Generalized b-Symbol Weights of Linear Codes and b-Symbol MDS Codes
Generalized pair weights of linear codes are generalizations of minimum symbol-pair weights, which were introduced by Liu and Pan [16] recently. Generalized pair weights can be used to characterize the ability of protecting information in the symbol-pair read wire-tap channels of type II. In this pa...
Saved in:
Published in | IEEE transactions on information theory Vol. 69; no. 4; p. 1 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Generalized pair weights of linear codes are generalizations of minimum symbol-pair weights, which were introduced by Liu and Pan [16] recently. Generalized pair weights can be used to characterize the ability of protecting information in the symbol-pair read wire-tap channels of type II. In this paper, we introduce the notion of generalized b -symbol weights of linear codes over finite fields, which is a generalization of generalized Hamming weights and generalized pair weights. We obtain some basic properties and bounds of generalized b -symbol weights which are called Singleton-like bounds for generalized b -symbol weights. As examples, we calculate the generalized weight matrices for simplex codes and Hamming codes. We provide a necessary and sufficient condition for a linear code to be a b -symbol MDS code by using the generator matrix and the parity check matrix of this linear code. Finally, a necessary and sufficient condition of a linear isomorphism preserving b -symbol weights between two linear codes is obtained. As a corollary, we get the classical MacWilliams extension theorem when b = 1. |
---|---|
AbstractList | Generalized pair weights of linear codes are generalizations of minimum symbol-pair weights, which were introduced by Liu and Pan [16] recently. Generalized pair weights can be used to characterize the ability of protecting information in the symbol-pair read wire-tap channels of type II. In this paper, we introduce the notion of generalized b -symbol weights of linear codes over finite fields, which is a generalization of generalized Hamming weights and generalized pair weights. We obtain some basic properties and bounds of generalized b -symbol weights which are called Singleton-like bounds for generalized b -symbol weights. As examples, we calculate the generalized weight matrices for simplex codes and Hamming codes. We provide a necessary and sufficient condition for a linear code to be a b -symbol MDS code by using the generator matrix and the parity check matrix of this linear code. Finally, a necessary and sufficient condition of a linear isomorphism preserving b -symbol weights between two linear codes is obtained. As a corollary, we get the classical MacWilliams extension theorem when b = 1. Generalized pair weights of linear codes are generalizations of minimum symbol-pair weights, which were introduced by Liu and Pan (2022) recently. Generalized pair weights can be used to characterize the ability of protecting information in the symbol-pair read wire-tap channels of type II. In this paper, we introduce the notion of generalized [Formula Omitted]-symbol weights of linear codes over finite fields, which is a generalization of generalized Hamming weights and generalized pair weights. We obtain some basic properties and bounds of generalized [Formula Omitted]-symbol weights which are called Singleton-like bounds for generalized [Formula Omitted]-symbol weights. As examples, we calculate the generalized weight matrices for simplex codes and Hamming codes. We provide a necessary and sufficient condition for a linear code to be a [Formula Omitted]-symbol MDS code by using the generator matrix and the parity check matrix of this linear code. Finally, a necessary and sufficient condition of a linear isomorphism preserving [Formula Omitted]-symbol weights between two linear codes is obtained. As a corollary, we get the classical MacWilliams extension theorem when [Formula Omitted]. |
Author | Pan, Xu Liu, Hongwei |
Author_xml | – sequence: 1 givenname: Hongwei orcidid: 0000-0003-3503-8220 surname: Liu fullname: Liu, Hongwei organization: School of Mathematics and Statistics, Central China Normal University, Wuhan, China – sequence: 2 givenname: Xu orcidid: 0000-0003-2391-3892 surname: Pan fullname: Pan, Xu organization: School of Mathematics and Statistics, Central China Normal University, Wuhan, China |
BookMark | eNp9kM1LwzAYh4MouE3vgpeC584kTdLkKFXnYOJhE48hbd5qRtfMpDvMv96ODhEPnsIbnuf9-I3RaetbQOiK4CkhWN2u5qspxZROM0qznKoTNCKc56kSnJ2iEcZEpooxeY7GMa77knFCR6iYQQvBNO4LbFKmy_2m9E3yBu79o4uJr5OFa8GEpPAWYmLaX9Dz_XL4vkBntWkiXB7fCXp9fFgVT-niZTYv7hZpRTnrUiMzVpdK9etSaYWQjNDKSFthayUDkMKKmjNZUSGBM1YrwjMo6_6cjGGLswm6Gfpug__cQez02u9C24_UNJd5TojiqqfEQFXBxxig1pXrTOd82wXjGk2wPgSm-8D0ITB9DKwX8R9xG9zGhP1_yvWgOAD4wZXiQlKWfQN04HVZ |
CODEN | IETTAW |
CitedBy_id | crossref_primary_10_1109_TIT_2024_3519672 crossref_primary_10_3390_math11194128 crossref_primary_10_1109_TIT_2024_3423702 crossref_primary_10_1109_TIT_2024_3482726 |
Cites_doi | 10.1002/j.1538-7305.1984.tb00072.x 10.1109/TIT.2021.3120229 10.1007/s00200-018-0369-8 10.1109/TIT.2016.2522434 10.1007/s10623-017-0365-1 10.1007/s10623-022-01081-9 10.1017/CBO9780511807077 10.1109/LCOMM.2018.2791422 10.1007/s10623-016-0271-y 10.1016/0097-3165(93)90076-K 10.1109/TIT.2017.2726691 10.1109/TIT.2017.2753250 10.1002/j.1538-7305.1963.tb04003.x 10.1016/S0019-9958(78)90389-3 10.1109/TIT.2015.2481889 10.1007/s10623-021-00967-4 10.1109/TIT.2011.2164891 10.1109/TIT.2015.2444013 10.1109/TIT.2013.2276615 10.1016/j.disc.2019.06.017 10.1109/18.476213 10.1109/18.133259 10.1016/j.ffa.2017.01.001 10.1016/j.ffa.2017.10.002 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TIT.2022.3223729 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Computer Science |
EISSN | 1557-9654 |
EndPage | 1 |
ExternalDocumentID | 10_1109_TIT_2022_3223729 9956824 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11871025; 12271199 funderid: 10.13039/501100001809 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACGOD ACIWK AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 VJK AAYOK AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c254t-a834fb9911028d668412ca8dc0dd84ee86d6f548c268e544f9153ebf237340d03 |
IEDL.DBID | RIE |
ISSN | 0018-9448 |
IngestDate | Mon Jun 30 04:33:50 EDT 2025 Thu Apr 24 22:54:42 EDT 2025 Tue Jul 01 02:16:21 EDT 2025 Wed Aug 27 02:29:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c254t-a834fb9911028d668412ca8dc0dd84ee86d6f548c268e544f9153ebf237340d03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2391-3892 0000-0003-3503-8220 |
PQID | 2787711959 |
PQPubID | 36024 |
PageCount | 1 |
ParticipantIDs | proquest_journals_2787711959 crossref_citationtrail_10_1109_TIT_2022_3223729 crossref_primary_10_1109_TIT_2022_3223729 ieee_primary_9956824 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on information theory |
PublicationTitleAbbrev | TIT |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 Fan (ref10) 2003; 31 ref2 ref1 ref17 ref16 ref19 ref18 Yang (ref25) ref24 ref23 ref26 ref20 ref22 ref21 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref20 doi: 10.1002/j.1538-7305.1984.tb00072.x – ident: ref16 doi: 10.1109/TIT.2021.3120229 – ident: ref1 doi: 10.1007/s00200-018-0369-8 – ident: ref24 doi: 10.1109/TIT.2016.2522434 – ident: ref6 doi: 10.1007/s10623-017-0365-1 – ident: ref18 doi: 10.1007/s10623-022-01081-9 – ident: ref11 doi: 10.1017/CBO9780511807077 – ident: ref14 doi: 10.1109/LCOMM.2018.2791422 – ident: ref15 doi: 10.1007/s10623-016-0271-y – ident: ref21 doi: 10.1016/0097-3165(93)90076-K – ident: ref8 doi: 10.1109/TIT.2017.2726691 – volume: 31 start-page: 1591 issue: 10 year: 2003 ident: ref10 article-title: Generalized Hamming equiweight linear codes publication-title: Acta Electronica Sinica – ident: ref5 doi: 10.1109/TIT.2017.2753250 – ident: ref19 doi: 10.1002/j.1538-7305.1963.tb04003.x – ident: ref2 doi: 10.1016/S0019-9958(78)90389-3 – ident: ref13 doi: 10.1109/TIT.2015.2481889 – ident: ref17 doi: 10.1007/s10623-021-00967-4 – ident: ref3 doi: 10.1109/TIT.2011.2164891 – volume-title: arXiv:1607.02677 ident: ref25 article-title: Construction of cyclic and constacyclic codes for b-symbol read channels meeting the Plotkin-like bound – ident: ref26 doi: 10.1109/TIT.2015.2444013 – ident: ref4 doi: 10.1109/TIT.2013.2276615 – ident: ref9 doi: 10.1016/j.disc.2019.06.017 – ident: ref22 doi: 10.1109/18.476213 – ident: ref23 doi: 10.1109/18.133259 – ident: ref12 doi: 10.1016/j.ffa.2017.01.001 – ident: ref7 doi: 10.1016/j.ffa.2017.10.002 |
SSID | ssj0014512 |
Score | 2.448395 |
Snippet | Generalized pair weights of linear codes are generalizations of minimum symbol-pair weights, which were introduced by Liu and Pan [16] recently. Generalized... Generalized pair weights of linear codes are generalizations of minimum symbol-pair weights, which were introduced by Liu and Pan (2022) recently. Generalized... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">b -symbol MDS codes Codes Fields (mathematics) generalized <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">b -symbol weights Generators Hamming codes Hamming weight Isomorphism Linear codes linear isomorphisms preserving <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">b -symbol weights MacWilliams extension theorem Mathematical analysis Mathematics Parity check codes Symbols Wiretapping |
Title | Generalized b-Symbol Weights of Linear Codes and b-Symbol MDS Codes |
URI | https://ieeexplore.ieee.org/document/9956824 https://www.proquest.com/docview/2787711959 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH4BTnoQBY0omh68mLixH93ojgY1aIIXIHJb2rVNjMiMwEH-el_3S6LGeNuWdmn69bXva_u-B3Dhc-4EMuhbJk7RomHgWVGifUsIKbSvcQHOIrxHj-FwSh9mwawGV1UsjFIqu3ymbPOYneXLNFmbrbKeicJkHq1DHYlbHqtVnRjQwM2VwV00YOQc5ZGkE_Um9xMkgp5n4-D1c2fyawnKcqr8mIiz1eWuCaOyXfmlkhd7vRJ2svkm2fjfhu_DXuFmkut8XBxATS1a0CxTOJDColuwu6VHiG-jSsR12YZBIUn9vFGSCGv88SrSOXnK9lKXJNUEeSzaCRmkUi0JX2wVGt2M88-HML27nQyGVpFzwUqQKq4sznyqBTqNxvGQYcio6yWcycSRklGlWChDjSwn8UKmAkp1hFOmEho71qeOdPwjaCzShToGIhn6KiySYd_Hf3LFuasdSqUhnYL3ZQd6JQxxUgiSm7wY8zgjJk4UI3CxAS4ugOvAZVXjLRfj-KNs2-BQlSsg6EC3RDourHUZezhr9Y32XXTye61T2DFp5vMbO11orN7X6gydkZU4z0bhJ6W1190 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB0VOAAHlgKirD5wQSJtFid1jqiAypJe2oreIju2JURpEG0P9OsZZwMBQtySyI6iPI9nnu15A3DmcW770m9bJk_RooHvWmGiPUsIKbSn0QFnGd5RL-gO6d3IH9XgosqFUUplh89U01xme_kyTeZmqaxlsjCZS5dgBf2-7-TZWtWeAfWdXBvcQRNG1lFuStpha3A7QCrouk0cvl4eTn46oayqyo-pOPMvN5sQlV-WHyt5bs5nopksvok2_vfTt2CjCDTJZT4ytqGmJnXYLIs4kMKm67D-RZEQ76JKxnW6A51ClPppoSQRVv_9RaRj8pitpk5JqgkyWbQU0kmlmhI--dIouurnj3dheHM96HStouqClSBZnFmceVQLDBtN6CGDgFHHTTiTiS0lo0qxQAYaeU7iBkz5lOoQJ00lNP5Yj9rS9vZgeZJO1D4QyTBaYaEM2h6-kyvOHW1TKg3tFLwtG9AqYYiTQpLcVMYYxxk1scMYgYsNcHEBXAPOqx6vuRzHH213DA5VuwKCBhyVSMeFvU5jF-ettlG_Cw9-73UKq91B9BA_3PbuD2HNFJ3Pz-8cwfLsba6OMTSZiZNsRH4AFZvbJg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+b-Symbol+Weights+of+Linear+Codes+and+b-Symbol+MDS+Codes&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Liu%2C+Hongwei&rft.au=Pan%2C+Xu&rft.date=2023-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=69&rft.issue=4&rft.spage=2311&rft_id=info:doi/10.1109%2FTIT.2022.3223729&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon |