A Rescheduling Strategy for Multipurpose Batch Processes with Processing Time Variation and Demand Uncertainty
In this paper, we address the problem of dynamic scheduling of a multipurpose batch process subject to two types of disturbances, namely, processing time variation and demand uncertainty. We propose a rescheduling strategy that combines several ideas. First, when we generate a new schedule, we simul...
Saved in:
Published in | Processes Vol. 13; no. 2; p. 312 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2227-9717 2227-9717 |
DOI | 10.3390/pr13020312 |
Cover
Loading…
Abstract | In this paper, we address the problem of dynamic scheduling of a multipurpose batch process subject to two types of disturbances, namely, processing time variation and demand uncertainty. We propose a rescheduling strategy that combines several ideas. First, when we generate a new schedule, we simultaneously construct a Directed Acyclic Graph (DAG) to represent this new schedule. While each node in the DAG represents an operation, each arc represents the dependency of an operation on another. Based on this DAG, we then use a simple procedure to determine how long an operation is allowed to be delayed without affecting the current makespan. After that, when the new schedule is used for online execution, we trigger a rescheduling procedure only when (1) we infer from the predetermined delayable time information that the current makespan will be extended, or (2) we observe new demands, or (3) the current schedule is not guaranteed to be feasible. In the rescheduling procedure, only the affected operations are allowed to be revised, while those unaffected operations are fixed. By doing this, we can reduce system nervousness and improve computational efficiency. The computational results demonstrate that our method can achieve an order of magnitude of reduction in both the number of operation changes and the computational time with a slightly better long-term makespan, compared to the widely used periodically–completely rescheduling strategy. |
---|---|
AbstractList | In this paper, we address the problem of dynamic scheduling of a multipurpose batch process subject to two types of disturbances, namely, processing time variation and demand uncertainty. We propose a rescheduling strategy that combines several ideas. First, when we generate a new schedule, we simultaneously construct a Directed Acyclic Graph (DAG) to represent this new schedule. While each node in the DAG represents an operation, each arc represents the dependency of an operation on another. Based on this DAG, we then use a simple procedure to determine how long an operation is allowed to be delayed without affecting the current makespan. After that, when the new schedule is used for online execution, we trigger a rescheduling procedure only when (1) we infer from the predetermined delayable time information that the current makespan will be extended, or (2) we observe new demands, or (3) the current schedule is not guaranteed to be feasible. In the rescheduling procedure, only the affected operations are allowed to be revised, while those unaffected operations are fixed. By doing this, we can reduce system nervousness and improve computational efficiency. The computational results demonstrate that our method can achieve an order of magnitude of reduction in both the number of operation changes and the computational time with a slightly better long-term makespan, compared to the widely used periodically–completely rescheduling strategy. |
Author | Zheng, Taicheng Li, Dan Li, Jie |
Author_xml | – sequence: 1 givenname: Taicheng surname: Zheng fullname: Zheng, Taicheng – sequence: 2 givenname: Dan surname: Li fullname: Li, Dan – sequence: 3 givenname: Jie surname: Li fullname: Li, Jie |
BookMark | eNpNUMtKAzEUDVLBWrvxCwLuhNHcZKaZLmt9QkXR1u2QyaNNaZMxySD9e6dU1Ls5917OA84p6jnvNELnQK4YG5PrJgAjlDCgR6hPKeXZmAPv_dtP0DDGNelmDKwsRn3kJvhNR7nSqt1Yt8TvKYiklztsfMDP7SbZpg2NjxrfiCRX-DV4qWPUEX_Z9HvulXO71fhDBCuS9Q4Lp_Ct3u5h4aQOSViXdmfo2IhN1MMfHKDF_d18-pjNXh6eppNZJmmRp4wqAFUCKzTTRpbGAMu5IDUjUIAaFbkgSpY5p92D19TUrMypUqKAuixlMWIDdHHwbYL_bHVM1dq3wXWRFQMOlALhvGNdHlgy-BiDNlUT7FaEXQWk2lda_VXKvgHyG2rz |
Cites_doi | 10.1080/09537280410001726320 10.1002/aic.11593 10.1021/acs.iecr.9b05255 10.20944/preprints202305.1596.v1 10.1007/s10951-019-00627-5 10.1007/978-3-319-26580-3 10.1016/j.compchemeng.2020.106994 10.1021/ie061255+ 10.1016/j.compchemeng.2019.06.021 10.1002/aic.15408 10.1021/acs.iecr.9b04381 10.1007/s11705-019-1858-4 10.1016/0098-1354(93)80016-G 10.1016/j.compchemeng.2009.05.015 10.1016/0098-1354(93)80015-F 10.1016/j.compchemeng.2008.03.006 10.1002/aic.17656 10.1016/j.compchemeng.2024.108700 10.20944/preprints201710.0125.v1 10.1002/aic.14140 10.1002/aic.12120 10.1021/acs.iecr.3c00754 10.1021/ie00025a011 10.1007/s10951-007-0021-0 10.1021/ie000233z 10.1016/j.ejor.2011.06.021 10.1016/j.compchemeng.2012.06.025 10.1021/ie902009k 10.1016/j.compchemeng.2019.106517 10.1016/j.ejor.2010.06.002 10.1080/03052159908941396 10.1021/ie950082d 10.1021/ie0600590 10.1016/S0098-1354(98)00296-8 |
ContentType | Journal Article |
Copyright | 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SR 8FD 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO GNUQQ HCIFZ JG9 KB. LK8 M7P PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.3390/pr13020312 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Materials Research Database Materials Science Database ProQuest Biological Science Collection ProQuest Biological Science Database (NC LIVE) Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2227-9717 |
ExternalDocumentID | 10_3390_pr13020312 |
GroupedDBID | 5VS 8FE 8FG 8FH AADQD AAFWJ AAYXX ABJCF ACIWK ACPRK ADBBV ADMLS AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I HCIFZ IAO IGS ITC KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PHGZM PHGZT PIMPY PROAC RNS 7SR 8FD ABUWG AZQEC DWQXO GNUQQ JG9 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c254t-2d11d8135e3efc8ff1347a0b30151d654a0dc84723017b2fb3842dda51b88c563 |
IEDL.DBID | BENPR |
ISSN | 2227-9717 |
IngestDate | Fri Jul 25 12:03:00 EDT 2025 Tue Jul 01 02:39:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c254t-2d11d8135e3efc8ff1347a0b30151d654a0dc84723017b2fb3842dda51b88c563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3171221077?pq-origsite=%requestingapplication% |
PQID | 3171221077 |
PQPubID | 2032344 |
ParticipantIDs | proquest_journals_3171221077 crossref_primary_10_3390_pr13020312 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Processes |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Hwangbo (ref_13) 2024; 186 Wu (ref_34) 2020; 59 ref_36 Kopanos (ref_6) 2010; 207 ref_30 Kondili (ref_28) 1993; 17 Pattison (ref_10) 2017; 63 Li (ref_21) 2008; 54 Verderame (ref_9) 2010; 49 Risbeck (ref_18) 2019; 129 Pistikopoulos (ref_26) 2013; 59 Shah (ref_29) 1993; 17 Honkomp (ref_24) 1999; 23 Susarla (ref_2) 2009; 56 Pitarch (ref_8) 2023; 62 Papageorgiou (ref_31) 1996; 35 Rakovitis (ref_3) 2019; 13 Graells (ref_20) 2007; 46 Li (ref_1) 2022; 61 ref_25 Pujawan (ref_12) 2004; 15 Ikonen (ref_27) 2020; 141 Gupta (ref_11) 2019; 129 Ikonen (ref_33) 2022; 68 Vin (ref_22) 2000; 39 Janak (ref_19) 2006; 45 Elkamel (ref_15) 1999; 31 McAllister (ref_14) 2020; 59 Maravelias (ref_32) 2009; 33 Subramanian (ref_17) 2012; 47 Stefansson (ref_4) 2011; 215 Amaro (ref_5) 2008; 32 Lambrechts (ref_16) 2008; 11 Kanakamedala (ref_23) 1994; 33 ref_7 Stevenson (ref_35) 2020; 23 |
References_xml | – volume: 15 start-page: 515 year: 2004 ident: ref_12 article-title: Schedule nervousness in a manufacturing system: A case study publication-title: Prod. Plan. Control doi: 10.1080/09537280410001726320 – volume: 54 start-page: 2610 year: 2008 ident: ref_21 article-title: Reactive scheduling using parametric programming publication-title: AIChE J. doi: 10.1002/aic.11593 – volume: 59 start-page: 2214 year: 2020 ident: ref_14 article-title: Rescheduling Penalties for Economic Model Predictive Control and Closed-Loop Scheduling publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b05255 – ident: ref_7 doi: 10.20944/preprints202305.1596.v1 – volume: 23 start-page: 397 year: 2020 ident: ref_35 article-title: Evaluating periodic rescheduling policies using a rolling horizon framework in an industrial-scale multipurpose plant publication-title: J. Sched. doi: 10.1007/s10951-019-00627-5 – ident: ref_30 doi: 10.1007/978-3-319-26580-3 – volume: 141 start-page: 106994 year: 2020 ident: ref_27 article-title: Reinforcement learning of adaptive online rescheduling timing and computing time allocation publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2020.106994 – volume: 46 start-page: 6273 year: 2007 ident: ref_20 article-title: Optimal Reactive Scheduling of Manufacturing Plants with Flexible Batch Recipes publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie061255+ – volume: 129 start-page: 106496 year: 2019 ident: ref_18 article-title: Unification of closed-loop scheduling and control: State-space formulations, terminal constraints, and nominal theoretical properties publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2019.06.021 – volume: 63 start-page: 639 year: 2017 ident: ref_10 article-title: Moving horizon closed-loop production scheduling using dynamic process models publication-title: AIChE J. doi: 10.1002/aic.15408 – volume: 59 start-page: 2505 year: 2020 ident: ref_34 article-title: A General Model for Periodic Chemical Production Scheduling publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b04381 – volume: 13 start-page: 784 year: 2019 ident: ref_3 article-title: A new approach for scheduling of multipurpose batch processes with unlimited intermediate storage policy publication-title: Front. Chem. Sci. Eng. doi: 10.1007/s11705-019-1858-4 – volume: 17 start-page: 229 year: 1993 ident: ref_29 article-title: A general algorithm for short-term scheduling of batch operations—II. Computational issues publication-title: Comput. Chem. Eng. doi: 10.1016/0098-1354(93)80016-G – volume: 33 start-page: 1890 year: 2009 ident: ref_32 article-title: Polyhedral results for discrete-time production planning MIP formulations for continuous processes publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2009.05.015 – volume: 17 start-page: 211 year: 1993 ident: ref_28 article-title: A general algorithm for short-term scheduling of batch operations—I. MILP formulation publication-title: Comput. Chem. Eng. doi: 10.1016/0098-1354(93)80015-F – volume: 32 start-page: 2606 year: 2008 ident: ref_5 article-title: Planning and scheduling of industrial supply chains with reverse flows: A real pharmaceutical case study publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2008.03.006 – volume: 68 start-page: e17656 year: 2022 ident: ref_33 article-title: Surrogate-based optimization of a periodic rescheduling algorithm publication-title: AIChE J. doi: 10.1002/aic.17656 – volume: 186 start-page: 108700 year: 2024 ident: ref_13 article-title: Production rescheduling via explorative reinforcement learning while considering nervousness publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2024.108700 – ident: ref_25 doi: 10.20944/preprints201710.0125.v1 – volume: 59 start-page: 4184 year: 2013 ident: ref_26 article-title: Proactive scheduling of batch processes by a combined robust optimization and multiparametric programming approach publication-title: AIChE J. doi: 10.1002/aic.14140 – volume: 56 start-page: 1859 year: 2009 ident: ref_2 article-title: A novel approach to scheduling multipurpose batch plants using unit-slots publication-title: AIChE J. doi: 10.1002/aic.12120 – volume: 62 start-page: 9278 year: 2023 ident: ref_8 article-title: Integrating Continuous and Batch Processes with Shared Resources in Closed-Loop Scheduling: A Case Study on Tuna Cannery publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.3c00754 – volume: 33 start-page: 77 year: 1994 ident: ref_23 article-title: Reactive schedule modification in multipurpose batch chemical plants publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie00025a011 – volume: 61 start-page: 16093 year: 2022 ident: ref_1 article-title: Novel Multiple Time-grid Continuous-time Mathematical Formulation for Short-term Scheduling of Multipurpose Batch Plants publication-title: Ind. Eng. Chem. Res. – volume: 11 start-page: 121 year: 2008 ident: ref_16 article-title: Proactive and reactive strategies for resource-constrained project scheduling with uncertain resource availabilities publication-title: J. Sched. doi: 10.1007/s10951-007-0021-0 – volume: 39 start-page: 4228 year: 2000 ident: ref_22 article-title: A New Approach for Efficient Rescheduling of Multiproduct Batch Plants publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie000233z – volume: 215 start-page: 383 year: 2011 ident: ref_4 article-title: Discrete and continuous time representations and mathematical models for large production scheduling problems: A case study from the pharmaceutical industry publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2011.06.021 – volume: 47 start-page: 97 year: 2012 ident: ref_17 article-title: A state-space model for chemical production scheduling publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2012.06.025 – volume: 49 start-page: 3993 year: 2010 ident: ref_9 article-title: Planning and Scheduling under Uncertainty: A Review Across Multiple Sectors publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie902009k – volume: 129 start-page: 106517 year: 2019 ident: ref_11 article-title: On the design of online production scheduling algorithms publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2019.106517 – volume: 207 start-page: 644 year: 2010 ident: ref_6 article-title: MIP-based decomposition strategies for large-scale scheduling problems in multiproduct multistage batch plants: A benchmark scheduling problem of the pharmaceutical industry publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2010.06.002 – ident: ref_36 – volume: 31 start-page: 763 year: 1999 ident: ref_15 article-title: A rolling horizon heuristic for reactive scheduling of batch process operations publication-title: Eng. Optim. doi: 10.1080/03052159908941396 – volume: 35 start-page: 510 year: 1996 ident: ref_31 article-title: Optimal Campaign Planning/Scheduling of Multipurpose Batch/Semicontinuous Plants. 2. A Mathematical Decomposition Approach publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie950082d – volume: 45 start-page: 8253 year: 2006 ident: ref_19 article-title: Production Scheduling of a Large-Scale Industrial Batch Plant. II. Reactive Scheduling publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0600590 – volume: 23 start-page: 595 year: 1999 ident: ref_24 article-title: A framework for schedule evaluation with processing uncertainty publication-title: Comput. Chem. Eng. doi: 10.1016/S0098-1354(98)00296-8 |
SSID | ssj0000913856 |
Score | 2.2820258 |
Snippet | In this paper, we address the problem of dynamic scheduling of a multipurpose batch process subject to two types of disturbances, namely, processing time... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
StartPage | 312 |
SubjectTerms | Batch processes Batch processing Breakdowns Computational efficiency Computer applications Computing time Decision trees Efficiency Fines & penalties Linear programming Objectives Rescheduling Schedules Scheduling Simulation Uncertainty |
Title | A Rescheduling Strategy for Multipurpose Batch Processes with Processing Time Variation and Demand Uncertainty |
URI | https://www.proquest.com/docview/3171221077 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4IXPRgBDWiaDbRgx4a6Lbbx8mAgsQEYogYbk330XixVFoPXPztzpatyMVTs2naJjOdmf1mZ74BuNG8TlRIaXlMCQQoDrW4dD2LiTiWyvFdl-oG58nUG8_d5wVbmIRbbsoqK59YOmq5FDpH3sU4Z1PEJ75_n31aemqUPl01IzRq0EAXHLA6NAbD6cvsN8uiWS8D5m14SR3E991spY_q8Femu5Fo1xGX0WV0BIdmW0j6Gz02YU-lLTj4QxbYgqYxw5zcGq7ou2NI-2SmEKBiwNB95cSQza4J7kVJ2VyboSSXuSID9LnvxPQF4Et0ArZa6id1Lwh5Q-RcqorEqSSP6kNf5vjRsm6gWJ_AfDR8fRhbZoSCJRD5FRaVti0D22HKUYkIkkR3jsY9jmbNbOkxN-5JgQEKgYjtc5pwJ3CplDGzeRAI5jmnUE-XqToDgmCN96jwuZLcdZMw5AoVKVgSCk7jMG7DdSXOKNswZUSIMLTQo63Q29CpJB0Za8mjrW7P_799AftUz98tq6Y7UC9WX-oSNwUFv4JaMHq6MvrH1eR7-AOFp7tK |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB58HNSD-MRq1QUV9BDabLJ5HERa21JtLVJa6S1mH8GLabQV6Z_yNzqbh7UXb55CCLuB2W8e3-7ODMC5rutEhZSGw5RAgmJRg0vbMZgIQ6ks17apTnB-6DntoX0_YqMl-CpyYfS1ysImpoZajoXeI6-gnzMp8hPXvUneDN01Sp-uFi00Mlh01OwTKdvk-q6B63tBaas5uG0beVcBQyAZmhpUmqb0TIspS0XCiyKdTBlWOSKdmdJhdliVAm02xuamy2nELc-mUobM5J4nmGPhvMuwimGGj1q0Wm_2Hvs_uzq6yqbHnKwOqmX51Uryro8GUXXooudbNPypN2ttwWYehpJahpttWFLxDmz8Kk64A9u52k_IZV6b-moX4hrpKyTE6KB0HjvJi9vOCMa-JE3mTXDlxhNF6mjjX0ieh4CT6A3f4lWP1Lkn5AmZegoNEsaSNNSrfgzxp-k9helsD4b_Itx9WInHsToAguSQV6lwuZLctiPf5wqBI1jkC05DPyzBWSHOIMkqcwTIaLTQg7nQS1AuJB3k2jkJ5lg6_PvzKay1Bw_doHvX6xzBOtW9f9Mb22VYmb5_qGMMSKb8JEcBgef_Bt43BG708A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5qC6IHsVXxUXVBBT2ENptsHgeR1rao1SLFireYfQQvptVWpH_NX-dsulF78dZTCGE3MPvtzHy78wA41nWdqJDS8pgSSFAcanHpehYTcSyV47su1QnOdz3vauDePLGnAnzluTA6rDLXiZmilkOhz8hraOdsivzE92uJCYu4b3UuRm-W7iClb1rzdhoziHTV9BPp2_j8uoVrfUJpp_1weWWZDgOWQGI0sai0bRnYDlOOSkSQJDqxMq5zRD2zpcfcuC4F6m_0022f04Q7gUuljJnNg0Awz8F5l6Dko1UMilBqtnv3_Z8THl1xM2DerCaq44T12uhdXxPiNqLzVnDeCGSWrbMOa8YlJY0ZhspQUGkFVv8UKqxA2aiAMTk1darPNiBtkL5CcozGSue0E1PodkrQDyZZYu8IV3E4VqSJ-v6FmJwEnEQf_uaveqTOQyGPyNozmJA4laSlXvVjgD_NYhYm000YLES4W1BMh6naBoJEkdep8LmS3HWTMOQKQSRYEgpO4zDegaNcnNFoVqUjQnajhR79Cn0HqrmkI7NTx9Evrnb__3wIywi46Pa6192DFarbAGfB21UoTt4_1D76JhN-YEBA4HnRuPsG82L5HA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Rescheduling+Strategy+for+Multipurpose+Batch+Processes+with+Processing+Time+Variation+and+Demand+Uncertainty&rft.jtitle=Processes&rft.au=Zheng%2C+Taicheng&rft.au=Li%2C+Dan&rft.au=Li%2C+Jie&rft.date=2025-02-01&rft.pub=MDPI+AG&rft.eissn=2227-9717&rft.volume=13&rft.issue=2&rft.spage=312&rft_id=info:doi/10.3390%2Fpr13020312&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon |