A Robust Frequency-domain-based Graph Adaptive Network for Parkinson's Disease Detection from Gait Data

Parkinson's disease (PD) is a neurodegenerative disease with a high incidence rate. Effective early diagnosis of PD is critical to prevent further deterioration of a patient's condition, where gait abnormalities are important factors for doctors to diagnose PD. Deep learning (DL)-based met...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on multimedia Vol. 25; pp. 1 - 14
Main Authors Zhong, Cankun, Ng, Wing W. Y.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1520-9210
1941-0077
DOI10.1109/TMM.2022.3217392

Cover

Loading…
Abstract Parkinson's disease (PD) is a neurodegenerative disease with a high incidence rate. Effective early diagnosis of PD is critical to prevent further deterioration of a patient's condition, where gait abnormalities are important factors for doctors to diagnose PD. Deep learning (DL)-based methods for PD detection using gait information recorded by non-invasive sensors have emerged to assist doctors in accurate and efficient disease diagnosis. However, most existing DL-based PD detection models neglect information in the frequency domain and do not adaptively model the correlation of signals among sensors. Moreover, different people have different gait patterns. Therefore, the generalization capabilities of PD detection models on diversities of individuals' gaits are essential. This work proposes a novel robust frequency-domain-based graph adaptive network (RFdGAD) for PD detection from gait information (i.e., vertical ground reaction force signals recorded by foot sensors). Specifically, the RFdGAD first learns the frequency-domain features of signals from each foot sensor by a frequency representation learning block. Then, the RFdGAD utilizes a graph adaptive network block taking frequency-domain features as input to adaptively learn and exploit the interconnection between different sensor signals for accurate PD detection. Moreover, the RFdGAD is trained by minimizing the proposed Jensen-Shannon divergence-based localized generalization error to improve the generalization performance of RFdGAD on unseen subjects. Experimental results show that the RFdGAD outperforms existing DL-based models for PD detection on three widely used datasets in terms of three metrics, including accuracy, F1-score, and geometric mean.
AbstractList Parkinson's disease (PD) is a neurodegenerative disease with a high incidence rate. Effective early diagnosis of PD is critical to prevent further deterioration of a patient's condition, where gait abnormalities are important factors for doctors to diagnose PD. Deep learning (DL)-based methods for PD detection using gait information recorded by non-invasive sensors have emerged to assist doctors in accurate and efficient disease diagnosis. However, most existing DL-based PD detection models neglect information in the frequency domain and do not adaptively model the correlation of signals among sensors. Moreover, different people have different gait patterns. Therefore, the generalization capabilities of PD detection models on diversities of individuals' gaits are essential. This work proposes a novel robust frequency-domain-based graph adaptive network (RFdGAD) for PD detection from gait information (i.e., vertical ground reaction force signals recorded by foot sensors). Specifically, the RFdGAD first learns the frequency-domain features of signals from each foot sensor by a frequency representation learning block. Then, the RFdGAD utilizes a graph adaptive network block taking frequency-domain features as input to adaptively learn and exploit the interconnection between different sensor signals for accurate PD detection. Moreover, the RFdGAD is trained by minimizing the proposed Jensen-Shannon divergence-based localized generalization error to improve the generalization performance of RFdGAD on unseen subjects. Experimental results show that the RFdGAD outperforms existing DL-based models for PD detection on three widely used datasets in terms of three metrics, including accuracy, F1-score, and geometric mean.
Author Zhong, Cankun
Ng, Wing W. Y.
Author_xml – sequence: 1
  givenname: Cankun
  orcidid: 0000-0002-4271-6483
  surname: Zhong
  fullname: Zhong, Cankun
  organization: Guangdong Provincial Key Laboratory of Computational Intelligence and Cyberspace Information, School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 2
  givenname: Wing W. Y.
  orcidid: 0000-0003-0783-3585
  surname: Ng
  fullname: Ng, Wing W. Y.
  organization: Guangdong Provincial Key Laboratory of Computational Intelligence and Cyberspace Information, School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
BookMark eNp9kLtOAzEQRS0EEs8eicYSBdUG27trr8uIkIAUHkKhXvkxCybEDrYD4u_ZKBEFBdVMcc-M7jlEuz54QOiUkgGlRF7O7u4GjDA2KBkVpWQ76IDKihaECLHb7zUjhWSU7KPDlN4IoVVNxAF6GeKnoFcp43GEjxV4813YsFDOF1olsHgS1fIVD61aZvcJ-B7yV4hz3IWIH1WcO5-Cv0h45BL0eTyCDCa74HEXwwJPlMt4pLI6Rnudek9wsp1H6Hl8Pbu6KaYPk9ur4bQwrK5yoa3Q0Oi667hR2lrDLQhbdQSsbXjfTEtOjdVQsYpooUXFDZe6lqU2lHFRHqHzzd1lDH2dlNu3sIq-f9myphGUUimqPkU2KRNDShG6dhndQsXvlpJ2rbPtdbZrne1WZ4_wP4hxWa2b5qjc-3_g2QZ0APD7R8qS8JqUP4F_hQE
CODEN ITMUF8
CitedBy_id crossref_primary_10_3390_s24185957
crossref_primary_10_1007_s11042_024_19961_8
Cites_doi 10.3390/diagnostics11081395
10.1111/j.1460-9568.2005.04298.x
10.1016/j.eswa.2016.03.018
10.1016/j.eswa.2019.113075
10.1109/TMM.2020.2974323
10.1002/mds.20507
10.1016/j.gaitpost.2011.09.106
10.1016/j.arr.2014.01.004
10.1016/j.jbi.2016.01.014
10.1016/j.bspc.2018.07.015
10.1016/j.future.2018.02.009
10.1016/j.neucom.2018.03.032
10.1109/TCYB.2021.3056104
10.1049/sil2.12018
10.1109/TNSRE.2019.2946194
10.1186/s12984-020-00756-5
10.1109/ICPR56361.2022.9956330
10.11138/FNeur/2017.32.1.028
10.1109/TMM.2021.3060280
10.1016/j.jestch.2020.12.005
10.1609/aaai.v35i5.16514
10.1145/3437963.3441701
10.1109/TMM.2021.3068609
10.1109/TMM.2021.3081930
10.1109/TNN.2007.894058
10.1016/j.medengphy.2021.03.005
10.1109/CVPR.2018.00745
10.1109/TKDE.2021.3072345
10.1016/j.jddst.2020.101790
10.1109/TMM.2021.3070127
10.1016/j.measurement.2021.109249
10.1007/s10489-020-02182-5
10.1016/j.aiopen.2022.10.001
10.1371/journal.pone.0254841
10.1145/3394486.3403118
10.1111/j.1460-9568.2007.05810.x
10.1109/OJEMB.2020.2966295
10.1016/j.icte.2016.10.005
10.1109/CVPR52688.2022.01066
10.1016/j.patrec.2020.09.011
10.1016/j.bbe.2018.06.002
10.1016/j.artmed.2018.08.007
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TMM.2022.3217392
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0077
EndPage 14
ExternalDocumentID 10_1109_TMM_2022_3217392
9930650
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
VH1
ZY4
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c254t-bd7be8b5ff6cabddc6de7d4f0edd86217b961cdbe4240b7b746c69b593bc12673
IEDL.DBID RIE
ISSN 1520-9210
IngestDate Mon Jun 30 02:44:25 EDT 2025
Thu Apr 24 23:11:40 EDT 2025
Tue Jul 01 01:54:39 EDT 2025
Wed Aug 27 02:29:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c254t-bd7be8b5ff6cabddc6de7d4f0edd86217b961cdbe4240b7b746c69b593bc12673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4271-6483
0000-0003-0783-3585
PQID 2887111974
PQPubID 75737
PageCount 14
ParticipantIDs ieee_primary_9930650
crossref_primary_10_1109_TMM_2022_3217392
proquest_journals_2887111974
crossref_citationtrail_10_1109_TMM_2022_3217392
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on multimedia
PublicationTitleAbbrev TMM
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref19
ref18
ref50
jang (ref38) 2017
rong (ref39) 2020
ref46
ref45
ref48
ref47
ref42
asuroglu (ref6) 2018; 38
ref41
ref43
balaji (ref24) 2020; 94
balaji (ref5) 2021; 91
zhu (ref49) 2021
ref8
ref7
ref9
ref4
ref3
shang (ref16) 2021
ref35
ref34
ref37
ref31
ref30
ref33
ref32
ref2
ref1
gilmer (ref40) 2017
zheng (ref36) 2020
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
englesson (ref44) 2021; 34
References_xml – ident: ref8
  doi: 10.3390/diagnostics11081395
– ident: ref46
  doi: 10.1111/j.1460-9568.2005.04298.x
– ident: ref21
  doi: 10.1016/j.eswa.2016.03.018
– ident: ref10
  doi: 10.1016/j.eswa.2019.113075
– ident: ref17
  doi: 10.1109/TMM.2020.2974323
– ident: ref48
  doi: 10.1002/mds.20507
– ident: ref9
  doi: 10.1016/j.gaitpost.2011.09.106
– year: 2020
  ident: ref39
  article-title: Dropedge: Towards deep graph convolutional networks on node classification
  publication-title: Proc Int Conf Learn Representations
– ident: ref3
  doi: 10.1016/j.arr.2014.01.004
– ident: ref27
  doi: 10.1016/j.jbi.2016.01.014
– ident: ref30
  doi: 10.1016/j.bspc.2018.07.015
– ident: ref19
  doi: 10.1016/j.future.2018.02.009
– volume: 94
  year: 2020
  ident: ref24
  article-title: Supervised machine learning based gait classification system for early detection and stage classification of Parkinson's disease
  publication-title: Appl Soft Comput
– ident: ref11
  doi: 10.1016/j.neucom.2018.03.032
– ident: ref28
  doi: 10.1109/TCYB.2021.3056104
– ident: ref31
  doi: 10.1049/sil2.12018
– ident: ref12
  doi: 10.1109/TNSRE.2019.2946194
– ident: ref23
  doi: 10.1186/s12984-020-00756-5
– ident: ref14
  doi: 10.1109/ICPR56361.2022.9956330
– ident: ref4
  doi: 10.11138/FNeur/2017.32.1.028
– start-page: 1263
  year: 2017
  ident: ref40
  article-title: Neural message passing for quantum chemistry
  publication-title: Proc Int Conf Mach Learn
– year: 2017
  ident: ref38
  article-title: Categorical reparameterization with gumbel-softmax
  publication-title: Proc Int Conf Learn Representations
– year: 2021
  ident: ref16
  article-title: Discrete graph structure learning for forecasting multiple time series
  publication-title: Proc Int Conf Learn Representations
– ident: ref32
  doi: 10.1109/TMM.2021.3060280
– ident: ref26
  doi: 10.1016/j.jestch.2020.12.005
– ident: ref41
  doi: 10.1609/aaai.v35i5.16514
– volume: 34
  start-page: 30284
  year: 2021
  ident: ref44
  article-title: Generalized jensen-shannon divergence loss for learning with noisy labels
  publication-title: Adv Neural Inf Process Syst
– ident: ref29
  doi: 10.1145/3437963.3441701
– ident: ref18
  doi: 10.1109/TMM.2021.3068609
– ident: ref50
  doi: 10.1109/TMM.2021.3081930
– ident: ref42
  doi: 10.1109/TNN.2007.894058
– volume: 91
  start-page: 54
  year: 2021
  ident: ref5
  article-title: Data-driven gait analysis for diagnosis and severity rating of Parkinson's disease
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2021.03.005
– ident: ref33
  doi: 10.1109/CVPR.2018.00745
– ident: ref37
  doi: 10.1109/TKDE.2021.3072345
– ident: ref2
  doi: 10.1016/j.jddst.2020.101790
– year: 2021
  ident: ref49
  article-title: Deep graph structure learning for robust representations: A survey
– ident: ref43
  doi: 10.1109/TMM.2021.3070127
– start-page: 11458
  year: 2020
  ident: ref36
  article-title: Robust graph representation learning via neural sparsification
  publication-title: Proc Int Conf Mach Learn
– ident: ref25
  doi: 10.1016/j.measurement.2021.109249
– ident: ref13
  doi: 10.1007/s10489-020-02182-5
– ident: ref35
  doi: 10.1016/j.aiopen.2022.10.001
– ident: ref45
  doi: 10.1371/journal.pone.0254841
– ident: ref15
  doi: 10.1145/3394486.3403118
– ident: ref47
  doi: 10.1111/j.1460-9568.2007.05810.x
– ident: ref22
  doi: 10.1109/OJEMB.2020.2966295
– ident: ref20
  doi: 10.1016/j.icte.2016.10.005
– ident: ref34
  doi: 10.1109/CVPR52688.2022.01066
– ident: ref7
  doi: 10.1016/j.patrec.2020.09.011
– volume: 38
  start-page: 760
  year: 2018
  ident: ref6
  article-title: Parkinson's disease monitoring from gait analysis via foot-worn sensors
  publication-title: Journal of Biocybernetics and Biomedical Engineering
  doi: 10.1016/j.bbe.2018.06.002
– ident: ref1
  doi: 10.1016/j.artmed.2018.08.007
SSID ssj0014507
Score 2.394048
Snippet Parkinson's disease (PD) is a neurodegenerative disease with a high incidence rate. Effective early diagnosis of PD is critical to prevent further...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Abnormalities
Adaptation models
Correlation
Deep learning
Diagnosis
Feature extraction
Foot
Frequency domain analysis
Frequency-domain
Gait
Generalization error
Geometric accuracy
Graph network
Parkinson's disease
Parkinson's disease detection
Robustness
Sensor phenomena and characterization
Sensors
Vertical forces
Vertical ground reaction force
Title A Robust Frequency-domain-based Graph Adaptive Network for Parkinson's Disease Detection from Gait Data
URI https://ieeexplore.ieee.org/document/9930650
https://www.proquest.com/docview/2887111974
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4Bp_bAsxUpFPmAVCHVyT68Dx-jpgEhhQMCidtqxzNbocIGkc2h_Hps724EbYW4-WBLlsb2fJ9nvhmA4yCsULHKZZyTJShMuSw5Z-m4QaSjlCLj9M6zi_TsWp3fJDdr8H2lhWFmn3zGQzf0sXyam6X7KhtZX-oQxTqsW-LWarVWEQOVeGm0dUeB1JbH9CHJQI-uZjNLBKNoGFv8HevolQvyPVX-eYi9d5luwazfV5tU8nu4bHBonv4q2fjejW_DZgczxbg9FzuwxvUubPUtHER3o3fh44t6hHvwaywu57hcNGL62KZY_5E0vy9va-m8HYlTV95ajKl8cK-kuGhzyIUFvsLJp72S7NtCTNqoj5hw4zO9auFULOK0vG3EpGzKT3A9_Xn140x2nRiksQSykUgZco5JVaWmRCKTEmekqoCJLCUKM9RpaAhZWYCAGWYqNanGRMdowijN4s-wUc9r3gcRU2zYxYcxs2BR5Zp0WCZJlZsEgwzVAEa9cQrTlSl33TLuCk9XAl1YcxbOnEVnzgGcrFY8tCU63pi756yzmtcZZgCHvf2L7g4visi-v6GLsqov_191AB9c8_n2Q-YQNprHJX-1EKXBI382nwF3keLH
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6VcgAOFFpQAwV8QEJIONmH9-FjREgDdHNAqdTbascziyropmo2B_j12N7diJcQNx9sydJne-bzzDcD8DIIa1SschnnZAkKUy4rzlk6bhDpKKXIOL1zsUwX5-rDRXKxB292Whhm9slnPHZDH8untdm6r7KJtaXOo7gFt63dT8JOrbWLGajEi6OtQQqktkxmCEoGerIqCksFo2gcWw881tEvRsh3VfnjKfb2ZX4AxbCzLq3ky3jb4th8_61o4_9u_QHc7x1NMe1OxkPY4-YQDoYmDqK_04dw76eKhEfweSo-rXG7acX8pkuy_iZpfVVdNtLZOxKnrsC1mFJ17d5JseyyyIV1fYUTUHst2auNmHVxHzHj1ud6NcLpWMRpddmKWdVWj-B8_m71diH7XgzSWArZSqQMOcekrlNTIZFJiTNSdcBElhSFGeo0NISsrIuAGWYqNanGRMdowijN4sew36wbPgYRU2zYRYgxs-6iyjXpsEqSOjcJBhmqEUwGcErTFyp3_TK-lp6wBLq0cJYOzrKHcwSvdyuuuyId_5h75NDZzeuBGcHJgH_Z3-JNGdkXOHRxVvXk76tewJ3Fqjgrz94vPz6Fu64Vffc9cwL77c2Wn1mHpcXn_pz-AHMj5hA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Robust+Frequency-domain-based+Graph+Adaptive+Network+for+Parkinson%27s+Disease+Detection+from+Gait+Data&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Zhong%2C+Cankun&rft.au=Ng%2C+Wing+W.+Y.&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=1520-9210&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTMM.2022.3217392&rft.externalDocID=9930650
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon