Deep-Learning-Driven Turbidity Level Classification

Accurate turbidity classification is essential for maintaining water quality in various contexts, from drinking water to industrial processes. Traditional turbidimeters face challenges, including interference from colored substances, particle shape and size variations, and the need for regular calib...

Full description

Saved in:
Bibliographic Details
Published inBig data and cognitive computing Vol. 8; no. 8; p. 89
Main Authors Trejo-Zúñiga, Iván, Moreno, Martin, Santana-Cruz, Rene Francisco, Meléndez-Vázquez, Fidel
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate turbidity classification is essential for maintaining water quality in various contexts, from drinking water to industrial processes. Traditional turbidimeters face challenges, including interference from colored substances, particle shape and size variations, and the need for regular calibration and maintenance. This paper implements a convolutional neural network (CNN) to classify water samples based on their turbidity levels. The dataset consisted of images captured under controlled laboratory conditions, with turbidity levels measured using a 2100P Portable Turbidimeter. The CNN achieved a classification accuracy of 97.00% in laboratory settings. When tested on real-world water body samples, the model maintained an accuracy of 85.00%. The results demonstrate that deep learning can effectively classify turbidity levels, offering a promising solution to overcome the limitations of traditional methods. The study highlights the potential of CNNs for accurate and efficient turbidity measurement, balancing accuracy with practical applicability in field conditions.
AbstractList Accurate turbidity classification is essential for maintaining water quality in various contexts, from drinking water to industrial processes. Traditional turbidimeters face challenges, including interference from colored substances, particle shape and size variations, and the need for regular calibration and maintenance. This paper implements a convolutional neural network (CNN) to classify water samples based on their turbidity levels. The dataset consisted of images captured under controlled laboratory conditions, with turbidity levels measured using a 2100P Portable Turbidimeter. The CNN achieved a classification accuracy of 97.00% in laboratory settings. When tested on real-world water body samples, the model maintained an accuracy of 85.00%. The results demonstrate that deep learning can effectively classify turbidity levels, offering a promising solution to overcome the limitations of traditional methods. The study highlights the potential of CNNs for accurate and efficient turbidity measurement, balancing accuracy with practical applicability in field conditions.
Audience Academic
Author Santana-Cruz, Rene Francisco
Meléndez-Vázquez, Fidel
Trejo-Zúñiga, Iván
Moreno, Martin
Author_xml – sequence: 1
  givenname: Iván
  orcidid: 0000-0002-4983-4626
  surname: Trejo-Zúñiga
  fullname: Trejo-Zúñiga, Iván
– sequence: 2
  givenname: Martin
  orcidid: 0000-0002-6590-441X
  surname: Moreno
  fullname: Moreno, Martin
– sequence: 3
  givenname: Rene Francisco
  orcidid: 0000-0003-3176-7100
  surname: Santana-Cruz
  fullname: Santana-Cruz, Rene Francisco
– sequence: 4
  givenname: Fidel
  orcidid: 0000-0003-0914-9314
  surname: Meléndez-Vázquez
  fullname: Meléndez-Vázquez, Fidel
BookMark eNpNkctKBDEQRYMo-Fz5AwMupbWSSuexlPEJA250HdJJZcgwdsZ0j-Df2zoiUosqLvceiqpjtt-Xnhg753CFaOG6iyEYMADG7rEj0YJshDB2_998yM6GYQUAQkipOD9ieEu0aRbka5_7ZXNb8wf1s5dt7XLM4-dsQR-0ns3XfhhyysGPufSn7CD59UBnv_2Evd7fvcwfm8Xzw9P8ZtEE0cqxURykFSkEkIqSjdJz7bVVUUXTcuvRIiAqzbnHiAZ4p1CjTsnYZLgiPGFPO24sfuU2Nb_5-umKz-5HKHXpfB1zWJMjK1u0E4uklmSp0yQs2E74iNyIdmJd7FibWt63NIxuVba1n9Z3CFYbYbXik-tq51r6CZr7VMbqw1SR3nKYzp3ypN8Y0NgaLr4Dl7tAqGUYKqW_NTm476-4f1_BL2ZTfVk
Cites_doi 10.1080/10236240290025644
10.1016/j.watres.2015.06.028
10.1016/j.tifs.2019.04.003
10.1016/j.envint.2005.08.027
10.1007/s13762-022-04531-y
10.3390/app12126079
10.3390/chemosensors12030034
10.1109/JSTARS.2021.3109292
10.1016/j.heliyon.2024.e29128
10.1201/9781351110471
10.1088/1742-6596/1757/1/012004
10.1007/978-3-319-96190-3
10.3390/w14050761
10.1007/978-3-030-23335-8
10.1080/09603123.2013.769201
10.3390/s91008311
10.1007/s002650050330
10.1080/21655979.2023.2259526
10.1177/002029408401700904
10.1038/nature14539
10.3389/fpubh.2016.00148
10.1177/0309133317726540
10.1002/ece3.454
10.3390/w11071482
10.1109/TIM.2022.3205915
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/bdcc8080089
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Academic
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2504-2289
ExternalDocumentID oai_doaj_org_article_e94539671e474e9eb7e2909b2ad31825
A807358121
10_3390_bdcc8080089
GeographicLocations Mexico
GeographicLocations_xml – name: Mexico
GroupedDBID 8FE
8FG
AADQD
AAFWJ
AAYXX
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ITC
MODMG
M~E
OK1
P62
PIMPY
PROAC
ABUWG
AZQEC
DWQXO
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c254t-610492fcc046ef9d4a17a796d6d8519a3930336711a3d3801b63737ff89f816e3
IEDL.DBID 8FG
ISSN 2504-2289
IngestDate Tue Oct 22 15:14:43 EDT 2024
Thu Oct 10 22:01:19 EDT 2024
Tue Sep 10 03:51:29 EDT 2024
Thu Sep 26 21:09:31 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c254t-610492fcc046ef9d4a17a796d6d8519a3930336711a3d3801b63737ff89f816e3
ORCID 0000-0003-3176-7100
0000-0003-0914-9314
0000-0002-6590-441X
0000-0002-4983-4626
OpenAccessLink https://www.proquest.com/docview/3097829761?pq-origsite=%requestingapplication%
PQID 3097829761
PQPubID 2061777
ParticipantIDs doaj_primary_oai_doaj_org_article_e94539671e474e9eb7e2909b2ad31825
proquest_journals_3097829761
gale_infotracacademiconefile_A807358121
crossref_primary_10_3390_bdcc8080089
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Big data and cognitive computing
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Ahmad (ref_6) 2019; 88
Dorevitch (ref_3) 2015; 83
ref_13
ref_12
ref_32
ref_31
Feizi (ref_28) 2022; 20
Abrahams (ref_8) 1997; 40
ref_19
ref_18
Ahmad (ref_14) 2024; 10
Gu (ref_26) 2022; 71
Shukla (ref_11) 2006; 32
LeCun (ref_30) 2015; 521
Extance (ref_17) 1984; 17
Ma (ref_24) 2021; 14
Lin (ref_15) 2013; 23
Zheng (ref_25) 2021; 1757
Chivers (ref_10) 2012; 3
ref_23
(ref_9) 2002; 35
ref_22
ref_21
ref_1
Kitchener (ref_20) 2017; 41
ref_2
ref_29
ref_27
ref_5
ref_4
(ref_16) 2009; 9
ref_7
References_xml – volume: 35
  start-page: 111
  year: 2002
  ident: ref_9
  article-title: Visual feeding of fish in a turbid environment: Physical and behavioural aspects
  publication-title: Mar. Freshw. Behav. Physiol.
  doi: 10.1080/10236240290025644
– ident: ref_32
– volume: 83
  start-page: 94
  year: 2015
  ident: ref_3
  article-title: Water quality as a predictor of gastrointestinal illness following incidental contact water recreation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.06.028
  contributor:
    fullname: Dorevitch
– volume: 88
  start-page: 361
  year: 2019
  ident: ref_6
  article-title: Treatment and utilization of dairy industrial waste: A review
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2019.04.003
  contributor:
    fullname: Ahmad
– volume: 32
  start-page: 244
  year: 2006
  ident: ref_11
  article-title: Organochlorine pesticide contamination of ground water in the city of Hyderabad
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2005.08.027
  contributor:
    fullname: Shukla
– volume: 20
  start-page: 149
  year: 2022
  ident: ref_28
  article-title: An image-based deep learning model for water turbidity estimation in laboratory conditions
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/s13762-022-04531-y
  contributor:
    fullname: Feizi
– ident: ref_27
  doi: 10.3390/app12126079
– ident: ref_22
  doi: 10.3390/chemosensors12030034
– ident: ref_18
– ident: ref_21
– volume: 14
  start-page: 9132
  year: 2021
  ident: ref_24
  article-title: Remote Sensing of Turbidity for Lakes in Northeast China Using Sentinel-2 Images with Machine Learning Algorithms
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3109292
  contributor:
    fullname: Ma
– volume: 10
  start-page: e29128
  year: 2024
  ident: ref_14
  article-title: Pesticides impacts on human health and the environment with their mechanisms of action and possible countermeasures
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2024.e29128
  contributor:
    fullname: Ahmad
– ident: ref_31
– ident: ref_1
  doi: 10.1201/9781351110471
– ident: ref_29
– ident: ref_2
– volume: 1757
  start-page: 012004
  year: 2021
  ident: ref_25
  article-title: Research of Water Body Turbidity Classification Model for Aquiculture Based on Transfer Learning
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1757/1/012004
  contributor:
    fullname: Zheng
– ident: ref_4
  doi: 10.1007/978-3-319-96190-3
– ident: ref_23
  doi: 10.3390/w14050761
– ident: ref_7
  doi: 10.1007/978-3-030-23335-8
– volume: 23
  start-page: 484
  year: 2013
  ident: ref_15
  article-title: Water quality indicators: Bacteria, coliphages, enteric viruses
  publication-title: Int. J. Environ. Health Res.
  doi: 10.1080/09603123.2013.769201
  contributor:
    fullname: Lin
– volume: 9
  start-page: 8311
  year: 2009
  ident: ref_16
  article-title: Turbidimeter Design and Analysis: A Review on Optical Fiber Sensors for the Measurement of Water Turbidity
  publication-title: Sensors
  doi: 10.3390/s91008311
– volume: 40
  start-page: 169
  year: 1997
  ident: ref_8
  article-title: The role of turbidity as a constraint on predator-prey interactions in aquatic environments
  publication-title: Behav. Ecol. Sociobiol.
  doi: 10.1007/s002650050330
  contributor:
    fullname: Abrahams
– ident: ref_13
  doi: 10.1080/21655979.2023.2259526
– volume: 17
  start-page: 343
  year: 1984
  ident: ref_17
  article-title: Intelligent Turbidity Monitoring
  publication-title: Meas. Control
  doi: 10.1177/002029408401700904
  contributor:
    fullname: Extance
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_30
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
  contributor:
    fullname: LeCun
– ident: ref_12
  doi: 10.3389/fpubh.2016.00148
– ident: ref_19
– volume: 41
  start-page: 620
  year: 2017
  ident: ref_20
  article-title: A review of the principles of turbidity measurement
  publication-title: Prog. Phys. Geogr. Earth Environ.
  doi: 10.1177/0309133317726540
  contributor:
    fullname: Kitchener
– volume: 3
  start-page: 268
  year: 2012
  ident: ref_10
  article-title: The effect of turbidity on recognition and generalization of predators and non-predators in aquatic ecosystems
  publication-title: Ecol. Evol.
  doi: 10.1002/ece3.454
  contributor:
    fullname: Chivers
– ident: ref_5
  doi: 10.3390/w11071482
– volume: 71
  start-page: 9510713
  year: 2022
  ident: ref_26
  article-title: Self-Organizing Multichannel Deep Learning System for River Turbidity Monitoring
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2022.3205915
  contributor:
    fullname: Gu
SSID ssj0002244611
Score 2.3175294
Snippet Accurate turbidity classification is essential for maintaining water quality in various contexts, from drinking water to industrial processes. Traditional...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
StartPage 89
SubjectTerms Accuracy
Aquatic ecosystems
Artificial neural networks
Chemical contaminants
Classification
Datasets
Deep learning
Digital cameras
Drinking water
Health risk assessment
Health risks
Heavy metals
Light
Machine learning
Neural networks
Nutrients
Particle shape
Sensors
Turbidimeters
Turbidity
turbidity classification
Water quality
Water sampling
SummonAdditionalLinks – databaseName: Open Access: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwsCASJQUIZKTFHjj8TxWChVhYCplbpZ_rggGEoV0v_P2UlRFsTCGmWw39l370nnd4SMa8cld8E2VBUiQwZuMsOlz_ICvBOSKxvd9l9ey8VKPK2L9WDUV-gJ6-yBO-AmoETBVSkpCClAgZXAVK4sMx6PI-vcS3M1EFMf0dQFZQ6l3YM8jrp-Yr1zwUMxDwPdByUoOvX_lo9jkZmfkOOeHabTblWn5AA2Z4TPALZZb4T6ls2akKDS5a6x7x45dPoc-n7SON0y9P1EqM_Jav64fFhk_ayDzKFEa1HBIVVntXOoV6FWXhgqjVSlLz1yImW4wlrDEQZquOdYVmyJIMu6rlRd0RL4BTncfG7gkqQOC0xRQTBuy4UFUYFkYEyhmAFVuzIh4_329baztNAoBQJKeoBSQu4DND-_BB_q-AGjo_vo6L-ik5C7AKwOt6VtjDN90z-uNPhO6WmFKaZAkkETMtpjr_tr9KV5eGXCkDHRq_9YzTU5YshJuv69ETlsmx3cIKdo7W08Pt85nMXJ
  priority: 102
  providerName: Directory of Open Access Journals
Title Deep-Learning-Driven Turbidity Level Classification
URI https://www.proquest.com/docview/3097829761
https://doaj.org/article/e94539671e474e9eb7e2909b2ad31825
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELX4WFgQCBCFUmVAYoqoPxLHE-KrIAQVQiCxWY59QSxtSdv_z53rFhZYkwzOi33vnXN-x9hp46WWnmxDTaFyVOAud1KHvF9A8EpLU0e3_adhef-mHt6L97ThNk1llcuYGAN1GHvaIz-XdOBAIHnyi8lXTl2j6O9qaqGxzja50JpmdTW4W-2xID2pkvPFsTyJ2f15HbwnJ8U-tXX_RUTRr_-vqBypZrDDtpNGzC4XH3WXrcFoj8kbgEme7FA_8puWwlT2Om_rz4BKOnuk6p8s9rik6p8I-D57G9y-Xt_nqeNB7jFRm2Eeh4JdNN5j1gqNCcpx7bQpQxlQGRknDTKOLDXnTgaJ5FKXCLVumso0FS9BHrCN0XgEhyzzSDNFBWTf1lc1qAq0AOcKIxyYxpcddrp8fTtZGFtYTAgIJfsLpQ67ImhWj5Abdbwwbj9smtwWjCqkwWGB0goM1BqE6ZtauIAhQxQddkbAWlozs9Z5l0r_caTkPmUvKww0BUoN3mHdJfY2Laap_fn0R__fPmZbAjXHoj6vyzZm7RxOUDPM6l6cGD22eXU7fH7pxcz7Gz7CwM8
link.rule.ids 315,783,787,867,2109,12779,21402,27938,27939,33387,33758,43614,43819,74371,74638
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgDLAgECAKBTJUYopoYieOJ1Q-SoG2U5G6WY59QSxtSdv_z13ili6wJhmcF_veO-f8jrF2YbnklmxDVSJCVOAmNFy6sJOAs0JylVdu-8NR2v8Qb5Nk4jfcFr6sch0Tq0DtZpb2yO84HTiIkTyj-_l3SF2j6O-qb6Gxy_YER6Khk-K9l80eC9KTSKOoPpbHMbu_y5215KTYobbuW0RU-fX_FZUrqukdsUOvEYNu_VGP2Q5MTxh_ApiH3g71M3wqKUwF41WZfzlU0sGAqn-CqsclVf9UgJ-yj97z-LEf-o4HocVEbYl5HAr2uLAWs1YolBMmkkaq1KUOlZEyXCHj8FRGkeGOI7nkKUItiyJTRRalwM9YYzqbwjkLLNJMkgHZt3VEDiIDGYMxiYoNqMKmTdZev76e18YWGhMCQklvodRkDwTN5hFyo64uzMpP7Se3BiUSrnBYIKQABbmEWHVUHhuHISNOmuyWgNW0ZpalscaX_uNIyX1KdzMMNAlKjajJWmvstV9MC_376S_-v33D9vvj4UAPXkfvl-wgRv1R1-q1WGNZruAK9cMyv64myQ_BVsEi
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BTsJAEN0oJsaL0agRRe2BxFMD7W673ZNBEVGReIDE22a7OzVeAAv8vzNlQS56bXvYTmfnvdnOvGGsWVguuSXZUJWIEBm4CQ2XLmwn4KyQXOWV2v7bMO2PxctH8uHrn-a-rHIdE6tA7aaWzshbnBoOYgTPqFX4soj3bu9u9h3SBCn60-rHaeyyPURFSZs06z1tzlsQqkQaRasWPY6Zfit31pKqYptGvG-BUqXd_1eErmCnd8QOPV8MOqsPfMx2YHLCeBdgFnpp1M-wW1LICkbLMv9yyKqDAVUCBdW8S6oEqox_ysa9x9FDP_TTD0KLSdsCczok73FhLWawUCgnTCSNVKlLHbIkZbhC9OGpjCLDHUegyVM0uyyKTBVZlAI_Y7XJdALnLLAIOUkGJOXWFjmIDGQMxiQqNqAKm9ZZc_36erYSudCYHJCV9JaV6uyeTLN5hJSpqwvT8lN7R9egRMIVLguEFKAglxCrtspj4zB8xEmd3ZJhNe2fRWms8W0AuFJSotKdDINOgrQjqrPG2vbab6y5_nWDi_9v37B99A89eB6-XrKDGKnIqmyvwWqLcglXSCUW-XXlIz-8-MVX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-Learning-Driven+Turbidity+Level+Classification&rft.jtitle=Big+data+and+cognitive+computing&rft.au=Trejo-Z%C3%BA%C3%B1iga%2C+Iv%C3%A1n&rft.au=Moreno%2C+Martin&rft.au=Santana-Cruz%2C+Rene+Francisco&rft.au=Mel%C3%A9ndez-V%C3%A1zquez%2C+Fidel&rft.date=2024-08-01&rft.issn=2504-2289&rft.eissn=2504-2289&rft.volume=8&rft.issue=8&rft.spage=89&rft_id=info:doi/10.3390%2Fbdcc8080089&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_bdcc8080089
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-2289&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-2289&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-2289&client=summon