MIPGAN-Generating Strong and High Quality Morphing Attacks Using Identity Prior Driven GAN
Face morphing attacks target to circumvent Face Recognition Systems (FRS) by employing face images derived from multiple data subjects (e.g., accomplices and malicious actors). Morphed images can be verified against contributing data subjects with a reasonable success rate, given they have a high de...
Saved in:
Published in | IEEE transactions on biometrics, behavior, and identity science Vol. 3; no. 3; pp. 365 - 383 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2637-6407 2637-6407 |
DOI | 10.1109/TBIOM.2021.3072349 |
Cover
Loading…
Abstract | Face morphing attacks target to circumvent Face Recognition Systems (FRS) by employing face images derived from multiple data subjects (e.g., accomplices and malicious actors). Morphed images can be verified against contributing data subjects with a reasonable success rate, given they have a high degree of facial resemblance. The success of morphing attacks is directly dependent on the quality of the generated morph images. We present a new approach for generating strong attacks extending our earlier framework for generating face morphs. We present a new approach using an Identity Prior Driven Generative Adversarial Network, which we refer to as MIPGAN (Morphing through Identity Prior driven GAN) . The proposed MIPGAN is derived from the StyleGAN with a newly formulated loss function exploiting perceptual quality and identity factor to generate a high quality morphed facial image with minimal artefacts and with high resolution. We demonstrate the proposed approach's applicability to generate strong morphing attacks by evaluating its vulnerability against both commercial and deep learning based Face Recognition System (FRS) and demonstrate the success rate of attacks. Extensive experiments are carried out to assess the FRS's vulnerability against the proposed morphed face generation technique on three types of data such as digital images, re-digitized (printed and scanned) images, and compressed images after re-digitization from newly generated MIPGAN Face Morph Dataset . The obtained results demonstrate that the proposed approach of morph generation poses a high threat to FRS. |
---|---|
AbstractList | Face morphing attacks target to circumvent Face Recognition Systems (FRS) by employing face images derived from multiple data subjects (e.g., accomplices and malicious actors). Morphed images can be verified against contributing data subjects with a reasonable success rate, given they have a high degree of facial resemblance. The success of morphing attacks is directly dependent on the quality of the generated morph images. We present a new approach for generating strong attacks extending our earlier framework for generating face morphs. We present a new approach using an Identity Prior Driven Generative Adversarial Network, which we refer to as MIPGAN (Morphing through Identity Prior driven GAN) . The proposed MIPGAN is derived from the StyleGAN with a newly formulated loss function exploiting perceptual quality and identity factor to generate a high quality morphed facial image with minimal artefacts and with high resolution. We demonstrate the proposed approach's applicability to generate strong morphing attacks by evaluating its vulnerability against both commercial and deep learning based Face Recognition System (FRS) and demonstrate the success rate of attacks. Extensive experiments are carried out to assess the FRS's vulnerability against the proposed morphed face generation technique on three types of data such as digital images, re-digitized (printed and scanned) images, and compressed images after re-digitization from newly generated MIPGAN Face Morph Dataset . The obtained results demonstrate that the proposed approach of morph generation poses a high threat to FRS. |
Author | Busch, Christoph Zhang, Haoyu Ramachandra, Raghavendra Raja, Kiran Damer, Naser Venkatesh, Sushma |
Author_xml | – sequence: 1 givenname: Haoyu surname: Zhang fullname: Zhang, Haoyu email: haoyu.zhang@ntnu.no organization: Norwegian University of Science and Technology, Gjøvik, Norway – sequence: 2 givenname: Sushma orcidid: 0000-0002-8557-0314 surname: Venkatesh fullname: Venkatesh, Sushma email: sushma.venkatesh@ntnu.no organization: Norwegian University of Science and Technology, Gjøvik, Norway – sequence: 3 givenname: Raghavendra orcidid: 0000-0003-0484-3956 surname: Ramachandra fullname: Ramachandra, Raghavendra email: raghavendra.ramachandra@ntnu.no organization: Norwegian University of Science and Technology, Gjøvik, Norway – sequence: 4 givenname: Kiran orcidid: 0000-0002-9489-5161 surname: Raja fullname: Raja, Kiran email: kiran.raja@ntnu.no organization: Norwegian University of Science and Technology, Gjøvik, Norway – sequence: 5 givenname: Naser orcidid: 0000-0001-7910-7895 surname: Damer fullname: Damer, Naser email: naser.damer@igd.fraunhofer.de organization: Department of IGD, Fraunhofer Institute for Computer Graphics Research IGD, Darmstadt, Germany – sequence: 6 givenname: Christoph orcidid: 0000-0002-9159-2923 surname: Busch fullname: Busch, Christoph email: christoph.busch@ntnu.no organization: Norwegian University of Science and Technology, Gjøvik, Norway |
BookMark | eNp9kMFOAjEQhhujiYi8gF428bzY7Xa77RFRYRMQjHDx0pRuF4rYxbaY8PZ2hRjjwWSSmcn830zmvwCnpjYKgKsEdpMEstvZXTEZdxFESTeFOUoxOwEtRNI8Jhjmp7_qc9Bxbg0hRBCzEC3wOi6mg95TPFBGWeG1WUYv3tYhCVNGQ71cRc87sdF-H41ru101gp73Qr65aO6ariiV8c18anVto3urP5WJws5LcFaJjVOdY26D-ePDrD-MR5NB0e-NYokyzGKW0qSkLKsqLCUSVZZJGCpCBBUsL8WCpQsqSQmlIBhTQUlWsoSEgVzkiMi0DW4Oe7e2_tgp5_m63lkTTvJwgOQJy2gWVPSgkrZ2zqqKS-3Dw7XxVugNTyBvzOTfZvLGTH40M6DoD7q1-l3Y_f_Q9QHSSqkfgGGIEcnTL1wRgS8 |
CitedBy_id | crossref_primary_10_1109_TBIOM_2024_3417372 crossref_primary_10_1038_s44287_024_00094_x crossref_primary_10_1007_s11042_024_20445_y crossref_primary_10_1049_ipr2_13324 crossref_primary_10_1371_journal_pone_0304610 crossref_primary_10_1049_2023_9353816 crossref_primary_10_1109_ACCESS_2022_3160596 crossref_primary_10_1016_j_imavis_2022_104535 crossref_primary_10_1109_ACCESS_2023_3254539 crossref_primary_10_1109_ACCESS_2025_3548957 crossref_primary_10_3389_fcomp_2023_981933 crossref_primary_10_1109_TBIOM_2024_3391759 crossref_primary_10_1109_TBIOM_2023_3324684 crossref_primary_10_1109_TIFS_2024_3359029 crossref_primary_10_3390_app122412545 crossref_primary_10_1016_j_imavis_2023_104688 crossref_primary_10_1049_ipr2_12962 crossref_primary_10_3390_s24175504 crossref_primary_10_1016_j_knosys_2025_113231 crossref_primary_10_1016_j_neucom_2025_130033 crossref_primary_10_1109_LSP_2024_3397726 crossref_primary_10_1109_TIFS_2022_3212276 crossref_primary_10_1016_j_inffus_2023_102103 crossref_primary_10_1109_TBIOM_2024_3390056 crossref_primary_10_1109_ACCESS_2022_3196773 crossref_primary_10_3390_math11061345 crossref_primary_10_1109_TPAMI_2024_3362821 crossref_primary_10_1109_TBIOM_2021_3115465 crossref_primary_10_1109_TTS_2022_3231450 crossref_primary_10_3390_s21103466 crossref_primary_10_1109_ACCESS_2023_3261247 crossref_primary_10_1109_TBIOM_2024_3349857 |
Cites_doi | 10.1109/IWBF49977.2020.9107970 10.23919/BIOSIG.2017.8053499 10.1109/AFGR.1996.557254 10.1109/ACCESS.2019.2899367 10.23919/FUSION45008.2020.9190629 10.1145/3082031.3083244 10.1109/CVPR.2005.268 10.1109/IPTA.2019.8936088 10.1007/978-3-319-46475-6_43 10.23919/EUSIPCO.2019.8902533 10.1145/218380.218501 10.1109/CVPR.2019.00482 10.1109/ICTAI.2018.00143 10.1109/CVPR.2019.00453 10.1109/BTAS.2016.7791169 10.1109/ICCV.2019.00009 10.1007/978-3-319-64185-0_9 10.1109/TTS.2021.3066254 10.23919/EUSIPCO.2018.8553116 10.1109/ACCESS.2020.2994112 10.1109/CVPR42600.2020.00813 10.1145/1360612.1360638 10.1109/IWBF.2017.7935088 10.1145/142920.134003 10.1145/1141911.1141920 10.1109/BTAS.2014.6996240 10.1109/TIFS.2020.3035252 10.1109/FG.2018.00020 10.1111/cgf.12214 10.5220/0006131100390050 10.1109/ISBA.2019.8778488 10.1109/BTAS.2018.8698563 10.1109/CVPRW50498.2020.00344 10.1109/TIFS.2018.2833032 10.1109/ACSSC.2003.1292216 10.1109/CVPRW.2017.228 10.1109/BTAS.2017.8272742 10.1109/CVPR.2016.90 10.1109/BTAS46853.2019.9185994 10.1109/IWBF.2017.7935087 10.1109/ACCESS.2019.2920713 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TBIOM.2021.3072349 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2637-6407 |
EndPage | 383 |
ExternalDocumentID | 10_1109_TBIOM_2021_3072349 9404267 |
Genre | orig-research |
GrantInformation_xml | – fundername: European Union’s Horizon 2020 Research and Innovation Programme grantid: 883356 |
GroupedDBID | 0R~ 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL IFIPE JAVBF OCL RIA RIE AAYXX CITATION 7SP 8FD L7M |
ID | FETCH-LOGICAL-c2549-9381d895ff4cc2af55c04cc66a8a97dab93b8c6d0ca6448a865d916dabcb726c3 |
IEDL.DBID | RIE |
ISSN | 2637-6407 |
IngestDate | Mon Jun 30 07:11:44 EDT 2025 Tue Jul 01 02:43:54 EDT 2025 Thu Apr 24 22:56:14 EDT 2025 Wed Aug 27 02:26:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2549-9381d895ff4cc2af55c04cc66a8a97dab93b8c6d0ca6448a865d916dabcb726c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0484-3956 0000-0002-9489-5161 0000-0002-9159-2923 0000-0002-8557-0314 0000-0001-7910-7895 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9404267 |
PQID | 2546719585 |
PQPubID | 4437219 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2546719585 ieee_primary_9404267 crossref_citationtrail_10_1109_TBIOM_2021_3072349 crossref_primary_10_1109_TBIOM_2021_3072349 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on biometrics, behavior, and identity science |
PublicationTitleAbbrev | TBIOM |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref59 ref58 ref14 ref53 ref54 venkatesh (ref41) 2020 ref17 ref16 ref19 wu (ref18) 2011 gmbh (ref30) 2020 majumdar (ref55) 2019 seibold (ref57) 2019 (ref37) 2020 ref51 (ref26) 2015 raghavendra (ref2) 2017; 50 ref45 ref47 ref43 ferrara (ref44) 2019 ref49 (ref10) 2020 ref8 ref7 ref4 ref3 ref6 ref5 ref40 ref35 (ref48) 2020 ref34 abdal (ref42) 2019 ref36 ref31 ref33 ref32 ref1 ref39 (ref25) 2020 (ref11) 2020 (ref50) 2015 (ref64) 2017 ferrara (ref56) 2019 choi (ref15) 2011 ref24 ref23 ref20 ref63 ref22 ref21 ref28 ref29 (ref27) 2015 ref60 ref62 karras (ref38) 2019 ref61 kingma (ref46) 2014 (ref9) 2020 (ref52) 2015 |
References_xml | – ident: ref1 doi: 10.1109/IWBF49977.2020.9107970 – ident: ref8 doi: 10.23919/BIOSIG.2017.8053499 – ident: ref16 doi: 10.1109/AFGR.1996.557254 – ident: ref24 doi: 10.1109/ACCESS.2019.2899367 – ident: ref36 doi: 10.23919/FUSION45008.2020.9190629 – ident: ref62 doi: 10.1145/3082031.3083244 – ident: ref33 doi: 10.1109/CVPR.2005.268 – ident: ref34 doi: 10.1109/IPTA.2019.8936088 – start-page: 11 year: 2019 ident: ref55 article-title: Evading face recognition via partial tampering of faces publication-title: Proc IEEE/CVF Conf Comput Vis Pattern Recognit Workshops (CVPRW) – ident: ref43 doi: 10.1007/978-3-319-46475-6_43 – year: 2015 ident: ref27 publication-title: Machine Readable Passports-Part 9-Deployment of Biometric Identification and Electronic Storage of Data in eMRTDs – ident: ref58 doi: 10.23919/EUSIPCO.2019.8902533 – year: 2017 ident: ref64 – year: 2020 ident: ref11 publication-title: Photo for a Passport or Identity-Card Netherlands – ident: ref12 doi: 10.1145/218380.218501 – year: 2020 ident: ref48 publication-title: DNP Printer – start-page: 1 year: 2019 ident: ref57 article-title: Style your face morph and improve your face morphing attack detector publication-title: Proc Int Conf Biometr Spec Interest Group (BIOSIG) – ident: ref31 doi: 10.1109/CVPR.2019.00482 – year: 2015 ident: ref26 publication-title: Machine Readable Passports-Part 1-Introduction – year: 2011 ident: ref15 publication-title: Image morphing using mass-spring system – ident: ref40 doi: 10.1109/ICTAI.2018.00143 – year: 2020 ident: ref10 publication-title: Department of Internal Affairs (DIA) New Zealand – ident: ref29 doi: 10.1109/CVPR.2019.00453 – year: 2019 ident: ref42 publication-title: Image2stylegan++ How to edit the embedded images? – ident: ref5 doi: 10.1109/BTAS.2016.7791169 – year: 2015 ident: ref52 publication-title: Best Practice Technical Guidelines for Automated Border Control (ABC) Systems – ident: ref53 doi: 10.1109/ICCV.2019.00009 – year: 2020 ident: ref25 publication-title: Abrosoft FantaMorph – ident: ref20 doi: 10.1007/978-3-319-64185-0_9 – year: 2011 ident: ref18 article-title: Face recognition jammer using image morphing – ident: ref63 doi: 10.1109/TTS.2021.3066254 – ident: ref61 doi: 10.23919/EUSIPCO.2018.8553116 – year: 2019 ident: ref56 publication-title: Face morphing detection in the presence of printing/scanning and heterogeneous image sources – ident: ref59 doi: 10.1109/ACCESS.2020.2994112 – ident: ref32 doi: 10.1109/CVPR42600.2020.00813 – ident: ref22 doi: 10.1145/1360612.1360638 – ident: ref21 doi: 10.1109/IWBF.2017.7935088 – ident: ref13 doi: 10.1145/142920.134003 – year: 2019 ident: ref38 publication-title: Analyzing and improving the image quality of StyleGAN – year: 2015 ident: ref50 publication-title: Verilook cots – ident: ref14 doi: 10.1145/1141911.1141920 – start-page: 1 year: 2020 ident: ref41 article-title: On the influence of ageing on face morph attacks: Vulnerability and detection publication-title: Proc Int Joint Conf Biometr (IJCB) – ident: ref3 doi: 10.1109/BTAS.2014.6996240 – ident: ref6 doi: 10.1109/TIFS.2020.3035252 – ident: ref49 doi: 10.1109/FG.2018.00020 – ident: ref23 doi: 10.1111/cgf.12214 – ident: ref17 doi: 10.5220/0006131100390050 – ident: ref35 doi: 10.1109/ISBA.2019.8778488 – ident: ref28 doi: 10.1109/BTAS.2018.8698563 – year: 2014 ident: ref46 publication-title: Adam A method for stochastic optimization – volume: 50 start-page: 1 year: 2017 ident: ref2 article-title: Presentation attack detection methods for face recognition systems: A comprehensive survey publication-title: ACM Comput Surveys – ident: ref54 doi: 10.1109/CVPRW50498.2020.00344 – ident: ref51 doi: 10.1109/TIFS.2018.2833032 – ident: ref45 doi: 10.1109/ACSSC.2003.1292216 – ident: ref4 doi: 10.1109/CVPRW.2017.228 – start-page: 1 year: 2019 ident: ref44 article-title: Decoupling texture blending and shape warping in face morphing publication-title: Proc Int Conf Biometr Spec Interest Group (BIOSIG) – ident: ref7 doi: 10.1109/BTAS.2017.8272742 – year: 2020 ident: ref37 publication-title: FRVT MORPH Web Site – year: 2020 ident: ref9 publication-title: Gov UK – ident: ref39 doi: 10.1109/CVPR.2016.90 – year: 2020 ident: ref30 publication-title: Facevacs Technology Version 9 4 2 – ident: ref47 doi: 10.1109/BTAS46853.2019.9185994 – ident: ref19 doi: 10.1109/IWBF.2017.7935087 – ident: ref60 doi: 10.1109/ACCESS.2019.2920713 |
SSID | ssj0002049049 |
Score | 2.504857 |
Snippet | Face morphing attacks target to circumvent Face Recognition Systems (FRS) by employing face images derived from multiple data subjects (e.g., accomplices and... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 365 |
SubjectTerms | attack detection deep learning Digital imaging Digitization Face recognition Faces Gallium nitride GAN Generative adversarial networks Image quality Machine learning Manuals Morphing Morphing attack Object recognition Security Success Target recognition Visualization vulnerability |
Title | MIPGAN-Generating Strong and High Quality Morphing Attacks Using Identity Prior Driven GAN |
URI | https://ieeexplore.ieee.org/document/9404267 https://www.proquest.com/docview/2546719585 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED-2geCLX1OcTsmDb9qtTT_zOD_mJnQO3GD4UtJrKqJsMruH-deba7shKuJboEkIuWvuLrnf7wDOHGUKKTga2tvghqNNhiERTSNIlfBdnlqxRdjhcOD1xs7dxJ1U4GKNhVFK5clnqkXN_C0_meGCrsrawiGP369CVQduBVZrfZ_C6QnLEStcjCnao8v-fagjQG61tCJzm-gyv9ievJjKjxM4NyvdbQhXCyqySV5aiyxu4cc3rsb_rngHtkr_knUKhdiFipruwUZRcXJZh8ewP7ztDIyCbZpSntkDXYY_MTlNGCV9sIJVY8nCmRYBdehkGQHxWZ5dwEpk75IN58-zObue03HJ9Jz7MO7ejK56RllewUCKCg2hjXUSCDdNHUQuU9dFU7c8TwZS-ImMhR0H6CUmSgriZOC5iXYm9QeMfe6hfQC16WyqDoHpsElZqfadYlROGijtcxHI1cYkRm55bgOs1cZHWHKPUwmM1yiPQUwR5cKKSFhRKawGnK_HvBXMG3_2rtPur3uWG9-A5kq-UflzvkdUAsAnkh336PdRx7BJcxdZuU2oZfOFOtG-Rxaf5kr3CZVq1SI |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2VIgQXtoIoqw_cICVx4yQ-lrUFUpAoEuISORMHIVCLSnooX48nSSsECHGzFDuxPI5n8bw3APuutqWSHC1jbXDLNSrDUoi2FaRa-oKnTuwQdjjseu179_JBPFTgcIqF0VrnyWe6Qc38Lj8Z4IhCZUfSJYvfn4FZQWDcAq01jahwusRy5QQZY8uj3nHnJjQ-IHcaZivzJhFmftE-eTmVH2dwrljOlyCcTKnIJ3lpjLK4gR_f2Br_O-dlWCwtTNYqtsQKVHR_FeaKmpPjGjyGnduLVtcq-KYp6ZndUTj8ial-wijtgxW8GmMWDowQqEMrywiKz_L8AlZie8fsdvg8GLLTIR2YzLxzDe7Pz3onbasssGAh-YWWNOo6CaRIUxeRq1QItE3L81SgpJ-oWDbjAL3ERkVunAo8kRhz0jzA2OceNteh2h_09QYw4zhpJzXWU4zaTQNtrC6CuTYxiZE7nqiDM1n4CEv2cSqC8RrlXogto1xYEQkrKoVVh4PpmLeCe-PP3jVa_WnPcuHrsD2Rb1T-nu8RFQHwiWZHbP4-ag_m273wOrrudK-2YIG-U-TobkM1G470jrFEsng334Cf23bYag |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MIPGAN%E2%80%94Generating+Strong+and+High+Quality+Morphing+Attacks+Using+Identity+Prior+Driven+GAN&rft.jtitle=IEEE+transactions+on+biometrics%2C+behavior%2C+and+identity+science&rft.au=Zhang%2C+Haoyu&rft.au=Venkatesh%2C+Sushma&rft.au=Ramachandra%2C+Raghavendra&rft.au=Raja%2C+Kiran&rft.date=2021-07-01&rft.issn=2637-6407&rft.eissn=2637-6407&rft.volume=3&rft.issue=3&rft.spage=365&rft.epage=383&rft_id=info:doi/10.1109%2FTBIOM.2021.3072349&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBIOM_2021_3072349 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2637-6407&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2637-6407&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2637-6407&client=summon |