A Rescheduling Strategy for Multipurpose Batch Processes with Processing Time Variation and Demand Uncertainty

In this paper, we address the problem of dynamic scheduling of a multipurpose batch process subject to two types of disturbances, namely, processing time variation and demand uncertainty. We propose a rescheduling strategy that combines several ideas. First, when we generate a new schedule, we simul...

Full description

Saved in:
Bibliographic Details
Published inProcesses Vol. 13; no. 2; p. 312
Main Authors Zheng, Taicheng, Li, Dan, Li, Jie
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2025
Subjects
Online AccessGet full text
ISSN2227-9717
2227-9717
DOI10.3390/pr13020312

Cover

Loading…
Abstract In this paper, we address the problem of dynamic scheduling of a multipurpose batch process subject to two types of disturbances, namely, processing time variation and demand uncertainty. We propose a rescheduling strategy that combines several ideas. First, when we generate a new schedule, we simultaneously construct a Directed Acyclic Graph (DAG) to represent this new schedule. While each node in the DAG represents an operation, each arc represents the dependency of an operation on another. Based on this DAG, we then use a simple procedure to determine how long an operation is allowed to be delayed without affecting the current makespan. After that, when the new schedule is used for online execution, we trigger a rescheduling procedure only when (1) we infer from the predetermined delayable time information that the current makespan will be extended, or (2) we observe new demands, or (3) the current schedule is not guaranteed to be feasible. In the rescheduling procedure, only the affected operations are allowed to be revised, while those unaffected operations are fixed. By doing this, we can reduce system nervousness and improve computational efficiency. The computational results demonstrate that our method can achieve an order of magnitude of reduction in both the number of operation changes and the computational time with a slightly better long-term makespan, compared to the widely used periodically–completely rescheduling strategy.
AbstractList In this paper, we address the problem of dynamic scheduling of a multipurpose batch process subject to two types of disturbances, namely, processing time variation and demand uncertainty. We propose a rescheduling strategy that combines several ideas. First, when we generate a new schedule, we simultaneously construct a Directed Acyclic Graph (DAG) to represent this new schedule. While each node in the DAG represents an operation, each arc represents the dependency of an operation on another. Based on this DAG, we then use a simple procedure to determine how long an operation is allowed to be delayed without affecting the current makespan. After that, when the new schedule is used for online execution, we trigger a rescheduling procedure only when (1) we infer from the predetermined delayable time information that the current makespan will be extended, or (2) we observe new demands, or (3) the current schedule is not guaranteed to be feasible. In the rescheduling procedure, only the affected operations are allowed to be revised, while those unaffected operations are fixed. By doing this, we can reduce system nervousness and improve computational efficiency. The computational results demonstrate that our method can achieve an order of magnitude of reduction in both the number of operation changes and the computational time with a slightly better long-term makespan, compared to the widely used periodically–completely rescheduling strategy.
Author Zheng, Taicheng
Li, Dan
Li, Jie
Author_xml – sequence: 1
  givenname: Taicheng
  surname: Zheng
  fullname: Zheng, Taicheng
– sequence: 2
  givenname: Dan
  surname: Li
  fullname: Li, Dan
– sequence: 3
  givenname: Jie
  surname: Li
  fullname: Li, Jie
BookMark eNpNUMtKAzEUDVLBWrvxCwLuhNHcZKaZLmt9QkXR1u2QyaNNaZMxySD9e6dU1Ls5917OA84p6jnvNELnQK4YG5PrJgAjlDCgR6hPKeXZmAPv_dtP0DDGNelmDKwsRn3kJvhNR7nSqt1Yt8TvKYiklztsfMDP7SbZpg2NjxrfiCRX-DV4qWPUEX_Z9HvulXO71fhDBCuS9Q4Lp_Ct3u5h4aQOSViXdmfo2IhN1MMfHKDF_d18-pjNXh6eppNZJmmRp4wqAFUCKzTTRpbGAMu5IDUjUIAaFbkgSpY5p92D19TUrMypUqKAuixlMWIDdHHwbYL_bHVM1dq3wXWRFQMOlALhvGNdHlgy-BiDNlUT7FaEXQWk2lda_VXKvgHyG2rz
Cites_doi 10.1080/09537280410001726320
10.1002/aic.11593
10.1021/acs.iecr.9b05255
10.20944/preprints202305.1596.v1
10.1007/s10951-019-00627-5
10.1007/978-3-319-26580-3
10.1016/j.compchemeng.2020.106994
10.1021/ie061255+
10.1016/j.compchemeng.2019.06.021
10.1002/aic.15408
10.1021/acs.iecr.9b04381
10.1007/s11705-019-1858-4
10.1016/0098-1354(93)80016-G
10.1016/j.compchemeng.2009.05.015
10.1016/0098-1354(93)80015-F
10.1016/j.compchemeng.2008.03.006
10.1002/aic.17656
10.1016/j.compchemeng.2024.108700
10.20944/preprints201710.0125.v1
10.1002/aic.14140
10.1002/aic.12120
10.1021/acs.iecr.3c00754
10.1021/ie00025a011
10.1007/s10951-007-0021-0
10.1021/ie000233z
10.1016/j.ejor.2011.06.021
10.1016/j.compchemeng.2012.06.025
10.1021/ie902009k
10.1016/j.compchemeng.2019.106517
10.1016/j.ejor.2010.06.002
10.1080/03052159908941396
10.1021/ie950082d
10.1021/ie0600590
10.1016/S0098-1354(98)00296-8
ContentType Journal Article
Copyright 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
JG9
KB.
LK8
M7P
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/pr13020312
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
Materials Science Database
ProQuest Biological Science Collection
ProQuest Biological Science Database (NC LIVE)
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2227-9717
ExternalDocumentID 10_3390_pr13020312
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ACIWK
ACPRK
ADBBV
ADMLS
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
HCIFZ
IAO
IGS
ITC
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PROAC
RNS
7SR
8FD
ABUWG
AZQEC
DWQXO
GNUQQ
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c254t-2d11d8135e3efc8ff1347a0b30151d654a0dc84723017b2fb3842dda51b88c563
IEDL.DBID BENPR
ISSN 2227-9717
IngestDate Fri Jul 25 12:03:00 EDT 2025
Tue Jul 01 02:39:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c254t-2d11d8135e3efc8ff1347a0b30151d654a0dc84723017b2fb3842dda51b88c563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3171221077?pq-origsite=%requestingapplication%
PQID 3171221077
PQPubID 2032344
ParticipantIDs proquest_journals_3171221077
crossref_primary_10_3390_pr13020312
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Processes
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Hwangbo (ref_13) 2024; 186
Wu (ref_34) 2020; 59
ref_36
Kopanos (ref_6) 2010; 207
ref_30
Kondili (ref_28) 1993; 17
Pattison (ref_10) 2017; 63
Li (ref_21) 2008; 54
Verderame (ref_9) 2010; 49
Risbeck (ref_18) 2019; 129
Pistikopoulos (ref_26) 2013; 59
Shah (ref_29) 1993; 17
Honkomp (ref_24) 1999; 23
Susarla (ref_2) 2009; 56
Pitarch (ref_8) 2023; 62
Papageorgiou (ref_31) 1996; 35
Rakovitis (ref_3) 2019; 13
Graells (ref_20) 2007; 46
Li (ref_1) 2022; 61
ref_25
Pujawan (ref_12) 2004; 15
Ikonen (ref_27) 2020; 141
Gupta (ref_11) 2019; 129
Ikonen (ref_33) 2022; 68
Vin (ref_22) 2000; 39
Janak (ref_19) 2006; 45
Elkamel (ref_15) 1999; 31
McAllister (ref_14) 2020; 59
Maravelias (ref_32) 2009; 33
Subramanian (ref_17) 2012; 47
Stefansson (ref_4) 2011; 215
Amaro (ref_5) 2008; 32
Lambrechts (ref_16) 2008; 11
Kanakamedala (ref_23) 1994; 33
ref_7
Stevenson (ref_35) 2020; 23
References_xml – volume: 15
  start-page: 515
  year: 2004
  ident: ref_12
  article-title: Schedule nervousness in a manufacturing system: A case study
  publication-title: Prod. Plan. Control
  doi: 10.1080/09537280410001726320
– volume: 54
  start-page: 2610
  year: 2008
  ident: ref_21
  article-title: Reactive scheduling using parametric programming
  publication-title: AIChE J.
  doi: 10.1002/aic.11593
– volume: 59
  start-page: 2214
  year: 2020
  ident: ref_14
  article-title: Rescheduling Penalties for Economic Model Predictive Control and Closed-Loop Scheduling
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b05255
– ident: ref_7
  doi: 10.20944/preprints202305.1596.v1
– volume: 23
  start-page: 397
  year: 2020
  ident: ref_35
  article-title: Evaluating periodic rescheduling policies using a rolling horizon framework in an industrial-scale multipurpose plant
  publication-title: J. Sched.
  doi: 10.1007/s10951-019-00627-5
– ident: ref_30
  doi: 10.1007/978-3-319-26580-3
– volume: 141
  start-page: 106994
  year: 2020
  ident: ref_27
  article-title: Reinforcement learning of adaptive online rescheduling timing and computing time allocation
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2020.106994
– volume: 46
  start-page: 6273
  year: 2007
  ident: ref_20
  article-title: Optimal Reactive Scheduling of Manufacturing Plants with Flexible Batch Recipes
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie061255+
– volume: 129
  start-page: 106496
  year: 2019
  ident: ref_18
  article-title: Unification of closed-loop scheduling and control: State-space formulations, terminal constraints, and nominal theoretical properties
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2019.06.021
– volume: 63
  start-page: 639
  year: 2017
  ident: ref_10
  article-title: Moving horizon closed-loop production scheduling using dynamic process models
  publication-title: AIChE J.
  doi: 10.1002/aic.15408
– volume: 59
  start-page: 2505
  year: 2020
  ident: ref_34
  article-title: A General Model for Periodic Chemical Production Scheduling
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b04381
– volume: 13
  start-page: 784
  year: 2019
  ident: ref_3
  article-title: A new approach for scheduling of multipurpose batch processes with unlimited intermediate storage policy
  publication-title: Front. Chem. Sci. Eng.
  doi: 10.1007/s11705-019-1858-4
– volume: 17
  start-page: 229
  year: 1993
  ident: ref_29
  article-title: A general algorithm for short-term scheduling of batch operations—II. Computational issues
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(93)80016-G
– volume: 33
  start-page: 1890
  year: 2009
  ident: ref_32
  article-title: Polyhedral results for discrete-time production planning MIP formulations for continuous processes
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2009.05.015
– volume: 17
  start-page: 211
  year: 1993
  ident: ref_28
  article-title: A general algorithm for short-term scheduling of batch operations—I. MILP formulation
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(93)80015-F
– volume: 32
  start-page: 2606
  year: 2008
  ident: ref_5
  article-title: Planning and scheduling of industrial supply chains with reverse flows: A real pharmaceutical case study
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2008.03.006
– volume: 68
  start-page: e17656
  year: 2022
  ident: ref_33
  article-title: Surrogate-based optimization of a periodic rescheduling algorithm
  publication-title: AIChE J.
  doi: 10.1002/aic.17656
– volume: 186
  start-page: 108700
  year: 2024
  ident: ref_13
  article-title: Production rescheduling via explorative reinforcement learning while considering nervousness
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2024.108700
– ident: ref_25
  doi: 10.20944/preprints201710.0125.v1
– volume: 59
  start-page: 4184
  year: 2013
  ident: ref_26
  article-title: Proactive scheduling of batch processes by a combined robust optimization and multiparametric programming approach
  publication-title: AIChE J.
  doi: 10.1002/aic.14140
– volume: 56
  start-page: 1859
  year: 2009
  ident: ref_2
  article-title: A novel approach to scheduling multipurpose batch plants using unit-slots
  publication-title: AIChE J.
  doi: 10.1002/aic.12120
– volume: 62
  start-page: 9278
  year: 2023
  ident: ref_8
  article-title: Integrating Continuous and Batch Processes with Shared Resources in Closed-Loop Scheduling: A Case Study on Tuna Cannery
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.3c00754
– volume: 33
  start-page: 77
  year: 1994
  ident: ref_23
  article-title: Reactive schedule modification in multipurpose batch chemical plants
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie00025a011
– volume: 61
  start-page: 16093
  year: 2022
  ident: ref_1
  article-title: Novel Multiple Time-grid Continuous-time Mathematical Formulation for Short-term Scheduling of Multipurpose Batch Plants
  publication-title: Ind. Eng. Chem. Res.
– volume: 11
  start-page: 121
  year: 2008
  ident: ref_16
  article-title: Proactive and reactive strategies for resource-constrained project scheduling with uncertain resource availabilities
  publication-title: J. Sched.
  doi: 10.1007/s10951-007-0021-0
– volume: 39
  start-page: 4228
  year: 2000
  ident: ref_22
  article-title: A New Approach for Efficient Rescheduling of Multiproduct Batch Plants
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie000233z
– volume: 215
  start-page: 383
  year: 2011
  ident: ref_4
  article-title: Discrete and continuous time representations and mathematical models for large production scheduling problems: A case study from the pharmaceutical industry
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2011.06.021
– volume: 47
  start-page: 97
  year: 2012
  ident: ref_17
  article-title: A state-space model for chemical production scheduling
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2012.06.025
– volume: 49
  start-page: 3993
  year: 2010
  ident: ref_9
  article-title: Planning and Scheduling under Uncertainty: A Review Across Multiple Sectors
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie902009k
– volume: 129
  start-page: 106517
  year: 2019
  ident: ref_11
  article-title: On the design of online production scheduling algorithms
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2019.106517
– volume: 207
  start-page: 644
  year: 2010
  ident: ref_6
  article-title: MIP-based decomposition strategies for large-scale scheduling problems in multiproduct multistage batch plants: A benchmark scheduling problem of the pharmaceutical industry
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2010.06.002
– ident: ref_36
– volume: 31
  start-page: 763
  year: 1999
  ident: ref_15
  article-title: A rolling horizon heuristic for reactive scheduling of batch process operations
  publication-title: Eng. Optim.
  doi: 10.1080/03052159908941396
– volume: 35
  start-page: 510
  year: 1996
  ident: ref_31
  article-title: Optimal Campaign Planning/Scheduling of Multipurpose Batch/Semicontinuous Plants. 2. A Mathematical Decomposition Approach
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie950082d
– volume: 45
  start-page: 8253
  year: 2006
  ident: ref_19
  article-title: Production Scheduling of a Large-Scale Industrial Batch Plant. II. Reactive Scheduling
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie0600590
– volume: 23
  start-page: 595
  year: 1999
  ident: ref_24
  article-title: A framework for schedule evaluation with processing uncertainty
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(98)00296-8
SSID ssj0000913856
Score 2.2820258
Snippet In this paper, we address the problem of dynamic scheduling of a multipurpose batch process subject to two types of disturbances, namely, processing time...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 312
SubjectTerms Batch processes
Batch processing
Breakdowns
Computational efficiency
Computer applications
Computing time
Decision trees
Efficiency
Fines & penalties
Linear programming
Objectives
Rescheduling
Schedules
Scheduling
Simulation
Uncertainty
Title A Rescheduling Strategy for Multipurpose Batch Processes with Processing Time Variation and Demand Uncertainty
URI https://www.proquest.com/docview/3171221077
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4IXPRgBDWiaDbRgx4a6Lbbx8mAgsQEYogYbk330XixVFoPXPztzpatyMVTs2naJjOdmf1mZ74BuNG8TlRIaXlMCQQoDrW4dD2LiTiWyvFdl-oG58nUG8_d5wVbmIRbbsoqK59YOmq5FDpH3sU4Z1PEJ75_n31aemqUPl01IzRq0EAXHLA6NAbD6cvsN8uiWS8D5m14SR3E991spY_q8Femu5Fo1xGX0WV0BIdmW0j6Gz02YU-lLTj4QxbYgqYxw5zcGq7ou2NI-2SmEKBiwNB95cSQza4J7kVJ2VyboSSXuSID9LnvxPQF4Et0ArZa6id1Lwh5Q-RcqorEqSSP6kNf5vjRsm6gWJ_AfDR8fRhbZoSCJRD5FRaVti0D22HKUYkIkkR3jsY9jmbNbOkxN-5JgQEKgYjtc5pwJ3CplDGzeRAI5jmnUE-XqToDgmCN96jwuZLcdZMw5AoVKVgSCk7jMG7DdSXOKNswZUSIMLTQo63Q29CpJB0Za8mjrW7P_799AftUz98tq6Y7UC9WX-oSNwUFv4JaMHq6MvrH1eR7-AOFp7tK
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB58HNSD-MRq1QUV9BDabLJ5HERa21JtLVJa6S1mH8GLabQV6Z_yNzqbh7UXb55CCLuB2W8e3-7ODMC5rutEhZSGw5RAgmJRg0vbMZgIQ6ks17apTnB-6DntoX0_YqMl-CpyYfS1ysImpoZajoXeI6-gnzMp8hPXvUneDN01Sp-uFi00Mlh01OwTKdvk-q6B63tBaas5uG0beVcBQyAZmhpUmqb0TIspS0XCiyKdTBlWOSKdmdJhdliVAm02xuamy2nELc-mUobM5J4nmGPhvMuwimGGj1q0Wm_2Hvs_uzq6yqbHnKwOqmX51Uryro8GUXXooudbNPypN2ttwWYehpJahpttWFLxDmz8Kk64A9u52k_IZV6b-moX4hrpKyTE6KB0HjvJi9vOCMa-JE3mTXDlxhNF6mjjX0ieh4CT6A3f4lWP1Lkn5AmZegoNEsaSNNSrfgzxp-k9helsD4b_Itx9WInHsToAguSQV6lwuZLctiPf5wqBI1jkC05DPyzBWSHOIMkqcwTIaLTQg7nQS1AuJB3k2jkJ5lg6_PvzKay1Bw_doHvX6xzBOtW9f9Mb22VYmb5_qGMMSKb8JEcBgef_Bt43BG708A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5qC6IHsVXxUXVBBT2ENptsHgeR1rao1SLFireYfQQvptVWpH_NX-dsulF78dZTCGE3MPvtzHy78wA41nWdqJDS8pgSSFAcanHpehYTcSyV47su1QnOdz3vauDePLGnAnzluTA6rDLXiZmilkOhz8hraOdsivzE92uJCYu4b3UuRm-W7iClb1rzdhoziHTV9BPp2_j8uoVrfUJpp_1weWWZDgOWQGI0sai0bRnYDlOOSkSQJDqxMq5zRD2zpcfcuC4F6m_0022f04Q7gUuljJnNg0Awz8F5l6Dko1UMilBqtnv3_Z8THl1xM2DerCaq44T12uhdXxPiNqLzVnDeCGSWrbMOa8YlJY0ZhspQUGkFVv8UKqxA2aiAMTk1darPNiBtkL5CcozGSue0E1PodkrQDyZZYu8IV3E4VqSJ-v6FmJwEnEQf_uaveqTOQyGPyNozmJA4laSlXvVjgD_NYhYm000YLES4W1BMh6naBoJEkdep8LmS3HWTMOQKQSRYEgpO4zDegaNcnNFoVqUjQnajhR79Cn0HqrmkI7NTx9Evrnb__3wIywi46Pa6192DFarbAGfB21UoTt4_1D76JhN-YEBA4HnRuPsG82L5HA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Rescheduling+Strategy+for+Multipurpose+Batch+Processes+with+Processing+Time+Variation+and+Demand+Uncertainty&rft.jtitle=Processes&rft.au=Zheng%2C+Taicheng&rft.au=Li%2C+Dan&rft.au=Li%2C+Jie&rft.date=2025-02-01&rft.pub=MDPI+AG&rft.eissn=2227-9717&rft.volume=13&rft.issue=2&rft.spage=312&rft_id=info:doi/10.3390%2Fpr13020312&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon