Generalized b-Symbol Weights of Linear Codes and b-Symbol MDS Codes

Generalized pair weights of linear codes are generalizations of minimum symbol-pair weights, which were introduced by Liu and Pan [16] recently. Generalized pair weights can be used to characterize the ability of protecting information in the symbol-pair read wire-tap channels of type II. In this pa...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 69; no. 4; p. 1
Main Authors Liu, Hongwei, Pan, Xu
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Generalized pair weights of linear codes are generalizations of minimum symbol-pair weights, which were introduced by Liu and Pan [16] recently. Generalized pair weights can be used to characterize the ability of protecting information in the symbol-pair read wire-tap channels of type II. In this paper, we introduce the notion of generalized b -symbol weights of linear codes over finite fields, which is a generalization of generalized Hamming weights and generalized pair weights. We obtain some basic properties and bounds of generalized b -symbol weights which are called Singleton-like bounds for generalized b -symbol weights. As examples, we calculate the generalized weight matrices for simplex codes and Hamming codes. We provide a necessary and sufficient condition for a linear code to be a b -symbol MDS code by using the generator matrix and the parity check matrix of this linear code. Finally, a necessary and sufficient condition of a linear isomorphism preserving b -symbol weights between two linear codes is obtained. As a corollary, we get the classical MacWilliams extension theorem when b = 1.
AbstractList Generalized pair weights of linear codes are generalizations of minimum symbol-pair weights, which were introduced by Liu and Pan [16] recently. Generalized pair weights can be used to characterize the ability of protecting information in the symbol-pair read wire-tap channels of type II. In this paper, we introduce the notion of generalized b -symbol weights of linear codes over finite fields, which is a generalization of generalized Hamming weights and generalized pair weights. We obtain some basic properties and bounds of generalized b -symbol weights which are called Singleton-like bounds for generalized b -symbol weights. As examples, we calculate the generalized weight matrices for simplex codes and Hamming codes. We provide a necessary and sufficient condition for a linear code to be a b -symbol MDS code by using the generator matrix and the parity check matrix of this linear code. Finally, a necessary and sufficient condition of a linear isomorphism preserving b -symbol weights between two linear codes is obtained. As a corollary, we get the classical MacWilliams extension theorem when b = 1.
Generalized pair weights of linear codes are generalizations of minimum symbol-pair weights, which were introduced by Liu and Pan (2022) recently. Generalized pair weights can be used to characterize the ability of protecting information in the symbol-pair read wire-tap channels of type II. In this paper, we introduce the notion of generalized [Formula Omitted]-symbol weights of linear codes over finite fields, which is a generalization of generalized Hamming weights and generalized pair weights. We obtain some basic properties and bounds of generalized [Formula Omitted]-symbol weights which are called Singleton-like bounds for generalized [Formula Omitted]-symbol weights. As examples, we calculate the generalized weight matrices for simplex codes and Hamming codes. We provide a necessary and sufficient condition for a linear code to be a [Formula Omitted]-symbol MDS code by using the generator matrix and the parity check matrix of this linear code. Finally, a necessary and sufficient condition of a linear isomorphism preserving [Formula Omitted]-symbol weights between two linear codes is obtained. As a corollary, we get the classical MacWilliams extension theorem when [Formula Omitted].
Author Pan, Xu
Liu, Hongwei
Author_xml – sequence: 1
  givenname: Hongwei
  orcidid: 0000-0003-3503-8220
  surname: Liu
  fullname: Liu, Hongwei
  organization: School of Mathematics and Statistics, Central China Normal University, Wuhan, China
– sequence: 2
  givenname: Xu
  orcidid: 0000-0003-2391-3892
  surname: Pan
  fullname: Pan, Xu
  organization: School of Mathematics and Statistics, Central China Normal University, Wuhan, China
BookMark eNp9kM1LwzAYh4MouE3vgpeC584kTdLkKFXnYOJhE48hbd5qRtfMpDvMv96ODhEPnsIbnuf9-I3RaetbQOiK4CkhWN2u5qspxZROM0qznKoTNCKc56kSnJ2iEcZEpooxeY7GMa77knFCR6iYQQvBNO4LbFKmy_2m9E3yBu79o4uJr5OFa8GEpPAWYmLaX9Dz_XL4vkBntWkiXB7fCXp9fFgVT-niZTYv7hZpRTnrUiMzVpdK9etSaYWQjNDKSFthayUDkMKKmjNZUSGBM1YrwjMo6_6cjGGLswm6Gfpug__cQez02u9C24_UNJd5TojiqqfEQFXBxxig1pXrTOd82wXjGk2wPgSm-8D0ITB9DKwX8R9xG9zGhP1_yvWgOAD4wZXiQlKWfQN04HVZ
CODEN IETTAW
CitedBy_id crossref_primary_10_1109_TIT_2024_3519672
crossref_primary_10_3390_math11194128
crossref_primary_10_1109_TIT_2024_3423702
crossref_primary_10_1109_TIT_2024_3482726
Cites_doi 10.1002/j.1538-7305.1984.tb00072.x
10.1109/TIT.2021.3120229
10.1007/s00200-018-0369-8
10.1109/TIT.2016.2522434
10.1007/s10623-017-0365-1
10.1007/s10623-022-01081-9
10.1017/CBO9780511807077
10.1109/LCOMM.2018.2791422
10.1007/s10623-016-0271-y
10.1016/0097-3165(93)90076-K
10.1109/TIT.2017.2726691
10.1109/TIT.2017.2753250
10.1002/j.1538-7305.1963.tb04003.x
10.1016/S0019-9958(78)90389-3
10.1109/TIT.2015.2481889
10.1007/s10623-021-00967-4
10.1109/TIT.2011.2164891
10.1109/TIT.2015.2444013
10.1109/TIT.2013.2276615
10.1016/j.disc.2019.06.017
10.1109/18.476213
10.1109/18.133259
10.1016/j.ffa.2017.01.001
10.1016/j.ffa.2017.10.002
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2022.3223729
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Computer Science
EISSN 1557-9654
EndPage 1
ExternalDocumentID 10_1109_TIT_2022_3223729
9956824
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11871025; 12271199
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c254t-a834fb9911028d668412ca8dc0dd84ee86d6f548c268e544f9153ebf237340d03
IEDL.DBID RIE
ISSN 0018-9448
IngestDate Mon Jun 30 04:33:50 EDT 2025
Thu Apr 24 22:54:42 EDT 2025
Tue Jul 01 02:16:21 EDT 2025
Wed Aug 27 02:29:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c254t-a834fb9911028d668412ca8dc0dd84ee86d6f548c268e544f9153ebf237340d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2391-3892
0000-0003-3503-8220
PQID 2787711959
PQPubID 36024
PageCount 1
ParticipantIDs proquest_journals_2787711959
crossref_citationtrail_10_1109_TIT_2022_3223729
crossref_primary_10_1109_TIT_2022_3223729
ieee_primary_9956824
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
Fan (ref10) 2003; 31
ref2
ref1
ref17
ref16
ref19
ref18
Yang (ref25)
ref24
ref23
ref26
ref20
ref22
ref21
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref20
  doi: 10.1002/j.1538-7305.1984.tb00072.x
– ident: ref16
  doi: 10.1109/TIT.2021.3120229
– ident: ref1
  doi: 10.1007/s00200-018-0369-8
– ident: ref24
  doi: 10.1109/TIT.2016.2522434
– ident: ref6
  doi: 10.1007/s10623-017-0365-1
– ident: ref18
  doi: 10.1007/s10623-022-01081-9
– ident: ref11
  doi: 10.1017/CBO9780511807077
– ident: ref14
  doi: 10.1109/LCOMM.2018.2791422
– ident: ref15
  doi: 10.1007/s10623-016-0271-y
– ident: ref21
  doi: 10.1016/0097-3165(93)90076-K
– ident: ref8
  doi: 10.1109/TIT.2017.2726691
– volume: 31
  start-page: 1591
  issue: 10
  year: 2003
  ident: ref10
  article-title: Generalized Hamming equiweight linear codes
  publication-title: Acta Electronica Sinica
– ident: ref5
  doi: 10.1109/TIT.2017.2753250
– ident: ref19
  doi: 10.1002/j.1538-7305.1963.tb04003.x
– ident: ref2
  doi: 10.1016/S0019-9958(78)90389-3
– ident: ref13
  doi: 10.1109/TIT.2015.2481889
– ident: ref17
  doi: 10.1007/s10623-021-00967-4
– ident: ref3
  doi: 10.1109/TIT.2011.2164891
– volume-title: arXiv:1607.02677
  ident: ref25
  article-title: Construction of cyclic and constacyclic codes for b-symbol read channels meeting the Plotkin-like bound
– ident: ref26
  doi: 10.1109/TIT.2015.2444013
– ident: ref4
  doi: 10.1109/TIT.2013.2276615
– ident: ref9
  doi: 10.1016/j.disc.2019.06.017
– ident: ref22
  doi: 10.1109/18.476213
– ident: ref23
  doi: 10.1109/18.133259
– ident: ref12
  doi: 10.1016/j.ffa.2017.01.001
– ident: ref7
  doi: 10.1016/j.ffa.2017.10.002
SSID ssj0014512
Score 2.448395
Snippet Generalized pair weights of linear codes are generalizations of minimum symbol-pair weights, which were introduced by Liu and Pan [16] recently. Generalized...
Generalized pair weights of linear codes are generalizations of minimum symbol-pair weights, which were introduced by Liu and Pan (2022) recently. Generalized...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">b -symbol MDS codes
Codes
Fields (mathematics)
generalized <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">b -symbol weights
Generators
Hamming codes
Hamming weight
Isomorphism
Linear codes
linear isomorphisms preserving <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">b -symbol weights
MacWilliams extension theorem
Mathematical analysis
Mathematics
Parity check codes
Symbols
Wiretapping
Title Generalized b-Symbol Weights of Linear Codes and b-Symbol MDS Codes
URI https://ieeexplore.ieee.org/document/9956824
https://www.proquest.com/docview/2787711959
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH4BTnoQBY0omh68mLixH93ojgY1aIIXIHJb2rVNjMiMwEH-el_3S6LGeNuWdmn69bXva_u-B3Dhc-4EMuhbJk7RomHgWVGifUsIKbSvcQHOIrxHj-FwSh9mwawGV1UsjFIqu3ymbPOYneXLNFmbrbKeicJkHq1DHYlbHqtVnRjQwM2VwV00YOQc5ZGkE_Um9xMkgp5n4-D1c2fyawnKcqr8mIiz1eWuCaOyXfmlkhd7vRJ2svkm2fjfhu_DXuFmkut8XBxATS1a0CxTOJDColuwu6VHiG-jSsR12YZBIUn9vFGSCGv88SrSOXnK9lKXJNUEeSzaCRmkUi0JX2wVGt2M88-HML27nQyGVpFzwUqQKq4sznyqBTqNxvGQYcio6yWcycSRklGlWChDjSwn8UKmAkp1hFOmEho71qeOdPwjaCzShToGIhn6KiySYd_Hf3LFuasdSqUhnYL3ZQd6JQxxUgiSm7wY8zgjJk4UI3CxAS4ugOvAZVXjLRfj-KNs2-BQlSsg6EC3RDourHUZezhr9Y32XXTye61T2DFp5vMbO11orN7X6gydkZU4z0bhJ6W1190
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB0VOAAHlgKirD5wQSJtFid1jqiAypJe2oreIju2JURpEG0P9OsZZwMBQtySyI6iPI9nnu15A3DmcW770m9bJk_RooHvWmGiPUsIKbSn0QFnGd5RL-gO6d3IH9XgosqFUUplh89U01xme_kyTeZmqaxlsjCZS5dgBf2-7-TZWtWeAfWdXBvcQRNG1lFuStpha3A7QCrouk0cvl4eTn46oayqyo-pOPMvN5sQlV-WHyt5bs5nopksvok2_vfTt2CjCDTJZT4ytqGmJnXYLIs4kMKm67D-RZEQ76JKxnW6A51ClPppoSQRVv_9RaRj8pitpk5JqgkyWbQU0kmlmhI--dIouurnj3dheHM96HStouqClSBZnFmceVQLDBtN6CGDgFHHTTiTiS0lo0qxQAYaeU7iBkz5lOoQJ00lNP5Yj9rS9vZgeZJO1D4QyTBaYaEM2h6-kyvOHW1TKg3tFLwtG9AqYYiTQpLcVMYYxxk1scMYgYsNcHEBXAPOqx6vuRzHH213DA5VuwKCBhyVSMeFvU5jF-ettlG_Cw9-73UKq91B9BA_3PbuD2HNFJ3Pz-8cwfLsba6OMTSZiZNsRH4AFZvbJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+b-Symbol+Weights+of+Linear+Codes+and+b-Symbol+MDS+Codes&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Liu%2C+Hongwei&rft.au=Pan%2C+Xu&rft.date=2023-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=69&rft.issue=4&rft.spage=2311&rft_id=info:doi/10.1109%2FTIT.2022.3223729&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon