Hydrodynamics and flow field of a 6:1 prolate spheroid in maneuvering state: Numerical simulation and experimental investigation

To address the critical issue of hydrodynamic and flow field dynamic response in predicting the maneuverability of underwater vehicles, a hydrodynamic analysis method for maneuvering motion is developed, utilizing numerical simulation and comparison with towed pool tests, focusing on a 6:1 prolate s...

Full description

Saved in:
Bibliographic Details
Published inPhysics of fluids (1994) Vol. 37; no. 6
Main Authors Guo, Chun-yu, Gao, Ming-chen, Wang, Shi-min, Wang, Chao, Han, Yang
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.06.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To address the critical issue of hydrodynamic and flow field dynamic response in predicting the maneuverability of underwater vehicles, a hydrodynamic analysis method for maneuvering motion is developed, utilizing numerical simulation and comparison with towed pool tests, focusing on a 6:1 prolate spheroid as the subject of investigation. The dynamic pressure response of a prolate spheroid subjected to pure sway, pure yaw, and coupled sway-yaw motions (including in-phase coupling, IPC, and quadrature-phase coupling, QPC) is systematically examined through experimental validation of an adapted novel horizontal motion mechanism, revealing the correlation between the peaks and troughs of pressure coefficients and the flow field structure. The results indicate that (i) hydrodynamic variations under pure sway, pure yaw, and IPC conditions exhibit a notable positive correlation, in which IPC amplifies the angle-of-attack effect via phase synchronization. (ii) The QPC condition demonstrates distinct nonlinear hydrodynamic properties resulting from the periodic disruption of the yaw-induced vortex structure by the sway motion: the pressure differential is positively correlated with yaw amplitude and negatively correlated with sway amplitude, while the peak-to-valley pressure difference increases sharply with a sudden frequency change (0.3 Hz). (iii) The flow separation method mainly influences the disparity in pressure response; the IPC condition is likely to generate significant transient shock loads, whereas the QPC condition emphasizes the nonlinear effects of motion coupling. The research findings establish a theoretical foundation for modeling fluid–solid interactions in underwater vehicle maneuvers.
AbstractList To address the critical issue of hydrodynamic and flow field dynamic response in predicting the maneuverability of underwater vehicles, a hydrodynamic analysis method for maneuvering motion is developed, utilizing numerical simulation and comparison with towed pool tests, focusing on a 6:1 prolate spheroid as the subject of investigation. The dynamic pressure response of a prolate spheroid subjected to pure sway, pure yaw, and coupled sway-yaw motions (including in-phase coupling, IPC, and quadrature-phase coupling, QPC) is systematically examined through experimental validation of an adapted novel horizontal motion mechanism, revealing the correlation between the peaks and troughs of pressure coefficients and the flow field structure. The results indicate that (i) hydrodynamic variations under pure sway, pure yaw, and IPC conditions exhibit a notable positive correlation, in which IPC amplifies the angle-of-attack effect via phase synchronization. (ii) The QPC condition demonstrates distinct nonlinear hydrodynamic properties resulting from the periodic disruption of the yaw-induced vortex structure by the sway motion: the pressure differential is positively correlated with yaw amplitude and negatively correlated with sway amplitude, while the peak-to-valley pressure difference increases sharply with a sudden frequency change (0.3 Hz). (iii) The flow separation method mainly influences the disparity in pressure response; the IPC condition is likely to generate significant transient shock loads, whereas the QPC condition emphasizes the nonlinear effects of motion coupling. The research findings establish a theoretical foundation for modeling fluid–solid interactions in underwater vehicle maneuvers.
Author Wang, Shi-min
Han, Yang
Gao, Ming-chen
Wang, Chao
Guo, Chun-yu
Author_xml – sequence: 1
  givenname: Chun-yu
  orcidid: 0000-0001-6571-1469
  surname: Guo
  fullname: Guo, Chun-yu
– sequence: 2
  givenname: Ming-chen
  orcidid: 0009-0009-9982-8628
  surname: Gao
  fullname: Gao, Ming-chen
– sequence: 3
  givenname: Shi-min
  surname: Wang
  fullname: Wang, Shi-min
– sequence: 4
  givenname: Chao
  orcidid: 0000-0001-7855-6939
  surname: Wang
  fullname: Wang, Chao
– sequence: 5
  givenname: Yang
  orcidid: 0000-0002-4121-0261
  surname: Han
  fullname: Han, Yang
BookMark eNp9kE1PwzAMhiM0JLbBgX8QiRNIHfloknY3NAFDmuCye5Um6cjUJqVpB7vx08k-zpxs633s1_YEjJx3BoBbjGYYcfrIZogInmfoAowxyvJEcM5Hh1yghHOKr8AkhC1CiOaEj8Hvcq87r_dONlYFKJ2GVe2_YWVNraGvoIR8jmHb-Vr2Bob203TeamgdbKQzw8501m1g6KM6h-9DE2slaxhsM8QO691xpvlpo9AY10fNup0Jvd0c5WtwWck6mJtznIL1y_N6sUxWH69vi6dVoghL-0TILNUYK5qruDojWGSiEmVeaoJKg1TGMFemZLlkGeMm5akWJTM5V5ThktApuDuNjZd8DdG-2Pqhc9GxoISklCKS5ZG6P1Gq8yF0pirauLXs9gVGxeG_BSvO_43sw4kNyvbHU_6B_wD8Tn1O
CODEN PHFLE6
Cites_doi 10.1017/jfm.2023.907
10.1088/1468-5248/5/1/029
10.1016/j.oceaneng.2021.109412
10.1007/s11804-010-9009-9
10.1017/jfm.2023.175
10.1007/s00707-018-2325-x
10.1007/s10409-007-0073-6
10.3744/SNAK.2020.57.3.133
10.1007/s00348-023-03702-y
10.3182/20130918-4-JP-3022.00026
10.1115/1.1517571
10.1016/j.oceaneng.2015.08.010
10.19026/rjaset.5.4388
10.1016/j.oceaneng.2023.113858
10.1016/j.oceaneng.2018.10.015
10.1007/s11433-017-9071-y
10.1016/j.oceaneng.2021.109052
10.1016/j.oceaneng.2022.110847
10.1016/j.oceaneng.2016.10.046
10.1016/j.oceaneng.2023.113883
10.1063/5.0202394
ContentType Journal Article
Copyright Author(s)
2025 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2025 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0276980
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1089-7666
ExternalDocumentID 10_1063_5_0276980
GrantInformation_xml – fundername: Natural Science Foundation of Heilongjiang Province
  grantid: LH2023E074
  funderid: 10.13039/501100005046
– fundername: Natural Science Foundation of Heilongjiang Province
  grantid: LH2022E042
  funderid: 10.13039/501100005046
– fundername: National Science Fund for Distinguished Young Scholars
  grantid: 52425111
  funderid: 10.13039/501100014219
GroupedDBID -~X
0ZJ
1UP
2-P
29O
2WC
4.4
5VS
6TJ
AAAAW
AABDS
AAGWI
AAPUP
AAYIH
ABJGX
ABJNI
ACBRY
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
AEJMO
AENEX
AFATG
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BDMKI
BPZLN
CS3
DU5
EBS
EJD
F5P
FDOHQ
FFFMQ
HAM
H~9
M6X
M71
M73
NEUPN
NPSNA
O-B
P2P
RDFOP
RIP
RNS
ROL
RQS
SC5
TN5
UQL
WH7
XJT
~02
AAYXX
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c254t-7a84d11c39c003521787f7b9bd20be0c8516ceb59a5856e464d7b5e96c351b23
ISSN 1070-6631
IngestDate Fri Jun 27 01:18:25 EDT 2025
Thu Jul 03 08:20:17 EDT 2025
Fri Jun 27 03:51:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c254t-7a84d11c39c003521787f7b9bd20be0c8516ceb59a5856e464d7b5e96c351b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4121-0261
0000-0001-6571-1469
0000-0001-7855-6939
0009-0009-9982-8628
PQID 3224330289
PQPubID 2050667
PageCount 13
ParticipantIDs scitation_primary_10_1063_5_0276980
proquest_journals_3224330289
crossref_primary_10_1063_5_0276980
PublicationCentury 2000
PublicationDate 20250600
2025-06-01
20250601
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 20250600
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Physics of fluids (1994)
PublicationYear 2025
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Wang, Lin, Liu, Zheng, Liu, Xu (c27) 2024
Guo, Kaiser, Rival (c30) 2023
Ahn, Seol, Park, Kim (c13) 2020
Plasseraud, Kumar, Mahesh (c22) 2023
Suzuki, Sakaguchi, Inoue, Watanabe, Yoshida (c24) 2013
Kahramanoglu (c26) 2023
Constantinescu, Pasinato, Wang, Forsythe, Squires (c14) 2002
Kim, Akimoto, Islam (c2) 2015
Wikström, Svennberg, Alin, Fureby (c18) 2004
Guo, Kuai, Wang, Han, Xu, Fan (c29) 2021
Lin, Chiu (c28) 2022
Hussain, Loya, Riaz, Malik (c1) 2023
Liang, Ma, Liu, Gu (c10) 2021
Dubbioso, Broglia, Zaghi (c25) 2017
Xiao, Zhang, Huang, Chen, Fu (c20) 2007
Andersson, Jiang (c17) 2019
Zhang, Xu, Cai (c23) 2010
Malik, Guang (c3) 2013
Xiong, Guan, Wu (c5) 2017
Guo, Kaiser, Rival (c12) 2023
Lin, Tseng, Chen (c9) 2018
(2025062607064665800_c10) 2021; 233
(2025062607064665800_c21) 2019
(2025062607064665800_c30) 2023; 64
(2025062607064665800_c13) 2020; 57
(2025062607064665800_c8) 2000
2025062607064665800_c6
(2025062607064665800_c12) 2023; 975
(2025062607064665800_c20) 2007; 23
2025062607064665800_c7
(2025062607064665800_c22) 2023; 960
(2025062607064665800_c1) 2023; 272
(2025062607064665800_c5) 2017; 60
(2025062607064665800_c14) 2002; 124
(2025062607064665800_c17) 2019; 230
(2025062607064665800_c9) 2018; 170
(2025062607064665800_c15) 2003
(2025062607064665800_c3) 2013; 5
(2025062607064665800_c26) 2023; 272
(2025062607064665800_c24) 2013; 46
(2025062607064665800_c2) 2015; 108
(2025062607064665800_c11) 2002
(2025062607064665800_c29) 2021; 235
(2025062607064665800_c4) 1996
(2025062607064665800_c16) 2005
(2025062607064665800_c23) 2010; 9
(2025062607064665800_c27) 2024; 36
(2025062607064665800_c18) 2004; 5
(2025062607064665800_c25) 2017; 129
(2025062607064665800_c19) 2006
(2025062607064665800_c28) 2022; 249
References_xml – start-page: 120
  year: 2018
  ident: c9
  article-title: The experimental study on maneuvering derivatives of a submerged body SUBOFF by implementing the planar motion mechanism tests
  publication-title: Ocean Eng.
– start-page: 113858
  year: 2023
  ident: c1
  article-title: To study the effectiveness of stern appendages (Cruciform & X Shaped configurations) for maneuverability of autonomous underwater vessel using computational fluid dynamics
  publication-title: Ocean Eng.
– start-page: 133
  year: 2020
  ident: c13
  article-title: Study of the resistance test and wall blockage correction method for the submerged body in LCT
  publication-title: J. Soc. Nav. Archit. Korea
– start-page: A3
  year: 2023
  ident: c22
  article-title: Large-eddy simulation of tripping effects on the flow over a 6: 1 prolate spheroid at angle of attack
  publication-title: J. Fluid Mech.
– start-page: 431
  year: 2019
  ident: c17
  article-title: Forces and torques on a prolate spheroid: Low-Reynolds-number and attack angle effects
  publication-title: Acta Mech.
– start-page: 459
  year: 2017
  ident: c25
  article-title: CFD analysis of turning abilities of a submarine model
  publication-title: Ocean Eng.
– start-page: 114711
  year: 2017
  ident: c5
  article-title: Unsteady analysis of six-DOF motion of a 6:1 prolate spheroid in viscous fluid
  publication-title: Sci. China: Phys. Mech. Astron.
– start-page: 045101
  year: 2024
  ident: c27
  article-title: Scale-adaptive simulation of the separated flow past a 90°-inclined prolate spheroid
  publication-title: Phys. Fluids
– start-page: 167
  year: 2023
  ident: c30
  article-title: Vortex-wake formation and evolution on a prolate spheroid at subcritical Reynolds numbers
  publication-title: Exp. Fluids
– start-page: 904
  year: 2002
  ident: c14
  article-title: Numerical investigation of flow past a prolate spheroid
  publication-title: J. Fluids Eng.
– start-page: No29
  year: 2004
  ident: c18
  article-title: Large eddy simulation of the flow around an inclined prolate spheroid
  publication-title: J. Turbul.
– start-page: 129
  year: 2015
  ident: c2
  article-title: Estimation of the hydrodynamic derivatives by RaNS simulation of planar motion mechanism test
  publication-title: Ocean Eng.
– start-page: 109052
  year: 2021
  ident: c10
  article-title: Experimental study on the maneuvering derivatives of a half-scale SUBOFF model in the vertical plane
  publication-title: Ocean Eng.
– start-page: 113883
  year: 2023
  ident: c26
  article-title: Numerical investigation of the scale effect on the horizontal maneuvering derivatives of an underwater vehicle
  publication-title: Ocean Eng.
– start-page: 197
  year: 2013
  ident: c24
  article-title: Evaluation of methods to estimate hydrodynamic force coefficients of underwater vehicle based on CFD
  publication-title: IFAC Proc. Vol.
– start-page: 109412
  year: 2021
  ident: c29
  article-title: Experimental study on bow flow field of scientific research ship based on flow visualisation
  publication-title: Ocean Eng.
– start-page: 110847
  year: 2022
  ident: c28
  article-title: The estimation of hydrodynamic coefficients of an autonomous underwater vehicle by comparing a dynamic mesh model with a horizontal planar motion mechanism experiment
  publication-title: Ocean Eng.
– start-page: 5003
  year: 2013
  ident: c3
  article-title: Transient numerical simulations for hydrodynamic derivatives predictions of an axisymmetric submersible vehicle
  publication-title: Res. J. Appl. Sci., Eng. Technol.
– start-page: A51
  year: 2023
  ident: c12
  article-title: Dynamic separation on an accelerating prolate spheroid
  publication-title: J. Fluid Mech.
– start-page: 149
  year: 2010
  ident: c23
  article-title: Using CFD software to calculate hydrodynamic coefficients
  publication-title: J. Mar. Sci. Appl.
– start-page: 369
  year: 2007
  ident: c20
  article-title: Prediction of separation flows around a 6:1 prolate spheroid using RANS/LES hybrid approaches
  publication-title: Acta Mech. Sin.
– year: 2019
  ident: 2025062607064665800_c21
  article-title: RANS, DES and LES of the flow past the 6:1 prolate spheroid at 10° and 20° angle of incidence
– volume: 975
  start-page: A51
  year: 2023
  ident: 2025062607064665800_c12
  article-title: Dynamic separation on an accelerating prolate spheroid
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2023.907
– volume: 5
  start-page: No29
  year: 2004
  ident: 2025062607064665800_c18
  article-title: Large eddy simulation of the flow around an inclined prolate spheroid
  publication-title: J. Turbul.
  doi: 10.1088/1468-5248/5/1/029
– year: 2006
  ident: 2025062607064665800_c19
  article-title: Prediction of hydrodynamic forces and moments for underwater vehicles using overset grids
– volume: 235
  start-page: 109412
  year: 2021
  ident: 2025062607064665800_c29
  article-title: Experimental study on bow flow field of scientific research ship based on flow visualisation
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.109412
– volume: 9
  start-page: 149
  year: 2010
  ident: 2025062607064665800_c23
  article-title: Using CFD software to calculate hydrodynamic coefficients
  publication-title: J. Mar. Sci. Appl.
  doi: 10.1007/s11804-010-9009-9
– ident: 2025062607064665800_c6
– year: 2005
  ident: 2025062607064665800_c16
  article-title: Using detached eddy simulation and overset grids to predict flow around a 6:1 prolate spheroid
– volume: 960
  start-page: A3
  year: 2023
  ident: 2025062607064665800_c22
  article-title: Large-eddy simulation of tripping effects on the flow over a 6: 1 prolate spheroid at angle of attack
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2023.175
– year: 1996
  ident: 2025062607064665800_c4
  article-title: A detailed investigation of the 3-D separation about a 6:1 prolate spheroid at angle of attack
– volume: 230
  start-page: 431
  year: 2019
  ident: 2025062607064665800_c17
  article-title: Forces and torques on a prolate spheroid: Low-Reynolds-number and attack angle effects
  publication-title: Acta Mech.
  doi: 10.1007/s00707-018-2325-x
– volume: 23
  start-page: 369
  year: 2007
  ident: 2025062607064665800_c20
  article-title: Prediction of separation flows around a 6:1 prolate spheroid using RANS/LES hybrid approaches
  publication-title: Acta Mech. Sin.
  doi: 10.1007/s10409-007-0073-6
– year: 2002
  ident: 2025062607064665800_c11
  article-title: PIV measurements of the cross-flow velocity field around a turning submarine model (ONR body-1)
– volume: 57
  start-page: 133
  year: 2020
  ident: 2025062607064665800_c13
  article-title: Study of the resistance test and wall blockage correction method for the submerged body in LCT
  publication-title: J. Soc. Nav. Archit. Korea
  doi: 10.3744/SNAK.2020.57.3.133
– volume: 64
  start-page: 167
  year: 2023
  ident: 2025062607064665800_c30
  article-title: Vortex-wake formation and evolution on a prolate spheroid at subcritical Reynolds numbers
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-023-03702-y
– volume: 46
  start-page: 197
  year: 2013
  ident: 2025062607064665800_c24
  article-title: Evaluation of methods to estimate hydrodynamic force coefficients of underwater vehicle based on CFD
  publication-title: IFAC Proc. Vol.
  doi: 10.3182/20130918-4-JP-3022.00026
– volume: 124
  start-page: 904
  year: 2002
  ident: 2025062607064665800_c14
  article-title: Numerical investigation of flow past a prolate spheroid
  publication-title: J. Fluids Eng.
  doi: 10.1115/1.1517571
– year: 2000
  ident: 2025062607064665800_c8
  article-title: An experimental study on hydrodynamic coefficients of submerged body using planar motion mechanism and coning motion device
– ident: 2025062607064665800_c7
– volume: 108
  start-page: 129
  year: 2015
  ident: 2025062607064665800_c2
  article-title: Estimation of the hydrodynamic derivatives by RaNS simulation of planar motion mechanism test
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2015.08.010
– volume: 5
  start-page: 5003
  year: 2013
  ident: 2025062607064665800_c3
  article-title: Transient numerical simulations for hydrodynamic derivatives predictions of an axisymmetric submersible vehicle
  publication-title: Res. J. Appl. Sci., Eng. Technol.
  doi: 10.19026/rjaset.5.4388
– volume: 272
  start-page: 113858
  year: 2023
  ident: 2025062607064665800_c1
  article-title: To study the effectiveness of stern appendages (Cruciform & X Shaped configurations) for maneuverability of autonomous underwater vessel using computational fluid dynamics
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.113858
– volume: 170
  start-page: 120
  year: 2018
  ident: 2025062607064665800_c9
  article-title: The experimental study on maneuvering derivatives of a submerged body SUBOFF by implementing the planar motion mechanism tests
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2018.10.015
– volume: 60
  start-page: 114711
  year: 2017
  ident: 2025062607064665800_c5
  article-title: Unsteady analysis of six-DOF motion of a 6:1 prolate spheroid in viscous fluid
  publication-title: Sci. China: Phys. Mech. Astron.
  doi: 10.1007/s11433-017-9071-y
– volume: 233
  start-page: 109052
  year: 2021
  ident: 2025062607064665800_c10
  article-title: Experimental study on the maneuvering derivatives of a half-scale SUBOFF model in the vertical plane
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.109052
– volume: 249
  start-page: 110847
  year: 2022
  ident: 2025062607064665800_c28
  article-title: The estimation of hydrodynamic coefficients of an autonomous underwater vehicle by comparing a dynamic mesh model with a horizontal planar motion mechanism experiment
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.110847
– volume: 129
  start-page: 459
  year: 2017
  ident: 2025062607064665800_c25
  article-title: CFD analysis of turning abilities of a submarine model
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2016.10.046
– volume: 272
  start-page: 113883
  year: 2023
  ident: 2025062607064665800_c26
  article-title: Numerical investigation of the scale effect on the horizontal maneuvering derivatives of an underwater vehicle
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.113883
– year: 2003
  ident: 2025062607064665800_c15
  article-title: Prediction of flows over an axisymmetric body with appendages
– volume: 36
  start-page: 045101
  year: 2024
  ident: 2025062607064665800_c27
  article-title: Scale-adaptive simulation of the separated flow past a 90°-inclined prolate spheroid
  publication-title: Phys. Fluids
  doi: 10.1063/5.0202394
SSID ssj0003926
Score 2.4633281
Snippet To address the critical issue of hydrodynamic and flow field dynamic response in predicting the maneuverability of underwater vehicles, a hydrodynamic analysis...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Amplitudes
Correlation
Coupling
Dynamic pressure
Dynamic response
Flow separation
Fluid flow
Maneuverability
Motion effects
Prolate spheroids
Quadratures
Shock loads
Synchronism
Underwater vehicles
Yaw
Title Hydrodynamics and flow field of a 6:1 prolate spheroid in maneuvering state: Numerical simulation and experimental investigation
URI http://dx.doi.org/10.1063/5.0276980
https://www.proquest.com/docview/3224330289
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIgQXHgXEQkEWcItc4viRTW9VBaw49LSI3qLYcdhI2wSxG1A5ceRnM7GdFy1S4RKtRoqzynwZz9ifv0HodRxGJqOckriQBeFcwScVsZhEakHjnCexdgTZU7n8yD-cibPZ7NeItdTs1KH-ceW5kv_xKtjAr-0p2X_wbD8oGOA3-Beu4GG4XsvHy4sc4p_rKe-0lotN_T2wrDR38FG2WgktCWsDOWWwbTUE6rKVW2ppq6b5ZoUIA6dfwY6D08Zt4GyCbXnuG3vZcSeNAMpBm8M71We3lk6qLTmk2DRl7mSgkoSP1hveN25xdt1U5KLprVntSPzVZwIw6hH7qVvOXpfkvLxkPlln9XjdIhIDv8qHWgg2BPIdZzLetkhILF0fli4-O1EYj0N5ZdiHPAt8JQ6hxpaJ6ww1ldb-Y8rriYh2C16yVKT-1hvoZgQFR2RJoANZCLJI6dir7j93GlWSvemfOs1shnLlNuQyjlYxylxW99FdX3LgY4efB2hmqn10z5cf2Af37T665d33EP2cAAsDAHALLGyBhesCZ1geUexhhTtY4bLCI1hhC6sj3IMKD6CyY45BhSegeoRW796uTpbEt-ogOhJ8R-JswXNKNUu0VdilMA8UsUpUHoXKhBryeqmNEkkG5ak0XPI8VsIkUjNBVcQeo72qrswThKFAgRCRS5MzzhcFbRXZRCgzJkzOWZjN0cvuLadfnCBLesmLc3TQvf_Uf6_bFKYuzli7sz5Hr3qf_H2Qp9d50jN0ZwD3AdrbfW3Mc0hTd-qFRdBvm3OQag
linkProvider American Institute of Physics
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrodynamics+and+flow+field+of+a+6%3A1+prolate+spheroid+in+maneuvering+state%3A+Numerical+simulation+and+experimental+investigation&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Guo%2C+Chun-yu&rft.au=Gao%2C+Ming-chen&rft.au=Wang%2C+Shi-min&rft.au=Wang%2C+Chao&rft.date=2025-06-01&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=37&rft.issue=6&rft_id=info:doi/10.1063%2F5.0276980&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0276980
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon