023
  ident: c18
  article-title: An integrated study for seismic structural interpretation and reservoir estimation of Sawan gas field, Lower Indus Basin, Pakistan
  publication-title: Heliyon
– start-page: 1
  year: 2014
  ident: c19
  article-title: Tidy data
  publication-title: J. Stat. Soft.
– start-page: 237
  year: 1986
  ident: c28
  article-title: Generalized k-nearest neighbor rules
  publication-title: Fuzzy Sets Syst.
– start-page: 2497
  year: 2021
  ident: c14
  article-title: Development and identification of petrophysical rock types for effective reservoir characterization: Case study of the Kristine Field, Offshore Sabah
  publication-title: Nat. Resour. Res.
– start-page: 1635
  year: 2022
  ident: c8
  article-title: Evaluation of unconventional hydrocarbon reserves using petrophysical analysis to characterize the Yageliemu Formation in the Yakela gas condensate field, Tarim Basin, China
  publication-title: Arab. J. Geosci.
– start-page: 107
  year: 2011
  ident: c34
  article-title: Modified Kozeny–Carmen correlation for enhanced hydraulic flow unit characterization
  publication-title: J. Pet. Sci. Eng.
– start-page: 229
  year: 2015
  ident: c12
  article-title: Carbonate petrophysical rock typing: Integrating geological attributes and petrophysical properties while linking with dynamic behaviour
  publication-title: SP.
– start-page: 94
  year: 2023
  ident: c16
  article-title: Applying facies characterization to build 3D rock-type model for Khasib Formation, Amara Oil Field
  publication-title: Iraqi J. Oil Gas Res
– start-page: 1335
  year: 1984
  ident: c5
  article-title: Geological factors influencing reservoir performance of the Hartzog Draw Field, Wyoming
  publication-title: J. Pet. Technol.
– start-page: 5043
  year: 2024
  ident: c25
  article-title: Advanced AI approach for enhanced predictive modeling in reservoir characterization within complex geological environments
  publication-title: Model. Earth Syst. Environ.
– start-page: 106250
  year: 2020
  ident: c23
  article-title: A one-class classification decision tree based on kernel density estimation
  publication-title: Appl. Soft Comput.
– start-page: 1047
  year: 2023
  ident: c27
  article-title: A Novel machine learning approach for detecting outliers, rebuilding well logs, and enhancing reservoir characterization
  publication-title: Nat. Resour. Res.
– start-page: 618
  year: 2010
  ident: c39
  article-title: Simplifying particle swarm optimization
  publication-title: Appl. Soft Comput.
– start-page: 1395
  year: 2024
  ident: c15
  article-title: Reservoir rock typing for optimum permeability prediction of Nubia formation in October Field, Gulf of Suez, Egypt
  publication-title: J. Pet. Explor. Prod. Technol.
– start-page: 2579
  year: 2008
  ident: c29
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– start-page: 1
  year: 2025
  ident: c24
  article-title: Advanced permeability prediction through two-dimensional geological feature image extraction with CNN regression from well logs data
  publication-title: Math. Geosci.
– start-page: 2721
  year: 2023
  ident: c9
  article-title: Prospect evaluation of the cretaceous Yageliemu Clastic reservoir based on geophysical log data: A case study from the Yakela Gas Condensate Field, Tarim Basin, China
  publication-title: Energies
– start-page: 376
  year: 2013
  ident: c1
  article-title: Key factors affecting 3D reservoir interpretation and modelling outcomes: Industry perspectives
  publication-title: Br. J. Appl. Sci. Technol.
– start-page: 419
  year: 2018
  ident: c38
  article-title: Bottom hole pressure estimation using hybridization neural networks and grey wolves optimization
  publication-title: Petroleum
– start-page: 105414
  year: 2024
  ident: c6
  article-title: A Gamma-ray spectroscopy approach to evaluate clay mineral composition and depositional environment: A case study from the lower Goru Formation, Southern Indus Basin, Pakistan
  publication-title: J. Appl. Geophys.
– start-page: 100868
  year: 2021
  ident: c36
  article-title: Major advances in particle swarm optimization: Theory, analysis, and application
  publication-title: Swarm Evol. Comput.
– start-page: S32
  year: 1997
  ident: c32
  article-title: Fluid flow through granular beds
  publication-title: Chem. Eng. Res. Des.
– start-page: 107461
  year: 2020
  ident: c2
  article-title: Building a rock physics model for the formation evaluation of the Lower Goru sand reservoir of the Southern Indus Basin in Pakistan
  publication-title: J. Pet. Sci. Eng.
– start-page: 105502
  year: 2024
  ident: c13
  article-title: Application of deep learning for reservoir porosity prediction and self organizing map for lithofacies prediction
  publication-title: J. Appl. Geophys.
– start-page: 37
  year: 2006
  ident: c35
  article-title: Earned value management in a data warehouse project
  publication-title: Inf. Manag. Comput. Secur.
– start-page: 4397
  year: 2019
  ident: c31
  article-title: Dynamic rock type characterization using artificial neural networks in Hamra quartzites reservoir: A multidisciplinary approach
  publication-title: Eng. Technol. Appl. Sci. Res.
– volume: 14
  start-page: 1395
  year: 2024
  ident: 2025032412223284300_c15
  article-title: Reservoir rock typing for optimum permeability prediction of Nubia formation in October Field, Gulf of Suez, Egypt
  publication-title: J. Pet. Explor. Prod. Technol.
  doi: 10.1007/s13202-024-01774-y
– volume: 83
  start-page: 1
  issue: 12
  year: 2024
  ident: 2025032412223284300_c3
  article-title: Rock physics modeling to evaluate clastic reservoirs: A case study from the Lower Goru Formation, Middle Indus Basin, Pakistan
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-024-11676-1
– start-page: 1
  year: 2025
  ident: 2025032412223284300_c24
  article-title: Advanced permeability prediction through two-dimensional geological feature image extraction with CNN regression from well logs data
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-024-10171-4
– volume: 226
  start-page: 105414
  year: 2024
  ident: 2025032412223284300_c6
  article-title: A Gamma-ray spectroscopy approach to evaluate clay mineral composition and depositional environment: A case study from the lower Goru Formation, Southern Indus Basin, Pakistan
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2024.105414
– volume: 406
  start-page: 229
  issue: 1
  year: 2015
  ident: 2025032412223284300_c12
  article-title: Carbonate petrophysical rock typing: Integrating geological attributes and petrophysical properties while linking with dynamic behaviour
  publication-title: SP.
  doi: 10.1144/SP406.6
– volume: 9
  start-page: 2579
  issue: 11
  year: 2008
  ident: 2025032412223284300_c29
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 58
  start-page: 640
  issue: 6
  year: 2016
  ident: 2025032412223284300_c4
  article-title: Permeability prediction in wells using flow zone indicator (FZI)
  publication-title: Pet. Coal
– volume: 16
  start-page: 2721
  issue: 6
  year: 2023
  ident: 2025032412223284300_c9
  article-title: Prospect evaluation of the cretaceous Yageliemu Clastic reservoir based on geophysical log data: A case study from the Yakela Gas Condensate Field, Tarim Basin, China
  publication-title: Energies
  doi: 10.3390/en16062721
– volume: 135
  start-page: 103640
  year: 2024
  ident: 2025032412223284300_c10
  article-title: A comprehensive study on optimizing reservoir potential: Advanced geophysical log analysis of Zamzama gas field, southern Indus basin, Pakistan
  publication-title: Phys. Chem. Earth, Parts A/B/C
  doi: 10.1016/j.pce.2024.103640
– volume: 3
  start-page: 94
  issue: 1
  year: 2023
  ident: 2025032412223284300_c16
  article-title: Applying facies characterization to build 3D rock-type model for Khasib Formation, Amara Oil Field
  publication-title: Iraqi J. Oil Gas Res
  doi: 10.55699/ijogr.2023.0301.1040
– volume: 63
  start-page: 100868
  year: 2021
  ident: 2025032412223284300_c36
  article-title: Major advances in particle swarm optimization: Theory, analysis, and application
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2021.100868
– volume: 91
  start-page: 106250
  year: 2020
  ident: 2025032412223284300_c23
  article-title: A one-class classification decision tree based on kernel density estimation
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106250
– volume: 4
  start-page: 419
  issue: 4
  year: 2018
  ident: 2025032412223284300_c38
  article-title: Bottom hole pressure estimation using hybridization neural networks and grey wolves optimization
  publication-title: Petroleum
  doi: 10.1016/j.petlm.2018.03.013
– volume: 10
  start-page: 618
  issue: 2
  year: 2010
  ident: 2025032412223284300_c39
  article-title: Simplifying particle swarm optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.08.029
– volume: 3
  start-page: 376
  issue: 3
  year: 2013
  ident: 2025032412223284300_c1
  article-title: Key factors affecting 3D reservoir interpretation and modelling outcomes: Industry perspectives
  publication-title: Br. J. Appl. Sci. Technol.
  doi: 10.9734/BJAST/2014/3089
– volume: 9
  start-page: e15621
  issue: 5
  year: 2023
  ident: 2025032412223284300_c18
  article-title: An integrated study for seismic structural interpretation and reservoir estimation of Sawan gas field, Lower Indus Basin, Pakistan
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e15621
– year: 2017
  ident: 2025032412223284300_c20
  article-title: Self-normalizing neural networks
– volume: 14
  start-page: 37
  issue: 1
  year: 2006
  ident: 2025032412223284300_c35
  article-title: Earned value management in a data warehouse project
  publication-title: Inf. Manag. Comput. Secur.
  doi: 10.1108/09685220610648364
– volume: 1
  start-page: 33
  year: 2007
  ident: 2025032412223284300_c37
  article-title: Particle swarm optimization: An overview
  publication-title: Swarm Intell.
  doi: 10.1007/s11721-007-0002-0
– volume: 230
  start-page: 105502
  year: 2024
  ident: 2025032412223284300_c13
  article-title: Application of deep learning for reservoir porosity prediction and self organizing map for lithofacies prediction
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2024.105502
– volume: 75
  start-page: S32
  year: 1997
  ident: 2025032412223284300_c32
  article-title: Fluid flow through granular beds
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/S0263-8762(97)80003-2
– volume: 80
  start-page: 107
  issue: 1
  year: 2011
  ident: 2025032412223284300_c34
  article-title: Modified Kozeny–Carmen correlation for enhanced hydraulic flow unit characterization
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2011.11.003
– volume: 148
  start-page: 110843
  year: 2023
  ident: 2025032412223284300_c21
  article-title: Reservoir characterization through comprehensive modeling of elastic logs prediction in heterogeneous rocks using unsupervised clustering and class-based ensemble machine learning
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110843
– volume: 194
  start-page: 107461
  year: 2020
  ident: 2025032412223284300_c2
  article-title: Building a rock physics model for the formation evaluation of the Lower Goru sand reservoir of the Southern Indus Basin in Pakistan
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2020.107461
– volume: 30
  start-page: 2497
  year: 2021
  ident: 2025032412223284300_c14
  article-title: Development and identification of petrophysical rock types for effective reservoir characterization: Case study of the Kristine Field, Offshore Sabah
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-021-09851-3
– volume: 32
  start-page: 1047
  year: 2023
  ident: 2025032412223284300_c27
  article-title: A Novel machine learning approach for detecting outliers, rebuilding well logs, and enhancing reservoir characterization
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-023-10184-6
– year: 2018
  ident: 2025032412223284300_c22
  article-title: Accelerating and enhancing petrophysical analysis with machine learning: A case study of an automated system for well log outlier detection and reconstruction
– volume: 10
  start-page: 5043
  year: 2024
  ident: 2025032412223284300_c25
  article-title: Advanced AI approach for enhanced predictive modeling in reservoir characterization within complex geological environments
  publication-title: Model. Earth Syst. Environ.
  doi: 10.1007/s40808-024-02049-5
– volume: 59
  start-page: 1
  issue: 10
  year: 2014
  ident: 2025032412223284300_c19
  article-title: Tidy data
  publication-title: J. Stat. Soft.
  doi: 10.18637/jss.v059.i10
– volume: 36
  start-page: 1
  year: 2021
  ident: 2025032412223284300_c33
  article-title: Reservoir rock typing of the Asmari Formation using integrating geological and petrophysical data for unraveling the reservoir heterogeneity: A case study from the Ramshir oilfield, southwest Iran
  publication-title: Carbonates Evaporites
  doi: 10.1007/s13146-021-00692-y
– volume: 9
  start-page: 1801
  issue: 10
  year: 2009
  ident: 2025032412223284300_c7
  article-title: Hydraulic (flow) unit determination and permeability prediction: A case study of block Shen-95, Liaohe Oilfield, North-East China
  publication-title: J. Appl. Sci.
  doi: 10.3923/jas.2009.1801.1816
– volume-title: Evolutionary Algorithms for Solving Multi-objective Problems
  year: 2007
  ident: 2025032412223284300_c40
– volume: 36
  start-page: 1335
  issue: 08
  year: 1984
  ident: 2025032412223284300_c5
  article-title: Geological factors influencing reservoir performance of the Hartzog Draw Field, Wyoming
  publication-title: J. Pet. Technol.
  doi: 10.2118/12016-PA
– start-page: SPE-26436
  year: 1993
  ident: 2025032412223284300_c30
  article-title: Enhanced reservoir description using core and log data to identify hydraulic (Flow) units and predict permeability in uncored intervals/wells
– volume-title: Exploratory Data Analysis
  year: 1977
  ident: 2025032412223284300_c17
– volume-title: Geological Core Analysis: Application to Reservoir Characterization
  year: 2018
  ident: 2025032412223284300_c11
– volume: 15
  start-page: 1635
  year: 2022
  ident: 2025032412223284300_c8
  article-title: Evaluation of unconventional hydrocarbon reserves using petrophysical analysis to characterize the Yageliemu Formation in the Yakela gas condensate field, Tarim Basin, China
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-022-10902-z
– volume: 18
  start-page: 237
  issue: 3
  year: 1986
  ident: 2025032412223284300_c28
  article-title: Generalized k-nearest neighbor rules
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/0165-0114(86)90004-7
– volume: 9
  start-page: 4397
  issue: 4
  year: 2019
  ident: 2025032412223284300_c31
  article-title: Dynamic rock type characterization using artificial neural networks in Hamra quartzites reservoir: A multidisciplinary approach
  publication-title: Eng. Technol. Appl. Sci. Res.
  doi: 10.48084/etasr.2861
– volume-title: Advances in Kernel Methods: Support Vector Learning
  year: 1999
  ident: 2025032412223284300_c26
SSID ssj0003926
Score 2.4724221
Snippet This study focuses on the classification of Hydraulic Flow Units (HFUs) within the Lower Goru reservoir using a hybrid modeling approach for a more precise and...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Classification
Cluster analysis
Clustering
Fluid flow
Indicators
Machine learning
Particle swarm optimization
Reservoirs
Sandstone
Shales
Spatial distribution
Vector quantization
Title Machine learning-driven classification of hydraulic flow units for enhanced reservoir characterization
URI http://dx.doi.org/10.1063/5.0259689
https://www.proquest.com/docview/3180734706
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgCNELHwXEQkEWcKtSkvgrOVYItEJaLrSit2jsOLRlu4uSTRH99YxjJ-kuRSpcoshS4sjz8vycvBkT8hb5rspynkWqzFXEdakirXUeKZdkmcRGKOUSnGef5fSIfzoWx6N1qMsuWel9c3ltXsn_RBXbMK4uS_YfIjvcFBvwHOOLR4wwHm8U41nnhLT91g_forJ25LVnnCR2HqBRD_4qa2hdQetqvvy51y7c_4Ku2vfixHsAXBpSfbE8rV0ucKjhfDmGLejXzjBqOvtHNW9PS1_oKc_5lS8K07ZpwJcm-ArfrR08HAc-FXvWnsD5OZQD10MDc_CkDKhFx-SIcMEXOAu--_B5IhWjPyswKnJKhLLGN9nQliEapN9upadhX_slwI1dy-4opzAkYh-7yaXfeWi9gvbGzDb4Dbs_7ZIVogiX3iZ3UlxXsM7rOXqCUCxKb1L1z9yXopLs3dDruoAZVyX3ULJ498QVgXL4kNwPKwt64GHyiNyyix3yIKwyaODwZofcDTF8TKqAH7qBH7qOH7qs6IAf6vBDO_xQxA_t8UMH_NBN_DwhRx8_HL6fRmHfjcikgq8io0qDuj0RWkkOMauYBEjy0oLUooIchDI64ym4WnzSoMbEVQZYZZkWJlaKPSVbi-XCPiNUKG3iBLJUVTGvMg2a5cxopjjXSRbbCXndD2bxw5dXKf4I1oTs9sNchLevKXAuwtmJI6dMyJth6P9-k-c36ekF2R4xvEu2VnVrX6LoXOlXHVB-A4jzgek
linkProvider American Institute of Physics
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-driven+classification+of+hydraulic+flow+units+for+enhanced+reservoir+characterization&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Hussain%2C+Wakeel&rft.au=Ali%2C+Muhammad&rft.au=Kasala%2C+Erasto+E&rft.au=Ali%2C+Sajid&rft.date=2025-03-01&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=37&rft.issue=3&rft_id=info:doi/10.1063%2F5.0259689&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0259689
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon