MarkerNet: A divide‐and‐conquer solution to motion capture solving from raw markers

Marker‐based optical motion capture (MoCap) aims to localize 3D human motions from a sequence of input raw markers. It is widely used to produce physical movements for virtual characters in various games such as the role‐playing game, the fighting game, and the action‐adventure game. However, the co...

Full description

Saved in:
Bibliographic Details
Published inComputer animation and virtual worlds Vol. 35; no. 1
Main Authors Hu, Zhipeng, Tang, Jilin, Li, Lincheng, Hou, Jie, Xin, Haoran, Yu, Xin, Bu, Jiajun
Format Journal Article
LanguageEnglish
Published Chichester Wiley Subscription Services, Inc 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Marker‐based optical motion capture (MoCap) aims to localize 3D human motions from a sequence of input raw markers. It is widely used to produce physical movements for virtual characters in various games such as the role‐playing game, the fighting game, and the action‐adventure game. However, the conventional MoCap cleaning and solving process is extremely labor‐intensive, time‐consuming, and usually the most costly part of game animation production. Thus, there is a high demand for automated algorithms to replace costly manual operations and achieve accurate MoCap cleaning and solving in the game industry. In this article, we design a divide‐and‐conquer‐based MoCap solving network, dubbed MarkerNet, to estimate human skeleton motions from sequential raw markers effectively. In a nutshell, our key idea is to decompose the task of direct solving of global motion from all markers into first modeling sub‐motions of local parts from the corresponding marker subsets and then aggregating sub‐motions into a global one. In this manner, our model can effectively capture local motion patterns w.r.t. different marker subsets, thus producing more accurate results compared to the existing methods. Extensive experiments on both real and synthetic data verify the effectiveness of the proposed method. The overall motion of a human body can be decomposed into several sub‐motions of different local parts. Thus, we divide all sequential markers into different subsets and learn different local sub‐motions from the corresponding marker subsets within local spatio‐temporal ranges.
AbstractList Marker‐based optical motion capture (MoCap) aims to localize 3D human motions from a sequence of input raw markers. It is widely used to produce physical movements for virtual characters in various games such as the role‐playing game, the fighting game, and the action‐adventure game. However, the conventional MoCap cleaning and solving process is extremely labor‐intensive, time‐consuming, and usually the most costly part of game animation production. Thus, there is a high demand for automated algorithms to replace costly manual operations and achieve accurate MoCap cleaning and solving in the game industry. In this article, we design a divide‐and‐conquer‐based MoCap solving network, dubbed MarkerNet , to estimate human skeleton motions from sequential raw markers effectively. In a nutshell, our key idea is to decompose the task of direct solving of global motion from all markers into first modeling sub‐motions of local parts from the corresponding marker subsets and then aggregating sub‐motions into a global one. In this manner, our model can effectively capture local motion patterns w.r.t. different marker subsets, thus producing more accurate results compared to the existing methods. Extensive experiments on both real and synthetic data verify the effectiveness of the proposed method.
Marker‐based optical motion capture (MoCap) aims to localize 3D human motions from a sequence of input raw markers. It is widely used to produce physical movements for virtual characters in various games such as the role‐playing game, the fighting game, and the action‐adventure game. However, the conventional MoCap cleaning and solving process is extremely labor‐intensive, time‐consuming, and usually the most costly part of game animation production. Thus, there is a high demand for automated algorithms to replace costly manual operations and achieve accurate MoCap cleaning and solving in the game industry. In this article, we design a divide‐and‐conquer‐based MoCap solving network, dubbed MarkerNet, to estimate human skeleton motions from sequential raw markers effectively. In a nutshell, our key idea is to decompose the task of direct solving of global motion from all markers into first modeling sub‐motions of local parts from the corresponding marker subsets and then aggregating sub‐motions into a global one. In this manner, our model can effectively capture local motion patterns w.r.t. different marker subsets, thus producing more accurate results compared to the existing methods. Extensive experiments on both real and synthetic data verify the effectiveness of the proposed method.
Marker‐based optical motion capture (MoCap) aims to localize 3D human motions from a sequence of input raw markers. It is widely used to produce physical movements for virtual characters in various games such as the role‐playing game, the fighting game, and the action‐adventure game. However, the conventional MoCap cleaning and solving process is extremely labor‐intensive, time‐consuming, and usually the most costly part of game animation production. Thus, there is a high demand for automated algorithms to replace costly manual operations and achieve accurate MoCap cleaning and solving in the game industry. In this article, we design a divide‐and‐conquer‐based MoCap solving network, dubbed MarkerNet, to estimate human skeleton motions from sequential raw markers effectively. In a nutshell, our key idea is to decompose the task of direct solving of global motion from all markers into first modeling sub‐motions of local parts from the corresponding marker subsets and then aggregating sub‐motions into a global one. In this manner, our model can effectively capture local motion patterns w.r.t. different marker subsets, thus producing more accurate results compared to the existing methods. Extensive experiments on both real and synthetic data verify the effectiveness of the proposed method. The overall motion of a human body can be decomposed into several sub‐motions of different local parts. Thus, we divide all sequential markers into different subsets and learn different local sub‐motions from the corresponding marker subsets within local spatio‐temporal ranges.
Author Yu, Xin
Li, Lincheng
Bu, Jiajun
Hu, Zhipeng
Tang, Jilin
Xin, Haoran
Hou, Jie
Author_xml – sequence: 1
  givenname: Zhipeng
  surname: Hu
  fullname: Hu, Zhipeng
  organization: Zhejiang University
– sequence: 2
  givenname: Jilin
  orcidid: 0000-0001-9478-7489
  surname: Tang
  fullname: Tang, Jilin
  organization: NetEase Fuxi AI Lab
– sequence: 3
  givenname: Lincheng
  surname: Li
  fullname: Li, Lincheng
  email: lilincheng@corp.netease.com
  organization: NetEase Fuxi AI Lab
– sequence: 4
  givenname: Jie
  surname: Hou
  fullname: Hou, Jie
  organization: NetEase Fuxi AI Lab
– sequence: 5
  givenname: Haoran
  surname: Xin
  fullname: Xin, Haoran
  organization: NetEase Fuxi AI Lab
– sequence: 6
  givenname: Xin
  surname: Yu
  fullname: Yu, Xin
  organization: University of Queensland
– sequence: 7
  givenname: Jiajun
  surname: Bu
  fullname: Bu, Jiajun
  organization: Zhejiang University
BookMark eNp1kM1KAzEUhYNUsK2CjxBw42ZqfiaZGXelWBWqbvzbhUySkaltUpOZlu58BJ_RJzHTijs39x64H-cezgD0rLMGgFOMRhghcqHkekQIyQ9AH7OUJynJXnt_muMjMAhhHklOMOqDlzvp342_N80lHENdr2ttvj-_pNVxKmc_WuNhcIu2qZ2FjYNLt1NKrprWm-60ru0brLxbQi83cLnzC8fgsJKLYE5-9xA8Ta8eJzfJ7OH6djKeJYqwNE9ylWFVMmUqxGWpYiRFqSmR0WmWZkpxSRUrZJGVlc4N1zSTOdGSaioLxgimQ3C29115F7OGRsxd6218KUhBUco4yzvqfE8p70LwphIrX8ekW4GR6GoTsTbR1RbRZI9u6oXZ_suJyfh5x_8A5_hy2Q
Cites_doi 10.1109/CVPR.2016.308
10.1007/978-3-030-01252-6_24
10.1109/ICSP.2016.7877975
10.1145/2820903.2820918
10.1109/CVPR52688.2022.01286
10.1145/2816795.2818013
10.1109/CVPR.2019.01123
10.1145/3197517.3201302
10.1007/s00371-006-0080-9
10.1117/12.57955
10.1109/CVPR52729.2023.01236
10.1109/TPAMI.2023.3271691/mm1
10.1109/CVPR.2016.90
10.1016/j.cagx.2019.100011
10.1145/3450626.3459681
10.21236/ADA406704
10.1145/3065386
10.1109/CVPR52688.2022.00320
10.1109/3DV57658.2022.00013
10.1016/j.sigpro.2014.08.017
10.1016/j.patcog.2019.01.006
10.1038/nature14539
10.1109/CVPR.2015.7298594
10.1145/1966394.1966397
10.1007/978-3-031-20047-2_30
10.1145/2897824.2925975
10.1109/CVPR52729.2023.00063
10.1145/1186822.1073248
10.1109/ICCV48922.2021.00986
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cav.2228
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 1546-427X
EndPage n/a
ExternalDocumentID 10_1002_cav_2228
CAV2228
Genre article
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
29F
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
ITG
ITH
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
NF~
O66
O9-
OIG
P2W
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
ADMLS
AGHNM
AGQPQ
AGYGG
CITATION
7SC
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2548-8c71cb5cef06abc210c33eb0ed4747cc6a3c59a97bfd8e6d37a82da3d3a955213
IEDL.DBID DR2
ISSN 1546-4261
IngestDate Fri Jul 25 04:32:17 EDT 2025
Tue Jul 01 02:42:24 EDT 2025
Wed Jan 22 16:14:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2548-8c71cb5cef06abc210c33eb0ed4747cc6a3c59a97bfd8e6d37a82da3d3a955213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9478-7489
PQID 2930456581
PQPubID 2034909
PageCount 19
ParticipantIDs proquest_journals_2930456581
crossref_primary_10_1002_cav_2228
wiley_primary_10_1002_cav_2228_CAV2228
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January/February 2024
2024-01-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January/February 2024
PublicationDecade 2020
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Computer animation and virtual worlds
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 34
2019; 90
2017; 60
2012
2011
2015; 521
2019; 2
2017; 30:6000‐6010
2011; 30
2005
2003
2023;45(10):12287‐12303
2002
2016; 35
1992; 1611
2023
2022
2021
2006; 22
2015; 110
2019
2019; 32:8026–8037
2018
2016
2015
2014
2005; 2
2016; 29:4905‐4913
2021; 40
2018; 37
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
Chen K (e_1_2_6_4_1) 2021; 40
e_1_2_6_30_1
Zordan VB (e_1_2_6_18_1) 2003
Kirk AG (e_1_2_6_19_1) 2005
Paszke A (e_1_2_6_45_1) 2019; 32
Ioffe S (e_1_2_6_36_1) 2015
e_1_2_6_13_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
Hornung A (e_1_2_6_20_1) 2005
e_1_2_6_33_1
Girshick R (e_1_2_6_39_1) 2015
Vaswani A (e_1_2_6_14_1) 2017; 30
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
Jia Y (e_1_2_6_17_1) 2012
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
Baumann J (e_1_2_6_22_1) 2011
e_1_2_6_8_1
Luo W (e_1_2_6_15_1) 2016; 29
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_23_1
e_1_2_6_2_1
Perepichka M (e_1_2_6_3_1) 2019
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_26_1
e_1_2_6_47_1
References_xml – start-page: 3370
  year: 2012
  end-page: 3377
– volume: 35
  start-page: 1
  issue: 4
  year: 2016
  end-page: 11
  article-title: A deep learning framework for character motion synthesis and editing
  publication-title: ACM Trans Graph
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  article-title: Deep learning
  publication-title: Nature
– volume: 1611
  start-page: 586
  year: 1992
  end-page: 606
– volume: 40
  start-page: 1
  issue: 4
  year: 2021
  end-page: 11
  article-title: Mocap‐solver: A neural solver for optical motion capture data
  publication-title: ACM Trans Graph
– volume: 2
  start-page: 782
  year: 2005
  end-page: 788
– start-page: 770
  year: 2016
  end-page: 778
– start-page: 2818
  year: 2016
  end-page: 2826
– year: 2023;45(10):12287‐12303
  article-title: Pymaf‐x: Towards well‐aligned full‐body model regression from monocular images
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 30
  start-page: 1
  issue: 3
  year: 2011
  end-page: 12
  article-title: Motion reconstruction using sparse accelerometer data
  publication-title: ACM Transactions on Graphics (ToG)
– start-page: 516
  year: 2022
  end-page: 533
– start-page: 12 858
  year: 2023
  end-page: 12 868
– volume: 2
  year: 2019
  article-title: Real‐time neural network prediction for handling two‐hands mutual occlusions
  publication-title: Comput Graph: X
– start-page: 75
  year: 2005
  end-page: 82
– volume: 90
  start-page: 119
  year: 2019
  end-page: 133
  article-title: Wider or deeper: Revisiting the resnet model for visual recognition
  publication-title: Patt Recognit
– year: 2016
– year: 2014
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  end-page: 90
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun ACM
– start-page: 574
  year: 2023
  end-page: 584
– start-page: 686
  year: 2005
  end-page: 696
– start-page: 13 211
  year: 2022
  end-page: 13 220
– volume: 34
  start-page: 1
  issue: 6
  year: 2015
  end-page: 16
  article-title: Smpl: a skinned multi‐person linear model
  publication-title: ACM Trans Graph
– start-page: 1440
  year: 2015
  end-page: 1448
– start-page: 10012
  year: 2021
  end-page: 10022
– start-page: 111
  year: 2011
  end-page: 118
  article-title: Data‐driven completion of motion capture data
  publication-title: Vriphys
– volume: 30:6000‐6010
  year: 2017
  article-title: Attention is all you need
  publication-title: Adv Neural Inform Process Syst
– volume: 22
  start-page: 721
  issue: 9
  year: 2006
  end-page: 728
  article-title: Estimation of missing markers in human motion capture
  publication-title: Visual Comput
– start-page: 1
  year: 2015
  end-page: 9
– start-page: 1
  year: 2022
  end-page: 11
– start-page: 10 975
  year: 2019
  end-page: 10 985
– year: 2002
– volume: 29:4905‐4913
  year: 2016
  article-title: Understanding the effective receptive field in deep convolutional neural networks
  publication-title: Adv Neural Inform Process Syst
– year: 2022
– start-page: 245
  year: 2003
  end-page: 250
– volume: 32:8026–8037
  year: 2019
  article-title: Pytorch: an imperative style, high‐performance deep learning library
  publication-title: Adv Neural Inform Process Syst
– start-page: 1
  year: 2019
  end-page: 10
  article-title: Robust marker trajectory repair for mocap using kinematic reference
  publication-title: Motion, Interact Games
– start-page: 1
  year: 2015
  end-page: 4
– volume: 110
  start-page: 108
  year: 2015
  end-page: 122
  article-title: Sparse motion bases selection for human motion denoising
  publication-title: Signal Process
– start-page: 3202
  year: 2022
  end-page: 3211
– start-page: 975
  year: 2016
  end-page: 982
– start-page: 448
  year: 2015
  end-page: 456
– volume: 37
  start-page: 1
  issue: 4
  year: 2018
  end-page: 12
  article-title: Robust solving of optical motion capture data by denoising
  publication-title: ACM Trans Graph
– start-page: 385
  year: 2018
  end-page: 400
– start-page: 75
  volume-title: IEEE Proceedings. Virtual reality, 2005 (VR 2005)
  year: 2005
  ident: e_1_2_6_20_1
– ident: e_1_2_6_10_1
  doi: 10.1109/CVPR.2016.308
– ident: e_1_2_6_16_1
  doi: 10.1007/978-3-030-01252-6_24
– ident: e_1_2_6_26_1
  doi: 10.1109/ICSP.2016.7877975
– ident: e_1_2_6_27_1
  doi: 10.1145/2820903.2820918
– ident: e_1_2_6_30_1
  doi: 10.1109/CVPR52688.2022.01286
– ident: e_1_2_6_40_1
  doi: 10.1145/2816795.2818013
– ident: e_1_2_6_41_1
  doi: 10.1109/CVPR.2019.01123
– ident: e_1_2_6_2_1
  doi: 10.1145/3197517.3201302
– ident: e_1_2_6_42_1
– ident: e_1_2_6_37_1
– ident: e_1_2_6_21_1
  doi: 10.1007/s00371-006-0080-9
– ident: e_1_2_6_47_1
  doi: 10.1117/12.57955
– ident: e_1_2_6_33_1
  doi: 10.1109/CVPR52729.2023.01236
– ident: e_1_2_6_35_1
  doi: 10.1109/TPAMI.2023.3271691/mm1
– ident: e_1_2_6_7_1
– volume: 30
  year: 2017
  ident: e_1_2_6_14_1
  article-title: Attention is all you need
  publication-title: Adv Neural Inform Process Syst
– ident: e_1_2_6_8_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_6_29_1
  doi: 10.1016/j.cagx.2019.100011
– volume: 40
  start-page: 1
  issue: 4
  year: 2021
  ident: e_1_2_6_4_1
  article-title: Mocap‐solver: A neural solver for optical motion capture data
  publication-title: ACM Trans Graph
  doi: 10.1145/3450626.3459681
– ident: e_1_2_6_43_1
  doi: 10.21236/ADA406704
– ident: e_1_2_6_44_1
– ident: e_1_2_6_6_1
  doi: 10.1145/3065386
– ident: e_1_2_6_13_1
  doi: 10.1109/CVPR52688.2022.00320
– start-page: 1440
  volume-title: Proceedings of the IEEE international conference on computer vision. Piscataway, NJ: IEEE
  year: 2015
  ident: e_1_2_6_39_1
– start-page: 3370
  volume-title: 2012 IEEE Conference on computer vision and pattern recognition
  year: 2012
  ident: e_1_2_6_17_1
– ident: e_1_2_6_32_1
  doi: 10.1109/3DV57658.2022.00013
– start-page: 111
  year: 2011
  ident: e_1_2_6_22_1
  article-title: Data‐driven completion of motion capture data
  publication-title: Vriphys
– ident: e_1_2_6_25_1
  doi: 10.1016/j.sigpro.2014.08.017
– ident: e_1_2_6_11_1
  doi: 10.1016/j.patcog.2019.01.006
– volume: 29
  year: 2016
  ident: e_1_2_6_15_1
  article-title: Understanding the effective receptive field in deep convolutional neural networks
  publication-title: Adv Neural Inform Process Syst
– ident: e_1_2_6_5_1
  doi: 10.1038/nature14539
– start-page: 245
  volume-title: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on computer animation
  year: 2003
  ident: e_1_2_6_18_1
– ident: e_1_2_6_38_1
– ident: e_1_2_6_46_1
– ident: e_1_2_6_9_1
  doi: 10.1109/CVPR.2015.7298594
– ident: e_1_2_6_23_1
  doi: 10.1145/1966394.1966397
– ident: e_1_2_6_31_1
  doi: 10.1007/978-3-031-20047-2_30
– start-page: 448
  volume-title: International conference on machine learning
  year: 2015
  ident: e_1_2_6_36_1
– volume: 32
  year: 2019
  ident: e_1_2_6_45_1
  article-title: Pytorch: an imperative style, high‐performance deep learning library
  publication-title: Adv Neural Inform Process Syst
– start-page: 1
  year: 2019
  ident: e_1_2_6_3_1
  article-title: Robust marker trajectory repair for mocap using kinematic reference
  publication-title: Motion, Interact Games
– ident: e_1_2_6_28_1
  doi: 10.1145/2897824.2925975
– ident: e_1_2_6_34_1
  doi: 10.1109/CVPR52729.2023.00063
– ident: e_1_2_6_24_1
  doi: 10.1145/1186822.1073248
– ident: e_1_2_6_12_1
  doi: 10.1109/ICCV48922.2021.00986
– start-page: 782
  volume-title: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05)
  year: 2005
  ident: e_1_2_6_19_1
SSID ssj0026210
Score 2.3472867
Snippet Marker‐based optical motion capture (MoCap) aims to localize 3D human motions from a sequence of input raw markers. It is widely used to produce physical...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
Animation
Cleaning
deep learning
Games
MoCap solving
Motion capture
Synthetic data
virtual character animation
Title MarkerNet: A divide‐and‐conquer solution to motion capture solving from raw markers
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.2228
https://www.proquest.com/docview/2930456581
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EL3rwLVZrWUG8pc17E2-hWorYHtTWgoewr4CIaWlSBU_-BH-jv8TZbNKqIIiXDSTZsJmd2f1mMvMFoRMXUDEoDjMsImzDJcrmGKGGJVwaJK5IWJFE0-v73YF7OfJGZValqoXR_BDzgJuyjGK9VgZOWdZakIZy-txU4QtYflWqlsJD13PmKNu3NRGB5_qG8hIq3lnTblUdv-9EC3j5FaQWu0xnA91X49PJJY_NWc6a_PUHdeP_XmATrZfgE0daW7bQkky30drwIZvps9kOulPFO3Lal_kZjnBRrCU_3t5pKqAF3xlGP8WVvuJ8jPVvgDCnE_UtQl1SIQqsylbwlL7gp-J52S4adC5u212j_PmCwcFnDIyAE4szj8vE9CnjIE7uOJKZUrjggXDuU4d7IQ0JS0QgfeEQGtiCOsKhoQeYwNlDy-k4lfsIC5L4IkwsCo1y5xglAGxo4iUmgE_Tr6HjaiLiiebYiDWbsh2DkGIlpBqqVzMUl1aWxQBVCkQaWDV0Woj61_5xOxqq48FfbzxEqzbgFx1tqaPlfDqTR4A_ctZAK9F57-qmUWjcJwDO2vU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qPagH32K16griLW3eDz2Vaqna9iBt7UEI-wqImJYmVfDkT_A3-kvczTatCoJ42UCSDZvZmew3k51vAE5sgYqF4hDN8Jip2Z60OeJhzWA29iObRSTbRNPuuM2efT1wBgU4z3NhFD_ELOAmLSP7XksDlwHp6pw1lOLnioxfLMCiLOgtifMvbmfcUaZrKioCx3Y16SfkzLO6Wc17fl-L5gDzK0zN1pnGGtznI1TbSx4rk5RU6OsP8sZ_vsI6rE7xJ6ophdmAAo83YaX_kEzU2WQL7mT-Dh93eHqGaijL1-Ifb-84ZqIV7rMY_hjlKovSIVKVgBDFI_k7Ql6SUQokM1fQGL-gp-x5yTb0GpfdelOb1l_QqHAbfc2nnkGJQ3mku5hQIU9qWZzonNnCCaHUxRZ1Ahx4JGI-d5nlYd9k2GIWDhwBC6wdKMbDmO8CYl7ksiAysGikR0ewJ7ANjpxIF_hTd0twnM9EOFI0G6EiVDZDIaRQCqkE5XyKwqmhJaFAKxko9Y0SnGay_rV_WK_15XHvrzcewVKz226FravOzT4smwLOqOBLGYrpeMIPBBxJyWGmdp_CDt19
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60gujBt1ituoJ4S81zk3grraW-ioitBQ9hnyBiW9pUwZM_wd_oL3E327QqCOJlA0k2bGZnst9MZr4FOPQVKlaKQy0n5K7lh9rmaEgsh_skkj6XNEuiuWriRss_7wSdcValroUx_BCTgJu2jOx7rQ28z-XxlDSUkeeyDl_MwpyP7Vhv21C7mVBHudg1TASBjy3tJuTEs7Z7nPf8vhRN8eVXlJotM_VluM8HaLJLHsujlJbZ6w_uxv-9wQosjdEnqhh1WYUZ0V2DxfbDcGTODtfhTlfviEFTpCeogrJqLfHx9k66XLXKeVajH6BcYVHaQ2YfIMRIX_-M0Jd0jALpuhU0IC_oKXvecANa9dPbasMa775gMeU0RlbEQofRgAlpY0KZEifzPEFtwX3lgjCGiceCmMQhlTwSmHshiVxOPO6ROFCgwNuEQrfXFVuAeCgxj6VDVKP9OUpChWyIDKSt0KeNi3CQT0TSNyQbiaFTdhMlpEQLqQilfIaSsZkNE4VVMkgaOUU4ykT9a_-kWmnr4_Zfb9yH-etaPbk8a17swIKrsIyJvJSgkA5GYldhkZTuZUr3CVVG3Cw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MarkerNet%3A+A+divide%E2%80%90and%E2%80%90conquer+solution+to+motion+capture+solving+from+raw+markers&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Hu%2C+Zhipeng&rft.au=Tang%2C+Jilin&rft.au=Li%2C+Lincheng&rft.au=Hou%2C+Jie&rft.date=2024-01-01&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=35&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcav.2228&rft.externalDBID=10.1002%252Fcav.2228&rft.externalDocID=CAV2228
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon