Raman spectroscopic signals of carotenoid distribution during stages of cell growth of unicellular organisms and plant cells

Understanding life at the molecular level is inherently difficult, as no precise method can very specifically determine “The activities of life.” The feasibility to observe the activation of life in an organism using molecular information through Raman spectroscopy in various biological systems is i...

Full description

Saved in:
Bibliographic Details
Published inJournal of Raman spectroscopy Vol. 54; no. 7; pp. 706 - 718
Main Authors Badgujar, Pooja Manik, Lin, Yu‐Chung, Lin, Zhe‐Rui, Lin, Ming‐Der, Cheng, Chia‐Liang
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Understanding life at the molecular level is inherently difficult, as no precise method can very specifically determine “The activities of life.” The feasibility to observe the activation of life in an organism using molecular information through Raman spectroscopy in various biological systems is investigated in this work. The idea of determining the “dormant” state to the “growing state” state in complex organisms using specific Raman spectral bands is explained in this study. We found the Raman spectral evidence of carotenoids molecule that shows its appearance from freshwater worms to germinated and non‐germinated seeds. This study investigates the molecular functions of carotenoids in different biosystems. Given the complexity of biological systems, observations from Raman spectroscopic measurements indicate that carotenoids show strong molecular activity when life is growing as compared with a dormant state. We conclude that carotenoid's Raman bands can be considered as the biomarker of growing states in living organisms. In this study, we demonstrate the molecular signature when the life of unicellular organisms and plant cells is in growing or dormant state. We monitored the molecular activity at the dormant and growing state; we conclude carotenoids are present at the dormant stage but migrate and regulate at the growing state. The Raman spectral band of carotenoids can be considered as the “Molecular signature of life activity,” and Raman spectroscopy can be a potential label‐free detection method in understanding the grow/dormant of the life state.
AbstractList Understanding life at the molecular level is inherently difficult, as no precise method can very specifically determine “The activities of life.” The feasibility to observe the activation of life in an organism using molecular information through Raman spectroscopy in various biological systems is investigated in this work. The idea of determining the “dormant” state to the “growing state” state in complex organisms using specific Raman spectral bands is explained in this study. We found the Raman spectral evidence of carotenoids molecule that shows its appearance from freshwater worms to germinated and non‐germinated seeds. This study investigates the molecular functions of carotenoids in different biosystems. Given the complexity of biological systems, observations from Raman spectroscopic measurements indicate that carotenoids show strong molecular activity when life is growing as compared with a dormant state. We conclude that carotenoid's Raman bands can be considered as the biomarker of growing states in living organisms.
Understanding life at the molecular level is inherently difficult, as no precise method can very specifically determine “The activities of life.” The feasibility to observe the activation of life in an organism using molecular information through Raman spectroscopy in various biological systems is investigated in this work. The idea of determining the “dormant” state to the “growing state” state in complex organisms using specific Raman spectral bands is explained in this study. We found the Raman spectral evidence of carotenoids molecule that shows its appearance from freshwater worms to germinated and non‐germinated seeds. This study investigates the molecular functions of carotenoids in different biosystems. Given the complexity of biological systems, observations from Raman spectroscopic measurements indicate that carotenoids show strong molecular activity when life is growing as compared with a dormant state. We conclude that carotenoid's Raman bands can be considered as the biomarker of growing states in living organisms. In this study, we demonstrate the molecular signature when the life of unicellular organisms and plant cells is in growing or dormant state. We monitored the molecular activity at the dormant and growing state; we conclude carotenoids are present at the dormant stage but migrate and regulate at the growing state. The Raman spectral band of carotenoids can be considered as the “Molecular signature of life activity,” and Raman spectroscopy can be a potential label‐free detection method in understanding the grow/dormant of the life state.
Author Lin, Ming‐Der
Badgujar, Pooja Manik
Lin, Yu‐Chung
Cheng, Chia‐Liang
Lin, Zhe‐Rui
Author_xml – sequence: 1
  givenname: Pooja Manik
  surname: Badgujar
  fullname: Badgujar, Pooja Manik
  organization: National Dong Hwa University
– sequence: 2
  givenname: Yu‐Chung
  surname: Lin
  fullname: Lin, Yu‐Chung
  organization: National Dong Hwa University
– sequence: 3
  givenname: Zhe‐Rui
  surname: Lin
  fullname: Lin, Zhe‐Rui
  organization: National Dong Hwa University
– sequence: 4
  givenname: Ming‐Der
  surname: Lin
  fullname: Lin, Ming‐Der
  organization: Tzu‐Chi University
– sequence: 5
  givenname: Chia‐Liang
  orcidid: 0000-0001-9572-4308
  surname: Cheng
  fullname: Cheng, Chia‐Liang
  email: clcheng@gms.ndhu.edu.tw
  organization: National Dong Hwa University
BookMark eNp10F1LwzAUBuAgE9ym4E8IeONNZ5o2bXIpw08GwtTrkuajZnRJTVLGwB9vu3orBA45PJzDeRdgZp1VAFynaJUihO92PqwKkpVnYJ4iViY5IWQG5igrywTltLgAixB2CCHGinQOfrZ8zy0MnRLRuyBcZwQMprG8DdBpKLh3UVlnJJQmRG_qPhpnoey9sQ0MkTdqgqptYePdIX6N396asdO33EPnG25N2AfIrYRdy2088XAJzvWwR1391SX4fHz4WD8nm7enl_X9JhGY5GWCaU2QFMPTmcQqF5KJkuaM6prUhaJMUqoEqxXJEOa8KDQmWU21yEmuCU-zJbiZ5nbeffcqxGrnej-eWGGa4ZQhnLFB3U5KDEEEr3TVebPn_lilqBqzrYZsqzHbgSYTPZhWHf911ev2_eR_AQm9f-w
Cites_doi 10.1093/mp/ssu028
10.1134/S1021443715060163
10.1021/jf991106k
10.1007/s10811-021-02448-6
10.3390/nu14010107
10.1146/annurev-nutr-082117-051841
10.1117/1.JBO.20.5.051042
10.1128/AEM.00699-14
10.3390/md17110640
10.1016/j.envexpbot.2023.105229
10.1021/jf053141z
10.1016/j.cpb.2021.100203
10.1055/s-2004-817883
10.1111/j.1365-3040.2005.01492.x
10.3389/fmicb.2014.00100
10.1134/S1021443711060161
10.3390/ijms21082796
10.1371/journal.pone.0019972
10.1002/jrs.960
10.1111/raq.12200
10.1016/j.tplants.2010.02.003
10.1002/jrs.2425
10.1016/j.cbi.2020.109324
10.1002/jrs.6176
10.1038/s41598-018-36956-2
10.3390/molecules27249017
10.1021/acs.jproteome.0c00236
10.3389/fimmu.2019.03041
10.1016/j.vibspec.2006.01.008
10.1186/s40066-020-00273-7
10.1046/j.1365-2095.2002.00221.x
10.1002/jemt.24145
10.1016/0584-8539(94)E0057-H
10.1089/ast.2009.0344
10.1007/s11084-007-9079-0
10.3390/molecules26195786
10.3390/md12010128
10.1002/jrs.2860
10.1096/fasebj.9.15.8529834
10.1016/j.foodchem.2019.05.065
10.4161/psb.3.3.5539
10.1016/S0032-9592(01)00246-1
10.1098/rsif.2017.0504
10.3891/acta.chem.scand.22-1714
10.3389/fenvs.2014.00053
10.1002/jrs.2493
10.1098/rsta.2010.0016
10.4161/psb.2.5.4460
10.1186/s43897-022-00023-2
10.1111/j.1750-3841.2012.02842.x
10.1093/jxb/err030
10.1007/s10126-017-9739-7
10.1021/jf304443u
10.1016/S1360-1385(98)01200-X
10.1186/1471-2229-6-32
10.3389/fpls.2017.01428
10.1016/j.fsi.2016.03.160
10.1021/ac201302f
10.1046/j.1444-2906.2001.00323.x
10.1186/1752-153X-8-4
10.1079/SSR2004159
10.1016/j.molp.2017.09.010
ContentType Journal Article
Copyright 2023 John Wiley & Sons Ltd.
2023 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons Ltd.
– notice: 2023 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7U9
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
RC3
DOI 10.1002/jrs.6537
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1097-4555
EndPage 718
ExternalDocumentID 10_1002_jrs_6537
JRS6537
Genre article
GrantInformation_xml – fundername: Ministry of Science and Technology (MoST) of Taiwan
  funderid: 109‐2112‐M‐259‐005‐MY3
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCUC
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQPKS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH5
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
VH1
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WRJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
ADMLS
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7U9
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
RC3
ID FETCH-LOGICAL-c2547-28b50dc0dcf3d2e4cd9c78498fb5b6e89d88ec9be5302aa66f253b8fc454f5a13
IEDL.DBID DR2
ISSN 0377-0486
IngestDate Fri Jul 25 12:06:33 EDT 2025
Tue Jul 01 01:39:14 EDT 2025
Wed Jan 22 16:19:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2547-28b50dc0dcf3d2e4cd9c78498fb5b6e89d88ec9be5302aa66f253b8fc454f5a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9572-4308
PQID 2832190239
PQPubID 1016368
PageCount 13
ParticipantIDs proquest_journals_2832190239
crossref_primary_10_1002_jrs_6537
wiley_primary_10_1002_jrs_6537_JRS6537
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
20230701
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Journal of Raman spectroscopy
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2012; 60
2021; 24
2010; 10
2021; 26
2017; 8
2010; 15
2000; 48
2011; 62
2019; 17
2004; 6
2008; 3
2020; 10
2011; 58
2022; 27
1968; 22
2007; 37
2020; 19
2014; 5
2021; 33
2014; 2
2006; 29
2007; 2
2014; 8
2014; 7
2018; 38
2014; 12
1995; 9
2019; 9
2002; 37
2006; 54
2010; 368
2002; 8
2011; 83
2016; 54
2006; 6
2022; 85
2023; 207
2001; 67
2021; 52
2011; 6
2012; 77
2010; 41
2003; 34
2021; 14
2006; 41
2021; 10
2014; 80
2021; 333
2017; 14
2004; 14
2015; 20
2011; 42
2016; 63
1998; 3
2017; 19
2020; 21
2022; 2
2019; 294
2018; 11
1994; 50
2018; 10
e_1_2_6_51_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
Fernández‐Marín B. (e_1_2_6_53_1) 2017; 8
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 33
  start-page: 33
  year: 2021
  publication-title: J. Appl. Phycol.
– volume: 77
  start-page: C934
  year: 2012
  publication-title: J. Food Sci.
– volume: 41
  start-page: 642
  year: 2010
  publication-title: J. Raman Spectrosc.
– volume: 9
  start-page: 9
  year: 2019
  publication-title: Sci. Rep.
– volume: 2
  start-page: 2
  year: 2014
  publication-title: Front. Environ. Sci.
– volume: 14
  start-page: 93
  year: 2004
  publication-title: Seed Sci. Res.
– volume: 14
  start-page: 107
  year: 2021
  publication-title: Nutrients
– volume: 34
  start-page: 1
  year: 2003
  publication-title: J. Raman Spectrosc.
– volume: 41
  start-page: 182
  year: 2006
  publication-title: Vib. Spectrosc.
– volume: 52
  start-page: 2609
  year: 2021
  publication-title: J. Raman Spectrosc.
– volume: 85
  start-page: 2953
  year: 2022
  publication-title: Microsc. Res. Tech.
– volume: 10
  start-page: 738
  year: 2018
  publication-title: Rev. Aquac.
– volume: 207
  year: 2023
  publication-title: Environ. Exp. Bot.
– volume: 333
  year: 2021
  publication-title: Chem. Biol. Interact.
– volume: 26
  year: 2021
  publication-title: Curr. Plant Biol.
– volume: 9
  start-page: 1551
  year: 1995
  publication-title: FASEB j.
– volume: 20
  start-page: 51042
  year: 2015
  publication-title: J. Biomed. Opt.
– volume: 10
  start-page: 2
  year: 2021
  publication-title: Agric. Food Secur.
– volume: 2
  start-page: 3
  year: 2022
  publication-title: Molecular Horticulture
– volume: 83
  start-page: 7763
  year: 2011
  publication-title: Anal. Chem.
– volume: 37
  start-page: 335
  year: 2007
  publication-title: Orig. Life Evol. Biosph.
– volume: 80
  start-page: 3286
  year: 2014
  publication-title: Appl. Environ. Microbiol.
– volume: 50
  start-page: 1467
  year: 1994
  publication-title: Spectrochim. Acta, Pt. A: Mol. Spectrosc.
– volume: 38
  start-page: 153
  year: 2018
  publication-title: Annu. Rev. Nutr.
– volume: 14
  year: 2017
  publication-title: J. R. Soc. Interface
– volume: 54
  start-page: 3445
  year: 2006
  publication-title: J. Agric. Food Chem.
– volume: 67
  start-page: 771
  year: 2001
  publication-title: Fish. Sci.
– volume: 3
  start-page: 175
  year: 2008
  publication-title: Plant Signal. Behav.
– volume: 6
  start-page: 32
  year: 2006
  publication-title: BMC Plant Biol.
– volume: 6
  year: 2011
  publication-title: PLoS ONE
– volume: 24
  start-page: 5786
  year: 2021
  publication-title: Molecules
– volume: 7
  start-page: 1248
  year: 2014
  publication-title: Mol. Plant
– volume: 2
  start-page: 362
  year: 2007
  publication-title: Plant Signal. Behav.
– volume: 10
  start-page: 10
  year: 2020
  publication-title: Front. Immunol.
– volume: 60
  start-page: 11050
  year: 2012
  publication-title: J. Agric. Food Chem.
– volume: 27
  start-page: 9017
  year: 2022
  publication-title: Molecules
– volume: 294
  start-page: 203
  year: 2019
  publication-title: Food Chem.
– volume: 17
  start-page: 640
  year: 2019
  publication-title: Mar. Drugs
– volume: 63
  start-page: 1
  year: 2016
  publication-title: Russ. J. Plant Physiol.
– volume: 368
  start-page: 3137
  year: 2010
  publication-title: Philos. Trans. R. Soc., A
– volume: 8
  start-page: 1428
  year: 2017
  publication-title: Front. Plant Sci.
– volume: 19
  start-page: 3352
  year: 2020
  publication-title: J. Proteome Res.
– volume: 5
  start-page: 5
  year: 2014
  publication-title: Front. Microbiol.
– volume: 48
  start-page: 1150
  year: 2000
  publication-title: J. Agric. Food Chem.
– volume: 11
  start-page: 58
  year: 2018
  publication-title: Mol. Plant
– volume: 19
  start-page: 157
  year: 2017
  publication-title: Marine Biotechnol.
– volume: 21
  start-page: 2796
  year: 2020
  publication-title: Int. J. Mol. Sci.
– volume: 8
  start-page: 299
  year: 2002
  publication-title: Aquacult. Nutr.
– volume: 10
  start-page: 229
  year: 2010
  publication-title: Astrobiology
– volume: 15
  start-page: 266
  year: 2010
  publication-title: Trends Plant Sci.
– volume: 8
  start-page: 8
  year: 2017
  publication-title: Front. Plant Sci.
– volume: 54
  start-page: 30
  year: 2016
  publication-title: Fish Shellfish Immunol.
– volume: 62
  start-page: 3289
  year: 2011
  publication-title: J. Exp. Bot.
– volume: 6
  start-page: 325
  year: 2004
  publication-title: Plant Biol.
– volume: 41
  start-page: 2
  year: 2010
  publication-title: J. Raman Spectrosc.
– volume: 42
  start-page: 1240
  year: 2011
  publication-title: J. Raman Spectrosc.
– volume: 29
  start-page: 435
  year: 2006
  publication-title: Plant Cell Environ.
– volume: 12
  start-page: 128
  year: 2014
  publication-title: Mar. Drugs
– volume: 22
  start-page: 1714
  year: 1968
  publication-title: Acta Chem. Scand.
– volume: 58
  start-page: 965
  year: 2011
  publication-title: Russ. J. Plant Physiol.
– volume: 3
  start-page: 147
  year: 1998
  publication-title: Trends Plant Sci.
– volume: 8
  start-page: 4
  year: 2014
  publication-title: Chem. Cent. J.
– volume: 37
  start-page: 623
  year: 2002
  publication-title: Process Biochem.
– ident: e_1_2_6_56_1
  doi: 10.1093/mp/ssu028
– ident: e_1_2_6_18_1
  doi: 10.1134/S1021443715060163
– ident: e_1_2_6_45_1
  doi: 10.1021/jf991106k
– ident: e_1_2_6_48_1
  doi: 10.1007/s10811-021-02448-6
– ident: e_1_2_6_34_1
  doi: 10.3390/nu14010107
– ident: e_1_2_6_42_1
  doi: 10.1146/annurev-nutr-082117-051841
– ident: e_1_2_6_58_1
  doi: 10.1117/1.JBO.20.5.051042
– ident: e_1_2_6_2_1
  doi: 10.1128/AEM.00699-14
– ident: e_1_2_6_11_1
  doi: 10.3390/md17110640
– ident: e_1_2_6_63_1
  doi: 10.1016/j.envexpbot.2023.105229
– ident: e_1_2_6_16_1
  doi: 10.1021/jf053141z
– ident: e_1_2_6_30_1
  doi: 10.1016/j.cpb.2021.100203
– ident: e_1_2_6_64_1
  doi: 10.1055/s-2004-817883
– ident: e_1_2_6_17_1
  doi: 10.1111/j.1365-3040.2005.01492.x
– ident: e_1_2_6_27_1
  doi: 10.3389/fmicb.2014.00100
– ident: e_1_2_6_52_1
  doi: 10.1134/S1021443711060161
– ident: e_1_2_6_13_1
  doi: 10.3390/ijms21082796
– ident: e_1_2_6_29_1
  doi: 10.1371/journal.pone.0019972
– ident: e_1_2_6_4_1
  doi: 10.1002/jrs.960
– ident: e_1_2_6_49_1
  doi: 10.1111/raq.12200
– ident: e_1_2_6_62_1
  doi: 10.1016/j.tplants.2010.02.003
– ident: e_1_2_6_5_1
  doi: 10.1002/jrs.2425
– ident: e_1_2_6_28_1
  doi: 10.1016/j.cbi.2020.109324
– ident: e_1_2_6_26_1
  doi: 10.1002/jrs.6176
– ident: e_1_2_6_47_1
  doi: 10.1038/s41598-018-36956-2
– ident: e_1_2_6_40_1
  doi: 10.3390/molecules27249017
– ident: e_1_2_6_20_1
  doi: 10.1021/acs.jproteome.0c00236
– ident: e_1_2_6_12_1
  doi: 10.3389/fimmu.2019.03041
– ident: e_1_2_6_6_1
  doi: 10.1016/j.vibspec.2006.01.008
– ident: e_1_2_6_21_1
  doi: 10.1186/s40066-020-00273-7
– ident: e_1_2_6_33_1
  doi: 10.1046/j.1365-2095.2002.00221.x
– ident: e_1_2_6_22_1
  doi: 10.1002/jemt.24145
– ident: e_1_2_6_41_1
  doi: 10.1016/0584-8539(94)E0057-H
– ident: e_1_2_6_3_1
  doi: 10.1089/ast.2009.0344
– ident: e_1_2_6_8_1
  doi: 10.1007/s11084-007-9079-0
– ident: e_1_2_6_43_1
  doi: 10.3390/molecules26195786
– ident: e_1_2_6_44_1
  doi: 10.3390/md12010128
– ident: e_1_2_6_38_1
  doi: 10.1002/jrs.2860
– ident: e_1_2_6_9_1
  doi: 10.1096/fasebj.9.15.8529834
– ident: e_1_2_6_25_1
  doi: 10.1016/j.foodchem.2019.05.065
– ident: e_1_2_6_59_1
  doi: 10.4161/psb.3.3.5539
– ident: e_1_2_6_57_1
  doi: 10.1016/S0032-9592(01)00246-1
– ident: e_1_2_6_36_1
  doi: 10.1098/rsif.2017.0504
– ident: e_1_2_6_31_1
  doi: 10.3891/acta.chem.scand.22-1714
– ident: e_1_2_6_60_1
  doi: 10.3389/fenvs.2014.00053
– ident: e_1_2_6_39_1
  doi: 10.1002/jrs.2493
– ident: e_1_2_6_7_1
  doi: 10.1098/rsta.2010.0016
– volume: 8
  start-page: 8
  year: 2017
  ident: e_1_2_6_53_1
  publication-title: Front. Plant Sci.
– ident: e_1_2_6_61_1
  doi: 10.4161/psb.2.5.4460
– ident: e_1_2_6_19_1
  doi: 10.1186/s43897-022-00023-2
– ident: e_1_2_6_35_1
  doi: 10.1111/j.1750-3841.2012.02842.x
– ident: e_1_2_6_24_1
  doi: 10.1093/jxb/err030
– ident: e_1_2_6_46_1
  doi: 10.1007/s10126-017-9739-7
– ident: e_1_2_6_23_1
  doi: 10.1021/jf304443u
– ident: e_1_2_6_14_1
  doi: 10.1016/S1360-1385(98)01200-X
– ident: e_1_2_6_15_1
  doi: 10.1186/1471-2229-6-32
– ident: e_1_2_6_50_1
  doi: 10.3389/fpls.2017.01428
– ident: e_1_2_6_10_1
  doi: 10.1016/j.fsi.2016.03.160
– ident: e_1_2_6_37_1
  doi: 10.1021/ac201302f
– ident: e_1_2_6_32_1
  doi: 10.1046/j.1444-2906.2001.00323.x
– ident: e_1_2_6_51_1
  doi: 10.1186/1752-153X-8-4
– ident: e_1_2_6_54_1
  doi: 10.1079/SSR2004159
– ident: e_1_2_6_55_1
  doi: 10.1016/j.molp.2017.09.010
SSID ssj0009961
Score 2.3785825
Snippet Understanding life at the molecular level is inherently difficult, as no precise method can very specifically determine “The activities of life.” The...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 706
SubjectTerms biomarker
Biomarkers
Carotenoids
Complexity
dormant state
growing state
Organisms
Plant cells
Raman spectroscopy
Seeds
Spectral bands
Title Raman spectroscopic signals of carotenoid distribution during stages of cell growth of unicellular organisms and plant cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjrs.6537
https://www.proquest.com/docview/2832190239
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA4iiL54mYrTKRHEt84tbdL0UYZDBH2YDgQfSm71Ntthuxfxx5uTtE4FQYRCaTmBNuec5ks55_sQOuoLJXtKqyAyfR2AvHEgM5uPkki7_DEbQwYanC-v2Pk4urilt3VVJfTCeH6Izx9ukBnuew0JLmR5MicNfXotu4yG0EgOpVqAh0Zz5igL451YXhjHAbDKNbyzPXLSDPy-Es3h5VeQ6laZ4Rq6a57PF5c8d2eV7Kq3H9SN_3uBdbRag0986qNlAy2YvIWWB43mWwstuYJQVW6i95F4ETl2jZhAeFlMHxWGYg8brrjIMMj9WLhdPGqsYXAtm4V92yO2mPPeeEMzmeB7u9mvHuASmlHsHSh-xV5Rqnwpscg1nk6sk515uYXGw7ObwXlQKzUEym4w44BwSXta2SMLNTGR0omKeZTwTFLJDE8050Yl0oBGkRCMZYSGkmcqolFGRT_cRot5kZsdhGMuCMuMIdSwSEiRMMG5FkYKC0QJo2102HgtnXpCjtRTL5PUzmgKM9pGncadaZ2SZeo0mRLo5W2jY-eXX8enF6NrOO_-1XAPrYAMvS_j7aDF6nVm9i1YqeSBC8sP3K3qoA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFD5inRC8jAFDdNw8CfGW0jqx44gnBEPl-lBA4mFS5Fs6tpJWTXmZ-PH42A3dkJDQpEhRIluKfc6JP1vnfB_Abkdq1dZGR4ntmAjljSNVuHhUVLnljzsfsljgfHnFu7fJ2R27m4ODuhYm8EO8HLhhZPj_NQY4Hkjvz1hDf42rFmdx-gE-oqA3Eucf92bcUQ7Ie7m8OE0j5JWrmWfbdL_u-e9aNAOYf8NUv86cLMGP-gtDesnv1uNEtfSfV-SN_zmEz_Bpij_JYXCYZZiz5QosHNWybysw73NCdbUKTz35IEviazGR83I4utcE8z2cx5JhQVDxxyHu4b0hBjtPlbNIqHwkDnb2bWhoBwPSd_v9yU98xHoU9wbzX0kQlaoeKiJLQ0YDZ2ffvPoCtyffb4660VSsIdJuj5lGVCjWNtpdRWyoTbTJdCqSTBSKKW5FZoSwOlMWZYqk5LygLFai0AlLCiY78Ro0ymFp14GkQlJeWEuZ5YlUMuNSCCOtkg6LUs6a8K02Wz4KnBx5YF-muZvRHGe0CZu1PfNpVFa5l2XKsJy3CXveMG_2z89613j_-t6GO7DQvbm8yC9Or843YBFV6UNW7yY0JuNHu-Wwy0Rtex99Bnfn7rw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS9xAFD5US9WXXrzgtlanUHzLujvJTCaPRbt4qSLbCoIPYa7e1uxi1pfSH985M0m3FQoiBELCGUjmnJP5JpzzfQCf-1KrnjY6yWzfJChvnCjn81FR5Zc_7mPIYoPz8QnfP8sOz9l5U1WJvTCRH-LPDzfMjPC9xgSfGLczIw29ua-7nKX5HLzMeK9A2Ya94Yw6yuP4oJaX5nmCtHIt8WyP7rQj_12KZvjyb5QalpnBG7hoHzBWl9x2H6aqq38-4m583hu8hdcN-iRfYri8gxe2WobF3Vb0bRlehYpQXa_Ar6G8kxUJnZjIeDmeXGuC1R4-XsnYEdT78Xh7fG2IwcGNbhaJfY_Eg85LGw3taEQu_W5_eoWX2I3i72D1K4mSUvVdTWRlyGTkvRzM61U4G3z9sbufNFINifY7zDyhQrGe0f5wqaE206bQucgK4RRT3IrCCGF1oSyKFEnJuaMsVcLpjGWOyX66BvPVuLLrQHIhKXfWUmZ5JpUsuBTCSKukR6KUsw58ar1WTiIjRxm5l2npZ7TEGe3ARuvOssnJugyiTAU283ZgO_jlv-PLw-F3PL9_quEWLJzuDcpvBydHH2AJJeljSe8GzE_vH-xHD1ymajNE6G_NEe1r
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Raman+spectroscopic+signals+of+carotenoid+distribution+during+stages+of+cell+growth+of+unicellular+organisms+and+plant+cells&rft.jtitle=Journal+of+Raman+spectroscopy&rft.au=Badgujar%2C+Pooja+Manik&rft.au=Yu%E2%80%90Chung+Lin&rft.au=Zhe%E2%80%90Rui+Lin&rft.au=Ming%E2%80%90Der+Lin&rft.date=2023-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0377-0486&rft.eissn=1097-4555&rft.volume=54&rft.issue=7&rft.spage=706&rft.epage=718&rft_id=info:doi/10.1002%2Fjrs.6537&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0486&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0486&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0486&client=summon