A Novel Hexagonal Switched Capacitor Unit (HSCU) Design With Seven‐Level Multilevel Inverter Topology
ABSTRACT In this paper, a new switched capacitor (SC) unit is proposed, which provides a solution for the multiple DC voltage requirement of multi‐level inverters (MLIs). The proposed hexagonal switched capacitor unit (HSCU) contains SCs that have self‐balancing ability and do not require any additi...
Saved in:
Published in | International journal of circuit theory and applications Vol. 53; no. 7; pp. 4278 - 4294 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
01.07.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0098-9886 1097-007X |
DOI | 10.1002/cta.4469 |
Cover
Abstract | ABSTRACT
In this paper, a new switched capacitor (SC) unit is proposed, which provides a solution for the multiple DC voltage requirement of multi‐level inverters (MLIs). The proposed hexagonal switched capacitor unit (HSCU) contains SCs that have self‐balancing ability and do not require any additional circuits. HSCU provides three voltage boosts using only one DC voltage source with four power switches, two capacitors, and two discrete diodes. A comparison with related topologies in the literature indicates that the proposed topology requires considerably fewer power devices than others. To suppress impulsive charging currents in the capacitors, a soft charging cell (SCC) is utilized. Experimental results demonstrate that the SCC effectively suppresses current peaks, contributing to improved circuit performance. In addition, the proposed 7L SC‐MLI has successfully passed the simulation and experimental realization tests with nearest level control (NLC) modulation techniques and sinusoidal pulse width modulation (SPWM) modulation techniques. Response to dynamic changes in frequency, modulation index (MI) and load have been verified through tests. Power loss analysis was performed in PLECS software, and the efficiency was found to be 96.45%.
This paper proposes a novel hexagonal switching capacitor unit (HSCU) to meet the multiple DC voltage requirement of multilevel inverters (MLIs). The HSCU consists of self‐balancing switched capacitors without the requirement of additional balancing circuits and achieves three different voltage levels from a single DC source using only four power switches, two capacitors, and two diodes. Comparisons with the literature studies show that the proposed structure requires significantly fewer power components. The soft charging cell (SCC) used to suppress inrush charging currents in the capacitors improves the circuit performance. The proposed seven‐level SC‐MLI is successfully tested with nearest level control (NLC) and sinusoidal pulse width modulation (SPWM) techniques. As a result of the analysis, it is shown that the proposed system provides 96.45% efficiency. |
---|---|
AbstractList | In this paper, a new switched capacitor (SC) unit is proposed, which provides a solution for the multiple DC voltage requirement of multi‐level inverters (MLIs). The proposed hexagonal switched capacitor unit (HSCU) contains SCs that have self‐balancing ability and do not require any additional circuits. HSCU provides three voltage boosts using only one DC voltage source with four power switches, two capacitors, and two discrete diodes. A comparison with related topologies in the literature indicates that the proposed topology requires considerably fewer power devices than others. To suppress impulsive charging currents in the capacitors, a soft charging cell (SCC) is utilized. Experimental results demonstrate that the SCC effectively suppresses current peaks, contributing to improved circuit performance. In addition, the proposed 7L SC‐MLI has successfully passed the simulation and experimental realization tests with nearest level control (NLC) modulation techniques and sinusoidal pulse width modulation (SPWM) modulation techniques. Response to dynamic changes in frequency, modulation index (MI) and load have been verified through tests. Power loss analysis was performed in PLECS software, and the efficiency was found to be 96.45%. ABSTRACT In this paper, a new switched capacitor (SC) unit is proposed, which provides a solution for the multiple DC voltage requirement of multi‐level inverters (MLIs). The proposed hexagonal switched capacitor unit (HSCU) contains SCs that have self‐balancing ability and do not require any additional circuits. HSCU provides three voltage boosts using only one DC voltage source with four power switches, two capacitors, and two discrete diodes. A comparison with related topologies in the literature indicates that the proposed topology requires considerably fewer power devices than others. To suppress impulsive charging currents in the capacitors, a soft charging cell (SCC) is utilized. Experimental results demonstrate that the SCC effectively suppresses current peaks, contributing to improved circuit performance. In addition, the proposed 7L SC‐MLI has successfully passed the simulation and experimental realization tests with nearest level control (NLC) modulation techniques and sinusoidal pulse width modulation (SPWM) modulation techniques. Response to dynamic changes in frequency, modulation index (MI) and load have been verified through tests. Power loss analysis was performed in PLECS software, and the efficiency was found to be 96.45%. This paper proposes a novel hexagonal switching capacitor unit (HSCU) to meet the multiple DC voltage requirement of multilevel inverters (MLIs). The HSCU consists of self‐balancing switched capacitors without the requirement of additional balancing circuits and achieves three different voltage levels from a single DC source using only four power switches, two capacitors, and two diodes. Comparisons with the literature studies show that the proposed structure requires significantly fewer power components. The soft charging cell (SCC) used to suppress inrush charging currents in the capacitors improves the circuit performance. The proposed seven‐level SC‐MLI is successfully tested with nearest level control (NLC) and sinusoidal pulse width modulation (SPWM) techniques. As a result of the analysis, it is shown that the proposed system provides 96.45% efficiency. |
Author | Karakılıç, Murat |
Author_xml | – sequence: 1 givenname: Murat orcidid: 0000-0001-5323-2583 surname: Karakılıç fullname: Karakılıç, Murat email: murat.karakilic@igdir.edu.tr organization: Igdir University |
BookMark | eNp1kL1OwzAUhS0EEm1B4hEssZQhxUmc2B6r8NNKBYamgi1ynNs0VYiDnbZ04xF4Rp6EpGVlunf49Omc00enla4AoSuXjFxCvFvVyBGloThBPZcI5hDC3k5RjxDBHcF5eI761q4JIdzzRQ_lY_yst1DiCXzKXFeyxPNd0agVZDiStVRFow1eVEWDh5N5tLjBd2CLvMKvRbPCc9hC9fP1PYNO8bQpm6I8vNNqC6YBg2Nd61Ln-wt0tpSlhcu_O0Dxw30cTZzZy-M0Gs8c5QVUOG2mMFMqFL7nccYC7jNg4ZILoKkfZG6QpZlkWRqyTHIv8FRAA0IJhdTnFJg_QNdHbW30xwZsk6z1xrStbNIZhXADIVpqeKSU0dYaWCa1Kd6l2ScuSboVk3bFpFuxRZ0jumub7f_lkigeH_hfA-50xQ |
Cites_doi | 10.1002/CTA.3946 10.1109/TPEL.2018.2890371 10.1109/JESTPE.2018.2879890 10.1002/cta.3191 10.1109/28.536875 10.1002/cta.3216 10.1109/TCSII.2020.3018333 10.1007/S42835‐024‐01832‐9 10.1109/MELCON.1998.699437 10.1109/TIE.2021.3050378 10.1109/TIE.2019.2942554 10.1109/ACCESS.2023.3297496 10.1016/J.EPSR.2022.109039 10.1109/TIA.2022.3208893 10.1080/09398368.1992.11463285 10.1002/cta.3730 10.1109/TPEL.2018.2830401 10.1109/JESTPE.2021.3077604 10.1109/ACCESS.2019.2927351 10.1109/ACCESS.2021.3056612 10.1109/JESTPE.2024.3427766 10.1109/TIE.2021.3065609 10.1016/J.COMPELECENG.2022.108160 10.1109/TCSII.2019.2946860 10.1109/TPEL.2018.2871378 10.1109/TCSII.2020.3017338 10.1109/JESTPE.2021.3129063 10.1109/JESTPE.2022.3179439 10.1109/ACCESS.2022.3166935 10.3390/en17133115 10.1109/TIE.2020.2965458 10.17775/CSEEJPES.2020.02620 10.1016/j.epsr.2023.109458 10.1049/gtd2.12416 10.1109/JESTPE.2023.3285690 10.1109/TIA.1981.4503992 |
ContentType | Journal Article |
Copyright | 2025 John Wiley & Sons Ltd. 2025 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2025 John Wiley & Sons Ltd. – notice: 2025 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1002/cta.4469 |
DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1097-007X |
EndPage | 4294 |
ExternalDocumentID | 10_1002_cta_4469 CTA4469 |
Genre | researchArticle |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ TN5 UB1 V2E VH1 W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XV2 ZY4 ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION 7SP 8FD L7M |
ID | FETCH-LOGICAL-c2549-2396dcc693228775837e76f89e4b35d15dbda7db67da8252c5450404eb384e73 |
IEDL.DBID | DR2 |
ISSN | 0098-9886 |
IngestDate | Fri Jul 25 09:04:41 EDT 2025 Thu Jul 10 08:08:15 EDT 2025 Wed Jul 02 09:32:55 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2549-2396dcc693228775837e76f89e4b35d15dbda7db67da8252c5450404eb384e73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5323-2583 |
PQID | 3228991599 |
PQPubID | 996369 |
PageCount | 17 |
ParticipantIDs | proquest_journals_3228991599 crossref_primary_10_1002_cta_4469 wiley_primary_10_1002_cta_4469_CTA4469 |
PublicationCentury | 2000 |
PublicationDate | July 2025 2025-07-00 20250701 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: July 2025 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | International journal of circuit theory and applications |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 9 2015; 2 2021; 68 2019; 7 2023; 51 2023; 11 2023; 17 2022; 50 2023; 59 2019; 34 2023; 221 1981; IA‐17 1998 2024; 52 2022; 69 2024; 10 2024; 12 2024; 17 1996; 32 2024; 19 2020; 8 2022; 101 2023; 216 2020; 67 2022; 10 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 8 start-page: 685 issue: 1 year: 2020 end-page: 696 article-title: A Seven‐Level Inverter With Self‐Balancing and Low‐Voltage Stress publication-title: IEEE Journal of Emerging and Selected Topics in Power Electronics – volume: 221 year: 2023 article-title: Design and Control of a Novel Topology for Multilevel Inverters Using High Frequency Link publication-title: Electric Power Systems Research – volume: 10 start-page: 7225 issue: 6 year: 2022 end-page: 7237 article-title: A 9‐ and 13‐Level Switched‐Capacitor‐Based Multilevel Inverter With Enhanced Self‐Balanced Capacitor Voltage Capability publication-title: IEEE Journal of Emerging and Selected Topics in Power Electronics – volume: 19 start-page: 1 issue: 7 year: 2024 end-page: 12 article-title: Design of Hybrid Switched Diode Multilevel Inverter Using Single DC Source publication-title: Journal of Electrical Engineering and Technology – volume: 50 start-page: 1297 issue: 4 year: 2022 end-page: 1316 article-title: An Extendable Asymmetric Boost Multi‐Level Inverter With Self‐Balanced Capacitors publication-title: International Journal of Circuit Theory and Applications – volume: 51 start-page: 5705 year: 2023 end-page: 5723 article-title: Design of a 21‐Level Multilevel Inverter With Minimum Number of Devices Count publication-title: International Journal of Circuit Theory and Applications – volume: 34 start-page: 1113 issue: 2 year: 2019 end-page: 1124 article-title: Switched‐Capacitor‐Based Single‐Source Cascaded H‐Bridge Multilevel Inverter Featuring Boosting Ability publication-title: IEEE Transactions on Power Electronics – volume: 68 start-page: 236 issue: 1 year: 2021 end-page: 247 article-title: A Step‐Up Multilevel Inverter Topology Using Novel Switched Capacitor Converters With Reduced Components publication-title: IEEE Transactions on Industrial Electronics – volume: 52 start-page: 3844 issue: 8 year: 2024 end-page: 3869 article-title: Seven‐Level Single‐Source Switched Capacitor Inverter With Triple Boosting Capability and High Reliability publication-title: International Journal of Circuit Theory and Applications – volume: 10 start-page: 40753 year: 2022 end-page: 40793 article-title: A Comprehensive Review of Power Converter Topologies and Control Methods for Electric Vehicle Fast Charging Applications publication-title: IEEE Access – volume: 2 start-page: 45 issue: 1 year: 2015 end-page: 50 article-title: Multi‐Level Choppers for High Voltage Applications publication-title: European Power Electronics and Drives – volume: 67 start-page: 7439 issue: 9 year: 2020 end-page: 7450 article-title: Generalized Symmetrical Step‐Up Multilevel Inverter Using Crisscross Capacitor Units publication-title: IEEE Transactions on Industrial Electronics – volume: 68 start-page: 998 issue: 3 year: 2021 end-page: 1002 article-title: A 13‐Level Switched‐Capacitor‐Based Boosting Inverter publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs – volume: 67 start-page: 2044 issue: 10 year: 2020 end-page: 2048 article-title: Hybrid 7‐Level Boost Active‐Neutral‐Point‐Clamped (H‐7L‐BANPC) Inverter publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs – volume: 17 issue: 13 year: 2024 article-title: Transformer‐Less Seven‐Level Inverter With Triple Boosting Capability and Common Ground publication-title: Energies – volume: 10 start-page: 4336 issue: 4 year: 2022 end-page: 4346 article-title: Single‐Phase Boost Switched‐Capacitor‐Based Multilevel Inverter Topology With Reduced Switching Devices publication-title: IEEE Journal of Emerging and Selected Topics in Power Electronics – volume: 9 start-page: 24187 year: 2021 end-page: 24204 article-title: A Review of Modulation and Control Techniques for Multilevel Inverters in Traction Applications publication-title: IEEE Access – volume: 7 start-page: 126889 year: 2019 end-page: 126896 article-title: Switched‐Capacitor‐Based Active‐Neutral‐Point‐Clamped Seven‐Level Inverter With Natural Balance and Boost Ability publication-title: IEEE Access – year: 1998 – volume: 69 start-page: 1070 issue: 1 year: 2022 end-page: 1076 article-title: Self‐Balanced Switched‐Capacitor Thirteen‐Level Inverters With Reduced Capacitors Count publication-title: IEEE Transactions on Industrial Electronics – volume: 59 start-page: 994 issue: 1 year: 2023 end-page: 1001 article-title: Single‐Phase 9L Switched‐Capacitor Boost Multilevel Inverter (9L‐SC‐BMLI) Topology publication-title: IEEE Transactions on Industry Applications – volume: 11 start-page: 74722 year: 2023 end-page: 74735 article-title: Reduced Voltage Stress and Spikes in Source Current of 7‐Level Switched‐Capacitor Based Multilevel Inverter publication-title: IEEE Access – volume: 32 start-page: 1130 issue: 5 year: 1996 end-page: 1138 article-title: A Multilevel Voltage‐Source Inverter With Separate DC Sources for Static VAr Generation publication-title: IEEE Transactions on Industry Applications – volume: 50 start-page: 1652 issue: 5 year: 2022 end-page: 1666 article-title: Design and Investigation of a Triple Boost Multilevel Inverter With Self‐Balanced Switched Capacitors and Reduced Voltage Stress publication-title: International Journal of Circuit Theory and Applications – volume: 101 year: 2022 article-title: A New Boost Type Single Source Seven‐Level Switched‐Capacitor Based Inverter With Reduced Current Stress Over the Components publication-title: Computers and Electrical Engineering – volume: 216 year: 2023 article-title: Design and Control of Bypass Diode Multilevel Inverter Using a Single DC Source publication-title: Electric Power Systems Research – volume: 10 start-page: 1575 issue: 2 year: 2022 end-page: 1586 article-title: A 13‐Level Switched‐Capacitor Multilevel Inverter With Single DC Source publication-title: IEEE Journal of Emerging and Selected Topics in Power Electronics – volume: 10 start-page: 381 issue: 1 year: 2024 end-page: 391 article-title: Switched‐Capacitor Based Seven‐Level Boost Inverter With a Reduced Number of Devices publication-title: CSEE Journal of Power and Energy Systems – volume: IA‐17 start-page: 518 issue: 5 year: 1981 end-page: 523 article-title: A New Neutral‐Point‐Clamped PWM Inverter publication-title: IEEE Transactions on Industry Applications – volume: 12 start-page: 1215 issue: 2 year: 2024 end-page: 1229 article-title: A Switched‐Capacitor Multilevel Inverter With Modified Pulsewidth Modulation and Active DC‐Link Capacitor Voltage Balancing publication-title: IEEE Journal of Emerging and Selected Topics in Power Electronics – volume: 34 start-page: 9844 issue: 10 year: 2019 end-page: 9853 article-title: A Hybrid 7‐Level Inverter Using low‐Voltage Devices and Operation With Single DC‐Link publication-title: IEEE Transactions on Power Electronics – volume: 34 start-page: 4009 issue: 5 year: 2019 end-page: 4013 article-title: Compact Switched Capacitor Multilevel Inverter (CSCMLI) With Self‐Voltage Balancing and Boosting Ability publication-title: IEEE Transactions on Power Electronics – volume: 69 start-page: 2644 issue: 3 year: 2022 end-page: 2658 article-title: A Single‐Source Nine‐Level Boost Inverter With a Low Switch Count publication-title: IEEE Transactions on Industrial Electronics – volume: 68 start-page: 978 issue: 3 year: 2021 end-page: 982 article-title: A Reduced Device Count Single DC Hybrid Switched‐Capacitor Self‐Balanced Inverter publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs – volume: 17 start-page: 621 issue: 3 year: 2023 end-page: 631 article-title: An Extendable Single‐Input Reduced‐Switch 11‐Level Switched‐Capacitor Inverter With Quintuple Boosting Factor publication-title: IET Generation, Transmission and Distribution – volume: 12 start-page: 4361 year: 2024 end-page: 4376 article-title: Performance Evaluation of a New Transformerless Grid‐Connected Six‐Level Inverter With Integrated Voltage Boosting publication-title: IEEE Journal of Emerging and Selected Topics in Power Electronics – ident: e_1_2_8_7_1 doi: 10.1002/CTA.3946 – ident: e_1_2_8_12_1 doi: 10.1109/TPEL.2018.2890371 – ident: e_1_2_8_16_1 doi: 10.1109/JESTPE.2018.2879890 – ident: e_1_2_8_31_1 doi: 10.1002/cta.3191 – ident: e_1_2_8_11_1 doi: 10.1109/28.536875 – ident: e_1_2_8_17_1 doi: 10.1002/cta.3216 – ident: e_1_2_8_23_1 doi: 10.1109/TCSII.2020.3018333 – ident: e_1_2_8_13_1 doi: 10.1007/S42835‐024‐01832‐9 – ident: e_1_2_8_34_1 doi: 10.1109/MELCON.1998.699437 – ident: e_1_2_8_21_1 doi: 10.1109/TIE.2021.3050378 – ident: e_1_2_8_26_1 doi: 10.1109/TIE.2019.2942554 – ident: e_1_2_8_15_1 doi: 10.1109/ACCESS.2023.3297496 – ident: e_1_2_8_8_1 doi: 10.1016/J.EPSR.2022.109039 – ident: e_1_2_8_18_1 doi: 10.1109/TIA.2022.3208893 – ident: e_1_2_8_10_1 doi: 10.1080/09398368.1992.11463285 – ident: e_1_2_8_14_1 doi: 10.1002/cta.3730 – ident: e_1_2_8_19_1 doi: 10.1109/TPEL.2018.2830401 – ident: e_1_2_8_33_1 doi: 10.1109/JESTPE.2021.3077604 – ident: e_1_2_8_35_1 doi: 10.1109/ACCESS.2019.2927351 – ident: e_1_2_8_3_1 doi: 10.1109/ACCESS.2021.3056612 – ident: e_1_2_8_28_1 doi: 10.1109/JESTPE.2024.3427766 – ident: e_1_2_8_24_1 doi: 10.1109/TIE.2021.3065609 – ident: e_1_2_8_32_1 doi: 10.1016/J.COMPELECENG.2022.108160 – ident: e_1_2_8_36_1 doi: 10.1109/TCSII.2019.2946860 – ident: e_1_2_8_25_1 doi: 10.1109/TPEL.2018.2871378 – ident: e_1_2_8_27_1 doi: 10.1109/TCSII.2020.3017338 – ident: e_1_2_8_20_1 doi: 10.1109/JESTPE.2021.3129063 – ident: e_1_2_8_5_1 doi: 10.1109/JESTPE.2022.3179439 – ident: e_1_2_8_6_1 doi: 10.1109/ACCESS.2022.3166935 – ident: e_1_2_8_37_1 doi: 10.3390/en17133115 – ident: e_1_2_8_22_1 doi: 10.1109/TIE.2020.2965458 – ident: e_1_2_8_2_1 doi: 10.17775/CSEEJPES.2020.02620 – ident: e_1_2_8_4_1 doi: 10.1016/j.epsr.2023.109458 – ident: e_1_2_8_30_1 doi: 10.1049/gtd2.12416 – ident: e_1_2_8_29_1 doi: 10.1109/JESTPE.2023.3285690 – ident: e_1_2_8_9_1 doi: 10.1109/TIA.1981.4503992 |
SSID | ssj0008239 |
Score | 2.4213054 |
Snippet | ABSTRACT
In this paper, a new switched capacitor (SC) unit is proposed, which provides a solution for the multiple DC voltage requirement of multi‐level... In this paper, a new switched capacitor (SC) unit is proposed, which provides a solution for the multiple DC voltage requirement of multi‐level inverters... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 4278 |
SubjectTerms | boosting Capacitors Charging Electric potential hexagonal SCU Inverters multilevel inverters (MLIs) Pulse duration modulation reduced switch self‐voltage balancing soft charging switched capacitor (SC) Topology Voltage |
Title | A Novel Hexagonal Switched Capacitor Unit (HSCU) Design With Seven‐Level Multilevel Inverter Topology |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcta.4469 https://www.proquest.com/docview/3228991599 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kJz34Fh9VVhDRQ9rmtbs5ltRSRHqwKRY8hOwmqcXSSpv6OvkT_I3-EmfysFUQxFMCycJmdmfmm_DtN4ScSB5zxW1dYzUz1qwgYJqMha7ZpoJIyHUDfArZFm3W6lqXPbuXsyrxLEymD_H1ww09I43X6OCBnFbnoqEqCSpQy-DZPd1kKJvfuJ4rRwnDdAq5TEcIVujO1oxqMfB7JprDy0WQmmaZ5hq5LeaXkUvuK7NEVtTrD-nG_33AOlnNwSetZ7tlgyxFo02ysiBJuEX6ddoeP0ZD2oqegz7CdNp5GuDShtSFxKogAkwoIlV61uq43XPaSDkg9GaQ3NEO6kF9vL1fIRWJpod7h-ktynkgeZR6WVOGl23iNS88t6XlzRg0hTWkBvZkoVIM8B4UWVBlmDziLBZOZEnTDnU7lGHAQ8l4GEDVaSiAZhAgLCjWhRVxc4eURuNRtEtoLJhStoPYzbH0WAoBkA5lEe1YxLqQe-S4WBf_IZPc8DNxZcMHm_losz1SLhbMz51u6uPMAO7aDjw-TS3_63jf9ep43f_riwdk2cDOvylRt0xKyWQWHQIcSeRRuvE-Ad5Z23A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HNSDb_FtBBE9dNe-khRPy6pUXffgVvQglCZtVZRVtD5P_gR_o7_EmXbrqiCIpxaaQDqTmXxfmHwBWFEiFVq4psE37NRwoogbKpWm4doaM6EwLYwpqrZocv_I2TtxT3pgszwLU-hDfG64UWTk-ZoCnDakq13VUJ1FFSQzXi_0O4gziHltHXa1o6Rle6VgpiclL5VnN6xq2fP7WtQFmF9har7O7IzAaTnCorzksnKfqYp--SHe-M9fGIXhDv5ktWLCjEFP0h6HoS-qhBNwVmPN64fkivnJU3RGSJ21Hi_IuzGr49qqMQncMgKrbM1v1Y_W2VZeBsKOL7Jz1iJJqPfXtwZVI7H8fO9V_kqKHlQ_yoLiXobnSQh2toO6b3TuYzA00UgDDcpjrTlCPuRZSDRskQieSi9xlO3GphurOBKx4iKOkHhaGtEZ5ggH-bp0EmFPQV_7up1MA0sl19r1CL55jpkqKRHVkTKim8rUlGoGlkvHhDeF6kZY6CtbIdosJJvNwHzpsbATd3chjQwRr-vh59Xc9L_2D-tBjZ6zf224BAN-cNAIG7vN_TkYtOgi4Lxudx76stv7ZAHRSaYW81n4AaXH348 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bSsNAEF20guiDd7FeVxDRh7TNbXfzWKKlXihiKwo-hOwmW4ulSo3XJz_Bb_RLnEkaq4IgPiWQLGxmdmbOhLNnCdmSXHPFXdNgFVsbThgyQ2phGq6tIBNy04KYQrZFg9XPnMML92LAqsS9MJk-xOcPN4yMNF9jgN9GujwUDVVJWIJexhslYw4DIIGA6HQoHSUs28v1Mj0hWC48W7HK-cjvpWiIL7-i1LTM1KbJZT7BjF1yXbpPZEm9_NBu_N8XzJCpAfqk1Wy5zJKRuDdHJr9oEs6TdpU2bh7iLq3HT2EbcTptPnbQtxH1obIqSAF9ilCV7tSb_tku3UtJIPS8k1zRJgpCvb--HSMXiaa7e7vpLep5IHuUtrJTGZ4XSKu23_LrxuA0BkNhE2mAPVmkFAPAB10WtBk2jznTwosdabuR6UYyCnkkGY9CaDstBdgMMoQD3bpwYm4vkkLvphcvEaoFU8r1ELx5jqmlEIDpUBfR1UKbQhbJZu6X4DbT3AgydWUrAJsFaLMiWc0dFgyi7i7AmQHedT14vJ1a_tfxgd-q4nX5ry9ukPGTvVpwfNA4WiETFp4CnJJ2V0kh6d_HawBNErmersEPJ6nePg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Hexagonal+Switched+Capacitor+Unit+%28HSCU%29+Design+With+Seven%E2%80%90Level+Multilevel+Inverter+Topology&rft.jtitle=International+journal+of+circuit+theory+and+applications&rft.au=Karak%C4%B1l%C4%B1%C3%A7%2C+Murat&rft.date=2025-07-01&rft.issn=0098-9886&rft.eissn=1097-007X&rft.volume=53&rft.issue=7&rft.spage=4278&rft.epage=4294&rft_id=info:doi/10.1002%2Fcta.4469&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cta_4469 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-9886&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-9886&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-9886&client=summon |