Hydrodynamics and flow field of a 6:1 prolate spheroid in maneuvering state: Numerical simulation and experimental investigation
To address the critical issue of hydrodynamic and flow field dynamic response in predicting the maneuverability of underwater vehicles, a hydrodynamic analysis method for maneuvering motion is developed, utilizing numerical simulation and comparison with towed pool tests, focusing on a 6:1 prolate s...
Saved in:
Published in | Physics of fluids (1994) Vol. 37; no. 6 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.06.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To address the critical issue of hydrodynamic and flow field dynamic response in predicting the maneuverability of underwater vehicles, a hydrodynamic analysis method for maneuvering motion is developed, utilizing numerical simulation and comparison with towed pool tests, focusing on a 6:1 prolate spheroid as the subject of investigation. The dynamic pressure response of a prolate spheroid subjected to pure sway, pure yaw, and coupled sway-yaw motions (including in-phase coupling, IPC, and quadrature-phase coupling, QPC) is systematically examined through experimental validation of an adapted novel horizontal motion mechanism, revealing the correlation between the peaks and troughs of pressure coefficients and the flow field structure. The results indicate that (i) hydrodynamic variations under pure sway, pure yaw, and IPC conditions exhibit a notable positive correlation, in which IPC amplifies the angle-of-attack effect via phase synchronization. (ii) The QPC condition demonstrates distinct nonlinear hydrodynamic properties resulting from the periodic disruption of the yaw-induced vortex structure by the sway motion: the pressure differential is positively correlated with yaw amplitude and negatively correlated with sway amplitude, while the peak-to-valley pressure difference increases sharply with a sudden frequency change (0.3 Hz). (iii) The flow separation method mainly influences the disparity in pressure response; the IPC condition is likely to generate significant transient shock loads, whereas the QPC condition emphasizes the nonlinear effects of motion coupling. The research findings establish a theoretical foundation for modeling fluid–solid interactions in underwater vehicle maneuvers. |
---|---|
AbstractList | To address the critical issue of hydrodynamic and flow field dynamic response in predicting the maneuverability of underwater vehicles, a hydrodynamic analysis method for maneuvering motion is developed, utilizing numerical simulation and comparison with towed pool tests, focusing on a 6:1 prolate spheroid as the subject of investigation. The dynamic pressure response of a prolate spheroid subjected to pure sway, pure yaw, and coupled sway-yaw motions (including in-phase coupling, IPC, and quadrature-phase coupling, QPC) is systematically examined through experimental validation of an adapted novel horizontal motion mechanism, revealing the correlation between the peaks and troughs of pressure coefficients and the flow field structure. The results indicate that (i) hydrodynamic variations under pure sway, pure yaw, and IPC conditions exhibit a notable positive correlation, in which IPC amplifies the angle-of-attack effect via phase synchronization. (ii) The QPC condition demonstrates distinct nonlinear hydrodynamic properties resulting from the periodic disruption of the yaw-induced vortex structure by the sway motion: the pressure differential is positively correlated with yaw amplitude and negatively correlated with sway amplitude, while the peak-to-valley pressure difference increases sharply with a sudden frequency change (0.3 Hz). (iii) The flow separation method mainly influences the disparity in pressure response; the IPC condition is likely to generate significant transient shock loads, whereas the QPC condition emphasizes the nonlinear effects of motion coupling. The research findings establish a theoretical foundation for modeling fluid–solid interactions in underwater vehicle maneuvers. |
Author | Wang, Shi-min Han, Yang Gao, Ming-chen Wang, Chao Guo, Chun-yu |
Author_xml | – sequence: 1 givenname: Chun-yu orcidid: 0000-0001-6571-1469 surname: Guo fullname: Guo, Chun-yu – sequence: 2 givenname: Ming-chen orcidid: 0009-0009-9982-8628 surname: Gao fullname: Gao, Ming-chen – sequence: 3 givenname: Shi-min surname: Wang fullname: Wang, Shi-min – sequence: 4 givenname: Chao orcidid: 0000-0001-7855-6939 surname: Wang fullname: Wang, Chao – sequence: 5 givenname: Yang orcidid: 0000-0002-4121-0261 surname: Han fullname: Han, Yang |
BookMark | eNp9kE1PwzAMhiM0JLbBgX8QiRNIHfloknY3NAFDmuCye5Um6cjUJqVpB7vx08k-zpxs633s1_YEjJx3BoBbjGYYcfrIZogInmfoAowxyvJEcM5Hh1yghHOKr8AkhC1CiOaEj8Hvcq87r_dONlYFKJ2GVe2_YWVNraGvoIR8jmHb-Vr2Bob203TeamgdbKQzw8501m1g6KM6h-9DE2slaxhsM8QO691xpvlpo9AY10fNup0Jvd0c5WtwWck6mJtznIL1y_N6sUxWH69vi6dVoghL-0TILNUYK5qruDojWGSiEmVeaoJKg1TGMFemZLlkGeMm5akWJTM5V5ThktApuDuNjZd8DdG-2Pqhc9GxoISklCKS5ZG6P1Gq8yF0pirauLXs9gVGxeG_BSvO_43sw4kNyvbHU_6B_wD8Tn1O |
CODEN | PHFLE6 |
Cites_doi | 10.1017/jfm.2023.907 10.1088/1468-5248/5/1/029 10.1016/j.oceaneng.2021.109412 10.1007/s11804-010-9009-9 10.1017/jfm.2023.175 10.1007/s00707-018-2325-x 10.1007/s10409-007-0073-6 10.3744/SNAK.2020.57.3.133 10.1007/s00348-023-03702-y 10.3182/20130918-4-JP-3022.00026 10.1115/1.1517571 10.1016/j.oceaneng.2015.08.010 10.19026/rjaset.5.4388 10.1016/j.oceaneng.2023.113858 10.1016/j.oceaneng.2018.10.015 10.1007/s11433-017-9071-y 10.1016/j.oceaneng.2021.109052 10.1016/j.oceaneng.2022.110847 10.1016/j.oceaneng.2016.10.046 10.1016/j.oceaneng.2023.113883 10.1063/5.0202394 |
ContentType | Journal Article |
Copyright | Author(s) 2025 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2025 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0276980 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1089-7666 |
ExternalDocumentID | 10_1063_5_0276980 |
GrantInformation_xml | – fundername: Natural Science Foundation of Heilongjiang Province grantid: LH2023E074 funderid: 10.13039/501100005046 – fundername: Natural Science Foundation of Heilongjiang Province grantid: LH2022E042 funderid: 10.13039/501100005046 – fundername: National Science Fund for Distinguished Young Scholars grantid: 52425111 funderid: 10.13039/501100014219 |
GroupedDBID | -~X 0ZJ 1UP 2-P 29O 2WC 4.4 5VS 6TJ AAAAW AABDS AAGWI AAPUP AAYIH ABJGX ABJNI ACBRY ACGFS ACLYJ ACNCT ACZLF ADCTM ADMLS AEJMO AENEX AFATG AFFNX AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS ATXIE AWQPM BDMKI BPZLN CS3 DU5 EBS EJD F5P FDOHQ FFFMQ HAM H~9 M6X M71 M73 NEUPN NPSNA O-B P2P RDFOP RIP RNS ROL RQS SC5 TN5 UQL WH7 XJT ~02 AAYXX CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c254t-7a84d11c39c003521787f7b9bd20be0c8516ceb59a5856e464d7b5e96c351b23 |
ISSN | 1070-6631 |
IngestDate | Fri Jun 27 01:18:25 EDT 2025 Thu Jul 03 08:20:17 EDT 2025 Fri Jun 27 03:51:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Published under an exclusive license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c254t-7a84d11c39c003521787f7b9bd20be0c8516ceb59a5856e464d7b5e96c351b23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4121-0261 0000-0001-6571-1469 0000-0001-7855-6939 0009-0009-9982-8628 |
PQID | 3224330289 |
PQPubID | 2050667 |
PageCount | 13 |
ParticipantIDs | scitation_primary_10_1063_5_0276980 proquest_journals_3224330289 crossref_primary_10_1063_5_0276980 |
PublicationCentury | 2000 |
PublicationDate | 20250600 2025-06-01 20250601 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 20250600 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Physics of fluids (1994) |
PublicationYear | 2025 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Wang, Lin, Liu, Zheng, Liu, Xu (c27) 2024 Guo, Kaiser, Rival (c30) 2023 Ahn, Seol, Park, Kim (c13) 2020 Plasseraud, Kumar, Mahesh (c22) 2023 Suzuki, Sakaguchi, Inoue, Watanabe, Yoshida (c24) 2013 Kahramanoglu (c26) 2023 Constantinescu, Pasinato, Wang, Forsythe, Squires (c14) 2002 Kim, Akimoto, Islam (c2) 2015 Wikström, Svennberg, Alin, Fureby (c18) 2004 Guo, Kuai, Wang, Han, Xu, Fan (c29) 2021 Lin, Chiu (c28) 2022 Hussain, Loya, Riaz, Malik (c1) 2023 Liang, Ma, Liu, Gu (c10) 2021 Dubbioso, Broglia, Zaghi (c25) 2017 Xiao, Zhang, Huang, Chen, Fu (c20) 2007 Andersson, Jiang (c17) 2019 Zhang, Xu, Cai (c23) 2010 Malik, Guang (c3) 2013 Xiong, Guan, Wu (c5) 2017 Guo, Kaiser, Rival (c12) 2023 Lin, Tseng, Chen (c9) 2018 (2025062607064665800_c10) 2021; 233 (2025062607064665800_c21) 2019 (2025062607064665800_c30) 2023; 64 (2025062607064665800_c13) 2020; 57 (2025062607064665800_c8) 2000 2025062607064665800_c6 (2025062607064665800_c12) 2023; 975 (2025062607064665800_c20) 2007; 23 2025062607064665800_c7 (2025062607064665800_c22) 2023; 960 (2025062607064665800_c1) 2023; 272 (2025062607064665800_c5) 2017; 60 (2025062607064665800_c14) 2002; 124 (2025062607064665800_c17) 2019; 230 (2025062607064665800_c9) 2018; 170 (2025062607064665800_c15) 2003 (2025062607064665800_c3) 2013; 5 (2025062607064665800_c26) 2023; 272 (2025062607064665800_c24) 2013; 46 (2025062607064665800_c2) 2015; 108 (2025062607064665800_c11) 2002 (2025062607064665800_c29) 2021; 235 (2025062607064665800_c4) 1996 (2025062607064665800_c16) 2005 (2025062607064665800_c23) 2010; 9 (2025062607064665800_c27) 2024; 36 (2025062607064665800_c18) 2004; 5 (2025062607064665800_c25) 2017; 129 (2025062607064665800_c19) 2006 (2025062607064665800_c28) 2022; 249 |
References_xml | – start-page: 120 year: 2018 ident: c9 article-title: The experimental study on maneuvering derivatives of a submerged body SUBOFF by implementing the planar motion mechanism tests publication-title: Ocean Eng. – start-page: 113858 year: 2023 ident: c1 article-title: To study the effectiveness of stern appendages (Cruciform & X Shaped configurations) for maneuverability of autonomous underwater vessel using computational fluid dynamics publication-title: Ocean Eng. – start-page: 133 year: 2020 ident: c13 article-title: Study of the resistance test and wall blockage correction method for the submerged body in LCT publication-title: J. Soc. Nav. Archit. Korea – start-page: A3 year: 2023 ident: c22 article-title: Large-eddy simulation of tripping effects on the flow over a 6: 1 prolate spheroid at angle of attack publication-title: J. Fluid Mech. – start-page: 431 year: 2019 ident: c17 article-title: Forces and torques on a prolate spheroid: Low-Reynolds-number and attack angle effects publication-title: Acta Mech. – start-page: 459 year: 2017 ident: c25 article-title: CFD analysis of turning abilities of a submarine model publication-title: Ocean Eng. – start-page: 114711 year: 2017 ident: c5 article-title: Unsteady analysis of six-DOF motion of a 6:1 prolate spheroid in viscous fluid publication-title: Sci. China: Phys. Mech. Astron. – start-page: 045101 year: 2024 ident: c27 article-title: Scale-adaptive simulation of the separated flow past a 90°-inclined prolate spheroid publication-title: Phys. Fluids – start-page: 167 year: 2023 ident: c30 article-title: Vortex-wake formation and evolution on a prolate spheroid at subcritical Reynolds numbers publication-title: Exp. Fluids – start-page: 904 year: 2002 ident: c14 article-title: Numerical investigation of flow past a prolate spheroid publication-title: J. Fluids Eng. – start-page: No29 year: 2004 ident: c18 article-title: Large eddy simulation of the flow around an inclined prolate spheroid publication-title: J. Turbul. – start-page: 129 year: 2015 ident: c2 article-title: Estimation of the hydrodynamic derivatives by RaNS simulation of planar motion mechanism test publication-title: Ocean Eng. – start-page: 109052 year: 2021 ident: c10 article-title: Experimental study on the maneuvering derivatives of a half-scale SUBOFF model in the vertical plane publication-title: Ocean Eng. – start-page: 113883 year: 2023 ident: c26 article-title: Numerical investigation of the scale effect on the horizontal maneuvering derivatives of an underwater vehicle publication-title: Ocean Eng. – start-page: 197 year: 2013 ident: c24 article-title: Evaluation of methods to estimate hydrodynamic force coefficients of underwater vehicle based on CFD publication-title: IFAC Proc. Vol. – start-page: 109412 year: 2021 ident: c29 article-title: Experimental study on bow flow field of scientific research ship based on flow visualisation publication-title: Ocean Eng. – start-page: 110847 year: 2022 ident: c28 article-title: The estimation of hydrodynamic coefficients of an autonomous underwater vehicle by comparing a dynamic mesh model with a horizontal planar motion mechanism experiment publication-title: Ocean Eng. – start-page: 5003 year: 2013 ident: c3 article-title: Transient numerical simulations for hydrodynamic derivatives predictions of an axisymmetric submersible vehicle publication-title: Res. J. Appl. Sci., Eng. Technol. – start-page: A51 year: 2023 ident: c12 article-title: Dynamic separation on an accelerating prolate spheroid publication-title: J. Fluid Mech. – start-page: 149 year: 2010 ident: c23 article-title: Using CFD software to calculate hydrodynamic coefficients publication-title: J. Mar. Sci. Appl. – start-page: 369 year: 2007 ident: c20 article-title: Prediction of separation flows around a 6:1 prolate spheroid using RANS/LES hybrid approaches publication-title: Acta Mech. Sin. – year: 2019 ident: 2025062607064665800_c21 article-title: RANS, DES and LES of the flow past the 6:1 prolate spheroid at 10° and 20° angle of incidence – volume: 975 start-page: A51 year: 2023 ident: 2025062607064665800_c12 article-title: Dynamic separation on an accelerating prolate spheroid publication-title: J. Fluid Mech. doi: 10.1017/jfm.2023.907 – volume: 5 start-page: No29 year: 2004 ident: 2025062607064665800_c18 article-title: Large eddy simulation of the flow around an inclined prolate spheroid publication-title: J. Turbul. doi: 10.1088/1468-5248/5/1/029 – year: 2006 ident: 2025062607064665800_c19 article-title: Prediction of hydrodynamic forces and moments for underwater vehicles using overset grids – volume: 235 start-page: 109412 year: 2021 ident: 2025062607064665800_c29 article-title: Experimental study on bow flow field of scientific research ship based on flow visualisation publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.109412 – volume: 9 start-page: 149 year: 2010 ident: 2025062607064665800_c23 article-title: Using CFD software to calculate hydrodynamic coefficients publication-title: J. Mar. Sci. Appl. doi: 10.1007/s11804-010-9009-9 – ident: 2025062607064665800_c6 – year: 2005 ident: 2025062607064665800_c16 article-title: Using detached eddy simulation and overset grids to predict flow around a 6:1 prolate spheroid – volume: 960 start-page: A3 year: 2023 ident: 2025062607064665800_c22 article-title: Large-eddy simulation of tripping effects on the flow over a 6: 1 prolate spheroid at angle of attack publication-title: J. Fluid Mech. doi: 10.1017/jfm.2023.175 – year: 1996 ident: 2025062607064665800_c4 article-title: A detailed investigation of the 3-D separation about a 6:1 prolate spheroid at angle of attack – volume: 230 start-page: 431 year: 2019 ident: 2025062607064665800_c17 article-title: Forces and torques on a prolate spheroid: Low-Reynolds-number and attack angle effects publication-title: Acta Mech. doi: 10.1007/s00707-018-2325-x – volume: 23 start-page: 369 year: 2007 ident: 2025062607064665800_c20 article-title: Prediction of separation flows around a 6:1 prolate spheroid using RANS/LES hybrid approaches publication-title: Acta Mech. Sin. doi: 10.1007/s10409-007-0073-6 – year: 2002 ident: 2025062607064665800_c11 article-title: PIV measurements of the cross-flow velocity field around a turning submarine model (ONR body-1) – volume: 57 start-page: 133 year: 2020 ident: 2025062607064665800_c13 article-title: Study of the resistance test and wall blockage correction method for the submerged body in LCT publication-title: J. Soc. Nav. Archit. Korea doi: 10.3744/SNAK.2020.57.3.133 – volume: 64 start-page: 167 year: 2023 ident: 2025062607064665800_c30 article-title: Vortex-wake formation and evolution on a prolate spheroid at subcritical Reynolds numbers publication-title: Exp. Fluids doi: 10.1007/s00348-023-03702-y – volume: 46 start-page: 197 year: 2013 ident: 2025062607064665800_c24 article-title: Evaluation of methods to estimate hydrodynamic force coefficients of underwater vehicle based on CFD publication-title: IFAC Proc. Vol. doi: 10.3182/20130918-4-JP-3022.00026 – volume: 124 start-page: 904 year: 2002 ident: 2025062607064665800_c14 article-title: Numerical investigation of flow past a prolate spheroid publication-title: J. Fluids Eng. doi: 10.1115/1.1517571 – year: 2000 ident: 2025062607064665800_c8 article-title: An experimental study on hydrodynamic coefficients of submerged body using planar motion mechanism and coning motion device – ident: 2025062607064665800_c7 – volume: 108 start-page: 129 year: 2015 ident: 2025062607064665800_c2 article-title: Estimation of the hydrodynamic derivatives by RaNS simulation of planar motion mechanism test publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2015.08.010 – volume: 5 start-page: 5003 year: 2013 ident: 2025062607064665800_c3 article-title: Transient numerical simulations for hydrodynamic derivatives predictions of an axisymmetric submersible vehicle publication-title: Res. J. Appl. Sci., Eng. Technol. doi: 10.19026/rjaset.5.4388 – volume: 272 start-page: 113858 year: 2023 ident: 2025062607064665800_c1 article-title: To study the effectiveness of stern appendages (Cruciform & X Shaped configurations) for maneuverability of autonomous underwater vessel using computational fluid dynamics publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.113858 – volume: 170 start-page: 120 year: 2018 ident: 2025062607064665800_c9 article-title: The experimental study on maneuvering derivatives of a submerged body SUBOFF by implementing the planar motion mechanism tests publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2018.10.015 – volume: 60 start-page: 114711 year: 2017 ident: 2025062607064665800_c5 article-title: Unsteady analysis of six-DOF motion of a 6:1 prolate spheroid in viscous fluid publication-title: Sci. China: Phys. Mech. Astron. doi: 10.1007/s11433-017-9071-y – volume: 233 start-page: 109052 year: 2021 ident: 2025062607064665800_c10 article-title: Experimental study on the maneuvering derivatives of a half-scale SUBOFF model in the vertical plane publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.109052 – volume: 249 start-page: 110847 year: 2022 ident: 2025062607064665800_c28 article-title: The estimation of hydrodynamic coefficients of an autonomous underwater vehicle by comparing a dynamic mesh model with a horizontal planar motion mechanism experiment publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.110847 – volume: 129 start-page: 459 year: 2017 ident: 2025062607064665800_c25 article-title: CFD analysis of turning abilities of a submarine model publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2016.10.046 – volume: 272 start-page: 113883 year: 2023 ident: 2025062607064665800_c26 article-title: Numerical investigation of the scale effect on the horizontal maneuvering derivatives of an underwater vehicle publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.113883 – year: 2003 ident: 2025062607064665800_c15 article-title: Prediction of flows over an axisymmetric body with appendages – volume: 36 start-page: 045101 year: 2024 ident: 2025062607064665800_c27 article-title: Scale-adaptive simulation of the separated flow past a 90°-inclined prolate spheroid publication-title: Phys. Fluids doi: 10.1063/5.0202394 |
SSID | ssj0003926 |
Score | 2.4633281 |
Snippet | To address the critical issue of hydrodynamic and flow field dynamic response in predicting the maneuverability of underwater vehicles, a hydrodynamic analysis... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Amplitudes Correlation Coupling Dynamic pressure Dynamic response Flow separation Fluid flow Maneuverability Motion effects Prolate spheroids Quadratures Shock loads Synchronism Underwater vehicles Yaw |
Title | Hydrodynamics and flow field of a 6:1 prolate spheroid in maneuvering state: Numerical simulation and experimental investigation |
URI | http://dx.doi.org/10.1063/5.0276980 https://www.proquest.com/docview/3224330289 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIgQXHgXEQkEWcItc4viRTW9VBaw49LSI3qLYcdhI2wSxG1A5ceRnM7GdFy1S4RKtRoqzynwZz9ifv0HodRxGJqOckriQBeFcwScVsZhEakHjnCexdgTZU7n8yD-cibPZ7NeItdTs1KH-ceW5kv_xKtjAr-0p2X_wbD8oGOA3-Beu4GG4XsvHy4sc4p_rKe-0lotN_T2wrDR38FG2WgktCWsDOWWwbTUE6rKVW2ppq6b5ZoUIA6dfwY6D08Zt4GyCbXnuG3vZcSeNAMpBm8M71We3lk6qLTmk2DRl7mSgkoSP1hveN25xdt1U5KLprVntSPzVZwIw6hH7qVvOXpfkvLxkPlln9XjdIhIDv8qHWgg2BPIdZzLetkhILF0fli4-O1EYj0N5ZdiHPAt8JQ6hxpaJ6ww1ldb-Y8rriYh2C16yVKT-1hvoZgQFR2RJoANZCLJI6dir7j93GlWSvemfOs1shnLlNuQyjlYxylxW99FdX3LgY4efB2hmqn10z5cf2Af37T665d33EP2cAAsDAHALLGyBhesCZ1geUexhhTtY4bLCI1hhC6sj3IMKD6CyY45BhSegeoRW796uTpbEt-ogOhJ8R-JswXNKNUu0VdilMA8UsUpUHoXKhBryeqmNEkkG5ak0XPI8VsIkUjNBVcQeo72qrswThKFAgRCRS5MzzhcFbRXZRCgzJkzOWZjN0cvuLadfnCBLesmLc3TQvf_Uf6_bFKYuzli7sz5Hr3qf_H2Qp9d50jN0ZwD3AdrbfW3Mc0hTd-qFRdBvm3OQag |
linkProvider | American Institute of Physics |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrodynamics+and+flow+field+of+a+6%3A1+prolate+spheroid+in+maneuvering+state%3A+Numerical+simulation+and+experimental+investigation&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Guo%2C+Chun-yu&rft.au=Gao%2C+Ming-chen&rft.au=Wang%2C+Shi-min&rft.au=Wang%2C+Chao&rft.date=2025-06-01&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=37&rft.issue=6&rft_id=info:doi/10.1063%2F5.0276980&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0276980 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon |