Deep-Learning-Driven Turbidity Level Classification
Accurate turbidity classification is essential for maintaining water quality in various contexts, from drinking water to industrial processes. Traditional turbidimeters face challenges, including interference from colored substances, particle shape and size variations, and the need for regular calib...
Saved in:
Published in | Big data and cognitive computing Vol. 8; no. 8; p. 89 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate turbidity classification is essential for maintaining water quality in various contexts, from drinking water to industrial processes. Traditional turbidimeters face challenges, including interference from colored substances, particle shape and size variations, and the need for regular calibration and maintenance. This paper implements a convolutional neural network (CNN) to classify water samples based on their turbidity levels. The dataset consisted of images captured under controlled laboratory conditions, with turbidity levels measured using a 2100P Portable Turbidimeter. The CNN achieved a classification accuracy of 97.00% in laboratory settings. When tested on real-world water body samples, the model maintained an accuracy of 85.00%. The results demonstrate that deep learning can effectively classify turbidity levels, offering a promising solution to overcome the limitations of traditional methods. The study highlights the potential of CNNs for accurate and efficient turbidity measurement, balancing accuracy with practical applicability in field conditions. |
---|---|
AbstractList | Accurate turbidity classification is essential for maintaining water quality in various contexts, from drinking water to industrial processes. Traditional turbidimeters face challenges, including interference from colored substances, particle shape and size variations, and the need for regular calibration and maintenance. This paper implements a convolutional neural network (CNN) to classify water samples based on their turbidity levels. The dataset consisted of images captured under controlled laboratory conditions, with turbidity levels measured using a 2100P Portable Turbidimeter. The CNN achieved a classification accuracy of 97.00% in laboratory settings. When tested on real-world water body samples, the model maintained an accuracy of 85.00%. The results demonstrate that deep learning can effectively classify turbidity levels, offering a promising solution to overcome the limitations of traditional methods. The study highlights the potential of CNNs for accurate and efficient turbidity measurement, balancing accuracy with practical applicability in field conditions. |
Audience | Academic |
Author | Santana-Cruz, Rene Francisco Meléndez-Vázquez, Fidel Trejo-Zúñiga, Iván Moreno, Martin |
Author_xml | – sequence: 1 givenname: Iván orcidid: 0000-0002-4983-4626 surname: Trejo-Zúñiga fullname: Trejo-Zúñiga, Iván – sequence: 2 givenname: Martin orcidid: 0000-0002-6590-441X surname: Moreno fullname: Moreno, Martin – sequence: 3 givenname: Rene Francisco orcidid: 0000-0003-3176-7100 surname: Santana-Cruz fullname: Santana-Cruz, Rene Francisco – sequence: 4 givenname: Fidel orcidid: 0000-0003-0914-9314 surname: Meléndez-Vázquez fullname: Meléndez-Vázquez, Fidel |
BookMark | eNpNkctKBDEQRYMo-Fz5AwMupbWSSuexlPEJA250HdJJZcgwdsZ0j-Df2zoiUosqLvceiqpjtt-Xnhg753CFaOG6iyEYMADG7rEj0YJshDB2_998yM6GYQUAQkipOD9ieEu0aRbka5_7ZXNb8wf1s5dt7XLM4-dsQR-0ns3XfhhyysGPufSn7CD59UBnv_2Evd7fvcwfm8Xzw9P8ZtEE0cqxURykFSkEkIqSjdJz7bVVUUXTcuvRIiAqzbnHiAZ4p1CjTsnYZLgiPGFPO24sfuU2Nb_5-umKz-5HKHXpfB1zWJMjK1u0E4uklmSp0yQs2E74iNyIdmJd7FibWt63NIxuVba1n9Z3CFYbYbXik-tq51r6CZr7VMbqw1SR3nKYzp3ypN8Y0NgaLr4Dl7tAqGUYKqW_NTm476-4f1_BL2ZTfVk |
Cites_doi | 10.1080/10236240290025644 10.1016/j.watres.2015.06.028 10.1016/j.tifs.2019.04.003 10.1016/j.envint.2005.08.027 10.1007/s13762-022-04531-y 10.3390/app12126079 10.3390/chemosensors12030034 10.1109/JSTARS.2021.3109292 10.1016/j.heliyon.2024.e29128 10.1201/9781351110471 10.1088/1742-6596/1757/1/012004 10.1007/978-3-319-96190-3 10.3390/w14050761 10.1007/978-3-030-23335-8 10.1080/09603123.2013.769201 10.3390/s91008311 10.1007/s002650050330 10.1080/21655979.2023.2259526 10.1177/002029408401700904 10.1038/nature14539 10.3389/fpubh.2016.00148 10.1177/0309133317726540 10.1002/ece3.454 10.3390/w11071482 10.1109/TIM.2022.3205915 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PIMPY PQEST PQQKQ PQUKI DOA |
DOI | 10.3390/bdcc8080089 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Open Access: DOAJ - Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest One Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2504-2289 |
ExternalDocumentID | oai_doaj_org_article_e94539671e474e9eb7e2909b2ad31825 A807358121 10_3390_bdcc8080089 |
GeographicLocations | Mexico |
GeographicLocations_xml | – name: Mexico |
GroupedDBID | 8FE 8FG AADQD AAFWJ AAYXX ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ITC MODMG M~E OK1 P62 PIMPY PROAC ABUWG AZQEC DWQXO PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c254t-610492fcc046ef9d4a17a796d6d8519a3930336711a3d3801b63737ff89f816e3 |
IEDL.DBID | 8FG |
ISSN | 2504-2289 |
IngestDate | Tue Oct 22 15:14:43 EDT 2024 Thu Oct 10 22:01:19 EDT 2024 Tue Sep 10 03:51:29 EDT 2024 Thu Sep 26 21:09:31 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c254t-610492fcc046ef9d4a17a796d6d8519a3930336711a3d3801b63737ff89f816e3 |
ORCID | 0000-0003-3176-7100 0000-0003-0914-9314 0000-0002-6590-441X 0000-0002-4983-4626 |
OpenAccessLink | https://www.proquest.com/docview/3097829761?pq-origsite=%requestingapplication% |
PQID | 3097829761 |
PQPubID | 2061777 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e94539671e474e9eb7e2909b2ad31825 proquest_journals_3097829761 gale_infotracacademiconefile_A807358121 crossref_primary_10_3390_bdcc8080089 |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Big data and cognitive computing |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Ahmad (ref_6) 2019; 88 Dorevitch (ref_3) 2015; 83 ref_13 ref_12 ref_32 ref_31 Feizi (ref_28) 2022; 20 Abrahams (ref_8) 1997; 40 ref_19 ref_18 Ahmad (ref_14) 2024; 10 Gu (ref_26) 2022; 71 Shukla (ref_11) 2006; 32 LeCun (ref_30) 2015; 521 Extance (ref_17) 1984; 17 Ma (ref_24) 2021; 14 Lin (ref_15) 2013; 23 Zheng (ref_25) 2021; 1757 Chivers (ref_10) 2012; 3 ref_23 (ref_9) 2002; 35 ref_22 ref_21 ref_1 Kitchener (ref_20) 2017; 41 ref_2 ref_29 ref_27 ref_5 ref_4 (ref_16) 2009; 9 ref_7 |
References_xml | – volume: 35 start-page: 111 year: 2002 ident: ref_9 article-title: Visual feeding of fish in a turbid environment: Physical and behavioural aspects publication-title: Mar. Freshw. Behav. Physiol. doi: 10.1080/10236240290025644 – ident: ref_32 – volume: 83 start-page: 94 year: 2015 ident: ref_3 article-title: Water quality as a predictor of gastrointestinal illness following incidental contact water recreation publication-title: Water Res. doi: 10.1016/j.watres.2015.06.028 contributor: fullname: Dorevitch – volume: 88 start-page: 361 year: 2019 ident: ref_6 article-title: Treatment and utilization of dairy industrial waste: A review publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2019.04.003 contributor: fullname: Ahmad – volume: 32 start-page: 244 year: 2006 ident: ref_11 article-title: Organochlorine pesticide contamination of ground water in the city of Hyderabad publication-title: Environ. Int. doi: 10.1016/j.envint.2005.08.027 contributor: fullname: Shukla – volume: 20 start-page: 149 year: 2022 ident: ref_28 article-title: An image-based deep learning model for water turbidity estimation in laboratory conditions publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-022-04531-y contributor: fullname: Feizi – ident: ref_27 doi: 10.3390/app12126079 – ident: ref_22 doi: 10.3390/chemosensors12030034 – ident: ref_18 – ident: ref_21 – volume: 14 start-page: 9132 year: 2021 ident: ref_24 article-title: Remote Sensing of Turbidity for Lakes in Northeast China Using Sentinel-2 Images with Machine Learning Algorithms publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3109292 contributor: fullname: Ma – volume: 10 start-page: e29128 year: 2024 ident: ref_14 article-title: Pesticides impacts on human health and the environment with their mechanisms of action and possible countermeasures publication-title: Heliyon doi: 10.1016/j.heliyon.2024.e29128 contributor: fullname: Ahmad – ident: ref_31 – ident: ref_1 doi: 10.1201/9781351110471 – ident: ref_29 – ident: ref_2 – volume: 1757 start-page: 012004 year: 2021 ident: ref_25 article-title: Research of Water Body Turbidity Classification Model for Aquiculture Based on Transfer Learning publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1757/1/012004 contributor: fullname: Zheng – ident: ref_4 doi: 10.1007/978-3-319-96190-3 – ident: ref_23 doi: 10.3390/w14050761 – ident: ref_7 doi: 10.1007/978-3-030-23335-8 – volume: 23 start-page: 484 year: 2013 ident: ref_15 article-title: Water quality indicators: Bacteria, coliphages, enteric viruses publication-title: Int. J. Environ. Health Res. doi: 10.1080/09603123.2013.769201 contributor: fullname: Lin – volume: 9 start-page: 8311 year: 2009 ident: ref_16 article-title: Turbidimeter Design and Analysis: A Review on Optical Fiber Sensors for the Measurement of Water Turbidity publication-title: Sensors doi: 10.3390/s91008311 – volume: 40 start-page: 169 year: 1997 ident: ref_8 article-title: The role of turbidity as a constraint on predator-prey interactions in aquatic environments publication-title: Behav. Ecol. Sociobiol. doi: 10.1007/s002650050330 contributor: fullname: Abrahams – ident: ref_13 doi: 10.1080/21655979.2023.2259526 – volume: 17 start-page: 343 year: 1984 ident: ref_17 article-title: Intelligent Turbidity Monitoring publication-title: Meas. Control doi: 10.1177/002029408401700904 contributor: fullname: Extance – volume: 521 start-page: 436 year: 2015 ident: ref_30 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 contributor: fullname: LeCun – ident: ref_12 doi: 10.3389/fpubh.2016.00148 – ident: ref_19 – volume: 41 start-page: 620 year: 2017 ident: ref_20 article-title: A review of the principles of turbidity measurement publication-title: Prog. Phys. Geogr. Earth Environ. doi: 10.1177/0309133317726540 contributor: fullname: Kitchener – volume: 3 start-page: 268 year: 2012 ident: ref_10 article-title: The effect of turbidity on recognition and generalization of predators and non-predators in aquatic ecosystems publication-title: Ecol. Evol. doi: 10.1002/ece3.454 contributor: fullname: Chivers – ident: ref_5 doi: 10.3390/w11071482 – volume: 71 start-page: 9510713 year: 2022 ident: ref_26 article-title: Self-Organizing Multichannel Deep Learning System for River Turbidity Monitoring publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2022.3205915 contributor: fullname: Gu |
SSID | ssj0002244611 |
Score | 2.3175294 |
Snippet | Accurate turbidity classification is essential for maintaining water quality in various contexts, from drinking water to industrial processes. Traditional... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 89 |
SubjectTerms | Accuracy Aquatic ecosystems Artificial neural networks Chemical contaminants Classification Datasets Deep learning Digital cameras Drinking water Health risk assessment Health risks Heavy metals Light Machine learning Neural networks Nutrients Particle shape Sensors Turbidimeters Turbidity turbidity classification Water quality Water sampling |
SummonAdditionalLinks | – databaseName: Open Access: DOAJ - Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwsCASJQUIZKTFHjj8TxWChVhYCplbpZ_rggGEoV0v_P2UlRFsTCGmWw39l370nnd4SMa8cld8E2VBUiQwZuMsOlz_ICvBOSKxvd9l9ey8VKPK2L9WDUV-gJ6-yBO-AmoETBVSkpCClAgZXAVK4sMx6PI-vcS3M1EFMf0dQFZQ6l3YM8jrp-Yr1zwUMxDwPdByUoOvX_lo9jkZmfkOOeHabTblWn5AA2Z4TPALZZb4T6ls2akKDS5a6x7x45dPoc-n7SON0y9P1EqM_Jav64fFhk_ayDzKFEa1HBIVVntXOoV6FWXhgqjVSlLz1yImW4wlrDEQZquOdYVmyJIMu6rlRd0RL4BTncfG7gkqQOC0xRQTBuy4UFUYFkYEyhmAFVuzIh4_329baztNAoBQJKeoBSQu4DND-_BB_q-AGjo_vo6L-ik5C7AKwOt6VtjDN90z-uNPhO6WmFKaZAkkETMtpjr_tr9KV5eGXCkDHRq_9YzTU5YshJuv69ETlsmx3cIKdo7W08Pt85nMXJ priority: 102 providerName: Directory of Open Access Journals |
Title | Deep-Learning-Driven Turbidity Level Classification |
URI | https://www.proquest.com/docview/3097829761 https://doaj.org/article/e94539671e474e9eb7e2909b2ad31825 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELX4WFgQCBCFUmVAYoqoPxLHE-KrIAQVQiCxWY59QSxtSdv_z53rFhZYkwzOi33vnXN-x9hp46WWnmxDTaFyVOAud1KHvF9A8EpLU0e3_adhef-mHt6L97ThNk1llcuYGAN1GHvaIz-XdOBAIHnyi8lXTl2j6O9qaqGxzja50JpmdTW4W-2xID2pkvPFsTyJ2f15HbwnJ8U-tXX_RUTRr_-vqBypZrDDtpNGzC4XH3WXrcFoj8kbgEme7FA_8puWwlT2Om_rz4BKOnuk6p8s9rik6p8I-D57G9y-Xt_nqeNB7jFRm2Eeh4JdNN5j1gqNCcpx7bQpQxlQGRknDTKOLDXnTgaJ5FKXCLVumso0FS9BHrCN0XgEhyzzSDNFBWTf1lc1qAq0AOcKIxyYxpcddrp8fTtZGFtYTAgIJfsLpQ67ImhWj5Abdbwwbj9smtwWjCqkwWGB0goM1BqE6ZtauIAhQxQddkbAWlozs9Z5l0r_caTkPmUvKww0BUoN3mHdJfY2Laap_fn0R__fPmZbAjXHoj6vyzZm7RxOUDPM6l6cGD22eXU7fH7pxcz7Gz7CwM8 |
link.rule.ids | 315,783,787,867,2109,12779,21402,27938,27939,33387,33758,43614,43819,74371,74638 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgDLAgECAKBTJUYopoYieOJ1Q-SoG2U5G6WY59QSxtSdv_z13ili6wJhmcF_veO-f8jrF2YbnklmxDVSJCVOAmNFy6sJOAs0JylVdu-8NR2v8Qb5Nk4jfcFr6sch0Tq0DtZpb2yO84HTiIkTyj-_l3SF2j6O-qb6Gxy_YER6Khk-K9l80eC9KTSKOoPpbHMbu_y5215KTYobbuW0RU-fX_FZUrqukdsUOvEYNu_VGP2Q5MTxh_ApiH3g71M3wqKUwF41WZfzlU0sGAqn-CqsclVf9UgJ-yj97z-LEf-o4HocVEbYl5HAr2uLAWs1YolBMmkkaq1KUOlZEyXCHj8FRGkeGOI7nkKUItiyJTRRalwM9YYzqbwjkLLNJMkgHZt3VEDiIDGYMxiYoNqMKmTdZev76e18YWGhMCQklvodRkDwTN5hFyo64uzMpP7Se3BiUSrnBYIKQABbmEWHVUHhuHISNOmuyWgNW0ZpalscaX_uNIyX1KdzMMNAlKjajJWmvstV9MC_376S_-v33D9vvj4UAPXkfvl-wgRv1R1-q1WGNZruAK9cMyv64myQ_BVsEi |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BTsJAEN0oJsaL0agRRe2BxFMD7W673ZNBEVGReIDE22a7OzVeAAv8vzNlQS56bXvYTmfnvdnOvGGsWVguuSXZUJWIEBm4CQ2XLmwn4KyQXOWV2v7bMO2PxctH8uHrn-a-rHIdE6tA7aaWzshbnBoOYgTPqFX4soj3bu9u9h3SBCn60-rHaeyyPURFSZs06z1tzlsQqkQaRasWPY6Zfit31pKqYptGvG-BUqXd_1eErmCnd8QOPV8MOqsPfMx2YHLCeBdgFnpp1M-wW1LICkbLMv9yyKqDAVUCBdW8S6oEqox_ysa9x9FDP_TTD0KLSdsCczok73FhLWawUCgnTCSNVKlLHbIkZbhC9OGpjCLDHUegyVM0uyyKTBVZlAI_Y7XJdALnLLAIOUkGJOXWFjmIDGQMxiQqNqAKm9ZZc_36erYSudCYHJCV9JaV6uyeTLN5hJSpqwvT8lN7R9egRMIVLguEFKAglxCrtspj4zB8xEmd3ZJhNe2fRWms8W0AuFJSotKdDINOgrQjqrPG2vbab6y5_nWDi_9v37B99A89eB6-XrKDGKnIqmyvwWqLcglXSCUW-XXlIz-8-MVX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-Learning-Driven+Turbidity+Level+Classification&rft.jtitle=Big+data+and+cognitive+computing&rft.au=Trejo-Z%C3%BA%C3%B1iga%2C+Iv%C3%A1n&rft.au=Moreno%2C+Martin&rft.au=Santana-Cruz%2C+Rene+Francisco&rft.au=Mel%C3%A9ndez-V%C3%A1zquez%2C+Fidel&rft.date=2024-08-01&rft.issn=2504-2289&rft.eissn=2504-2289&rft.volume=8&rft.issue=8&rft.spage=89&rft_id=info:doi/10.3390%2Fbdcc8080089&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_bdcc8080089 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-2289&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-2289&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-2289&client=summon |