A learning control scheme for upper-limb exoskeleton via adaptive sliding mode technique
This paper investigates an iterative learning approach integrated with sliding mode control method to accomplish passive rehabilitation therapy tasks for wearable 6 degrees of freedom (DOF) upper-limb exoskeleton. Firstly, the motion data of human body is collected from a healthy subject through VIC...
Saved in:
Published in | Mechatronics (Oxford) Vol. 86; p. 102832 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0957-4158 1873-4006 |
DOI | 10.1016/j.mechatronics.2022.102832 |
Cover
Abstract | This paper investigates an iterative learning approach integrated with sliding mode control method to accomplish passive rehabilitation therapy tasks for wearable 6 degrees of freedom (DOF) upper-limb exoskeleton. Firstly, the motion data of human body is collected from a healthy subject through VICON motion capture system and reasonable trajectories in joint space are generated by fitting functions. Secondly, an iterative learning controller is developed to estimate the iteration-invariant dynamic parameters which are complicated and difficult to be obtained precisely in practice. Note that the identical initial condition (i.i.c) in traditional iterative learning control (ILC) is released by applying the polynomial reconstruction method. Considering the uncertainties and disturbances which affect the system in the form of friction, backlash and unexpected tissue torques from human body, an adaptive law is proposed to estimate the upper bound of the lumped non-periodic disturbances. Based on that, sliding mode controller is conducted to achieve the robustness over the time domain, while the chattering phenomenon is attenuated by applying tanh function. Afterwards, the stability and convergence of the overall system is rigorously proved with a composite energy function (CEF) composed of tracking and estimating errors. Finally, co-simulation and experiment results are presented to demonstrate the effectiveness of the proposed control scheme. |
---|---|
AbstractList | This paper investigates an iterative learning approach integrated with sliding mode control method to accomplish passive rehabilitation therapy tasks for wearable 6 degrees of freedom (DOF) upper-limb exoskeleton. Firstly, the motion data of human body is collected from a healthy subject through VICON motion capture system and reasonable trajectories in joint space are generated by fitting functions. Secondly, an iterative learning controller is developed to estimate the iteration-invariant dynamic parameters which are complicated and difficult to be obtained precisely in practice. Note that the identical initial condition (i.i.c) in traditional iterative learning control (ILC) is released by applying the polynomial reconstruction method. Considering the uncertainties and disturbances which affect the system in the form of friction, backlash and unexpected tissue torques from human body, an adaptive law is proposed to estimate the upper bound of the lumped non-periodic disturbances. Based on that, sliding mode controller is conducted to achieve the robustness over the time domain, while the chattering phenomenon is attenuated by applying tanh function. Afterwards, the stability and convergence of the overall system is rigorously proved with a composite energy function (CEF) composed of tracking and estimating errors. Finally, co-simulation and experiment results are presented to demonstrate the effectiveness of the proposed control scheme. |
ArticleNumber | 102832 |
Author | Yang, Peng Guo, Shijie Zhang, Gaowei Wang, Jie |
Author_xml | – sequence: 1 givenname: Gaowei orcidid: 0000-0002-2884-1325 surname: Zhang fullname: Zhang, Gaowei organization: College of Electronic Information and Automation, Civil Aviation University of China, No. 2898, Jinbei Road, Dongli District, Tianjin, 300300, Tianjin, China – sequence: 2 givenname: Jie orcidid: 0000-0002-8613-3976 surname: Wang fullname: Wang, Jie email: wang_jie@ustb.edu.cn organization: Institute of Artificial Intelligence, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing, 100083, Beijing, China – sequence: 3 givenname: Peng orcidid: 0000-0003-3006-2184 surname: Yang fullname: Yang, Peng organization: School of Artificial Intelligence, Hebei University of Technology, No. 8 Guangrong Road, Hongqiao District, Tianjin, 300130, Tianjin, China – sequence: 4 givenname: Shijie surname: Guo fullname: Guo, Shijie organization: School of Mechanical Engineering, Hebei University of Technology, No. 8 Guangrong Road, Hongqiao District, Tianjin, 300130, Tianjin, China |
BookMark | eNqNkD1PwzAQQC1UJNrCf7DYU2zny2GiKp9SJRaQ2CzHvlCXxA62W8G_J1EZEFOnG07v6e7N0MQ6CwhdUrKghBZX20UHaiOjd9aosGCEsWHBeMpO0JTyMk0yQooJmpIqL5OM5vwMzULYEkJLSsspelviFqS3xr5j5ewganFQG-gAN87jXd-DT1rT1Ri-XPiAFqKzeG8kllr20ewBh9boEe-cBhyHc6z53ME5Om1kG-Did87R6_3dy-oxWT8_PK2W60SxPIsJS6sGOJVcEy4zVjcVA5ISWmdMZtDUPOd5TWpGs1oWpFIFV1o1jaQppJpyns7R9cGrvAvBQyN6bzrpvwUlYmwktuJvIzE2EodGA3zzD1YmymjGENK0xyluDwoYntwb8CIoA1aBNh5UFNqZYzQ_5gqQow |
CitedBy_id | crossref_primary_10_1002_rob_22455 crossref_primary_10_1177_01423312231152936 crossref_primary_10_1080_00207179_2023_2173994 crossref_primary_10_3390_machines11090864 crossref_primary_10_1016_j_cnsns_2024_108085 crossref_primary_10_1007_s40430_023_04411_7 crossref_primary_10_1007_s00521_024_09922_5 crossref_primary_10_1088_2516_1091_acc70a crossref_primary_10_3390_act14010016 crossref_primary_10_61186_joc_17_1_1 crossref_primary_10_3390_machines10111064 |
Cites_doi | 10.1016/j.mechatronics.2020.102373 10.1016/j.mechatronics.2018.03.003 10.1016/j.mechatronics.2021.102554 10.1109/TIE.2016.2638403 10.1109/TMECH.2018.2808235 10.1016/j.automatica.2018.04.011 10.1016/j.automatica.2017.04.016 10.1016/j.automatica.2015.10.038 10.3724/SP.J.1004.2010.00454 10.1016/j.mechatronics.2018.07.003 10.1002/rnc.4437 10.1109/ACCESS.2018.2863384 10.1016/j.jfranklin.2019.08.012 10.1016/j.isatra.2017.01.006 10.1016/S0005-1098(99)00100-4 10.1109/TNNLS.2019.2892157 10.1002/acs.2734 10.1109/TIE.2016.2622665 10.1016/j.isatra.2013.05.003 10.1002/rnc.3861 10.1016/j.robot.2015.09.015 10.1109/TCST.2013.2293498 10.1126/science.aal5054 10.1016/j.neucom.2017.06.055 10.1016/j.mechatronics.2018.06.015 10.1016/S0005-1098(01)00049-8 10.1016/j.automatica.2017.12.031 10.1109/TNSRE.2016.2521160 10.3724/SP.J.1004.2013.00251 10.1016/j.isatra.2017.08.004 10.1002/rnc.4827 10.1016/j.ast.2017.12.031 10.1002/rnc.3869 10.1109/TPEL.2017.2711098 10.1016/j.advengsoft.2018.01.004 10.1016/j.jprocont.2017.03.003 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.mechatronics.2022.102832 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4006 |
ExternalDocumentID | 10_1016_j_mechatronics_2022_102832 S095741582200068X |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61703134; 62022060; 62073234; 62003236; 61972040 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: China Postdoctoral Science Foundation grantid: 2019M650874 funderid: http://dx.doi.org/10.13039/501100002858 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SDP SES SET SEW SPC SPCBC SST SSZ T5K VOH WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c254t-239fe81a8d08a42bf92e0301b42a4efb8585b0b214ba609c68cdcffa13e3d1883 |
IEDL.DBID | AIKHN |
ISSN | 0957-4158 |
IngestDate | Thu Apr 24 22:53:21 EDT 2025 Tue Jul 01 03:54:05 EDT 2025 Fri Feb 23 02:38:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Composite energy function (CEF) Sliding mode control (SMC) Iterative learning control (ILC) Co-simulation Upper-limb exoskeleton Trajectory reconstruction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c254t-239fe81a8d08a42bf92e0301b42a4efb8585b0b214ba609c68cdcffa13e3d1883 |
ORCID | 0000-0002-2884-1325 0000-0003-3006-2184 0000-0002-8613-3976 |
ParticipantIDs | crossref_primary_10_1016_j_mechatronics_2022_102832 crossref_citationtrail_10_1016_j_mechatronics_2022_102832 elsevier_sciencedirect_doi_10_1016_j_mechatronics_2022_102832 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2022 2022-10-00 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: October 2022 |
PublicationDecade | 2020 |
PublicationTitle | Mechatronics (Oxford) |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Yang, Ma, Huang (b41) 2017; 64 Tian, Lu, Zuo, Zong, Zhang (b38) 2018; 28 Chi, Huang, Hou, Jin (b36) 2018; 28 Jin (b26) 2017; 31 Zhang, Yang, Wang, Sun (b9) 2018; 6 Ajjanaromvat, Parnichkun (b24) 2018; 51 Kang, Wang (b6) 2013; 52 Brahmi, Driscoll, El Bojairami, Saad, Brahmi (b5) 2020 Jin (b29) 2018; 94 Zhu, Ming-Xuan, Xiong-Xiong (b44) 2010; 36 Peng, Hou, Wang, Wang (b2) 2018; 44 Sun, Peng, Cheng, Hou, Pan (b10) 2019 Han, Wang, Tian (b17) 2018; 119 Masud, Smith, Isaksson (b13) 2018; 54 Sun, Yan (b42) 2013; 39 Hu, Niu, Wang (b30) 2018; 75 Freeman (b23) 2017; 81 Brahmi, Saad, Ochoa-Luna, Rahman, Brahmi (b8) 2018; 23 Long, Du, Cong, Wang, Zhang, Dong (b7) 2017; 67 Zheng, Hu, Wu (b21) 2018; 53 Chi, Liu, Zhang, Hou, Huang (b27) 2017; 55 Xu, Viswanathan (b33) 2000; 36 Zhang, Fiers, Witte, Jackson, Poggensee, Atkeson (b15) 2017; 356 Masud, Mattsson, Smith, Isaksson (b3) 2020; 69 Verrelli, Tomei, Salis, Bifaretti (b32) 2016; 63 Li, Kang, Xiao, Song (b12) 2017; 64 Li, Liu, Yu (b31) 2018; 90 Zhu, Sun, He (b35) 2011; 8 Wang, Li, Wang (b20) 2016; 42 Li, Ma, Yin, Guo (b11) 2017; 71 Li, Shen, Xu (b34) 2019; 356 Liu, Chen, Ruan, Zheng (b28) 2020; 30 Vamvoudakis, Ferraz (b22) 2017 Shen, Xu (b25) 2019; 29 Young, Ferris (b1) 2017; 25 Liu, Li, Deng (b40) 2018; 33 Jin (b43) 2017; 31 Nagarajan, Aguirre-Ollinger, Goswami (b14) 2016; 75 Brahmi, Saad, Ochoa-Luna, Habibur-Rahman, Brahmi (b19) 2018; 23 Xiang, Chien Chern (b16) 2014; 22 Zhao, Yang, Sun, Dong, Wang, Yang (b37) 2021; 76 Luo, Peng, Wang, Hou (b4) 2019; 30 Xu, Cao (b39) 2001; 37 Zhang, Wang, Tian, Peyrodie, Wang (b18) 2018; 272 Masud (10.1016/j.mechatronics.2022.102832_b13) 2018; 54 Han (10.1016/j.mechatronics.2022.102832_b17) 2018; 119 Verrelli (10.1016/j.mechatronics.2022.102832_b32) 2016; 63 Li (10.1016/j.mechatronics.2022.102832_b11) 2017; 71 Li (10.1016/j.mechatronics.2022.102832_b12) 2017; 64 Liu (10.1016/j.mechatronics.2022.102832_b40) 2018; 33 Wang (10.1016/j.mechatronics.2022.102832_b20) 2016; 42 Peng (10.1016/j.mechatronics.2022.102832_b2) 2018; 44 Xu (10.1016/j.mechatronics.2022.102832_b39) 2001; 37 Sun (10.1016/j.mechatronics.2022.102832_b42) 2013; 39 Xiang (10.1016/j.mechatronics.2022.102832_b16) 2014; 22 Brahmi (10.1016/j.mechatronics.2022.102832_b5) 2020 Chi (10.1016/j.mechatronics.2022.102832_b27) 2017; 55 Li (10.1016/j.mechatronics.2022.102832_b31) 2018; 90 Shen (10.1016/j.mechatronics.2022.102832_b25) 2019; 29 Yang (10.1016/j.mechatronics.2022.102832_b41) 2017; 64 Zhu (10.1016/j.mechatronics.2022.102832_b44) 2010; 36 Li (10.1016/j.mechatronics.2022.102832_b34) 2019; 356 Jin (10.1016/j.mechatronics.2022.102832_b29) 2018; 94 Zhu (10.1016/j.mechatronics.2022.102832_b35) 2011; 8 Long (10.1016/j.mechatronics.2022.102832_b7) 2017; 67 Jin (10.1016/j.mechatronics.2022.102832_b26) 2017; 31 Liu (10.1016/j.mechatronics.2022.102832_b28) 2020; 30 Tian (10.1016/j.mechatronics.2022.102832_b38) 2018; 28 Nagarajan (10.1016/j.mechatronics.2022.102832_b14) 2016; 75 Hu (10.1016/j.mechatronics.2022.102832_b30) 2018; 75 Masud (10.1016/j.mechatronics.2022.102832_b3) 2020; 69 Xu (10.1016/j.mechatronics.2022.102832_b33) 2000; 36 Luo (10.1016/j.mechatronics.2022.102832_b4) 2019; 30 Young (10.1016/j.mechatronics.2022.102832_b1) 2017; 25 Kang (10.1016/j.mechatronics.2022.102832_b6) 2013; 52 Jin (10.1016/j.mechatronics.2022.102832_b43) 2017; 31 Zhang (10.1016/j.mechatronics.2022.102832_b15) 2017; 356 Zhao (10.1016/j.mechatronics.2022.102832_b37) 2021; 76 Zhang (10.1016/j.mechatronics.2022.102832_b18) 2018; 272 Chi (10.1016/j.mechatronics.2022.102832_b36) 2018; 28 Freeman (10.1016/j.mechatronics.2022.102832_b23) 2017; 81 Vamvoudakis (10.1016/j.mechatronics.2022.102832_b22) 2017 Brahmi (10.1016/j.mechatronics.2022.102832_b19) 2018; 23 Sun (10.1016/j.mechatronics.2022.102832_b10) 2019 Brahmi (10.1016/j.mechatronics.2022.102832_b8) 2018; 23 Zhang (10.1016/j.mechatronics.2022.102832_b9) 2018; 6 Ajjanaromvat (10.1016/j.mechatronics.2022.102832_b24) 2018; 51 Zheng (10.1016/j.mechatronics.2022.102832_b21) 2018; 53 |
References_xml | – volume: 64 start-page: 4169 year: 2017 end-page: 4178 ident: b41 article-title: Development and repetitive learning control of lower limb exoskeleton driven by electrohydraulic actuators publication-title: IEEE Trans Ind Electron – volume: 23 start-page: 575 year: 2018 end-page: 585 ident: b8 article-title: Adaptive tracking control of an exoskeleton robot with uncertain dynamics based on estimated time-delay control publication-title: IEEE-Asme Trans Mech – volume: 75 start-page: 245 year: 2018 end-page: 253 ident: b30 article-title: Spacecraft attitude fault-tolerant control based on iterative learning observer and control allocation publication-title: Aerosp Sci Technol – volume: 44 start-page: 2000 year: 2018 end-page: 2010 ident: b2 article-title: Physical interaction methods for rehabilitation and assistive robots publication-title: ACTA Autom Sin – volume: 54 start-page: 78 year: 2018 end-page: 93 ident: b13 article-title: Disturbance observer based dynamic load torque compensator for assistive exoskeletons publication-title: Mechatronics – volume: 23 start-page: 575 year: 2018 end-page: 585 ident: b19 article-title: Adaptive tracking control of an exoskeleton robot with uncertain dynamics based on estimated time-delay control publication-title: IEEE/ASME Trans Mechatronics – volume: 39 start-page: 251 year: 2013 end-page: 262 ident: b42 article-title: Error tracking of iterative learning control systems publication-title: ACTA Autom Sin – volume: 356 start-page: 1280 year: 2017 end-page: 1283 ident: b15 article-title: Human-in-the-loop optimization of exoskeleton assistance during walking publication-title: Science – volume: 64 start-page: 5171 year: 2017 end-page: 5181 ident: b12 article-title: Human-robot coordination control of robotic exoskeletons by skill transfers publication-title: IEEE Trans Ind Electron – volume: 8 start-page: 403 year: 2011 end-page: 410 ident: b35 article-title: Iterative learning control of strict-feedback nonlinear time-varying systems publication-title: Acta Autom Sin (in Chinese) – volume: 22 start-page: 1032 year: 2014 end-page: 1043 ident: b16 article-title: Adaptive neural network control of robot based on a unified objective bound publication-title: IEEE Trans Control Syst Technol – volume: 51 start-page: 85 year: 2018 end-page: 96 ident: b24 article-title: Trajectory tracking using online learning LQR with adaptive learning control of a leg-exoskeleton for disorder gait rehabilitation publication-title: Mechatronics – volume: 30 start-page: 3433 year: 2019 end-page: 3443 ident: b4 article-title: A greedy assist-as-needed controller for upper limb rehabilitation publication-title: IEEE Trans Neural Netw Learn Syst – volume: 25 start-page: 171 year: 2017 end-page: 182 ident: b1 article-title: State of the art and future directions for lower limb robotic exoskeletons publication-title: IEEE Trans Neural Syst Rehabil Eng – volume: 63 start-page: 274 year: 2016 end-page: 286 ident: b32 article-title: Repetitive learning position control for full order model permanent magnet step motors publication-title: Automatica – volume: 71 start-page: 458 year: 2017 end-page: 466 ident: b11 article-title: Tracking control of time-varying knee exoskeleton disturbed by interaction torque publication-title: ISA Trans – year: 2020 ident: b5 article-title: Novel adaptive impedance control for exoskeleton robot for rehabilitation using a nonlinear time-delay disturbance observer publication-title: ISA Trans – volume: 53 start-page: 262 year: 2018 end-page: 276 ident: b21 article-title: Model-free development of control systems for a multi-degree-of-freedom robot publication-title: Mechatronics – volume: 81 start-page: 270 year: 2017 end-page: 278 ident: b23 article-title: Robust ILC design with application to stroke rehabilitation publication-title: Automatica – volume: 76 year: 2021 ident: b37 article-title: Sliding mode control combined with extended state observer for an ankle exoskeleton driven by electrical motor publication-title: Mechatronics – volume: 55 start-page: 10 year: 2017 end-page: 29 ident: b27 article-title: Constrained data-driven optimal iterative learning control publication-title: J Process Control – start-page: 1 year: 2019 end-page: 8 ident: b10 article-title: Composite learning enhanced robot impedance control publication-title: IEEE Trans Neural Netw Learn Syst – volume: 52 start-page: 844 year: 2013 end-page: 852 ident: b6 article-title: Adaptive control of 5 DOF upper-limb exoskeleton robot with improved safety publication-title: ISA Trans – volume: 37 start-page: 997 year: 2001 end-page: 1006 ident: b39 article-title: Learning variable structure control approaches for repeatable tracking control tasks publication-title: Automatica – volume: 75 start-page: 310 year: 2016 end-page: 324 ident: b14 article-title: Integral admittance shaping: A unified framework for active exoskeleton control publication-title: Robot Auton Syst – volume: 272 start-page: 178 year: 2018 end-page: 188 ident: b18 article-title: Model-free based neural network control with time-delay estimation for lower extremity exoskeleton publication-title: Neurocomputing – volume: 42 start-page: 1899 year: 2016 end-page: 1914 ident: b20 article-title: Active interaction exercise control of exoskeleton upper-limb rehabilitation robot using model-free adaptive methods publication-title: ACTA Autom Sin – volume: 28 start-page: 103 year: 2018 end-page: 119 ident: b36 article-title: Data-driven high-order terminal iterative learning control with a faster convergence speed publication-title: Internat J Robust Nonlinear Control – volume: 119 start-page: 38 year: 2018 end-page: 47 ident: b17 article-title: Model-free based adaptive nonsingular fast terminal sliding mode control with time-delay estimation for a 12 DOF multi-functional lower limb exoskeleton publication-title: Adv Eng Softw – volume: 31 start-page: 859 year: 2017 end-page: 875 ident: b43 article-title: Iterative learning control for non-repetitive trajectory tracking of robot manipulators with joint position constraints and actuator faults publication-title: Internat J Adapt Control Signal Process – volume: 31 start-page: 859 year: 2017 end-page: 875 ident: b26 article-title: Iterative learning control for non-repetitive trajectory tracking of robot manipulators with joint position constraints and actuator faults publication-title: Internat J Adapt Control Signal Process – volume: 90 start-page: 1 year: 2018 end-page: 7 ident: b31 article-title: Iterative learning impedance control for rehabilitation robots driven by series elastic actuators publication-title: Automatica – volume: 356 start-page: 9206 year: 2019 end-page: 9231 ident: b34 article-title: Adaptive iterative learning control for MIMO nonlinear systems performing iteration-varying tasks publication-title: J Franklin Inst B – volume: 29 start-page: 1302 year: 2019 end-page: 1324 ident: b25 article-title: Robust learning control for nonlinear systems with nonparametric uncertainties and nonuniform trial lengths publication-title: Internat J Robust Nonlinear Control – volume: 94 start-page: 63 year: 2018 end-page: 71 ident: b29 article-title: Fault-tolerant iterative learning control for mobile robots non-repetitive trajectory tracking with output constraints publication-title: Automatica – volume: 36 start-page: 91 year: 2000 end-page: 99 ident: b33 article-title: Adaptive robust iterative learning control with dead zone scheme publication-title: Automatica – volume: 67 start-page: 389 year: 2017 end-page: 397 ident: b7 article-title: Active disturbance rejection control based human gait tracking for lower extremity rehabilitation exoskeleton publication-title: ISA Trans – year: 2017 ident: b22 article-title: Model-free event-triggered control algorithm for continuous-time linear systems with optimal performance publication-title: Automatica – volume: 28 start-page: 281 year: 2018 end-page: 295 ident: b38 article-title: Multivariable finite-time output feedback trajectory tracking control of quadrotor helicopters publication-title: Internat J Robust Nonlinear Control – volume: 69 year: 2020 ident: b3 article-title: On stability and performance of disturbance observer-based-dynamic load torque compensator for assistive exoskeleton: A hybrid approach publication-title: Mechatronics – volume: 6 start-page: 43213 year: 2018 end-page: 43221 ident: b9 article-title: Multivariable finite-time control of 5 DOF upper-limb exoskeleton based on linear extended observer publication-title: IEEE Access – volume: 36 start-page: 454 year: 2010 end-page: 458 ident: b44 article-title: Iterative learning control of strict-feedback nonlinear time-varying systems publication-title: ACTA Autom Sin – volume: 33 start-page: 3655 year: 2018 end-page: 3671 ident: b40 article-title: Torque ripple minimization of PMSM based on robust ILC via adaptive sliding mode control publication-title: IEEE Trans Power Electron – volume: 30 start-page: 1275 year: 2020 end-page: 1297 ident: b28 article-title: Data-based iterative learning mechanism for unknown input-output coupling parameters/matrices publication-title: Internat J Robust Nonlinear Control – volume: 69 year: 2020 ident: 10.1016/j.mechatronics.2022.102832_b3 article-title: On stability and performance of disturbance observer-based-dynamic load torque compensator for assistive exoskeleton: A hybrid approach publication-title: Mechatronics doi: 10.1016/j.mechatronics.2020.102373 – volume: 51 start-page: 85 year: 2018 ident: 10.1016/j.mechatronics.2022.102832_b24 article-title: Trajectory tracking using online learning LQR with adaptive learning control of a leg-exoskeleton for disorder gait rehabilitation publication-title: Mechatronics doi: 10.1016/j.mechatronics.2018.03.003 – volume: 76 year: 2021 ident: 10.1016/j.mechatronics.2022.102832_b37 article-title: Sliding mode control combined with extended state observer for an ankle exoskeleton driven by electrical motor publication-title: Mechatronics doi: 10.1016/j.mechatronics.2021.102554 – volume: 64 start-page: 5171 issue: 6 year: 2017 ident: 10.1016/j.mechatronics.2022.102832_b12 article-title: Human-robot coordination control of robotic exoskeletons by skill transfers publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2016.2638403 – volume: 23 start-page: 575 issue: 2 year: 2018 ident: 10.1016/j.mechatronics.2022.102832_b19 article-title: Adaptive tracking control of an exoskeleton robot with uncertain dynamics based on estimated time-delay control publication-title: IEEE/ASME Trans Mechatronics doi: 10.1109/TMECH.2018.2808235 – start-page: 1 year: 2019 ident: 10.1016/j.mechatronics.2022.102832_b10 article-title: Composite learning enhanced robot impedance control publication-title: IEEE Trans Neural Netw Learn Syst – volume: 94 start-page: 63 year: 2018 ident: 10.1016/j.mechatronics.2022.102832_b29 article-title: Fault-tolerant iterative learning control for mobile robots non-repetitive trajectory tracking with output constraints publication-title: Automatica doi: 10.1016/j.automatica.2018.04.011 – volume: 81 start-page: 270 year: 2017 ident: 10.1016/j.mechatronics.2022.102832_b23 article-title: Robust ILC design with application to stroke rehabilitation publication-title: Automatica doi: 10.1016/j.automatica.2017.04.016 – volume: 63 start-page: 274 year: 2016 ident: 10.1016/j.mechatronics.2022.102832_b32 article-title: Repetitive learning position control for full order model permanent magnet step motors publication-title: Automatica doi: 10.1016/j.automatica.2015.10.038 – volume: 36 start-page: 454 issue: 3 year: 2010 ident: 10.1016/j.mechatronics.2022.102832_b44 article-title: Iterative learning control of strict-feedback nonlinear time-varying systems publication-title: ACTA Autom Sin doi: 10.3724/SP.J.1004.2010.00454 – volume: 54 start-page: 78 year: 2018 ident: 10.1016/j.mechatronics.2022.102832_b13 article-title: Disturbance observer based dynamic load torque compensator for assistive exoskeletons publication-title: Mechatronics doi: 10.1016/j.mechatronics.2018.07.003 – volume: 29 start-page: 1302 issue: 5 year: 2019 ident: 10.1016/j.mechatronics.2022.102832_b25 article-title: Robust learning control for nonlinear systems with nonparametric uncertainties and nonuniform trial lengths publication-title: Internat J Robust Nonlinear Control doi: 10.1002/rnc.4437 – volume: 6 start-page: 43213 year: 2018 ident: 10.1016/j.mechatronics.2022.102832_b9 article-title: Multivariable finite-time control of 5 DOF upper-limb exoskeleton based on linear extended observer publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2863384 – volume: 356 start-page: 9206 issue: 16 year: 2019 ident: 10.1016/j.mechatronics.2022.102832_b34 article-title: Adaptive iterative learning control for MIMO nonlinear systems performing iteration-varying tasks publication-title: J Franklin Inst B doi: 10.1016/j.jfranklin.2019.08.012 – volume: 67 start-page: 389 year: 2017 ident: 10.1016/j.mechatronics.2022.102832_b7 article-title: Active disturbance rejection control based human gait tracking for lower extremity rehabilitation exoskeleton publication-title: ISA Trans doi: 10.1016/j.isatra.2017.01.006 – volume: 36 start-page: 91 issue: 1 year: 2000 ident: 10.1016/j.mechatronics.2022.102832_b33 article-title: Adaptive robust iterative learning control with dead zone scheme publication-title: Automatica doi: 10.1016/S0005-1098(99)00100-4 – volume: 30 start-page: 3433 issue: 11 year: 2019 ident: 10.1016/j.mechatronics.2022.102832_b4 article-title: A greedy assist-as-needed controller for upper limb rehabilitation publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2019.2892157 – volume: 31 start-page: 859 issue: 6 year: 2017 ident: 10.1016/j.mechatronics.2022.102832_b26 article-title: Iterative learning control for non-repetitive trajectory tracking of robot manipulators with joint position constraints and actuator faults publication-title: Internat J Adapt Control Signal Process doi: 10.1002/acs.2734 – volume: 64 start-page: 4169 issue: 5 year: 2017 ident: 10.1016/j.mechatronics.2022.102832_b41 article-title: Development and repetitive learning control of lower limb exoskeleton driven by electrohydraulic actuators publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2016.2622665 – year: 2020 ident: 10.1016/j.mechatronics.2022.102832_b5 article-title: Novel adaptive impedance control for exoskeleton robot for rehabilitation using a nonlinear time-delay disturbance observer publication-title: ISA Trans – volume: 52 start-page: 844 issue: 6 year: 2013 ident: 10.1016/j.mechatronics.2022.102832_b6 article-title: Adaptive control of 5 DOF upper-limb exoskeleton robot with improved safety publication-title: ISA Trans doi: 10.1016/j.isatra.2013.05.003 – volume: 28 start-page: 103 issue: 1 year: 2018 ident: 10.1016/j.mechatronics.2022.102832_b36 article-title: Data-driven high-order terminal iterative learning control with a faster convergence speed publication-title: Internat J Robust Nonlinear Control doi: 10.1002/rnc.3861 – volume: 75 start-page: 310 year: 2016 ident: 10.1016/j.mechatronics.2022.102832_b14 article-title: Integral admittance shaping: A unified framework for active exoskeleton control publication-title: Robot Auton Syst doi: 10.1016/j.robot.2015.09.015 – volume: 44 start-page: 2000 issue: 11 year: 2018 ident: 10.1016/j.mechatronics.2022.102832_b2 article-title: Physical interaction methods for rehabilitation and assistive robots publication-title: ACTA Autom Sin – volume: 22 start-page: 1032 issue: 3 year: 2014 ident: 10.1016/j.mechatronics.2022.102832_b16 article-title: Adaptive neural network control of robot based on a unified objective bound publication-title: IEEE Trans Control Syst Technol doi: 10.1109/TCST.2013.2293498 – volume: 356 start-page: 1280 issue: 6344 year: 2017 ident: 10.1016/j.mechatronics.2022.102832_b15 article-title: Human-in-the-loop optimization of exoskeleton assistance during walking publication-title: Science doi: 10.1126/science.aal5054 – volume: 272 start-page: 178 year: 2018 ident: 10.1016/j.mechatronics.2022.102832_b18 article-title: Model-free based neural network control with time-delay estimation for lower extremity exoskeleton publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.06.055 – volume: 42 start-page: 1899 issue: 12 year: 2016 ident: 10.1016/j.mechatronics.2022.102832_b20 article-title: Active interaction exercise control of exoskeleton upper-limb rehabilitation robot using model-free adaptive methods publication-title: ACTA Autom Sin – volume: 53 start-page: 262 issue: 1 year: 2018 ident: 10.1016/j.mechatronics.2022.102832_b21 article-title: Model-free development of control systems for a multi-degree-of-freedom robot publication-title: Mechatronics doi: 10.1016/j.mechatronics.2018.06.015 – year: 2017 ident: 10.1016/j.mechatronics.2022.102832_b22 article-title: Model-free event-triggered control algorithm for continuous-time linear systems with optimal performance publication-title: Automatica – volume: 37 start-page: 997 year: 2001 ident: 10.1016/j.mechatronics.2022.102832_b39 article-title: Learning variable structure control approaches for repeatable tracking control tasks publication-title: Automatica doi: 10.1016/S0005-1098(01)00049-8 – volume: 90 start-page: 1 year: 2018 ident: 10.1016/j.mechatronics.2022.102832_b31 article-title: Iterative learning impedance control for rehabilitation robots driven by series elastic actuators publication-title: Automatica doi: 10.1016/j.automatica.2017.12.031 – volume: 8 start-page: 403 issue: 4 year: 2011 ident: 10.1016/j.mechatronics.2022.102832_b35 article-title: Iterative learning control of strict-feedback nonlinear time-varying systems publication-title: Acta Autom Sin (in Chinese) – volume: 25 start-page: 171 issue: 2 year: 2017 ident: 10.1016/j.mechatronics.2022.102832_b1 article-title: State of the art and future directions for lower limb robotic exoskeletons publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2016.2521160 – volume: 39 start-page: 251 issue: 3 year: 2013 ident: 10.1016/j.mechatronics.2022.102832_b42 article-title: Error tracking of iterative learning control systems publication-title: ACTA Autom Sin doi: 10.3724/SP.J.1004.2013.00251 – volume: 31 start-page: 859 issue: 6 year: 2017 ident: 10.1016/j.mechatronics.2022.102832_b43 article-title: Iterative learning control for non-repetitive trajectory tracking of robot manipulators with joint position constraints and actuator faults publication-title: Internat J Adapt Control Signal Process doi: 10.1002/acs.2734 – volume: 23 start-page: 575 issue: 2 year: 2018 ident: 10.1016/j.mechatronics.2022.102832_b8 article-title: Adaptive tracking control of an exoskeleton robot with uncertain dynamics based on estimated time-delay control publication-title: IEEE-Asme Trans Mech doi: 10.1109/TMECH.2018.2808235 – volume: 71 start-page: 458 year: 2017 ident: 10.1016/j.mechatronics.2022.102832_b11 article-title: Tracking control of time-varying knee exoskeleton disturbed by interaction torque publication-title: ISA Trans doi: 10.1016/j.isatra.2017.08.004 – volume: 30 start-page: 1275 issue: 3 year: 2020 ident: 10.1016/j.mechatronics.2022.102832_b28 article-title: Data-based iterative learning mechanism for unknown input-output coupling parameters/matrices publication-title: Internat J Robust Nonlinear Control doi: 10.1002/rnc.4827 – volume: 75 start-page: 245 year: 2018 ident: 10.1016/j.mechatronics.2022.102832_b30 article-title: Spacecraft attitude fault-tolerant control based on iterative learning observer and control allocation publication-title: Aerosp Sci Technol doi: 10.1016/j.ast.2017.12.031 – volume: 28 start-page: 281 issue: 1 year: 2018 ident: 10.1016/j.mechatronics.2022.102832_b38 article-title: Multivariable finite-time output feedback trajectory tracking control of quadrotor helicopters publication-title: Internat J Robust Nonlinear Control doi: 10.1002/rnc.3869 – volume: 33 start-page: 3655 issue: 4 year: 2018 ident: 10.1016/j.mechatronics.2022.102832_b40 article-title: Torque ripple minimization of PMSM based on robust ILC via adaptive sliding mode control publication-title: IEEE Trans Power Electron doi: 10.1109/TPEL.2017.2711098 – volume: 119 start-page: 38 year: 2018 ident: 10.1016/j.mechatronics.2022.102832_b17 article-title: Model-free based adaptive nonsingular fast terminal sliding mode control with time-delay estimation for a 12 DOF multi-functional lower limb exoskeleton publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2018.01.004 – volume: 55 start-page: 10 year: 2017 ident: 10.1016/j.mechatronics.2022.102832_b27 article-title: Constrained data-driven optimal iterative learning control publication-title: J Process Control doi: 10.1016/j.jprocont.2017.03.003 |
SSID | ssj0017117 |
Score | 2.402628 |
Snippet | This paper investigates an iterative learning approach integrated with sliding mode control method to accomplish passive rehabilitation therapy tasks for... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 102832 |
SubjectTerms | Co-simulation Composite energy function (CEF) Iterative learning control (ILC) Sliding mode control (SMC) Trajectory reconstruction Upper-limb exoskeleton |
Title | A learning control scheme for upper-limb exoskeleton via adaptive sliding mode technique |
URI | https://dx.doi.org/10.1016/j.mechatronics.2022.102832 |
Volume | 86 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwED2VssCA-BTf8sCaNnGc1B4YqgpUQHSBSt0iO7Eh0JaotIiJ344vcaoiMSAxJsop0Yt17y45vwdwwWRsUMbMo1objxkWeTwLUBCAWz4y1E_L7WL3g7g_ZLejaNSAXr0XBscqXe6vcnqZrd2ZtkOzXeR5-8HeAunQMhzmXD5ag3Uaijhqwnr35q4_WP5M6ASl8S5e72FArT1ajnlNdPosK7sZVO-mtFVSLv2dp1a453obtlzRSLrVc-1AQ093YXNFSnAPRl3iDCCeiBs_J7Zx1RNNbFlKFkWhZ944nyiiP9_eXy3Z2KKPfOSSyEwWmPOIrTiRyAia45Cltus-DK-vHnt9z7kmeKlt9uaexcBoHkie-VwyqoygGvsexahk2ij8Eah8RQOmZOyLNOZplhoj8XNoFnAeHkBz-jbVh0BEpCJhuOhEwvZhmqlMRaGmgodSxFKwIxA1RknqJMXR2WKc1LNjL8kqvgnim1T4HkG4jC0qYY0_RV3WryL5sUwSywB_iD_-Z_wJbOBRNc13Cs35bKHPbFUyV-ew1voKzt3a-wYqj-P8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKGYAB8RTl6YE1beI4qT0wVBVVgbYLrZQtshMbAn1EpUVM_HZ8eVRFYqjEmuSU6GLdd5d8_j6EbqnwNciYWUQpbVFNPYvFDggCMINHmthRtl2sP_C7I_oYeEEFtcu9MECrLGp_XtOzal0caRTZbKRJ0ng2twA4NAgHNZcFW2ibem4TeH317xXPw2k6me0uXG3B5aXyaEbymqjoVeRmM6DdTUg9A1zyN0qtIU_nAO0XLSNu5U91iCpqeoT21oQEj1HQwoX9wwsuyOfYjK1qorBpSvEyTdXcGicTidXX7OPdQI1p-fBnIrCIRQoVD5t-E2AMgzUOXim7nqBR537Y7lqFZ4IVmVFvYRGXa8UcwWKbCUqk5kTB1CMpEVRpCb8BpS2JQ6XwbR75LIojrQV8DI0dxtxTVJ3OpuoMYe5Jj2vGmx43U5iiMpaeqwhnruC-4LSGeJmjMCoExcHXYhyWzLG3cD2_IeQ3zPNbQ-4qNs1lNTaKuitfRfhrkYSm_m8Qf_7P-Bu00x32e2HvYfB0gXbhTM7ru0TVxXyprkx_spDX2fr7ARuW5Mc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+learning+control+scheme+for+upper-limb+exoskeleton+via+adaptive+sliding+mode+technique&rft.jtitle=Mechatronics+%28Oxford%29&rft.au=Zhang%2C+Gaowei&rft.au=Wang%2C+Jie&rft.au=Yang%2C+Peng&rft.au=Guo%2C+Shijie&rft.date=2022-10-01&rft.issn=0957-4158&rft.volume=86&rft.spage=102832&rft_id=info:doi/10.1016%2Fj.mechatronics.2022.102832&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mechatronics_2022_102832 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4158&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4158&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4158&client=summon |