A learning control scheme for upper-limb exoskeleton via adaptive sliding mode technique

This paper investigates an iterative learning approach integrated with sliding mode control method to accomplish passive rehabilitation therapy tasks for wearable 6 degrees of freedom (DOF) upper-limb exoskeleton. Firstly, the motion data of human body is collected from a healthy subject through VIC...

Full description

Saved in:
Bibliographic Details
Published inMechatronics (Oxford) Vol. 86; p. 102832
Main Authors Zhang, Gaowei, Wang, Jie, Yang, Peng, Guo, Shijie
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2022
Subjects
Online AccessGet full text
ISSN0957-4158
1873-4006
DOI10.1016/j.mechatronics.2022.102832

Cover

Abstract This paper investigates an iterative learning approach integrated with sliding mode control method to accomplish passive rehabilitation therapy tasks for wearable 6 degrees of freedom (DOF) upper-limb exoskeleton. Firstly, the motion data of human body is collected from a healthy subject through VICON motion capture system and reasonable trajectories in joint space are generated by fitting functions. Secondly, an iterative learning controller is developed to estimate the iteration-invariant dynamic parameters which are complicated and difficult to be obtained precisely in practice. Note that the identical initial condition (i.i.c) in traditional iterative learning control (ILC) is released by applying the polynomial reconstruction method. Considering the uncertainties and disturbances which affect the system in the form of friction, backlash and unexpected tissue torques from human body, an adaptive law is proposed to estimate the upper bound of the lumped non-periodic disturbances. Based on that, sliding mode controller is conducted to achieve the robustness over the time domain, while the chattering phenomenon is attenuated by applying tanh function. Afterwards, the stability and convergence of the overall system is rigorously proved with a composite energy function (CEF) composed of tracking and estimating errors. Finally, co-simulation and experiment results are presented to demonstrate the effectiveness of the proposed control scheme.
AbstractList This paper investigates an iterative learning approach integrated with sliding mode control method to accomplish passive rehabilitation therapy tasks for wearable 6 degrees of freedom (DOF) upper-limb exoskeleton. Firstly, the motion data of human body is collected from a healthy subject through VICON motion capture system and reasonable trajectories in joint space are generated by fitting functions. Secondly, an iterative learning controller is developed to estimate the iteration-invariant dynamic parameters which are complicated and difficult to be obtained precisely in practice. Note that the identical initial condition (i.i.c) in traditional iterative learning control (ILC) is released by applying the polynomial reconstruction method. Considering the uncertainties and disturbances which affect the system in the form of friction, backlash and unexpected tissue torques from human body, an adaptive law is proposed to estimate the upper bound of the lumped non-periodic disturbances. Based on that, sliding mode controller is conducted to achieve the robustness over the time domain, while the chattering phenomenon is attenuated by applying tanh function. Afterwards, the stability and convergence of the overall system is rigorously proved with a composite energy function (CEF) composed of tracking and estimating errors. Finally, co-simulation and experiment results are presented to demonstrate the effectiveness of the proposed control scheme.
ArticleNumber 102832
Author Yang, Peng
Guo, Shijie
Zhang, Gaowei
Wang, Jie
Author_xml – sequence: 1
  givenname: Gaowei
  orcidid: 0000-0002-2884-1325
  surname: Zhang
  fullname: Zhang, Gaowei
  organization: College of Electronic Information and Automation, Civil Aviation University of China, No. 2898, Jinbei Road, Dongli District, Tianjin, 300300, Tianjin, China
– sequence: 2
  givenname: Jie
  orcidid: 0000-0002-8613-3976
  surname: Wang
  fullname: Wang, Jie
  email: wang_jie@ustb.edu.cn
  organization: Institute of Artificial Intelligence, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing, 100083, Beijing, China
– sequence: 3
  givenname: Peng
  orcidid: 0000-0003-3006-2184
  surname: Yang
  fullname: Yang, Peng
  organization: School of Artificial Intelligence, Hebei University of Technology, No. 8 Guangrong Road, Hongqiao District, Tianjin, 300130, Tianjin, China
– sequence: 4
  givenname: Shijie
  surname: Guo
  fullname: Guo, Shijie
  organization: School of Mechanical Engineering, Hebei University of Technology, No. 8 Guangrong Road, Hongqiao District, Tianjin, 300130, Tianjin, China
BookMark eNqNkD1PwzAQQC1UJNrCf7DYU2zny2GiKp9SJRaQ2CzHvlCXxA62W8G_J1EZEFOnG07v6e7N0MQ6CwhdUrKghBZX20UHaiOjd9aosGCEsWHBeMpO0JTyMk0yQooJmpIqL5OM5vwMzULYEkJLSsspelviFqS3xr5j5ewganFQG-gAN87jXd-DT1rT1Ri-XPiAFqKzeG8kllr20ewBh9boEe-cBhyHc6z53ME5Om1kG-Did87R6_3dy-oxWT8_PK2W60SxPIsJS6sGOJVcEy4zVjcVA5ISWmdMZtDUPOd5TWpGs1oWpFIFV1o1jaQppJpyns7R9cGrvAvBQyN6bzrpvwUlYmwktuJvIzE2EodGA3zzD1YmymjGENK0xyluDwoYntwb8CIoA1aBNh5UFNqZYzQ_5gqQow
CitedBy_id crossref_primary_10_1002_rob_22455
crossref_primary_10_1177_01423312231152936
crossref_primary_10_1080_00207179_2023_2173994
crossref_primary_10_3390_machines11090864
crossref_primary_10_1016_j_cnsns_2024_108085
crossref_primary_10_1007_s40430_023_04411_7
crossref_primary_10_1007_s00521_024_09922_5
crossref_primary_10_1088_2516_1091_acc70a
crossref_primary_10_3390_act14010016
crossref_primary_10_61186_joc_17_1_1
crossref_primary_10_3390_machines10111064
Cites_doi 10.1016/j.mechatronics.2020.102373
10.1016/j.mechatronics.2018.03.003
10.1016/j.mechatronics.2021.102554
10.1109/TIE.2016.2638403
10.1109/TMECH.2018.2808235
10.1016/j.automatica.2018.04.011
10.1016/j.automatica.2017.04.016
10.1016/j.automatica.2015.10.038
10.3724/SP.J.1004.2010.00454
10.1016/j.mechatronics.2018.07.003
10.1002/rnc.4437
10.1109/ACCESS.2018.2863384
10.1016/j.jfranklin.2019.08.012
10.1016/j.isatra.2017.01.006
10.1016/S0005-1098(99)00100-4
10.1109/TNNLS.2019.2892157
10.1002/acs.2734
10.1109/TIE.2016.2622665
10.1016/j.isatra.2013.05.003
10.1002/rnc.3861
10.1016/j.robot.2015.09.015
10.1109/TCST.2013.2293498
10.1126/science.aal5054
10.1016/j.neucom.2017.06.055
10.1016/j.mechatronics.2018.06.015
10.1016/S0005-1098(01)00049-8
10.1016/j.automatica.2017.12.031
10.1109/TNSRE.2016.2521160
10.3724/SP.J.1004.2013.00251
10.1016/j.isatra.2017.08.004
10.1002/rnc.4827
10.1016/j.ast.2017.12.031
10.1002/rnc.3869
10.1109/TPEL.2017.2711098
10.1016/j.advengsoft.2018.01.004
10.1016/j.jprocont.2017.03.003
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.mechatronics.2022.102832
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4006
ExternalDocumentID 10_1016_j_mechatronics_2022_102832
S095741582200068X
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61703134; 62022060; 62073234; 62003236; 61972040
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: China Postdoctoral Science Foundation
  grantid: 2019M650874
  funderid: http://dx.doi.org/10.13039/501100002858
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c254t-239fe81a8d08a42bf92e0301b42a4efb8585b0b214ba609c68cdcffa13e3d1883
IEDL.DBID AIKHN
ISSN 0957-4158
IngestDate Thu Apr 24 22:53:21 EDT 2025
Tue Jul 01 03:54:05 EDT 2025
Fri Feb 23 02:38:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Composite energy function (CEF)
Sliding mode control (SMC)
Iterative learning control (ILC)
Co-simulation
Upper-limb exoskeleton
Trajectory reconstruction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c254t-239fe81a8d08a42bf92e0301b42a4efb8585b0b214ba609c68cdcffa13e3d1883
ORCID 0000-0002-2884-1325
0000-0003-3006-2184
0000-0002-8613-3976
ParticipantIDs crossref_primary_10_1016_j_mechatronics_2022_102832
crossref_citationtrail_10_1016_j_mechatronics_2022_102832
elsevier_sciencedirect_doi_10_1016_j_mechatronics_2022_102832
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationTitle Mechatronics (Oxford)
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yang, Ma, Huang (b41) 2017; 64
Tian, Lu, Zuo, Zong, Zhang (b38) 2018; 28
Chi, Huang, Hou, Jin (b36) 2018; 28
Jin (b26) 2017; 31
Zhang, Yang, Wang, Sun (b9) 2018; 6
Ajjanaromvat, Parnichkun (b24) 2018; 51
Kang, Wang (b6) 2013; 52
Brahmi, Driscoll, El Bojairami, Saad, Brahmi (b5) 2020
Jin (b29) 2018; 94
Zhu, Ming-Xuan, Xiong-Xiong (b44) 2010; 36
Peng, Hou, Wang, Wang (b2) 2018; 44
Sun, Peng, Cheng, Hou, Pan (b10) 2019
Han, Wang, Tian (b17) 2018; 119
Masud, Smith, Isaksson (b13) 2018; 54
Sun, Yan (b42) 2013; 39
Hu, Niu, Wang (b30) 2018; 75
Freeman (b23) 2017; 81
Brahmi, Saad, Ochoa-Luna, Rahman, Brahmi (b8) 2018; 23
Long, Du, Cong, Wang, Zhang, Dong (b7) 2017; 67
Zheng, Hu, Wu (b21) 2018; 53
Chi, Liu, Zhang, Hou, Huang (b27) 2017; 55
Xu, Viswanathan (b33) 2000; 36
Zhang, Fiers, Witte, Jackson, Poggensee, Atkeson (b15) 2017; 356
Masud, Mattsson, Smith, Isaksson (b3) 2020; 69
Verrelli, Tomei, Salis, Bifaretti (b32) 2016; 63
Li, Kang, Xiao, Song (b12) 2017; 64
Li, Liu, Yu (b31) 2018; 90
Zhu, Sun, He (b35) 2011; 8
Wang, Li, Wang (b20) 2016; 42
Li, Ma, Yin, Guo (b11) 2017; 71
Li, Shen, Xu (b34) 2019; 356
Liu, Chen, Ruan, Zheng (b28) 2020; 30
Vamvoudakis, Ferraz (b22) 2017
Shen, Xu (b25) 2019; 29
Young, Ferris (b1) 2017; 25
Liu, Li, Deng (b40) 2018; 33
Jin (b43) 2017; 31
Nagarajan, Aguirre-Ollinger, Goswami (b14) 2016; 75
Brahmi, Saad, Ochoa-Luna, Habibur-Rahman, Brahmi (b19) 2018; 23
Xiang, Chien Chern (b16) 2014; 22
Zhao, Yang, Sun, Dong, Wang, Yang (b37) 2021; 76
Luo, Peng, Wang, Hou (b4) 2019; 30
Xu, Cao (b39) 2001; 37
Zhang, Wang, Tian, Peyrodie, Wang (b18) 2018; 272
Masud (10.1016/j.mechatronics.2022.102832_b13) 2018; 54
Han (10.1016/j.mechatronics.2022.102832_b17) 2018; 119
Verrelli (10.1016/j.mechatronics.2022.102832_b32) 2016; 63
Li (10.1016/j.mechatronics.2022.102832_b11) 2017; 71
Li (10.1016/j.mechatronics.2022.102832_b12) 2017; 64
Liu (10.1016/j.mechatronics.2022.102832_b40) 2018; 33
Wang (10.1016/j.mechatronics.2022.102832_b20) 2016; 42
Peng (10.1016/j.mechatronics.2022.102832_b2) 2018; 44
Xu (10.1016/j.mechatronics.2022.102832_b39) 2001; 37
Sun (10.1016/j.mechatronics.2022.102832_b42) 2013; 39
Xiang (10.1016/j.mechatronics.2022.102832_b16) 2014; 22
Brahmi (10.1016/j.mechatronics.2022.102832_b5) 2020
Chi (10.1016/j.mechatronics.2022.102832_b27) 2017; 55
Li (10.1016/j.mechatronics.2022.102832_b31) 2018; 90
Shen (10.1016/j.mechatronics.2022.102832_b25) 2019; 29
Yang (10.1016/j.mechatronics.2022.102832_b41) 2017; 64
Zhu (10.1016/j.mechatronics.2022.102832_b44) 2010; 36
Li (10.1016/j.mechatronics.2022.102832_b34) 2019; 356
Jin (10.1016/j.mechatronics.2022.102832_b29) 2018; 94
Zhu (10.1016/j.mechatronics.2022.102832_b35) 2011; 8
Long (10.1016/j.mechatronics.2022.102832_b7) 2017; 67
Jin (10.1016/j.mechatronics.2022.102832_b26) 2017; 31
Liu (10.1016/j.mechatronics.2022.102832_b28) 2020; 30
Tian (10.1016/j.mechatronics.2022.102832_b38) 2018; 28
Nagarajan (10.1016/j.mechatronics.2022.102832_b14) 2016; 75
Hu (10.1016/j.mechatronics.2022.102832_b30) 2018; 75
Masud (10.1016/j.mechatronics.2022.102832_b3) 2020; 69
Xu (10.1016/j.mechatronics.2022.102832_b33) 2000; 36
Luo (10.1016/j.mechatronics.2022.102832_b4) 2019; 30
Young (10.1016/j.mechatronics.2022.102832_b1) 2017; 25
Kang (10.1016/j.mechatronics.2022.102832_b6) 2013; 52
Jin (10.1016/j.mechatronics.2022.102832_b43) 2017; 31
Zhang (10.1016/j.mechatronics.2022.102832_b15) 2017; 356
Zhao (10.1016/j.mechatronics.2022.102832_b37) 2021; 76
Zhang (10.1016/j.mechatronics.2022.102832_b18) 2018; 272
Chi (10.1016/j.mechatronics.2022.102832_b36) 2018; 28
Freeman (10.1016/j.mechatronics.2022.102832_b23) 2017; 81
Vamvoudakis (10.1016/j.mechatronics.2022.102832_b22) 2017
Brahmi (10.1016/j.mechatronics.2022.102832_b19) 2018; 23
Sun (10.1016/j.mechatronics.2022.102832_b10) 2019
Brahmi (10.1016/j.mechatronics.2022.102832_b8) 2018; 23
Zhang (10.1016/j.mechatronics.2022.102832_b9) 2018; 6
Ajjanaromvat (10.1016/j.mechatronics.2022.102832_b24) 2018; 51
Zheng (10.1016/j.mechatronics.2022.102832_b21) 2018; 53
References_xml – volume: 64
  start-page: 4169
  year: 2017
  end-page: 4178
  ident: b41
  article-title: Development and repetitive learning control of lower limb exoskeleton driven by electrohydraulic actuators
  publication-title: IEEE Trans Ind Electron
– volume: 23
  start-page: 575
  year: 2018
  end-page: 585
  ident: b8
  article-title: Adaptive tracking control of an exoskeleton robot with uncertain dynamics based on estimated time-delay control
  publication-title: IEEE-Asme Trans Mech
– volume: 75
  start-page: 245
  year: 2018
  end-page: 253
  ident: b30
  article-title: Spacecraft attitude fault-tolerant control based on iterative learning observer and control allocation
  publication-title: Aerosp Sci Technol
– volume: 44
  start-page: 2000
  year: 2018
  end-page: 2010
  ident: b2
  article-title: Physical interaction methods for rehabilitation and assistive robots
  publication-title: ACTA Autom Sin
– volume: 54
  start-page: 78
  year: 2018
  end-page: 93
  ident: b13
  article-title: Disturbance observer based dynamic load torque compensator for assistive exoskeletons
  publication-title: Mechatronics
– volume: 23
  start-page: 575
  year: 2018
  end-page: 585
  ident: b19
  article-title: Adaptive tracking control of an exoskeleton robot with uncertain dynamics based on estimated time-delay control
  publication-title: IEEE/ASME Trans Mechatronics
– volume: 39
  start-page: 251
  year: 2013
  end-page: 262
  ident: b42
  article-title: Error tracking of iterative learning control systems
  publication-title: ACTA Autom Sin
– volume: 356
  start-page: 1280
  year: 2017
  end-page: 1283
  ident: b15
  article-title: Human-in-the-loop optimization of exoskeleton assistance during walking
  publication-title: Science
– volume: 64
  start-page: 5171
  year: 2017
  end-page: 5181
  ident: b12
  article-title: Human-robot coordination control of robotic exoskeletons by skill transfers
  publication-title: IEEE Trans Ind Electron
– volume: 8
  start-page: 403
  year: 2011
  end-page: 410
  ident: b35
  article-title: Iterative learning control of strict-feedback nonlinear time-varying systems
  publication-title: Acta Autom Sin (in Chinese)
– volume: 22
  start-page: 1032
  year: 2014
  end-page: 1043
  ident: b16
  article-title: Adaptive neural network control of robot based on a unified objective bound
  publication-title: IEEE Trans Control Syst Technol
– volume: 51
  start-page: 85
  year: 2018
  end-page: 96
  ident: b24
  article-title: Trajectory tracking using online learning LQR with adaptive learning control of a leg-exoskeleton for disorder gait rehabilitation
  publication-title: Mechatronics
– volume: 30
  start-page: 3433
  year: 2019
  end-page: 3443
  ident: b4
  article-title: A greedy assist-as-needed controller for upper limb rehabilitation
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 25
  start-page: 171
  year: 2017
  end-page: 182
  ident: b1
  article-title: State of the art and future directions for lower limb robotic exoskeletons
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– volume: 63
  start-page: 274
  year: 2016
  end-page: 286
  ident: b32
  article-title: Repetitive learning position control for full order model permanent magnet step motors
  publication-title: Automatica
– volume: 71
  start-page: 458
  year: 2017
  end-page: 466
  ident: b11
  article-title: Tracking control of time-varying knee exoskeleton disturbed by interaction torque
  publication-title: ISA Trans
– year: 2020
  ident: b5
  article-title: Novel adaptive impedance control for exoskeleton robot for rehabilitation using a nonlinear time-delay disturbance observer
  publication-title: ISA Trans
– volume: 53
  start-page: 262
  year: 2018
  end-page: 276
  ident: b21
  article-title: Model-free development of control systems for a multi-degree-of-freedom robot
  publication-title: Mechatronics
– volume: 81
  start-page: 270
  year: 2017
  end-page: 278
  ident: b23
  article-title: Robust ILC design with application to stroke rehabilitation
  publication-title: Automatica
– volume: 76
  year: 2021
  ident: b37
  article-title: Sliding mode control combined with extended state observer for an ankle exoskeleton driven by electrical motor
  publication-title: Mechatronics
– volume: 55
  start-page: 10
  year: 2017
  end-page: 29
  ident: b27
  article-title: Constrained data-driven optimal iterative learning control
  publication-title: J Process Control
– start-page: 1
  year: 2019
  end-page: 8
  ident: b10
  article-title: Composite learning enhanced robot impedance control
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 52
  start-page: 844
  year: 2013
  end-page: 852
  ident: b6
  article-title: Adaptive control of 5 DOF upper-limb exoskeleton robot with improved safety
  publication-title: ISA Trans
– volume: 37
  start-page: 997
  year: 2001
  end-page: 1006
  ident: b39
  article-title: Learning variable structure control approaches for repeatable tracking control tasks
  publication-title: Automatica
– volume: 75
  start-page: 310
  year: 2016
  end-page: 324
  ident: b14
  article-title: Integral admittance shaping: A unified framework for active exoskeleton control
  publication-title: Robot Auton Syst
– volume: 272
  start-page: 178
  year: 2018
  end-page: 188
  ident: b18
  article-title: Model-free based neural network control with time-delay estimation for lower extremity exoskeleton
  publication-title: Neurocomputing
– volume: 42
  start-page: 1899
  year: 2016
  end-page: 1914
  ident: b20
  article-title: Active interaction exercise control of exoskeleton upper-limb rehabilitation robot using model-free adaptive methods
  publication-title: ACTA Autom Sin
– volume: 28
  start-page: 103
  year: 2018
  end-page: 119
  ident: b36
  article-title: Data-driven high-order terminal iterative learning control with a faster convergence speed
  publication-title: Internat J Robust Nonlinear Control
– volume: 119
  start-page: 38
  year: 2018
  end-page: 47
  ident: b17
  article-title: Model-free based adaptive nonsingular fast terminal sliding mode control with time-delay estimation for a 12 DOF multi-functional lower limb exoskeleton
  publication-title: Adv Eng Softw
– volume: 31
  start-page: 859
  year: 2017
  end-page: 875
  ident: b43
  article-title: Iterative learning control for non-repetitive trajectory tracking of robot manipulators with joint position constraints and actuator faults
  publication-title: Internat J Adapt Control Signal Process
– volume: 31
  start-page: 859
  year: 2017
  end-page: 875
  ident: b26
  article-title: Iterative learning control for non-repetitive trajectory tracking of robot manipulators with joint position constraints and actuator faults
  publication-title: Internat J Adapt Control Signal Process
– volume: 90
  start-page: 1
  year: 2018
  end-page: 7
  ident: b31
  article-title: Iterative learning impedance control for rehabilitation robots driven by series elastic actuators
  publication-title: Automatica
– volume: 356
  start-page: 9206
  year: 2019
  end-page: 9231
  ident: b34
  article-title: Adaptive iterative learning control for MIMO nonlinear systems performing iteration-varying tasks
  publication-title: J Franklin Inst B
– volume: 29
  start-page: 1302
  year: 2019
  end-page: 1324
  ident: b25
  article-title: Robust learning control for nonlinear systems with nonparametric uncertainties and nonuniform trial lengths
  publication-title: Internat J Robust Nonlinear Control
– volume: 94
  start-page: 63
  year: 2018
  end-page: 71
  ident: b29
  article-title: Fault-tolerant iterative learning control for mobile robots non-repetitive trajectory tracking with output constraints
  publication-title: Automatica
– volume: 36
  start-page: 91
  year: 2000
  end-page: 99
  ident: b33
  article-title: Adaptive robust iterative learning control with dead zone scheme
  publication-title: Automatica
– volume: 67
  start-page: 389
  year: 2017
  end-page: 397
  ident: b7
  article-title: Active disturbance rejection control based human gait tracking for lower extremity rehabilitation exoskeleton
  publication-title: ISA Trans
– year: 2017
  ident: b22
  article-title: Model-free event-triggered control algorithm for continuous-time linear systems with optimal performance
  publication-title: Automatica
– volume: 28
  start-page: 281
  year: 2018
  end-page: 295
  ident: b38
  article-title: Multivariable finite-time output feedback trajectory tracking control of quadrotor helicopters
  publication-title: Internat J Robust Nonlinear Control
– volume: 69
  year: 2020
  ident: b3
  article-title: On stability and performance of disturbance observer-based-dynamic load torque compensator for assistive exoskeleton: A hybrid approach
  publication-title: Mechatronics
– volume: 6
  start-page: 43213
  year: 2018
  end-page: 43221
  ident: b9
  article-title: Multivariable finite-time control of 5 DOF upper-limb exoskeleton based on linear extended observer
  publication-title: IEEE Access
– volume: 36
  start-page: 454
  year: 2010
  end-page: 458
  ident: b44
  article-title: Iterative learning control of strict-feedback nonlinear time-varying systems
  publication-title: ACTA Autom Sin
– volume: 33
  start-page: 3655
  year: 2018
  end-page: 3671
  ident: b40
  article-title: Torque ripple minimization of PMSM based on robust ILC via adaptive sliding mode control
  publication-title: IEEE Trans Power Electron
– volume: 30
  start-page: 1275
  year: 2020
  end-page: 1297
  ident: b28
  article-title: Data-based iterative learning mechanism for unknown input-output coupling parameters/matrices
  publication-title: Internat J Robust Nonlinear Control
– volume: 69
  year: 2020
  ident: 10.1016/j.mechatronics.2022.102832_b3
  article-title: On stability and performance of disturbance observer-based-dynamic load torque compensator for assistive exoskeleton: A hybrid approach
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2020.102373
– volume: 51
  start-page: 85
  year: 2018
  ident: 10.1016/j.mechatronics.2022.102832_b24
  article-title: Trajectory tracking using online learning LQR with adaptive learning control of a leg-exoskeleton for disorder gait rehabilitation
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2018.03.003
– volume: 76
  year: 2021
  ident: 10.1016/j.mechatronics.2022.102832_b37
  article-title: Sliding mode control combined with extended state observer for an ankle exoskeleton driven by electrical motor
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2021.102554
– volume: 64
  start-page: 5171
  issue: 6
  year: 2017
  ident: 10.1016/j.mechatronics.2022.102832_b12
  article-title: Human-robot coordination control of robotic exoskeletons by skill transfers
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2016.2638403
– volume: 23
  start-page: 575
  issue: 2
  year: 2018
  ident: 10.1016/j.mechatronics.2022.102832_b19
  article-title: Adaptive tracking control of an exoskeleton robot with uncertain dynamics based on estimated time-delay control
  publication-title: IEEE/ASME Trans Mechatronics
  doi: 10.1109/TMECH.2018.2808235
– start-page: 1
  year: 2019
  ident: 10.1016/j.mechatronics.2022.102832_b10
  article-title: Composite learning enhanced robot impedance control
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 94
  start-page: 63
  year: 2018
  ident: 10.1016/j.mechatronics.2022.102832_b29
  article-title: Fault-tolerant iterative learning control for mobile robots non-repetitive trajectory tracking with output constraints
  publication-title: Automatica
  doi: 10.1016/j.automatica.2018.04.011
– volume: 81
  start-page: 270
  year: 2017
  ident: 10.1016/j.mechatronics.2022.102832_b23
  article-title: Robust ILC design with application to stroke rehabilitation
  publication-title: Automatica
  doi: 10.1016/j.automatica.2017.04.016
– volume: 63
  start-page: 274
  year: 2016
  ident: 10.1016/j.mechatronics.2022.102832_b32
  article-title: Repetitive learning position control for full order model permanent magnet step motors
  publication-title: Automatica
  doi: 10.1016/j.automatica.2015.10.038
– volume: 36
  start-page: 454
  issue: 3
  year: 2010
  ident: 10.1016/j.mechatronics.2022.102832_b44
  article-title: Iterative learning control of strict-feedback nonlinear time-varying systems
  publication-title: ACTA Autom Sin
  doi: 10.3724/SP.J.1004.2010.00454
– volume: 54
  start-page: 78
  year: 2018
  ident: 10.1016/j.mechatronics.2022.102832_b13
  article-title: Disturbance observer based dynamic load torque compensator for assistive exoskeletons
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2018.07.003
– volume: 29
  start-page: 1302
  issue: 5
  year: 2019
  ident: 10.1016/j.mechatronics.2022.102832_b25
  article-title: Robust learning control for nonlinear systems with nonparametric uncertainties and nonuniform trial lengths
  publication-title: Internat J Robust Nonlinear Control
  doi: 10.1002/rnc.4437
– volume: 6
  start-page: 43213
  year: 2018
  ident: 10.1016/j.mechatronics.2022.102832_b9
  article-title: Multivariable finite-time control of 5 DOF upper-limb exoskeleton based on linear extended observer
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2863384
– volume: 356
  start-page: 9206
  issue: 16
  year: 2019
  ident: 10.1016/j.mechatronics.2022.102832_b34
  article-title: Adaptive iterative learning control for MIMO nonlinear systems performing iteration-varying tasks
  publication-title: J Franklin Inst B
  doi: 10.1016/j.jfranklin.2019.08.012
– volume: 67
  start-page: 389
  year: 2017
  ident: 10.1016/j.mechatronics.2022.102832_b7
  article-title: Active disturbance rejection control based human gait tracking for lower extremity rehabilitation exoskeleton
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2017.01.006
– volume: 36
  start-page: 91
  issue: 1
  year: 2000
  ident: 10.1016/j.mechatronics.2022.102832_b33
  article-title: Adaptive robust iterative learning control with dead zone scheme
  publication-title: Automatica
  doi: 10.1016/S0005-1098(99)00100-4
– volume: 30
  start-page: 3433
  issue: 11
  year: 2019
  ident: 10.1016/j.mechatronics.2022.102832_b4
  article-title: A greedy assist-as-needed controller for upper limb rehabilitation
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2019.2892157
– volume: 31
  start-page: 859
  issue: 6
  year: 2017
  ident: 10.1016/j.mechatronics.2022.102832_b26
  article-title: Iterative learning control for non-repetitive trajectory tracking of robot manipulators with joint position constraints and actuator faults
  publication-title: Internat J Adapt Control Signal Process
  doi: 10.1002/acs.2734
– volume: 64
  start-page: 4169
  issue: 5
  year: 2017
  ident: 10.1016/j.mechatronics.2022.102832_b41
  article-title: Development and repetitive learning control of lower limb exoskeleton driven by electrohydraulic actuators
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2016.2622665
– year: 2020
  ident: 10.1016/j.mechatronics.2022.102832_b5
  article-title: Novel adaptive impedance control for exoskeleton robot for rehabilitation using a nonlinear time-delay disturbance observer
  publication-title: ISA Trans
– volume: 52
  start-page: 844
  issue: 6
  year: 2013
  ident: 10.1016/j.mechatronics.2022.102832_b6
  article-title: Adaptive control of 5 DOF upper-limb exoskeleton robot with improved safety
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2013.05.003
– volume: 28
  start-page: 103
  issue: 1
  year: 2018
  ident: 10.1016/j.mechatronics.2022.102832_b36
  article-title: Data-driven high-order terminal iterative learning control with a faster convergence speed
  publication-title: Internat J Robust Nonlinear Control
  doi: 10.1002/rnc.3861
– volume: 75
  start-page: 310
  year: 2016
  ident: 10.1016/j.mechatronics.2022.102832_b14
  article-title: Integral admittance shaping: A unified framework for active exoskeleton control
  publication-title: Robot Auton Syst
  doi: 10.1016/j.robot.2015.09.015
– volume: 44
  start-page: 2000
  issue: 11
  year: 2018
  ident: 10.1016/j.mechatronics.2022.102832_b2
  article-title: Physical interaction methods for rehabilitation and assistive robots
  publication-title: ACTA Autom Sin
– volume: 22
  start-page: 1032
  issue: 3
  year: 2014
  ident: 10.1016/j.mechatronics.2022.102832_b16
  article-title: Adaptive neural network control of robot based on a unified objective bound
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2013.2293498
– volume: 356
  start-page: 1280
  issue: 6344
  year: 2017
  ident: 10.1016/j.mechatronics.2022.102832_b15
  article-title: Human-in-the-loop optimization of exoskeleton assistance during walking
  publication-title: Science
  doi: 10.1126/science.aal5054
– volume: 272
  start-page: 178
  year: 2018
  ident: 10.1016/j.mechatronics.2022.102832_b18
  article-title: Model-free based neural network control with time-delay estimation for lower extremity exoskeleton
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.06.055
– volume: 42
  start-page: 1899
  issue: 12
  year: 2016
  ident: 10.1016/j.mechatronics.2022.102832_b20
  article-title: Active interaction exercise control of exoskeleton upper-limb rehabilitation robot using model-free adaptive methods
  publication-title: ACTA Autom Sin
– volume: 53
  start-page: 262
  issue: 1
  year: 2018
  ident: 10.1016/j.mechatronics.2022.102832_b21
  article-title: Model-free development of control systems for a multi-degree-of-freedom robot
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2018.06.015
– year: 2017
  ident: 10.1016/j.mechatronics.2022.102832_b22
  article-title: Model-free event-triggered control algorithm for continuous-time linear systems with optimal performance
  publication-title: Automatica
– volume: 37
  start-page: 997
  year: 2001
  ident: 10.1016/j.mechatronics.2022.102832_b39
  article-title: Learning variable structure control approaches for repeatable tracking control tasks
  publication-title: Automatica
  doi: 10.1016/S0005-1098(01)00049-8
– volume: 90
  start-page: 1
  year: 2018
  ident: 10.1016/j.mechatronics.2022.102832_b31
  article-title: Iterative learning impedance control for rehabilitation robots driven by series elastic actuators
  publication-title: Automatica
  doi: 10.1016/j.automatica.2017.12.031
– volume: 8
  start-page: 403
  issue: 4
  year: 2011
  ident: 10.1016/j.mechatronics.2022.102832_b35
  article-title: Iterative learning control of strict-feedback nonlinear time-varying systems
  publication-title: Acta Autom Sin (in Chinese)
– volume: 25
  start-page: 171
  issue: 2
  year: 2017
  ident: 10.1016/j.mechatronics.2022.102832_b1
  article-title: State of the art and future directions for lower limb robotic exoskeletons
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2016.2521160
– volume: 39
  start-page: 251
  issue: 3
  year: 2013
  ident: 10.1016/j.mechatronics.2022.102832_b42
  article-title: Error tracking of iterative learning control systems
  publication-title: ACTA Autom Sin
  doi: 10.3724/SP.J.1004.2013.00251
– volume: 31
  start-page: 859
  issue: 6
  year: 2017
  ident: 10.1016/j.mechatronics.2022.102832_b43
  article-title: Iterative learning control for non-repetitive trajectory tracking of robot manipulators with joint position constraints and actuator faults
  publication-title: Internat J Adapt Control Signal Process
  doi: 10.1002/acs.2734
– volume: 23
  start-page: 575
  issue: 2
  year: 2018
  ident: 10.1016/j.mechatronics.2022.102832_b8
  article-title: Adaptive tracking control of an exoskeleton robot with uncertain dynamics based on estimated time-delay control
  publication-title: IEEE-Asme Trans Mech
  doi: 10.1109/TMECH.2018.2808235
– volume: 71
  start-page: 458
  year: 2017
  ident: 10.1016/j.mechatronics.2022.102832_b11
  article-title: Tracking control of time-varying knee exoskeleton disturbed by interaction torque
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2017.08.004
– volume: 30
  start-page: 1275
  issue: 3
  year: 2020
  ident: 10.1016/j.mechatronics.2022.102832_b28
  article-title: Data-based iterative learning mechanism for unknown input-output coupling parameters/matrices
  publication-title: Internat J Robust Nonlinear Control
  doi: 10.1002/rnc.4827
– volume: 75
  start-page: 245
  year: 2018
  ident: 10.1016/j.mechatronics.2022.102832_b30
  article-title: Spacecraft attitude fault-tolerant control based on iterative learning observer and control allocation
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2017.12.031
– volume: 28
  start-page: 281
  issue: 1
  year: 2018
  ident: 10.1016/j.mechatronics.2022.102832_b38
  article-title: Multivariable finite-time output feedback trajectory tracking control of quadrotor helicopters
  publication-title: Internat J Robust Nonlinear Control
  doi: 10.1002/rnc.3869
– volume: 33
  start-page: 3655
  issue: 4
  year: 2018
  ident: 10.1016/j.mechatronics.2022.102832_b40
  article-title: Torque ripple minimization of PMSM based on robust ILC via adaptive sliding mode control
  publication-title: IEEE Trans Power Electron
  doi: 10.1109/TPEL.2017.2711098
– volume: 119
  start-page: 38
  year: 2018
  ident: 10.1016/j.mechatronics.2022.102832_b17
  article-title: Model-free based adaptive nonsingular fast terminal sliding mode control with time-delay estimation for a 12 DOF multi-functional lower limb exoskeleton
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2018.01.004
– volume: 55
  start-page: 10
  year: 2017
  ident: 10.1016/j.mechatronics.2022.102832_b27
  article-title: Constrained data-driven optimal iterative learning control
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2017.03.003
SSID ssj0017117
Score 2.402628
Snippet This paper investigates an iterative learning approach integrated with sliding mode control method to accomplish passive rehabilitation therapy tasks for...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102832
SubjectTerms Co-simulation
Composite energy function (CEF)
Iterative learning control (ILC)
Sliding mode control (SMC)
Trajectory reconstruction
Upper-limb exoskeleton
Title A learning control scheme for upper-limb exoskeleton via adaptive sliding mode technique
URI https://dx.doi.org/10.1016/j.mechatronics.2022.102832
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwED2VssCA-BTf8sCaNnGc1B4YqgpUQHSBSt0iO7Eh0JaotIiJ344vcaoiMSAxJsop0Yt17y45vwdwwWRsUMbMo1objxkWeTwLUBCAWz4y1E_L7WL3g7g_ZLejaNSAXr0XBscqXe6vcnqZrd2ZtkOzXeR5-8HeAunQMhzmXD5ag3Uaijhqwnr35q4_WP5M6ASl8S5e72FArT1ajnlNdPosK7sZVO-mtFVSLv2dp1a453obtlzRSLrVc-1AQ093YXNFSnAPRl3iDCCeiBs_J7Zx1RNNbFlKFkWhZ944nyiiP9_eXy3Z2KKPfOSSyEwWmPOIrTiRyAia45Cltus-DK-vHnt9z7kmeKlt9uaexcBoHkie-VwyqoygGvsexahk2ij8Eah8RQOmZOyLNOZplhoj8XNoFnAeHkBz-jbVh0BEpCJhuOhEwvZhmqlMRaGmgodSxFKwIxA1RknqJMXR2WKc1LNjL8kqvgnim1T4HkG4jC0qYY0_RV3WryL5sUwSywB_iD_-Z_wJbOBRNc13Cs35bKHPbFUyV-ew1voKzt3a-wYqj-P8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKGYAB8RTl6YE1beI4qT0wVBVVgbYLrZQtshMbAn1EpUVM_HZ8eVRFYqjEmuSU6GLdd5d8_j6EbqnwNciYWUQpbVFNPYvFDggCMINHmthRtl2sP_C7I_oYeEEFtcu9MECrLGp_XtOzal0caRTZbKRJ0ng2twA4NAgHNZcFW2ibem4TeH317xXPw2k6me0uXG3B5aXyaEbymqjoVeRmM6DdTUg9A1zyN0qtIU_nAO0XLSNu5U91iCpqeoT21oQEj1HQwoX9wwsuyOfYjK1qorBpSvEyTdXcGicTidXX7OPdQI1p-fBnIrCIRQoVD5t-E2AMgzUOXim7nqBR537Y7lqFZ4IVmVFvYRGXa8UcwWKbCUqk5kTB1CMpEVRpCb8BpS2JQ6XwbR75LIojrQV8DI0dxtxTVJ3OpuoMYe5Jj2vGmx43U5iiMpaeqwhnruC-4LSGeJmjMCoExcHXYhyWzLG3cD2_IeQ3zPNbQ-4qNs1lNTaKuitfRfhrkYSm_m8Qf_7P-Bu00x32e2HvYfB0gXbhTM7ru0TVxXyprkx_spDX2fr7ARuW5Mc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+learning+control+scheme+for+upper-limb+exoskeleton+via+adaptive+sliding+mode+technique&rft.jtitle=Mechatronics+%28Oxford%29&rft.au=Zhang%2C+Gaowei&rft.au=Wang%2C+Jie&rft.au=Yang%2C+Peng&rft.au=Guo%2C+Shijie&rft.date=2022-10-01&rft.issn=0957-4158&rft.volume=86&rft.spage=102832&rft_id=info:doi/10.1016%2Fj.mechatronics.2022.102832&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mechatronics_2022_102832
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4158&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4158&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4158&client=summon