A Robust Frequency-domain-based Graph Adaptive Network for Parkinson's Disease Detection from Gait Data
Parkinson's disease (PD) is a neurodegenerative disease with a high incidence rate. Effective early diagnosis of PD is critical to prevent further deterioration of a patient's condition, where gait abnormalities are important factors for doctors to diagnose PD. Deep learning (DL)-based met...
Saved in:
Published in | IEEE transactions on multimedia Vol. 25; pp. 1 - 14 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1520-9210 1941-0077 |
DOI | 10.1109/TMM.2022.3217392 |
Cover
Loading…
Abstract | Parkinson's disease (PD) is a neurodegenerative disease with a high incidence rate. Effective early diagnosis of PD is critical to prevent further deterioration of a patient's condition, where gait abnormalities are important factors for doctors to diagnose PD. Deep learning (DL)-based methods for PD detection using gait information recorded by non-invasive sensors have emerged to assist doctors in accurate and efficient disease diagnosis. However, most existing DL-based PD detection models neglect information in the frequency domain and do not adaptively model the correlation of signals among sensors. Moreover, different people have different gait patterns. Therefore, the generalization capabilities of PD detection models on diversities of individuals' gaits are essential. This work proposes a novel robust frequency-domain-based graph adaptive network (RFdGAD) for PD detection from gait information (i.e., vertical ground reaction force signals recorded by foot sensors). Specifically, the RFdGAD first learns the frequency-domain features of signals from each foot sensor by a frequency representation learning block. Then, the RFdGAD utilizes a graph adaptive network block taking frequency-domain features as input to adaptively learn and exploit the interconnection between different sensor signals for accurate PD detection. Moreover, the RFdGAD is trained by minimizing the proposed Jensen-Shannon divergence-based localized generalization error to improve the generalization performance of RFdGAD on unseen subjects. Experimental results show that the RFdGAD outperforms existing DL-based models for PD detection on three widely used datasets in terms of three metrics, including accuracy, F1-score, and geometric mean. |
---|---|
AbstractList | Parkinson's disease (PD) is a neurodegenerative disease with a high incidence rate. Effective early diagnosis of PD is critical to prevent further deterioration of a patient's condition, where gait abnormalities are important factors for doctors to diagnose PD. Deep learning (DL)-based methods for PD detection using gait information recorded by non-invasive sensors have emerged to assist doctors in accurate and efficient disease diagnosis. However, most existing DL-based PD detection models neglect information in the frequency domain and do not adaptively model the correlation of signals among sensors. Moreover, different people have different gait patterns. Therefore, the generalization capabilities of PD detection models on diversities of individuals' gaits are essential. This work proposes a novel robust frequency-domain-based graph adaptive network (RFdGAD) for PD detection from gait information (i.e., vertical ground reaction force signals recorded by foot sensors). Specifically, the RFdGAD first learns the frequency-domain features of signals from each foot sensor by a frequency representation learning block. Then, the RFdGAD utilizes a graph adaptive network block taking frequency-domain features as input to adaptively learn and exploit the interconnection between different sensor signals for accurate PD detection. Moreover, the RFdGAD is trained by minimizing the proposed Jensen-Shannon divergence-based localized generalization error to improve the generalization performance of RFdGAD on unseen subjects. Experimental results show that the RFdGAD outperforms existing DL-based models for PD detection on three widely used datasets in terms of three metrics, including accuracy, F1-score, and geometric mean. |
Author | Zhong, Cankun Ng, Wing W. Y. |
Author_xml | – sequence: 1 givenname: Cankun orcidid: 0000-0002-4271-6483 surname: Zhong fullname: Zhong, Cankun organization: Guangdong Provincial Key Laboratory of Computational Intelligence and Cyberspace Information, School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 2 givenname: Wing W. Y. orcidid: 0000-0003-0783-3585 surname: Ng fullname: Ng, Wing W. Y. organization: Guangdong Provincial Key Laboratory of Computational Intelligence and Cyberspace Information, School of Computer Science and Engineering, South China University of Technology, Guangzhou, China |
BookMark | eNp9kLtOAzEQRS0EEs8eicYSBdUG27trr8uIkIAUHkKhXvkxCybEDrYD4u_ZKBEFBdVMcc-M7jlEuz54QOiUkgGlRF7O7u4GjDA2KBkVpWQ76IDKihaECLHb7zUjhWSU7KPDlN4IoVVNxAF6GeKnoFcp43GEjxV4813YsFDOF1olsHgS1fIVD61aZvcJ-B7yV4hz3IWIH1WcO5-Cv0h45BL0eTyCDCa74HEXwwJPlMt4pLI6Rnudek9wsp1H6Hl8Pbu6KaYPk9ur4bQwrK5yoa3Q0Oi667hR2lrDLQhbdQSsbXjfTEtOjdVQsYpooUXFDZe6lqU2lHFRHqHzzd1lDH2dlNu3sIq-f9myphGUUimqPkU2KRNDShG6dhndQsXvlpJ2rbPtdbZrne1WZ4_wP4hxWa2b5qjc-3_g2QZ0APD7R8qS8JqUP4F_hQE |
CODEN | ITMUF8 |
CitedBy_id | crossref_primary_10_3390_s24185957 crossref_primary_10_1007_s11042_024_19961_8 |
Cites_doi | 10.3390/diagnostics11081395 10.1111/j.1460-9568.2005.04298.x 10.1016/j.eswa.2016.03.018 10.1016/j.eswa.2019.113075 10.1109/TMM.2020.2974323 10.1002/mds.20507 10.1016/j.gaitpost.2011.09.106 10.1016/j.arr.2014.01.004 10.1016/j.jbi.2016.01.014 10.1016/j.bspc.2018.07.015 10.1016/j.future.2018.02.009 10.1016/j.neucom.2018.03.032 10.1109/TCYB.2021.3056104 10.1049/sil2.12018 10.1109/TNSRE.2019.2946194 10.1186/s12984-020-00756-5 10.1109/ICPR56361.2022.9956330 10.11138/FNeur/2017.32.1.028 10.1109/TMM.2021.3060280 10.1016/j.jestch.2020.12.005 10.1609/aaai.v35i5.16514 10.1145/3437963.3441701 10.1109/TMM.2021.3068609 10.1109/TMM.2021.3081930 10.1109/TNN.2007.894058 10.1016/j.medengphy.2021.03.005 10.1109/CVPR.2018.00745 10.1109/TKDE.2021.3072345 10.1016/j.jddst.2020.101790 10.1109/TMM.2021.3070127 10.1016/j.measurement.2021.109249 10.1007/s10489-020-02182-5 10.1016/j.aiopen.2022.10.001 10.1371/journal.pone.0254841 10.1145/3394486.3403118 10.1111/j.1460-9568.2007.05810.x 10.1109/OJEMB.2020.2966295 10.1016/j.icte.2016.10.005 10.1109/CVPR52688.2022.01066 10.1016/j.patrec.2020.09.011 10.1016/j.bbe.2018.06.002 10.1016/j.artmed.2018.08.007 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TMM.2022.3217392 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1941-0077 |
EndPage | 14 |
ExternalDocumentID | 10_1109_TMM_2022_3217392 9930650 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TN5 VH1 ZY4 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c254t-bd7be8b5ff6cabddc6de7d4f0edd86217b961cdbe4240b7b746c69b593bc12673 |
IEDL.DBID | RIE |
ISSN | 1520-9210 |
IngestDate | Mon Jun 30 02:44:25 EDT 2025 Thu Apr 24 23:11:40 EDT 2025 Tue Jul 01 01:54:39 EDT 2025 Wed Aug 27 02:29:30 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c254t-bd7be8b5ff6cabddc6de7d4f0edd86217b961cdbe4240b7b746c69b593bc12673 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4271-6483 0000-0003-0783-3585 |
PQID | 2887111974 |
PQPubID | 75737 |
PageCount | 14 |
ParticipantIDs | ieee_primary_9930650 crossref_primary_10_1109_TMM_2022_3217392 proquest_journals_2887111974 crossref_citationtrail_10_1109_TMM_2022_3217392 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on multimedia |
PublicationTitleAbbrev | TMM |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref19 ref18 ref50 jang (ref38) 2017 rong (ref39) 2020 ref46 ref45 ref48 ref47 ref42 asuroglu (ref6) 2018; 38 ref41 ref43 balaji (ref24) 2020; 94 balaji (ref5) 2021; 91 zhu (ref49) 2021 ref8 ref7 ref9 ref4 ref3 shang (ref16) 2021 ref35 ref34 ref37 ref31 ref30 ref33 ref32 ref2 ref1 gilmer (ref40) 2017 zheng (ref36) 2020 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 englesson (ref44) 2021; 34 |
References_xml | – ident: ref8 doi: 10.3390/diagnostics11081395 – ident: ref46 doi: 10.1111/j.1460-9568.2005.04298.x – ident: ref21 doi: 10.1016/j.eswa.2016.03.018 – ident: ref10 doi: 10.1016/j.eswa.2019.113075 – ident: ref17 doi: 10.1109/TMM.2020.2974323 – ident: ref48 doi: 10.1002/mds.20507 – ident: ref9 doi: 10.1016/j.gaitpost.2011.09.106 – year: 2020 ident: ref39 article-title: Dropedge: Towards deep graph convolutional networks on node classification publication-title: Proc Int Conf Learn Representations – ident: ref3 doi: 10.1016/j.arr.2014.01.004 – ident: ref27 doi: 10.1016/j.jbi.2016.01.014 – ident: ref30 doi: 10.1016/j.bspc.2018.07.015 – ident: ref19 doi: 10.1016/j.future.2018.02.009 – volume: 94 year: 2020 ident: ref24 article-title: Supervised machine learning based gait classification system for early detection and stage classification of Parkinson's disease publication-title: Appl Soft Comput – ident: ref11 doi: 10.1016/j.neucom.2018.03.032 – ident: ref28 doi: 10.1109/TCYB.2021.3056104 – ident: ref31 doi: 10.1049/sil2.12018 – ident: ref12 doi: 10.1109/TNSRE.2019.2946194 – ident: ref23 doi: 10.1186/s12984-020-00756-5 – ident: ref14 doi: 10.1109/ICPR56361.2022.9956330 – ident: ref4 doi: 10.11138/FNeur/2017.32.1.028 – start-page: 1263 year: 2017 ident: ref40 article-title: Neural message passing for quantum chemistry publication-title: Proc Int Conf Mach Learn – year: 2017 ident: ref38 article-title: Categorical reparameterization with gumbel-softmax publication-title: Proc Int Conf Learn Representations – year: 2021 ident: ref16 article-title: Discrete graph structure learning for forecasting multiple time series publication-title: Proc Int Conf Learn Representations – ident: ref32 doi: 10.1109/TMM.2021.3060280 – ident: ref26 doi: 10.1016/j.jestch.2020.12.005 – ident: ref41 doi: 10.1609/aaai.v35i5.16514 – volume: 34 start-page: 30284 year: 2021 ident: ref44 article-title: Generalized jensen-shannon divergence loss for learning with noisy labels publication-title: Adv Neural Inf Process Syst – ident: ref29 doi: 10.1145/3437963.3441701 – ident: ref18 doi: 10.1109/TMM.2021.3068609 – ident: ref50 doi: 10.1109/TMM.2021.3081930 – ident: ref42 doi: 10.1109/TNN.2007.894058 – volume: 91 start-page: 54 year: 2021 ident: ref5 article-title: Data-driven gait analysis for diagnosis and severity rating of Parkinson's disease publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2021.03.005 – ident: ref33 doi: 10.1109/CVPR.2018.00745 – ident: ref37 doi: 10.1109/TKDE.2021.3072345 – ident: ref2 doi: 10.1016/j.jddst.2020.101790 – year: 2021 ident: ref49 article-title: Deep graph structure learning for robust representations: A survey – ident: ref43 doi: 10.1109/TMM.2021.3070127 – start-page: 11458 year: 2020 ident: ref36 article-title: Robust graph representation learning via neural sparsification publication-title: Proc Int Conf Mach Learn – ident: ref25 doi: 10.1016/j.measurement.2021.109249 – ident: ref13 doi: 10.1007/s10489-020-02182-5 – ident: ref35 doi: 10.1016/j.aiopen.2022.10.001 – ident: ref45 doi: 10.1371/journal.pone.0254841 – ident: ref15 doi: 10.1145/3394486.3403118 – ident: ref47 doi: 10.1111/j.1460-9568.2007.05810.x – ident: ref22 doi: 10.1109/OJEMB.2020.2966295 – ident: ref20 doi: 10.1016/j.icte.2016.10.005 – ident: ref34 doi: 10.1109/CVPR52688.2022.01066 – ident: ref7 doi: 10.1016/j.patrec.2020.09.011 – volume: 38 start-page: 760 year: 2018 ident: ref6 article-title: Parkinson's disease monitoring from gait analysis via foot-worn sensors publication-title: Journal of Biocybernetics and Biomedical Engineering doi: 10.1016/j.bbe.2018.06.002 – ident: ref1 doi: 10.1016/j.artmed.2018.08.007 |
SSID | ssj0014507 |
Score | 2.394048 |
Snippet | Parkinson's disease (PD) is a neurodegenerative disease with a high incidence rate. Effective early diagnosis of PD is critical to prevent further... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Abnormalities Adaptation models Correlation Deep learning Diagnosis Feature extraction Foot Frequency domain analysis Frequency-domain Gait Generalization error Geometric accuracy Graph network Parkinson's disease Parkinson's disease detection Robustness Sensor phenomena and characterization Sensors Vertical forces Vertical ground reaction force |
Title | A Robust Frequency-domain-based Graph Adaptive Network for Parkinson's Disease Detection from Gait Data |
URI | https://ieeexplore.ieee.org/document/9930650 https://www.proquest.com/docview/2887111974 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4Bp_bAsxUpFPmAVCHVyT68Dx-jpgEhhQMCidtqxzNbocIGkc2h_Hps724EbYW4-WBLlsb2fJ9nvhmA4yCsULHKZZyTJShMuSw5Z-m4QaSjlCLj9M6zi_TsWp3fJDdr8H2lhWFmn3zGQzf0sXyam6X7KhtZX-oQxTqsW-LWarVWEQOVeGm0dUeB1JbH9CHJQI-uZjNLBKNoGFv8HevolQvyPVX-eYi9d5luwazfV5tU8nu4bHBonv4q2fjejW_DZgczxbg9FzuwxvUubPUtHER3o3fh44t6hHvwaywu57hcNGL62KZY_5E0vy9va-m8HYlTV95ajKl8cK-kuGhzyIUFvsLJp72S7NtCTNqoj5hw4zO9auFULOK0vG3EpGzKT3A9_Xn140x2nRiksQSykUgZco5JVaWmRCKTEmekqoCJLCUKM9RpaAhZWYCAGWYqNanGRMdowijN4s-wUc9r3gcRU2zYxYcxs2BR5Zp0WCZJlZsEgwzVAEa9cQrTlSl33TLuCk9XAl1YcxbOnEVnzgGcrFY8tCU63pi756yzmtcZZgCHvf2L7g4visi-v6GLsqov_191AB9c8_n2Q-YQNprHJX-1EKXBI382nwF3keLH |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6VcgAOFFpQAwV8QEJIONmH9-FjREgDdHNAqdTbascziyropmo2B_j12N7diJcQNx9sydJne-bzzDcD8DIIa1SschnnZAkKUy4rzlk6bhDpKKXIOL1zsUwX5-rDRXKxB292Whhm9slnPHZDH8untdm6r7KJtaXOo7gFt63dT8JOrbWLGajEi6OtQQqktkxmCEoGerIqCksFo2gcWw881tEvRsh3VfnjKfb2ZX4AxbCzLq3ky3jb4th8_61o4_9u_QHc7x1NMe1OxkPY4-YQDoYmDqK_04dw76eKhEfweSo-rXG7acX8pkuy_iZpfVVdNtLZOxKnrsC1mFJ17d5JseyyyIV1fYUTUHst2auNmHVxHzHj1ud6NcLpWMRpddmKWdVWj-B8_m71diH7XgzSWArZSqQMOcekrlNTIZFJiTNSdcBElhSFGeo0NISsrIuAGWYqNanGRMdowijN4sew36wbPgYRU2zYRYgxs-6iyjXpsEqSOjcJBhmqEUwGcErTFyp3_TK-lp6wBLq0cJYOzrKHcwSvdyuuuyId_5h75NDZzeuBGcHJgH_Z3-JNGdkXOHRxVvXk76tewJ3Fqjgrz94vPz6Fu64Vffc9cwL77c2Wn1mHpcXn_pz-AHMj5hA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Robust+Frequency-domain-based+Graph+Adaptive+Network+for+Parkinson%27s+Disease+Detection+from+Gait+Data&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Zhong%2C+Cankun&rft.au=Ng%2C+Wing+W.+Y.&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=1520-9210&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTMM.2022.3217392&rft.externalDocID=9930650 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon |