A language‐directed virtual human motion generation approach based on musculoskeletal models
The development of the systems capable of synthesizing natural and life‐like motions for virtual characters has long been a central focus in computer animation. It needs to generate high‐quality motions for characters and provide users with a convenient and flexible interface for guiding character m...
Saved in:
Published in | Computer animation and virtual worlds Vol. 35; no. 3 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.05.2024
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of the systems capable of synthesizing natural and life‐like motions for virtual characters has long been a central focus in computer animation. It needs to generate high‐quality motions for characters and provide users with a convenient and flexible interface for guiding character motions. In this work, we propose a language‐directed virtual human motion generation approach based on musculoskeletal models to achieve interactive and higher‐fidelity virtual human motion, which lays the foundation for the development of language‐directed controllers in physics‐based character animation. First, we construct a simplified model of musculoskeletal dynamics for the virtual character. Subsequently, we propose a hierarchical control framework consisting of a trajectory tracking layer and a muscle control layer, obtaining the optimal control policy for imitating the reference motions through the training. We design a multi‐policy aggregation controller based on large language models, which selects the motion policy with the highest similarity to user text commands from the action‐caption data pool, facilitating natural language‐based control of virtual character motions. Experimental results demonstrate that the proposed approach not only generates high‐quality motions highly resembling reference motions but also enables users to effectively guide virtual characters to perform various motions via natural language instructions.
We propose a language‐directed virtual human motion generation approach based on musculoskeletal models to achieve interactive and higher‐fidelity virtual human motion. It takes reference motion data, caption and text prompts as inputs, realizing the natural language motion controller through three components: constructing an action‐caption data pool, learning the control policies for imitating the motion, and semantic matching selection. |
---|---|
AbstractList | The development of the systems capable of synthesizing natural and life‐like motions for virtual characters has long been a central focus in computer animation. It needs to generate high‐quality motions for characters and provide users with a convenient and flexible interface for guiding character motions. In this work, we propose a language‐directed virtual human motion generation approach based on musculoskeletal models to achieve interactive and higher‐fidelity virtual human motion, which lays the foundation for the development of language‐directed controllers in physics‐based character animation. First, we construct a simplified model of musculoskeletal dynamics for the virtual character. Subsequently, we propose a hierarchical control framework consisting of a trajectory tracking layer and a muscle control layer, obtaining the optimal control policy for imitating the reference motions through the training. We design a multi‐policy aggregation controller based on large language models, which selects the motion policy with the highest similarity to user text commands from the action‐caption data pool, facilitating natural language‐based control of virtual character motions. Experimental results demonstrate that the proposed approach not only generates high‐quality motions highly resembling reference motions but also enables users to effectively guide virtual characters to perform various motions via natural language instructions. The development of the systems capable of synthesizing natural and life‐like motions for virtual characters has long been a central focus in computer animation. It needs to generate high‐quality motions for characters and provide users with a convenient and flexible interface for guiding character motions. In this work, we propose a language‐directed virtual human motion generation approach based on musculoskeletal models to achieve interactive and higher‐fidelity virtual human motion, which lays the foundation for the development of language‐directed controllers in physics‐based character animation. First, we construct a simplified model of musculoskeletal dynamics for the virtual character. Subsequently, we propose a hierarchical control framework consisting of a trajectory tracking layer and a muscle control layer, obtaining the optimal control policy for imitating the reference motions through the training. We design a multi‐policy aggregation controller based on large language models, which selects the motion policy with the highest similarity to user text commands from the action‐caption data pool, facilitating natural language‐based control of virtual character motions. Experimental results demonstrate that the proposed approach not only generates high‐quality motions highly resembling reference motions but also enables users to effectively guide virtual characters to perform various motions via natural language instructions. We propose a language‐directed virtual human motion generation approach based on musculoskeletal models to achieve interactive and higher‐fidelity virtual human motion. It takes reference motion data, caption and text prompts as inputs, realizing the natural language motion controller through three components: constructing an action‐caption data pool, learning the control policies for imitating the motion, and semantic matching selection. |
Author | Wang, Yongxiang Qin, Wenhu Sun, Libo |
Author_xml | – sequence: 1 givenname: Libo orcidid: 0000-0002-7838-9410 surname: Sun fullname: Sun, Libo email: sunlibo@seu.edu.cn organization: Southeast University – sequence: 2 givenname: Yongxiang orcidid: 0009-0004-8648-310X surname: Wang fullname: Wang, Yongxiang organization: Southeast University – sequence: 3 givenname: Wenhu orcidid: 0000-0002-9265-7397 surname: Qin fullname: Qin, Wenhu email: qinwenhu@seu.edu.cn organization: Southeast University |
BookMark | eNp10N1KwzAUB_AgE3RT8BEK3njTmaRNul6O4RcMvFHxynCSnm7VtplJO9mdj-Az-iRmm3jnVQ7hdz74D8mgtS0ScsbomFHKLw2sx5yL7IAcM5HKOOXZ8-CvluyIDL1_DVJyRo_JyzSqoV30sMDvz6-icmg6LKJ15boe6mjZN9BGje0q20YLbNHBroTVylkwy0iDDzz8NL03fW39G9bYhc7GFlj7E3JYQu3x9Pcdkcfrq4fZbTy_v7mbTeex4SLNYibzMimlyUCLBIqEZ5Ka3GCSpyLVBSt1YlKNOVCQUueQp7kEzieoJ6LUOk9G5Hw_N5z13qPv1KvtXRtWqoRmTNKJECyoi70yznrvsFQrVzXgNopRtU1PhfTUNr1A4z39qGrc_OvUbPq08z_xeHTU |
Cites_doi | 10.1109/IROS.2012.6386025 10.1145/3550454.3555490 10.1145/1186822.1073208 10.1145/3072959.3073663 10.1109/CVPR.2019.00687 10.1145/3550469.3555391 10.1145/1399504.1360682 10.1016/j.robot.2018.07.006 10.1145/3450626.3459817 10.1109/TNSRE.2010.2047592 10.1145/3355089.3356505 10.1002/cav.2092 10.1109/3DV.2019.00084 10.1145/2897824.2925893 10.1145/3072959.3073602 10.1098/rspb.1938.0050 10.1002/cav.2209 10.1145/3450626.3459670 10.1145/2508363.2508399 10.1145/2661229.2661233 10.1145/3197517.3201315 10.1145/2893476 10.1109/ICCV48922.2021.00143 10.1109/Humanoids43949.2019.9035034 10.1145/1141911.1142013 10.1115/1.1392310 10.1145/3528233.3530735 10.1145/3306346.3322972 |
ContentType | Journal Article |
Copyright | 2024 John Wiley & Sons Ltd. 2024 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2024 John Wiley & Sons Ltd. – notice: 2024 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/cav.2257 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts |
EISSN | 1546-427X |
EndPage | n/a |
ExternalDocumentID | 10_1002_cav_2257 CAV2257 |
Genre | article |
GrantInformation_xml | – fundername: Key R&D Program of Jiangsu Province funderid: BE2023010‐3 – fundername: Advanced Computing and Intelligent Engineering (Na‐tional Level) Laboratory Fund – fundername: Jiangsu Modern Agricultural Industry Single Technology Research and Development Project funderid: CX(23)3120 |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 29F 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA HF~ HGLYW HHY HVGLF HZ~ I-F ITG ITH IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A NF~ O66 O9- OIG P2W P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 TUS UB1 V2E V8K W8V W99 WBKPD WIH WIK WQJ WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2547-169f3f6c7ab53ad32760c9ce39454bd1fb3c4be9a0a66b9a9496a228eb85fbb93 |
IEDL.DBID | DR2 |
ISSN | 1546-4261 |
IngestDate | Sat Jul 26 03:40:54 EDT 2025 Tue Jul 01 02:42:24 EDT 2025 Wed Aug 20 07:26:33 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2547-169f3f6c7ab53ad32760c9ce39454bd1fb3c4be9a0a66b9a9496a228eb85fbb93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7838-9410 0009-0004-8648-310X 0000-0002-9265-7397 |
PQID | 3071608551 |
PQPubID | 2034909 |
PageCount | 15 |
ParticipantIDs | proquest_journals_3071608551 crossref_primary_10_1002_cav_2257 wiley_primary_10_1002_cav_2257_CAV2257 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May/June 2024 2024-05-00 20240501 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: May/June 2024 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Chichester |
PublicationTitle | Computer animation and virtual worlds |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2001; 123 2023 2022 2017; 36 2013; 32 2010; 18 2021 2019; 38 2017 2022; 41 2018; 109 2020; 33 2022; 33 2024; 35 1938; 126 2021; 40 2016; 35 2014; 33 2018; 37 e_1_2_12_4_1 e_1_2_12_3_1 e_1_2_12_6_1 e_1_2_12_5_1 e_1_2_12_19_1 e_1_2_12_18_1 e_1_2_12_17_1 Wang Y (e_1_2_12_10_1) 2022; 41 e_1_2_12_16_1 e_1_2_12_38_1 Brown T (e_1_2_12_2_1) 2020; 33 e_1_2_12_20_1 e_1_2_12_21_1 e_1_2_12_23_1 e_1_2_12_24_1 e_1_2_12_25_1 e_1_2_12_26_1 Liu L (e_1_2_12_7_1) 2016; 35 e_1_2_12_27_1 Liu L (e_1_2_12_22_1) 2018; 37 e_1_2_12_28_1 e_1_2_12_29_1 e_1_2_12_30_1 e_1_2_12_31_1 e_1_2_12_32_1 e_1_2_12_33_1 Tevet G (e_1_2_12_34_1) 2022 e_1_2_12_35_1 e_1_2_12_36_1 e_1_2_12_37_1 e_1_2_12_15_1 e_1_2_12_14_1 e_1_2_12_13_1 e_1_2_12_12_1 e_1_2_12_8_1 e_1_2_12_11_1 e_1_2_12_9_1 |
References_xml | – volume: 37 start-page: 1 issue: 4 year: 2018 end-page: 14 article-title: Learning basketball dribbling skills using trajectory optimization and deep reinforcement learning publication-title: ACM Trans Graph – volume: 32 start-page: 1 issue: 6 year: 2013 end-page: 11 article-title: Flexible muscle‐based locomotion for bipedal creatures publication-title: ACM Trans Graph – volume: 109 start-page: 13 year: 2018 end-page: 26 article-title: Learning a bidirectional mapping between human whole‐body motion and natural language using deep recurrent neural networks publication-title: Robot Auton Syst – volume: 36 start-page: 1 issue: 4 year: 2017 end-page: 13 article-title: Deeploco: dynamic locomotion skills using hierarchical deep reinforcement learning publication-title: ACM Trans Graph – volume: 40 start-page: 1 issue: 4 year: 2021 end-page: 17 article-title: Discovering diverse athletic jumping strategies publication-title: ACM Trans Graph – volume: 35 start-page: 1 issue: 3 year: 2016 end-page: 14 article-title: Guided learning of control graphs for physics‐based characters publication-title: ACM Trans Graph – volume: 36 start-page: 1 issue: 4 year: 2017 end-page: 13 article-title: Phase‐functioned neural networks for character control publication-title: ACM Trans Graph – volume: 33 issue: 3–4 year: 2022 article-title: Muscle‐driven virtual human motion generation approach based on deep reinforcement learning publication-title: Comput Animat Virt Worlds – volume: 18 start-page: 263 issue: 3 year: 2010 end-page: 273 article-title: A muscle‐reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities publication-title: IEEE Trans Neural Syst Rehabil Eng – year: 2022 – year: 2021 – year: 2023 – volume: 38 start-page: 1 issue: 4 year: 2019 end-page: 13 article-title: Scalable muscle‐actuated human simulation and control publication-title: ACM Trans Graph – volume: 33 start-page: 1877 year: 2020 end-page: 1901 article-title: Language models are few‐shot learners publication-title: Adv Neural Inf Process Syst – volume: 35 issue: 1 year: 2024 article-title: Physical based motion reconstruction from videos using musculoskeletal model publication-title: Comput Animat Virt Worlds – volume: 123 start-page: 381 issue: 5 year: 2001 end-page: 390 article-title: Dynamic optimization of human walking publication-title: J Biomech Eng – volume: 126 start-page: 136 issue: 843 year: 1938 end-page: 195 article-title: The heat of shortening and the dynamic constants of muscle publication-title: Proc R Soc London Ser B – year: 2017 – volume: 38 start-page: 178 issue: 6 year: 2019 end-page: 214 article-title: Neural state machine for character‐scene interactions publication-title: ACM Trans Graph – volume: 41 start-page: 1 issue: 6 year: 2022 end-page: 11 article-title: Differentiable simulation of inertial musculotendons publication-title: ACM Trans Graph – start-page: 358 year: 2022 end-page: 374 – volume: 33 start-page: 1 issue: 6 year: 2014 end-page: 11 article-title: Locomotion control for many‐muscle humanoids publication-title: ACM Trans Graph – volume: 37 start-page: 1 issue: 4 year: 2018 end-page: 14 article-title: Deepmimic: example‐guided deep reinforcement learning of physics‐based character skills publication-title: ACM Trans Graph – volume: 35 start-page: 1 issue: 4 year: 2016 end-page: 11 article-title: Task‐based locomotion publication-title: ACM Trans Graph – ident: e_1_2_12_18_1 doi: 10.1109/IROS.2012.6386025 – volume: 41 start-page: 1 issue: 6 year: 2022 ident: e_1_2_12_10_1 article-title: Differentiable simulation of inertial musculotendons publication-title: ACM Trans Graph doi: 10.1145/3550454.3555490 – ident: e_1_2_12_13_1 doi: 10.1145/1186822.1073208 – ident: e_1_2_12_28_1 doi: 10.1145/3072959.3073663 – ident: e_1_2_12_5_1 doi: 10.1109/CVPR.2019.00687 – ident: e_1_2_12_21_1 – ident: e_1_2_12_35_1 doi: 10.1145/3550469.3555391 – ident: e_1_2_12_11_1 doi: 10.1145/1399504.1360682 – ident: e_1_2_12_32_1 doi: 10.1016/j.robot.2018.07.006 – volume: 33 start-page: 1877 year: 2020 ident: e_1_2_12_2_1 article-title: Language models are few‐shot learners publication-title: Adv Neural Inf Process Syst – ident: e_1_2_12_24_1 doi: 10.1145/3450626.3459817 – ident: e_1_2_12_14_1 doi: 10.1109/TNSRE.2010.2047592 – ident: e_1_2_12_29_1 doi: 10.1145/3355089.3356505 – ident: e_1_2_12_37_1 doi: 10.1002/cav.2092 – ident: e_1_2_12_30_1 doi: 10.1109/3DV.2019.00084 – start-page: 358 volume-title: Motionclip: exposing human motion generation to clip space. European conference on computer vision year: 2022 ident: e_1_2_12_34_1 – ident: e_1_2_12_20_1 – ident: e_1_2_12_27_1 doi: 10.1145/2897824.2925893 – ident: e_1_2_12_6_1 doi: 10.1145/3072959.3073602 – ident: e_1_2_12_8_1 doi: 10.1098/rspb.1938.0050 – ident: e_1_2_12_38_1 doi: 10.1002/cav.2209 – ident: e_1_2_12_19_1 doi: 10.1145/3450626.3459670 – ident: e_1_2_12_9_1 doi: 10.1145/2508363.2508399 – ident: e_1_2_12_26_1 – ident: e_1_2_12_15_1 doi: 10.1145/2661229.2661233 – ident: e_1_2_12_4_1 – volume: 37 start-page: 1 issue: 4 year: 2018 ident: e_1_2_12_22_1 article-title: Learning basketball dribbling skills using trajectory optimization and deep reinforcement learning publication-title: ACM Trans Graph doi: 10.1145/3197517.3201315 – volume: 35 start-page: 1 issue: 3 year: 2016 ident: e_1_2_12_7_1 article-title: Guided learning of control graphs for physics‐based characters publication-title: ACM Trans Graph doi: 10.1145/2893476 – ident: e_1_2_12_36_1 – ident: e_1_2_12_31_1 doi: 10.1109/ICCV48922.2021.00143 – ident: e_1_2_12_25_1 doi: 10.1109/Humanoids43949.2019.9035034 – ident: e_1_2_12_12_1 doi: 10.1145/1141911.1142013 – ident: e_1_2_12_3_1 – ident: e_1_2_12_17_1 doi: 10.1115/1.1392310 – ident: e_1_2_12_33_1 – ident: e_1_2_12_23_1 doi: 10.1145/3528233.3530735 – ident: e_1_2_12_16_1 doi: 10.1145/3306346.3322972 |
SSID | ssj0026210 |
Score | 2.3514183 |
Snippet | The development of the systems capable of synthesizing natural and life‐like motions for virtual characters has long been a central focus in computer... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | character animation Computer animation deep reinforcement learning Human motion Language language commands Large language models musculoskeletal model Natural language Natural language processing Optimal control Virtual humans Virtual reality |
Title | A language‐directed virtual human motion generation approach based on musculoskeletal models |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.2257 https://www.proquest.com/docview/3071608551 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA6ykx78LU6nRBBv3dokTZfjGI7hwYO4MRAseWkrY7jJuu3gyT_Bv9G_xLxm3VQQxFNLaKB9ycv7kn7ve4RccuZH4IvE0yAyTySBQRKA8PAPH2DmJji2xa3s9sTNIBwsWZWYC-P0IVYHbugZxXqNDq4hb6xFQ41e1O1kxERypGohHrpbKUcxyZwQQSikh7uEUnfWZ42y4_dItIaXX0FqEWU6O-ShfD9HLhnV5zOom9cf0o3_-4Bdsr0En7TlZsse2UjH-2SrP8znrjU_II8tWh5hfry9u4CXJnQxnGKiCS1K-lFX-oc-FZLVxW0pTU4xKibUtjzPkeI6yUc2rlmAT4uSO_kh6XWu79tdb1mDwTN26xh5gVQZz6SJNIRcJ5xF0jfKpFyJUEASZMCNgFRpX0sJSiuhpGasmUIzzAAUPyKV8WScHhOq7IZVgJFcY5lrLXRkPV4z2eQBQKbCKrkoxyN-cVIbsRNVZrG1VYy2qpJaOVDx0tny2C5TgUS-XVAlV4XFf-0ft1t9vJ789cFTssksjHEUxxqpzKbz9MzCkBmcFxPuE-k72o0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTttAEB4hONAeoPRHBGjZSm1vDvZ6vc4eOERJUdLQHKok4lR3Z20jhAgIJyA48Qi8B6_CU_Ak7HhjoJUq9cKhJ1srW7J3Zudvv_0G4FPI_Rh9kXoaRe6JNDAEAhAe7fAhndxEh7boy85QfNuL9ubgpjoL4_ghHgputDJKe00LnArSW4-soUaf1a02xjNEZS-7OLf5WrHdbVvhfuZ85-ug1fFmLQU8YzOh2AukysNcmlhjFOo05LH0jTJZqEQkMA1yDI3ATGlfS4lKK6Gk5ryRYSPKEYl5ydr7BWogTkT97R8PXFVcckd9EAnpUV5SMd36fKv60t9932NA-zQsLv3azjLcVjPi4CyH9ekE6-byD7LI_2TKXsHSLL5mTbcgVmAuG7-Gl6ODYupGizfws8mqKu3d1bXz6VnKzg5O6SwNK7sWMtfdiO2XrNzlbcW-zsjxp8yOHE0JxXtcHFrXbXMYVnYVKt7C8Fl-8B3Mj4_H2SowZXNygUaGmjp5a6Fja9Q0l40wQMxVVIOPlQIkJ45NJHG80TyxsklINjXYqDQjmdmTIrGWOJAEKQxq8KUU8V_fT1rNEV3X_vXBTVjsDL7vJrvdfm8dXnAbtTlE5wbMT06n2XsbdU3wQ6ntDH49t67cA22yObM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LSsQwFL2IgujCtzg-I6i7jm2appOFi8Fx8IWIqLiy5qatDOI4TGcUXfkJfoe_4l_4JSbN1BcIbly4agkttLk395Gcey7Aik_dEF0WOxJZ6rDYUwYEwBxzwoemchMt2uKAb5-w3bPgrA-ei1oYyw_xvuFmVkZur80Cb8Xp-gdpqJK3Za2MYQ9QuZfc3-l0LdvYqWnZrlJa3zre3HZ6HQUcpROh0PG4SP2Uq1Bi4MvYpyF3lVCJL1jAMPZS9BXDREhXco5CCia4pLSSYCVIEQ3xkjb3A4y7wrSJqB29U1VRTi3zQcC4Y9KSgujWpevFl351fR_x7OeoOHdr9VF4KSbEolmuyt0OltXDN67I_zFjYzDSi65J1S6HcehLmhMwfNrIunY0m4TzKin2aF8fn6xHT2Jy22ibShqS9ywktrcRucw5ufPbgnudGLcfEz1y3TUY3pvsSjtuncGQvKdQNgUnf_KD09DfvGkmM0CEzsgZKu5L08dbMhlqkyYpr_geYiqCEiwX8o9alksksqzRNNKyiYxsSjBfKEbUsyZZpO2wxw2g0CvBWi7hH9-PNqun5jr72weXYPCwVo_2dw725mCI6pDNwjnnob_T7iYLOuTq4GKu6wQu_lpV3gB0fThi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+language%E2%80%90directed+virtual+human+motion+generation+approach+based+on+musculoskeletal+models&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Sun%2C+Libo&rft.au=Wang%2C+Yongxiang&rft.au=Qin%2C+Wenhu&rft.date=2024-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=35&rft.issue=3&rft_id=info:doi/10.1002%2Fcav.2257&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon |