A Novel Hexagonal Switched Capacitor Unit (HSCU) Design With Seven‐Level Multilevel Inverter Topology

ABSTRACT In this paper, a new switched capacitor (SC) unit is proposed, which provides a solution for the multiple DC voltage requirement of multi‐level inverters (MLIs). The proposed hexagonal switched capacitor unit (HSCU) contains SCs that have self‐balancing ability and do not require any additi...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of circuit theory and applications Vol. 53; no. 7; pp. 4278 - 4294
Main Author Karakılıç, Murat
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.07.2025
Subjects
Online AccessGet full text
ISSN0098-9886
1097-007X
DOI10.1002/cta.4469

Cover

Abstract ABSTRACT In this paper, a new switched capacitor (SC) unit is proposed, which provides a solution for the multiple DC voltage requirement of multi‐level inverters (MLIs). The proposed hexagonal switched capacitor unit (HSCU) contains SCs that have self‐balancing ability and do not require any additional circuits. HSCU provides three voltage boosts using only one DC voltage source with four power switches, two capacitors, and two discrete diodes. A comparison with related topologies in the literature indicates that the proposed topology requires considerably fewer power devices than others. To suppress impulsive charging currents in the capacitors, a soft charging cell (SCC) is utilized. Experimental results demonstrate that the SCC effectively suppresses current peaks, contributing to improved circuit performance. In addition, the proposed 7L SC‐MLI has successfully passed the simulation and experimental realization tests with nearest level control (NLC) modulation techniques and sinusoidal pulse width modulation (SPWM) modulation techniques. Response to dynamic changes in frequency, modulation index (MI) and load have been verified through tests. Power loss analysis was performed in PLECS software, and the efficiency was found to be 96.45%. This paper proposes a novel hexagonal switching capacitor unit (HSCU) to meet the multiple DC voltage requirement of multilevel inverters (MLIs). The HSCU consists of self‐balancing switched capacitors without the requirement of additional balancing circuits and achieves three different voltage levels from a single DC source using only four power switches, two capacitors, and two diodes. Comparisons with the literature studies show that the proposed structure requires significantly fewer power components. The soft charging cell (SCC) used to suppress inrush charging currents in the capacitors improves the circuit performance. The proposed seven‐level SC‐MLI is successfully tested with nearest level control (NLC) and sinusoidal pulse width modulation (SPWM) techniques. As a result of the analysis, it is shown that the proposed system provides 96.45% efficiency.
AbstractList In this paper, a new switched capacitor (SC) unit is proposed, which provides a solution for the multiple DC voltage requirement of multi‐level inverters (MLIs). The proposed hexagonal switched capacitor unit (HSCU) contains SCs that have self‐balancing ability and do not require any additional circuits. HSCU provides three voltage boosts using only one DC voltage source with four power switches, two capacitors, and two discrete diodes. A comparison with related topologies in the literature indicates that the proposed topology requires considerably fewer power devices than others. To suppress impulsive charging currents in the capacitors, a soft charging cell (SCC) is utilized. Experimental results demonstrate that the SCC effectively suppresses current peaks, contributing to improved circuit performance. In addition, the proposed 7L SC‐MLI has successfully passed the simulation and experimental realization tests with nearest level control (NLC) modulation techniques and sinusoidal pulse width modulation (SPWM) modulation techniques. Response to dynamic changes in frequency, modulation index (MI) and load have been verified through tests. Power loss analysis was performed in PLECS software, and the efficiency was found to be 96.45%.
ABSTRACT In this paper, a new switched capacitor (SC) unit is proposed, which provides a solution for the multiple DC voltage requirement of multi‐level inverters (MLIs). The proposed hexagonal switched capacitor unit (HSCU) contains SCs that have self‐balancing ability and do not require any additional circuits. HSCU provides three voltage boosts using only one DC voltage source with four power switches, two capacitors, and two discrete diodes. A comparison with related topologies in the literature indicates that the proposed topology requires considerably fewer power devices than others. To suppress impulsive charging currents in the capacitors, a soft charging cell (SCC) is utilized. Experimental results demonstrate that the SCC effectively suppresses current peaks, contributing to improved circuit performance. In addition, the proposed 7L SC‐MLI has successfully passed the simulation and experimental realization tests with nearest level control (NLC) modulation techniques and sinusoidal pulse width modulation (SPWM) modulation techniques. Response to dynamic changes in frequency, modulation index (MI) and load have been verified through tests. Power loss analysis was performed in PLECS software, and the efficiency was found to be 96.45%. This paper proposes a novel hexagonal switching capacitor unit (HSCU) to meet the multiple DC voltage requirement of multilevel inverters (MLIs). The HSCU consists of self‐balancing switched capacitors without the requirement of additional balancing circuits and achieves three different voltage levels from a single DC source using only four power switches, two capacitors, and two diodes. Comparisons with the literature studies show that the proposed structure requires significantly fewer power components. The soft charging cell (SCC) used to suppress inrush charging currents in the capacitors improves the circuit performance. The proposed seven‐level SC‐MLI is successfully tested with nearest level control (NLC) and sinusoidal pulse width modulation (SPWM) techniques. As a result of the analysis, it is shown that the proposed system provides 96.45% efficiency.
Author Karakılıç, Murat
Author_xml – sequence: 1
  givenname: Murat
  orcidid: 0000-0001-5323-2583
  surname: Karakılıç
  fullname: Karakılıç, Murat
  email: murat.karakilic@igdir.edu.tr
  organization: Igdir University
BookMark eNp1kL1OwzAUhS0EEm1B4hEssZQhxUmc2B6r8NNKBYamgi1ynNs0VYiDnbZ04xF4Rp6EpGVlunf49Omc00enla4AoSuXjFxCvFvVyBGloThBPZcI5hDC3k5RjxDBHcF5eI761q4JIdzzRQ_lY_yst1DiCXzKXFeyxPNd0agVZDiStVRFow1eVEWDh5N5tLjBd2CLvMKvRbPCc9hC9fP1PYNO8bQpm6I8vNNqC6YBg2Nd61Ln-wt0tpSlhcu_O0Dxw30cTZzZy-M0Gs8c5QVUOG2mMFMqFL7nccYC7jNg4ZILoKkfZG6QpZlkWRqyTHIv8FRAA0IJhdTnFJg_QNdHbW30xwZsk6z1xrStbNIZhXADIVpqeKSU0dYaWCa1Kd6l2ScuSboVk3bFpFuxRZ0jumub7f_lkigeH_hfA-50xQ
Cites_doi 10.1002/CTA.3946
10.1109/TPEL.2018.2890371
10.1109/JESTPE.2018.2879890
10.1002/cta.3191
10.1109/28.536875
10.1002/cta.3216
10.1109/TCSII.2020.3018333
10.1007/S42835‐024‐01832‐9
10.1109/MELCON.1998.699437
10.1109/TIE.2021.3050378
10.1109/TIE.2019.2942554
10.1109/ACCESS.2023.3297496
10.1016/J.EPSR.2022.109039
10.1109/TIA.2022.3208893
10.1080/09398368.1992.11463285
10.1002/cta.3730
10.1109/TPEL.2018.2830401
10.1109/JESTPE.2021.3077604
10.1109/ACCESS.2019.2927351
10.1109/ACCESS.2021.3056612
10.1109/JESTPE.2024.3427766
10.1109/TIE.2021.3065609
10.1016/J.COMPELECENG.2022.108160
10.1109/TCSII.2019.2946860
10.1109/TPEL.2018.2871378
10.1109/TCSII.2020.3017338
10.1109/JESTPE.2021.3129063
10.1109/JESTPE.2022.3179439
10.1109/ACCESS.2022.3166935
10.3390/en17133115
10.1109/TIE.2020.2965458
10.17775/CSEEJPES.2020.02620
10.1016/j.epsr.2023.109458
10.1049/gtd2.12416
10.1109/JESTPE.2023.3285690
10.1109/TIA.1981.4503992
ContentType Journal Article
Copyright 2025 John Wiley & Sons Ltd.
2025 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2025 John Wiley & Sons Ltd.
– notice: 2025 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1002/cta.4469
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList CrossRef

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1097-007X
EndPage 4294
ExternalDocumentID 10_1002_cta_4469
CTA4469
Genre researchArticle
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XV2
ZY4
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c2549-2396dcc693228775837e76f89e4b35d15dbda7db67da8252c5450404eb384e73
IEDL.DBID DR2
ISSN 0098-9886
IngestDate Fri Jul 25 09:04:41 EDT 2025
Thu Jul 10 08:08:15 EDT 2025
Wed Jul 02 09:32:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2549-2396dcc693228775837e76f89e4b35d15dbda7db67da8252c5450404eb384e73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5323-2583
PQID 3228991599
PQPubID 996369
PageCount 17
ParticipantIDs proquest_journals_3228991599
crossref_primary_10_1002_cta_4469
wiley_primary_10_1002_cta_4469_CTA4469
PublicationCentury 2000
PublicationDate July 2025
2025-07-00
20250701
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: July 2025
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal of circuit theory and applications
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2015; 2
2021; 68
2019; 7
2023; 51
2023; 11
2023; 17
2022; 50
2023; 59
2019; 34
2023; 221
1981; IA‐17
1998
2024; 52
2022; 69
2024; 10
2024; 12
2024; 17
1996; 32
2024; 19
2020; 8
2022; 101
2023; 216
2020; 67
2022; 10
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 8
  start-page: 685
  issue: 1
  year: 2020
  end-page: 696
  article-title: A Seven‐Level Inverter With Self‐Balancing and Low‐Voltage Stress
  publication-title: IEEE Journal of Emerging and Selected Topics in Power Electronics
– volume: 221
  year: 2023
  article-title: Design and Control of a Novel Topology for Multilevel Inverters Using High Frequency Link
  publication-title: Electric Power Systems Research
– volume: 10
  start-page: 7225
  issue: 6
  year: 2022
  end-page: 7237
  article-title: A 9‐ and 13‐Level Switched‐Capacitor‐Based Multilevel Inverter With Enhanced Self‐Balanced Capacitor Voltage Capability
  publication-title: IEEE Journal of Emerging and Selected Topics in Power Electronics
– volume: 19
  start-page: 1
  issue: 7
  year: 2024
  end-page: 12
  article-title: Design of Hybrid Switched Diode Multilevel Inverter Using Single DC Source
  publication-title: Journal of Electrical Engineering and Technology
– volume: 50
  start-page: 1297
  issue: 4
  year: 2022
  end-page: 1316
  article-title: An Extendable Asymmetric Boost Multi‐Level Inverter With Self‐Balanced Capacitors
  publication-title: International Journal of Circuit Theory and Applications
– volume: 51
  start-page: 5705
  year: 2023
  end-page: 5723
  article-title: Design of a 21‐Level Multilevel Inverter With Minimum Number of Devices Count
  publication-title: International Journal of Circuit Theory and Applications
– volume: 34
  start-page: 1113
  issue: 2
  year: 2019
  end-page: 1124
  article-title: Switched‐Capacitor‐Based Single‐Source Cascaded H‐Bridge Multilevel Inverter Featuring Boosting Ability
  publication-title: IEEE Transactions on Power Electronics
– volume: 68
  start-page: 236
  issue: 1
  year: 2021
  end-page: 247
  article-title: A Step‐Up Multilevel Inverter Topology Using Novel Switched Capacitor Converters With Reduced Components
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 52
  start-page: 3844
  issue: 8
  year: 2024
  end-page: 3869
  article-title: Seven‐Level Single‐Source Switched Capacitor Inverter With Triple Boosting Capability and High Reliability
  publication-title: International Journal of Circuit Theory and Applications
– volume: 10
  start-page: 40753
  year: 2022
  end-page: 40793
  article-title: A Comprehensive Review of Power Converter Topologies and Control Methods for Electric Vehicle Fast Charging Applications
  publication-title: IEEE Access
– volume: 2
  start-page: 45
  issue: 1
  year: 2015
  end-page: 50
  article-title: Multi‐Level Choppers for High Voltage Applications
  publication-title: European Power Electronics and Drives
– volume: 67
  start-page: 7439
  issue: 9
  year: 2020
  end-page: 7450
  article-title: Generalized Symmetrical Step‐Up Multilevel Inverter Using Crisscross Capacitor Units
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 68
  start-page: 998
  issue: 3
  year: 2021
  end-page: 1002
  article-title: A 13‐Level Switched‐Capacitor‐Based Boosting Inverter
  publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs
– volume: 67
  start-page: 2044
  issue: 10
  year: 2020
  end-page: 2048
  article-title: Hybrid 7‐Level Boost Active‐Neutral‐Point‐Clamped (H‐7L‐BANPC) Inverter
  publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs
– volume: 17
  issue: 13
  year: 2024
  article-title: Transformer‐Less Seven‐Level Inverter With Triple Boosting Capability and Common Ground
  publication-title: Energies
– volume: 10
  start-page: 4336
  issue: 4
  year: 2022
  end-page: 4346
  article-title: Single‐Phase Boost Switched‐Capacitor‐Based Multilevel Inverter Topology With Reduced Switching Devices
  publication-title: IEEE Journal of Emerging and Selected Topics in Power Electronics
– volume: 9
  start-page: 24187
  year: 2021
  end-page: 24204
  article-title: A Review of Modulation and Control Techniques for Multilevel Inverters in Traction Applications
  publication-title: IEEE Access
– volume: 7
  start-page: 126889
  year: 2019
  end-page: 126896
  article-title: Switched‐Capacitor‐Based Active‐Neutral‐Point‐Clamped Seven‐Level Inverter With Natural Balance and Boost Ability
  publication-title: IEEE Access
– year: 1998
– volume: 69
  start-page: 1070
  issue: 1
  year: 2022
  end-page: 1076
  article-title: Self‐Balanced Switched‐Capacitor Thirteen‐Level Inverters With Reduced Capacitors Count
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 59
  start-page: 994
  issue: 1
  year: 2023
  end-page: 1001
  article-title: Single‐Phase 9L Switched‐Capacitor Boost Multilevel Inverter (9L‐SC‐BMLI) Topology
  publication-title: IEEE Transactions on Industry Applications
– volume: 11
  start-page: 74722
  year: 2023
  end-page: 74735
  article-title: Reduced Voltage Stress and Spikes in Source Current of 7‐Level Switched‐Capacitor Based Multilevel Inverter
  publication-title: IEEE Access
– volume: 32
  start-page: 1130
  issue: 5
  year: 1996
  end-page: 1138
  article-title: A Multilevel Voltage‐Source Inverter With Separate DC Sources for Static VAr Generation
  publication-title: IEEE Transactions on Industry Applications
– volume: 50
  start-page: 1652
  issue: 5
  year: 2022
  end-page: 1666
  article-title: Design and Investigation of a Triple Boost Multilevel Inverter With Self‐Balanced Switched Capacitors and Reduced Voltage Stress
  publication-title: International Journal of Circuit Theory and Applications
– volume: 101
  year: 2022
  article-title: A New Boost Type Single Source Seven‐Level Switched‐Capacitor Based Inverter With Reduced Current Stress Over the Components
  publication-title: Computers and Electrical Engineering
– volume: 216
  year: 2023
  article-title: Design and Control of Bypass Diode Multilevel Inverter Using a Single DC Source
  publication-title: Electric Power Systems Research
– volume: 10
  start-page: 1575
  issue: 2
  year: 2022
  end-page: 1586
  article-title: A 13‐Level Switched‐Capacitor Multilevel Inverter With Single DC Source
  publication-title: IEEE Journal of Emerging and Selected Topics in Power Electronics
– volume: 10
  start-page: 381
  issue: 1
  year: 2024
  end-page: 391
  article-title: Switched‐Capacitor Based Seven‐Level Boost Inverter With a Reduced Number of Devices
  publication-title: CSEE Journal of Power and Energy Systems
– volume: IA‐17
  start-page: 518
  issue: 5
  year: 1981
  end-page: 523
  article-title: A New Neutral‐Point‐Clamped PWM Inverter
  publication-title: IEEE Transactions on Industry Applications
– volume: 12
  start-page: 1215
  issue: 2
  year: 2024
  end-page: 1229
  article-title: A Switched‐Capacitor Multilevel Inverter With Modified Pulsewidth Modulation and Active DC‐Link Capacitor Voltage Balancing
  publication-title: IEEE Journal of Emerging and Selected Topics in Power Electronics
– volume: 34
  start-page: 9844
  issue: 10
  year: 2019
  end-page: 9853
  article-title: A Hybrid 7‐Level Inverter Using low‐Voltage Devices and Operation With Single DC‐Link
  publication-title: IEEE Transactions on Power Electronics
– volume: 34
  start-page: 4009
  issue: 5
  year: 2019
  end-page: 4013
  article-title: Compact Switched Capacitor Multilevel Inverter (CSCMLI) With Self‐Voltage Balancing and Boosting Ability
  publication-title: IEEE Transactions on Power Electronics
– volume: 69
  start-page: 2644
  issue: 3
  year: 2022
  end-page: 2658
  article-title: A Single‐Source Nine‐Level Boost Inverter With a Low Switch Count
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 68
  start-page: 978
  issue: 3
  year: 2021
  end-page: 982
  article-title: A Reduced Device Count Single DC Hybrid Switched‐Capacitor Self‐Balanced Inverter
  publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs
– volume: 17
  start-page: 621
  issue: 3
  year: 2023
  end-page: 631
  article-title: An Extendable Single‐Input Reduced‐Switch 11‐Level Switched‐Capacitor Inverter With Quintuple Boosting Factor
  publication-title: IET Generation, Transmission and Distribution
– volume: 12
  start-page: 4361
  year: 2024
  end-page: 4376
  article-title: Performance Evaluation of a New Transformerless Grid‐Connected Six‐Level Inverter With Integrated Voltage Boosting
  publication-title: IEEE Journal of Emerging and Selected Topics in Power Electronics
– ident: e_1_2_8_7_1
  doi: 10.1002/CTA.3946
– ident: e_1_2_8_12_1
  doi: 10.1109/TPEL.2018.2890371
– ident: e_1_2_8_16_1
  doi: 10.1109/JESTPE.2018.2879890
– ident: e_1_2_8_31_1
  doi: 10.1002/cta.3191
– ident: e_1_2_8_11_1
  doi: 10.1109/28.536875
– ident: e_1_2_8_17_1
  doi: 10.1002/cta.3216
– ident: e_1_2_8_23_1
  doi: 10.1109/TCSII.2020.3018333
– ident: e_1_2_8_13_1
  doi: 10.1007/S42835‐024‐01832‐9
– ident: e_1_2_8_34_1
  doi: 10.1109/MELCON.1998.699437
– ident: e_1_2_8_21_1
  doi: 10.1109/TIE.2021.3050378
– ident: e_1_2_8_26_1
  doi: 10.1109/TIE.2019.2942554
– ident: e_1_2_8_15_1
  doi: 10.1109/ACCESS.2023.3297496
– ident: e_1_2_8_8_1
  doi: 10.1016/J.EPSR.2022.109039
– ident: e_1_2_8_18_1
  doi: 10.1109/TIA.2022.3208893
– ident: e_1_2_8_10_1
  doi: 10.1080/09398368.1992.11463285
– ident: e_1_2_8_14_1
  doi: 10.1002/cta.3730
– ident: e_1_2_8_19_1
  doi: 10.1109/TPEL.2018.2830401
– ident: e_1_2_8_33_1
  doi: 10.1109/JESTPE.2021.3077604
– ident: e_1_2_8_35_1
  doi: 10.1109/ACCESS.2019.2927351
– ident: e_1_2_8_3_1
  doi: 10.1109/ACCESS.2021.3056612
– ident: e_1_2_8_28_1
  doi: 10.1109/JESTPE.2024.3427766
– ident: e_1_2_8_24_1
  doi: 10.1109/TIE.2021.3065609
– ident: e_1_2_8_32_1
  doi: 10.1016/J.COMPELECENG.2022.108160
– ident: e_1_2_8_36_1
  doi: 10.1109/TCSII.2019.2946860
– ident: e_1_2_8_25_1
  doi: 10.1109/TPEL.2018.2871378
– ident: e_1_2_8_27_1
  doi: 10.1109/TCSII.2020.3017338
– ident: e_1_2_8_20_1
  doi: 10.1109/JESTPE.2021.3129063
– ident: e_1_2_8_5_1
  doi: 10.1109/JESTPE.2022.3179439
– ident: e_1_2_8_6_1
  doi: 10.1109/ACCESS.2022.3166935
– ident: e_1_2_8_37_1
  doi: 10.3390/en17133115
– ident: e_1_2_8_22_1
  doi: 10.1109/TIE.2020.2965458
– ident: e_1_2_8_2_1
  doi: 10.17775/CSEEJPES.2020.02620
– ident: e_1_2_8_4_1
  doi: 10.1016/j.epsr.2023.109458
– ident: e_1_2_8_30_1
  doi: 10.1049/gtd2.12416
– ident: e_1_2_8_29_1
  doi: 10.1109/JESTPE.2023.3285690
– ident: e_1_2_8_9_1
  doi: 10.1109/TIA.1981.4503992
SSID ssj0008239
Score 2.4213054
Snippet ABSTRACT In this paper, a new switched capacitor (SC) unit is proposed, which provides a solution for the multiple DC voltage requirement of multi‐level...
In this paper, a new switched capacitor (SC) unit is proposed, which provides a solution for the multiple DC voltage requirement of multi‐level inverters...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 4278
SubjectTerms boosting
Capacitors
Charging
Electric potential
hexagonal SCU
Inverters
multilevel inverters (MLIs)
Pulse duration modulation
reduced switch
self‐voltage balancing
soft charging
switched capacitor (SC)
Topology
Voltage
Title A Novel Hexagonal Switched Capacitor Unit (HSCU) Design With Seven‐Level Multilevel Inverter Topology
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcta.4469
https://www.proquest.com/docview/3228991599
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kJz34Fh9VVhDRQ9rmtbs5ltRSRHqwKRY8hOwmqcXSSpv6OvkT_I3-EmfysFUQxFMCycJmdmfmm_DtN4ScSB5zxW1dYzUz1qwgYJqMha7ZpoJIyHUDfArZFm3W6lqXPbuXsyrxLEymD_H1ww09I43X6OCBnFbnoqEqCSpQy-DZPd1kKJvfuJ4rRwnDdAq5TEcIVujO1oxqMfB7JprDy0WQmmaZ5hq5LeaXkUvuK7NEVtTrD-nG_33AOlnNwSetZ7tlgyxFo02ysiBJuEX6ddoeP0ZD2oqegz7CdNp5GuDShtSFxKogAkwoIlV61uq43XPaSDkg9GaQ3NEO6kF9vL1fIRWJpod7h-ktynkgeZR6WVOGl23iNS88t6XlzRg0hTWkBvZkoVIM8B4UWVBlmDziLBZOZEnTDnU7lGHAQ8l4GEDVaSiAZhAgLCjWhRVxc4eURuNRtEtoLJhStoPYzbH0WAoBkA5lEe1YxLqQe-S4WBf_IZPc8DNxZcMHm_losz1SLhbMz51u6uPMAO7aDjw-TS3_63jf9ep43f_riwdk2cDOvylRt0xKyWQWHQIcSeRRuvE-Ad5Z23A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HNSDb_FtBBE9dNe-khRPy6pUXffgVvQglCZtVZRVtD5P_gR_o7_EmXbrqiCIpxaaQDqTmXxfmHwBWFEiFVq4psE37NRwoogbKpWm4doaM6EwLYwpqrZocv_I2TtxT3pgszwLU-hDfG64UWTk-ZoCnDakq13VUJ1FFSQzXi_0O4gziHltHXa1o6Rle6VgpiclL5VnN6xq2fP7WtQFmF9har7O7IzAaTnCorzksnKfqYp--SHe-M9fGIXhDv5ktWLCjEFP0h6HoS-qhBNwVmPN64fkivnJU3RGSJ21Hi_IuzGr49qqMQncMgKrbM1v1Y_W2VZeBsKOL7Jz1iJJqPfXtwZVI7H8fO9V_kqKHlQ_yoLiXobnSQh2toO6b3TuYzA00UgDDcpjrTlCPuRZSDRskQieSi9xlO3GphurOBKx4iKOkHhaGtEZ5ggH-bp0EmFPQV_7up1MA0sl19r1CL55jpkqKRHVkTKim8rUlGoGlkvHhDeF6kZY6CtbIdosJJvNwHzpsbATd3chjQwRr-vh59Xc9L_2D-tBjZ6zf224BAN-cNAIG7vN_TkYtOgi4Lxudx76stv7ZAHRSaYW81n4AaXH348
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bSsNAEF20guiDd7FeVxDRh7TNbXfzWKKlXihiKwo-hOwmW4ulSo3XJz_Bb_RLnEkaq4IgPiWQLGxmdmbOhLNnCdmSXHPFXdNgFVsbThgyQ2phGq6tIBNy04KYQrZFg9XPnMML92LAqsS9MJk-xOcPN4yMNF9jgN9GujwUDVVJWIJexhslYw4DIIGA6HQoHSUs28v1Mj0hWC48W7HK-cjvpWiIL7-i1LTM1KbJZT7BjF1yXbpPZEm9_NBu_N8XzJCpAfqk1Wy5zJKRuDdHJr9oEs6TdpU2bh7iLq3HT2EbcTptPnbQtxH1obIqSAF9ilCV7tSb_tku3UtJIPS8k1zRJgpCvb--HSMXiaa7e7vpLep5IHuUtrJTGZ4XSKu23_LrxuA0BkNhE2mAPVmkFAPAB10WtBk2jznTwosdabuR6UYyCnkkGY9CaDstBdgMMoQD3bpwYm4vkkLvphcvEaoFU8r1ELx5jqmlEIDpUBfR1UKbQhbJZu6X4DbT3AgydWUrAJsFaLMiWc0dFgyi7i7AmQHedT14vJ1a_tfxgd-q4nX5ry9ukPGTvVpwfNA4WiETFp4CnJJ2V0kh6d_HawBNErmersEPJ6nePg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Hexagonal+Switched+Capacitor+Unit+%28HSCU%29+Design+With+Seven%E2%80%90Level+Multilevel+Inverter+Topology&rft.jtitle=International+journal+of+circuit+theory+and+applications&rft.au=Karak%C4%B1l%C4%B1%C3%A7%2C+Murat&rft.date=2025-07-01&rft.issn=0098-9886&rft.eissn=1097-007X&rft.volume=53&rft.issue=7&rft.spage=4278&rft.epage=4294&rft_id=info:doi/10.1002%2Fcta.4469&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cta_4469
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-9886&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-9886&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-9886&client=summon