MIPGAN-Generating Strong and High Quality Morphing Attacks Using Identity Prior Driven GAN

Face morphing attacks target to circumvent Face Recognition Systems (FRS) by employing face images derived from multiple data subjects (e.g., accomplices and malicious actors). Morphed images can be verified against contributing data subjects with a reasonable success rate, given they have a high de...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biometrics, behavior, and identity science Vol. 3; no. 3; pp. 365 - 383
Main Authors Zhang, Haoyu, Venkatesh, Sushma, Ramachandra, Raghavendra, Raja, Kiran, Damer, Naser, Busch, Christoph
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2637-6407
2637-6407
DOI10.1109/TBIOM.2021.3072349

Cover

Loading…
Abstract Face morphing attacks target to circumvent Face Recognition Systems (FRS) by employing face images derived from multiple data subjects (e.g., accomplices and malicious actors). Morphed images can be verified against contributing data subjects with a reasonable success rate, given they have a high degree of facial resemblance. The success of morphing attacks is directly dependent on the quality of the generated morph images. We present a new approach for generating strong attacks extending our earlier framework for generating face morphs. We present a new approach using an Identity Prior Driven Generative Adversarial Network, which we refer to as MIPGAN (Morphing through Identity Prior driven GAN) . The proposed MIPGAN is derived from the StyleGAN with a newly formulated loss function exploiting perceptual quality and identity factor to generate a high quality morphed facial image with minimal artefacts and with high resolution. We demonstrate the proposed approach's applicability to generate strong morphing attacks by evaluating its vulnerability against both commercial and deep learning based Face Recognition System (FRS) and demonstrate the success rate of attacks. Extensive experiments are carried out to assess the FRS's vulnerability against the proposed morphed face generation technique on three types of data such as digital images, re-digitized (printed and scanned) images, and compressed images after re-digitization from newly generated MIPGAN Face Morph Dataset . The obtained results demonstrate that the proposed approach of morph generation poses a high threat to FRS.
AbstractList Face morphing attacks target to circumvent Face Recognition Systems (FRS) by employing face images derived from multiple data subjects (e.g., accomplices and malicious actors). Morphed images can be verified against contributing data subjects with a reasonable success rate, given they have a high degree of facial resemblance. The success of morphing attacks is directly dependent on the quality of the generated morph images. We present a new approach for generating strong attacks extending our earlier framework for generating face morphs. We present a new approach using an Identity Prior Driven Generative Adversarial Network, which we refer to as MIPGAN (Morphing through Identity Prior driven GAN) . The proposed MIPGAN is derived from the StyleGAN with a newly formulated loss function exploiting perceptual quality and identity factor to generate a high quality morphed facial image with minimal artefacts and with high resolution. We demonstrate the proposed approach's applicability to generate strong morphing attacks by evaluating its vulnerability against both commercial and deep learning based Face Recognition System (FRS) and demonstrate the success rate of attacks. Extensive experiments are carried out to assess the FRS's vulnerability against the proposed morphed face generation technique on three types of data such as digital images, re-digitized (printed and scanned) images, and compressed images after re-digitization from newly generated MIPGAN Face Morph Dataset . The obtained results demonstrate that the proposed approach of morph generation poses a high threat to FRS.
Author Busch, Christoph
Zhang, Haoyu
Ramachandra, Raghavendra
Raja, Kiran
Damer, Naser
Venkatesh, Sushma
Author_xml – sequence: 1
  givenname: Haoyu
  surname: Zhang
  fullname: Zhang, Haoyu
  email: haoyu.zhang@ntnu.no
  organization: Norwegian University of Science and Technology, Gjøvik, Norway
– sequence: 2
  givenname: Sushma
  orcidid: 0000-0002-8557-0314
  surname: Venkatesh
  fullname: Venkatesh, Sushma
  email: sushma.venkatesh@ntnu.no
  organization: Norwegian University of Science and Technology, Gjøvik, Norway
– sequence: 3
  givenname: Raghavendra
  orcidid: 0000-0003-0484-3956
  surname: Ramachandra
  fullname: Ramachandra, Raghavendra
  email: raghavendra.ramachandra@ntnu.no
  organization: Norwegian University of Science and Technology, Gjøvik, Norway
– sequence: 4
  givenname: Kiran
  orcidid: 0000-0002-9489-5161
  surname: Raja
  fullname: Raja, Kiran
  email: kiran.raja@ntnu.no
  organization: Norwegian University of Science and Technology, Gjøvik, Norway
– sequence: 5
  givenname: Naser
  orcidid: 0000-0001-7910-7895
  surname: Damer
  fullname: Damer, Naser
  email: naser.damer@igd.fraunhofer.de
  organization: Department of IGD, Fraunhofer Institute for Computer Graphics Research IGD, Darmstadt, Germany
– sequence: 6
  givenname: Christoph
  orcidid: 0000-0002-9159-2923
  surname: Busch
  fullname: Busch, Christoph
  email: christoph.busch@ntnu.no
  organization: Norwegian University of Science and Technology, Gjøvik, Norway
BookMark eNp9kMFOAjEQhhujiYi8gF428bzY7Xa77RFRYRMQjHDx0pRuF4rYxbaY8PZ2hRjjwWSSmcn830zmvwCnpjYKgKsEdpMEstvZXTEZdxFESTeFOUoxOwEtRNI8Jhjmp7_qc9Bxbg0hRBCzEC3wOi6mg95TPFBGWeG1WUYv3tYhCVNGQ71cRc87sdF-H41ru101gp73Qr65aO6ariiV8c18anVto3urP5WJws5LcFaJjVOdY26D-ePDrD-MR5NB0e-NYokyzGKW0qSkLKsqLCUSVZZJGCpCBBUsL8WCpQsqSQmlIBhTQUlWsoSEgVzkiMi0DW4Oe7e2_tgp5_m63lkTTvJwgOQJy2gWVPSgkrZ2zqqKS-3Dw7XxVugNTyBvzOTfZvLGTH40M6DoD7q1-l3Y_f_Q9QHSSqkfgGGIEcnTL1wRgS8
CitedBy_id crossref_primary_10_1109_TBIOM_2024_3417372
crossref_primary_10_1038_s44287_024_00094_x
crossref_primary_10_1007_s11042_024_20445_y
crossref_primary_10_1049_ipr2_13324
crossref_primary_10_1371_journal_pone_0304610
crossref_primary_10_1049_2023_9353816
crossref_primary_10_1109_ACCESS_2022_3160596
crossref_primary_10_1016_j_imavis_2022_104535
crossref_primary_10_1109_ACCESS_2023_3254539
crossref_primary_10_1109_ACCESS_2025_3548957
crossref_primary_10_3389_fcomp_2023_981933
crossref_primary_10_1109_TBIOM_2024_3391759
crossref_primary_10_1109_TBIOM_2023_3324684
crossref_primary_10_1109_TIFS_2024_3359029
crossref_primary_10_3390_app122412545
crossref_primary_10_1016_j_imavis_2023_104688
crossref_primary_10_1049_ipr2_12962
crossref_primary_10_3390_s24175504
crossref_primary_10_1016_j_knosys_2025_113231
crossref_primary_10_1016_j_neucom_2025_130033
crossref_primary_10_1109_LSP_2024_3397726
crossref_primary_10_1109_TIFS_2022_3212276
crossref_primary_10_1016_j_inffus_2023_102103
crossref_primary_10_1109_TBIOM_2024_3390056
crossref_primary_10_1109_ACCESS_2022_3196773
crossref_primary_10_3390_math11061345
crossref_primary_10_1109_TPAMI_2024_3362821
crossref_primary_10_1109_TBIOM_2021_3115465
crossref_primary_10_1109_TTS_2022_3231450
crossref_primary_10_3390_s21103466
crossref_primary_10_1109_ACCESS_2023_3261247
crossref_primary_10_1109_TBIOM_2024_3349857
Cites_doi 10.1109/IWBF49977.2020.9107970
10.23919/BIOSIG.2017.8053499
10.1109/AFGR.1996.557254
10.1109/ACCESS.2019.2899367
10.23919/FUSION45008.2020.9190629
10.1145/3082031.3083244
10.1109/CVPR.2005.268
10.1109/IPTA.2019.8936088
10.1007/978-3-319-46475-6_43
10.23919/EUSIPCO.2019.8902533
10.1145/218380.218501
10.1109/CVPR.2019.00482
10.1109/ICTAI.2018.00143
10.1109/CVPR.2019.00453
10.1109/BTAS.2016.7791169
10.1109/ICCV.2019.00009
10.1007/978-3-319-64185-0_9
10.1109/TTS.2021.3066254
10.23919/EUSIPCO.2018.8553116
10.1109/ACCESS.2020.2994112
10.1109/CVPR42600.2020.00813
10.1145/1360612.1360638
10.1109/IWBF.2017.7935088
10.1145/142920.134003
10.1145/1141911.1141920
10.1109/BTAS.2014.6996240
10.1109/TIFS.2020.3035252
10.1109/FG.2018.00020
10.1111/cgf.12214
10.5220/0006131100390050
10.1109/ISBA.2019.8778488
10.1109/BTAS.2018.8698563
10.1109/CVPRW50498.2020.00344
10.1109/TIFS.2018.2833032
10.1109/ACSSC.2003.1292216
10.1109/CVPRW.2017.228
10.1109/BTAS.2017.8272742
10.1109/CVPR.2016.90
10.1109/BTAS46853.2019.9185994
10.1109/IWBF.2017.7935087
10.1109/ACCESS.2019.2920713
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TBIOM.2021.3072349
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2637-6407
EndPage 383
ExternalDocumentID 10_1109_TBIOM_2021_3072349
9404267
Genre orig-research
GrantInformation_xml – fundername: European Union’s Horizon 2020 Research and Innovation Programme
  grantid: 883356
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
IFIPE
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c2549-9381d895ff4cc2af55c04cc66a8a97dab93b8c6d0ca6448a865d916dabcb726c3
IEDL.DBID RIE
ISSN 2637-6407
IngestDate Mon Jun 30 07:11:44 EDT 2025
Tue Jul 01 02:43:54 EDT 2025
Thu Apr 24 22:56:14 EDT 2025
Wed Aug 27 02:26:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2549-9381d895ff4cc2af55c04cc66a8a97dab93b8c6d0ca6448a865d916dabcb726c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0484-3956
0000-0002-9489-5161
0000-0002-9159-2923
0000-0002-8557-0314
0000-0001-7910-7895
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9404267
PQID 2546719585
PQPubID 4437219
PageCount 19
ParticipantIDs proquest_journals_2546719585
ieee_primary_9404267
crossref_citationtrail_10_1109_TBIOM_2021_3072349
crossref_primary_10_1109_TBIOM_2021_3072349
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on biometrics, behavior, and identity science
PublicationTitleAbbrev TBIOM
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref59
ref58
ref14
ref53
ref54
venkatesh (ref41) 2020
ref17
ref16
ref19
wu (ref18) 2011
gmbh (ref30) 2020
majumdar (ref55) 2019
seibold (ref57) 2019
(ref37) 2020
ref51
(ref26) 2015
raghavendra (ref2) 2017; 50
ref45
ref47
ref43
ferrara (ref44) 2019
ref49
(ref10) 2020
ref8
ref7
ref4
ref3
ref6
ref5
ref40
ref35
(ref48) 2020
ref34
abdal (ref42) 2019
ref36
ref31
ref33
ref32
ref1
ref39
(ref25) 2020
(ref11) 2020
(ref50) 2015
(ref64) 2017
ferrara (ref56) 2019
choi (ref15) 2011
ref24
ref23
ref20
ref63
ref22
ref21
ref28
ref29
(ref27) 2015
ref60
ref62
karras (ref38) 2019
ref61
kingma (ref46) 2014
(ref9) 2020
(ref52) 2015
References_xml – ident: ref1
  doi: 10.1109/IWBF49977.2020.9107970
– ident: ref8
  doi: 10.23919/BIOSIG.2017.8053499
– ident: ref16
  doi: 10.1109/AFGR.1996.557254
– ident: ref24
  doi: 10.1109/ACCESS.2019.2899367
– ident: ref36
  doi: 10.23919/FUSION45008.2020.9190629
– ident: ref62
  doi: 10.1145/3082031.3083244
– ident: ref33
  doi: 10.1109/CVPR.2005.268
– ident: ref34
  doi: 10.1109/IPTA.2019.8936088
– start-page: 11
  year: 2019
  ident: ref55
  article-title: Evading face recognition via partial tampering of faces
  publication-title: Proc IEEE/CVF Conf Comput Vis Pattern Recognit Workshops (CVPRW)
– ident: ref43
  doi: 10.1007/978-3-319-46475-6_43
– year: 2015
  ident: ref27
  publication-title: Machine Readable Passports-Part 9-Deployment of Biometric Identification and Electronic Storage of Data in eMRTDs
– ident: ref58
  doi: 10.23919/EUSIPCO.2019.8902533
– year: 2017
  ident: ref64
– year: 2020
  ident: ref11
  publication-title: Photo for a Passport or Identity-Card Netherlands
– ident: ref12
  doi: 10.1145/218380.218501
– year: 2020
  ident: ref48
  publication-title: DNP Printer
– start-page: 1
  year: 2019
  ident: ref57
  article-title: Style your face morph and improve your face morphing attack detector
  publication-title: Proc Int Conf Biometr Spec Interest Group (BIOSIG)
– ident: ref31
  doi: 10.1109/CVPR.2019.00482
– year: 2015
  ident: ref26
  publication-title: Machine Readable Passports-Part 1-Introduction
– year: 2011
  ident: ref15
  publication-title: Image morphing using mass-spring system
– ident: ref40
  doi: 10.1109/ICTAI.2018.00143
– year: 2020
  ident: ref10
  publication-title: Department of Internal Affairs (DIA) New Zealand
– ident: ref29
  doi: 10.1109/CVPR.2019.00453
– year: 2019
  ident: ref42
  publication-title: Image2stylegan++ How to edit the embedded images?
– ident: ref5
  doi: 10.1109/BTAS.2016.7791169
– year: 2015
  ident: ref52
  publication-title: Best Practice Technical Guidelines for Automated Border Control (ABC) Systems
– ident: ref53
  doi: 10.1109/ICCV.2019.00009
– year: 2020
  ident: ref25
  publication-title: Abrosoft FantaMorph
– ident: ref20
  doi: 10.1007/978-3-319-64185-0_9
– year: 2011
  ident: ref18
  article-title: Face recognition jammer using image morphing
– ident: ref63
  doi: 10.1109/TTS.2021.3066254
– ident: ref61
  doi: 10.23919/EUSIPCO.2018.8553116
– year: 2019
  ident: ref56
  publication-title: Face morphing detection in the presence of printing/scanning and heterogeneous image sources
– ident: ref59
  doi: 10.1109/ACCESS.2020.2994112
– ident: ref32
  doi: 10.1109/CVPR42600.2020.00813
– ident: ref22
  doi: 10.1145/1360612.1360638
– ident: ref21
  doi: 10.1109/IWBF.2017.7935088
– ident: ref13
  doi: 10.1145/142920.134003
– year: 2019
  ident: ref38
  publication-title: Analyzing and improving the image quality of StyleGAN
– year: 2015
  ident: ref50
  publication-title: Verilook cots
– ident: ref14
  doi: 10.1145/1141911.1141920
– start-page: 1
  year: 2020
  ident: ref41
  article-title: On the influence of ageing on face morph attacks: Vulnerability and detection
  publication-title: Proc Int Joint Conf Biometr (IJCB)
– ident: ref3
  doi: 10.1109/BTAS.2014.6996240
– ident: ref6
  doi: 10.1109/TIFS.2020.3035252
– ident: ref49
  doi: 10.1109/FG.2018.00020
– ident: ref23
  doi: 10.1111/cgf.12214
– ident: ref17
  doi: 10.5220/0006131100390050
– ident: ref35
  doi: 10.1109/ISBA.2019.8778488
– ident: ref28
  doi: 10.1109/BTAS.2018.8698563
– year: 2014
  ident: ref46
  publication-title: Adam A method for stochastic optimization
– volume: 50
  start-page: 1
  year: 2017
  ident: ref2
  article-title: Presentation attack detection methods for face recognition systems: A comprehensive survey
  publication-title: ACM Comput Surveys
– ident: ref54
  doi: 10.1109/CVPRW50498.2020.00344
– ident: ref51
  doi: 10.1109/TIFS.2018.2833032
– ident: ref45
  doi: 10.1109/ACSSC.2003.1292216
– ident: ref4
  doi: 10.1109/CVPRW.2017.228
– start-page: 1
  year: 2019
  ident: ref44
  article-title: Decoupling texture blending and shape warping in face morphing
  publication-title: Proc Int Conf Biometr Spec Interest Group (BIOSIG)
– ident: ref7
  doi: 10.1109/BTAS.2017.8272742
– year: 2020
  ident: ref37
  publication-title: FRVT MORPH Web Site
– year: 2020
  ident: ref9
  publication-title: Gov UK
– ident: ref39
  doi: 10.1109/CVPR.2016.90
– year: 2020
  ident: ref30
  publication-title: Facevacs Technology Version 9 4 2
– ident: ref47
  doi: 10.1109/BTAS46853.2019.9185994
– ident: ref19
  doi: 10.1109/IWBF.2017.7935087
– ident: ref60
  doi: 10.1109/ACCESS.2019.2920713
SSID ssj0002049049
Score 2.504857
Snippet Face morphing attacks target to circumvent Face Recognition Systems (FRS) by employing face images derived from multiple data subjects (e.g., accomplices and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 365
SubjectTerms attack detection
deep learning
Digital imaging
Digitization
Face recognition
Faces
Gallium nitride
GAN
Generative adversarial networks
Image quality
Machine learning
Manuals
Morphing
Morphing attack
Object recognition
Security
Success
Target recognition
Visualization
vulnerability
Title MIPGAN-Generating Strong and High Quality Morphing Attacks Using Identity Prior Driven GAN
URI https://ieeexplore.ieee.org/document/9404267
https://www.proquest.com/docview/2546719585
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED-2geCLX1OcTsmDb9qtTT_zOD_mJnQO3GD4UtJrKqJsMruH-deba7shKuJboEkIuWvuLrnf7wDOHGUKKTga2tvghqNNhiERTSNIlfBdnlqxRdjhcOD1xs7dxJ1U4GKNhVFK5clnqkXN_C0_meGCrsrawiGP369CVQduBVZrfZ_C6QnLEStcjCnao8v-fagjQG61tCJzm-gyv9ievJjKjxM4NyvdbQhXCyqySV5aiyxu4cc3rsb_rngHtkr_knUKhdiFipruwUZRcXJZh8ewP7ztDIyCbZpSntkDXYY_MTlNGCV9sIJVY8nCmRYBdehkGQHxWZ5dwEpk75IN58-zObue03HJ9Jz7MO7ejK56RllewUCKCg2hjXUSCDdNHUQuU9dFU7c8TwZS-ImMhR0H6CUmSgriZOC5iXYm9QeMfe6hfQC16WyqDoHpsElZqfadYlROGijtcxHI1cYkRm55bgOs1cZHWHKPUwmM1yiPQUwR5cKKSFhRKawGnK_HvBXMG3_2rtPur3uWG9-A5kq-UflzvkdUAsAnkh336PdRx7BJcxdZuU2oZfOFOtG-Rxaf5kr3CZVq1SI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2VIgQXtoIoqw_cICVx4yQ-lrUFUpAoEuISORMHIVCLSnooX48nSSsECHGzFDuxPI5n8bw3APuutqWSHC1jbXDLNSrDUoi2FaRa-oKnTuwQdjjseu179_JBPFTgcIqF0VrnyWe6Qc38Lj8Z4IhCZUfSJYvfn4FZQWDcAq01jahwusRy5QQZY8uj3nHnJjQ-IHcaZivzJhFmftE-eTmVH2dwrljOlyCcTKnIJ3lpjLK4gR_f2Br_O-dlWCwtTNYqtsQKVHR_FeaKmpPjGjyGnduLVtcq-KYp6ZndUTj8ial-wijtgxW8GmMWDowQqEMrywiKz_L8AlZie8fsdvg8GLLTIR2YzLxzDe7Pz3onbasssGAh-YWWNOo6CaRIUxeRq1QItE3L81SgpJ-oWDbjAL3ERkVunAo8kRhz0jzA2OceNteh2h_09QYw4zhpJzXWU4zaTQNtrC6CuTYxiZE7nqiDM1n4CEv2cSqC8RrlXogto1xYEQkrKoVVh4PpmLeCe-PP3jVa_WnPcuHrsD2Rb1T-nu8RFQHwiWZHbP4-ag_m273wOrrudK-2YIG-U-TobkM1G470jrFEsng334Cf23bYag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MIPGAN%E2%80%94Generating+Strong+and+High+Quality+Morphing+Attacks+Using+Identity+Prior+Driven+GAN&rft.jtitle=IEEE+transactions+on+biometrics%2C+behavior%2C+and+identity+science&rft.au=Zhang%2C+Haoyu&rft.au=Venkatesh%2C+Sushma&rft.au=Ramachandra%2C+Raghavendra&rft.au=Raja%2C+Kiran&rft.date=2021-07-01&rft.issn=2637-6407&rft.eissn=2637-6407&rft.volume=3&rft.issue=3&rft.spage=365&rft.epage=383&rft_id=info:doi/10.1109%2FTBIOM.2021.3072349&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBIOM_2021_3072349
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2637-6407&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2637-6407&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2637-6407&client=summon