A language‐directed virtual human motion generation approach based on musculoskeletal models

The development of the systems capable of synthesizing natural and life‐like motions for virtual characters has long been a central focus in computer animation. It needs to generate high‐quality motions for characters and provide users with a convenient and flexible interface for guiding character m...

Full description

Saved in:
Bibliographic Details
Published inComputer animation and virtual worlds Vol. 35; no. 3
Main Authors Sun, Libo, Wang, Yongxiang, Qin, Wenhu
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.05.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of the systems capable of synthesizing natural and life‐like motions for virtual characters has long been a central focus in computer animation. It needs to generate high‐quality motions for characters and provide users with a convenient and flexible interface for guiding character motions. In this work, we propose a language‐directed virtual human motion generation approach based on musculoskeletal models to achieve interactive and higher‐fidelity virtual human motion, which lays the foundation for the development of language‐directed controllers in physics‐based character animation. First, we construct a simplified model of musculoskeletal dynamics for the virtual character. Subsequently, we propose a hierarchical control framework consisting of a trajectory tracking layer and a muscle control layer, obtaining the optimal control policy for imitating the reference motions through the training. We design a multi‐policy aggregation controller based on large language models, which selects the motion policy with the highest similarity to user text commands from the action‐caption data pool, facilitating natural language‐based control of virtual character motions. Experimental results demonstrate that the proposed approach not only generates high‐quality motions highly resembling reference motions but also enables users to effectively guide virtual characters to perform various motions via natural language instructions. We propose a language‐directed virtual human motion generation approach based on musculoskeletal models to achieve interactive and higher‐fidelity virtual human motion. It takes reference motion data, caption and text prompts as inputs, realizing the natural language motion controller through three components: constructing an action‐caption data pool, learning the control policies for imitating the motion, and semantic matching selection.
AbstractList The development of the systems capable of synthesizing natural and life‐like motions for virtual characters has long been a central focus in computer animation. It needs to generate high‐quality motions for characters and provide users with a convenient and flexible interface for guiding character motions. In this work, we propose a language‐directed virtual human motion generation approach based on musculoskeletal models to achieve interactive and higher‐fidelity virtual human motion, which lays the foundation for the development of language‐directed controllers in physics‐based character animation. First, we construct a simplified model of musculoskeletal dynamics for the virtual character. Subsequently, we propose a hierarchical control framework consisting of a trajectory tracking layer and a muscle control layer, obtaining the optimal control policy for imitating the reference motions through the training. We design a multi‐policy aggregation controller based on large language models, which selects the motion policy with the highest similarity to user text commands from the action‐caption data pool, facilitating natural language‐based control of virtual character motions. Experimental results demonstrate that the proposed approach not only generates high‐quality motions highly resembling reference motions but also enables users to effectively guide virtual characters to perform various motions via natural language instructions.
The development of the systems capable of synthesizing natural and life‐like motions for virtual characters has long been a central focus in computer animation. It needs to generate high‐quality motions for characters and provide users with a convenient and flexible interface for guiding character motions. In this work, we propose a language‐directed virtual human motion generation approach based on musculoskeletal models to achieve interactive and higher‐fidelity virtual human motion, which lays the foundation for the development of language‐directed controllers in physics‐based character animation. First, we construct a simplified model of musculoskeletal dynamics for the virtual character. Subsequently, we propose a hierarchical control framework consisting of a trajectory tracking layer and a muscle control layer, obtaining the optimal control policy for imitating the reference motions through the training. We design a multi‐policy aggregation controller based on large language models, which selects the motion policy with the highest similarity to user text commands from the action‐caption data pool, facilitating natural language‐based control of virtual character motions. Experimental results demonstrate that the proposed approach not only generates high‐quality motions highly resembling reference motions but also enables users to effectively guide virtual characters to perform various motions via natural language instructions. We propose a language‐directed virtual human motion generation approach based on musculoskeletal models to achieve interactive and higher‐fidelity virtual human motion. It takes reference motion data, caption and text prompts as inputs, realizing the natural language motion controller through three components: constructing an action‐caption data pool, learning the control policies for imitating the motion, and semantic matching selection.
Author Wang, Yongxiang
Qin, Wenhu
Sun, Libo
Author_xml – sequence: 1
  givenname: Libo
  orcidid: 0000-0002-7838-9410
  surname: Sun
  fullname: Sun, Libo
  email: sunlibo@seu.edu.cn
  organization: Southeast University
– sequence: 2
  givenname: Yongxiang
  orcidid: 0009-0004-8648-310X
  surname: Wang
  fullname: Wang, Yongxiang
  organization: Southeast University
– sequence: 3
  givenname: Wenhu
  orcidid: 0000-0002-9265-7397
  surname: Qin
  fullname: Qin, Wenhu
  email: qinwenhu@seu.edu.cn
  organization: Southeast University
BookMark eNp10N1KwzAUB_AgE3RT8BEK3njTmaRNul6O4RcMvFHxynCSnm7VtplJO9mdj-Az-iRmm3jnVQ7hdz74D8mgtS0ScsbomFHKLw2sx5yL7IAcM5HKOOXZ8-CvluyIDL1_DVJyRo_JyzSqoV30sMDvz6-icmg6LKJ15boe6mjZN9BGje0q20YLbNHBroTVylkwy0iDDzz8NL03fW39G9bYhc7GFlj7E3JYQu3x9Pcdkcfrq4fZbTy_v7mbTeex4SLNYibzMimlyUCLBIqEZ5Ka3GCSpyLVBSt1YlKNOVCQUueQp7kEzieoJ6LUOk9G5Hw_N5z13qPv1KvtXRtWqoRmTNKJECyoi70yznrvsFQrVzXgNopRtU1PhfTUNr1A4z39qGrc_OvUbPq08z_xeHTU
Cites_doi 10.1109/IROS.2012.6386025
10.1145/3550454.3555490
10.1145/1186822.1073208
10.1145/3072959.3073663
10.1109/CVPR.2019.00687
10.1145/3550469.3555391
10.1145/1399504.1360682
10.1016/j.robot.2018.07.006
10.1145/3450626.3459817
10.1109/TNSRE.2010.2047592
10.1145/3355089.3356505
10.1002/cav.2092
10.1109/3DV.2019.00084
10.1145/2897824.2925893
10.1145/3072959.3073602
10.1098/rspb.1938.0050
10.1002/cav.2209
10.1145/3450626.3459670
10.1145/2508363.2508399
10.1145/2661229.2661233
10.1145/3197517.3201315
10.1145/2893476
10.1109/ICCV48922.2021.00143
10.1109/Humanoids43949.2019.9035034
10.1145/1141911.1142013
10.1115/1.1392310
10.1145/3528233.3530735
10.1145/3306346.3322972
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cav.2257
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 1546-427X
EndPage n/a
ExternalDocumentID 10_1002_cav_2257
CAV2257
Genre article
GrantInformation_xml – fundername: Key R&D Program of Jiangsu Province
  funderid: BE2023010‐3
– fundername: Advanced Computing and Intelligent Engineering (Na‐tional Level) Laboratory Fund
– fundername: Jiangsu Modern Agricultural Industry Single Technology Research and Development Project
  funderid: CX(23)3120
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
29F
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
ITG
ITH
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
NF~
O66
O9-
OIG
P2W
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WQJ
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2547-169f3f6c7ab53ad32760c9ce39454bd1fb3c4be9a0a66b9a9496a228eb85fbb93
IEDL.DBID DR2
ISSN 1546-4261
IngestDate Sat Jul 26 03:40:54 EDT 2025
Tue Jul 01 02:42:24 EDT 2025
Wed Aug 20 07:26:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2547-169f3f6c7ab53ad32760c9ce39454bd1fb3c4be9a0a66b9a9496a228eb85fbb93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7838-9410
0009-0004-8648-310X
0000-0002-9265-7397
PQID 3071608551
PQPubID 2034909
PageCount 15
ParticipantIDs proquest_journals_3071608551
crossref_primary_10_1002_cav_2257
wiley_primary_10_1002_cav_2257_CAV2257
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May/June 2024
2024-05-00
20240501
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May/June 2024
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Chichester
PublicationTitle Computer animation and virtual worlds
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2001; 123
2023
2022
2017; 36
2013; 32
2010; 18
2021
2019; 38
2017
2022; 41
2018; 109
2020; 33
2022; 33
2024; 35
1938; 126
2021; 40
2016; 35
2014; 33
2018; 37
e_1_2_12_4_1
e_1_2_12_3_1
e_1_2_12_6_1
e_1_2_12_5_1
e_1_2_12_19_1
e_1_2_12_18_1
e_1_2_12_17_1
Wang Y (e_1_2_12_10_1) 2022; 41
e_1_2_12_16_1
e_1_2_12_38_1
Brown T (e_1_2_12_2_1) 2020; 33
e_1_2_12_20_1
e_1_2_12_21_1
e_1_2_12_23_1
e_1_2_12_24_1
e_1_2_12_25_1
e_1_2_12_26_1
Liu L (e_1_2_12_7_1) 2016; 35
e_1_2_12_27_1
Liu L (e_1_2_12_22_1) 2018; 37
e_1_2_12_28_1
e_1_2_12_29_1
e_1_2_12_30_1
e_1_2_12_31_1
e_1_2_12_32_1
e_1_2_12_33_1
Tevet G (e_1_2_12_34_1) 2022
e_1_2_12_35_1
e_1_2_12_36_1
e_1_2_12_37_1
e_1_2_12_15_1
e_1_2_12_14_1
e_1_2_12_13_1
e_1_2_12_12_1
e_1_2_12_8_1
e_1_2_12_11_1
e_1_2_12_9_1
References_xml – volume: 37
  start-page: 1
  issue: 4
  year: 2018
  end-page: 14
  article-title: Learning basketball dribbling skills using trajectory optimization and deep reinforcement learning
  publication-title: ACM Trans Graph
– volume: 32
  start-page: 1
  issue: 6
  year: 2013
  end-page: 11
  article-title: Flexible muscle‐based locomotion for bipedal creatures
  publication-title: ACM Trans Graph
– volume: 109
  start-page: 13
  year: 2018
  end-page: 26
  article-title: Learning a bidirectional mapping between human whole‐body motion and natural language using deep recurrent neural networks
  publication-title: Robot Auton Syst
– volume: 36
  start-page: 1
  issue: 4
  year: 2017
  end-page: 13
  article-title: Deeploco: dynamic locomotion skills using hierarchical deep reinforcement learning
  publication-title: ACM Trans Graph
– volume: 40
  start-page: 1
  issue: 4
  year: 2021
  end-page: 17
  article-title: Discovering diverse athletic jumping strategies
  publication-title: ACM Trans Graph
– volume: 35
  start-page: 1
  issue: 3
  year: 2016
  end-page: 14
  article-title: Guided learning of control graphs for physics‐based characters
  publication-title: ACM Trans Graph
– volume: 36
  start-page: 1
  issue: 4
  year: 2017
  end-page: 13
  article-title: Phase‐functioned neural networks for character control
  publication-title: ACM Trans Graph
– volume: 33
  issue: 3–4
  year: 2022
  article-title: Muscle‐driven virtual human motion generation approach based on deep reinforcement learning
  publication-title: Comput Animat Virt Worlds
– volume: 18
  start-page: 263
  issue: 3
  year: 2010
  end-page: 273
  article-title: A muscle‐reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– year: 2022
– year: 2021
– year: 2023
– volume: 38
  start-page: 1
  issue: 4
  year: 2019
  end-page: 13
  article-title: Scalable muscle‐actuated human simulation and control
  publication-title: ACM Trans Graph
– volume: 33
  start-page: 1877
  year: 2020
  end-page: 1901
  article-title: Language models are few‐shot learners
  publication-title: Adv Neural Inf Process Syst
– volume: 35
  issue: 1
  year: 2024
  article-title: Physical based motion reconstruction from videos using musculoskeletal model
  publication-title: Comput Animat Virt Worlds
– volume: 123
  start-page: 381
  issue: 5
  year: 2001
  end-page: 390
  article-title: Dynamic optimization of human walking
  publication-title: J Biomech Eng
– volume: 126
  start-page: 136
  issue: 843
  year: 1938
  end-page: 195
  article-title: The heat of shortening and the dynamic constants of muscle
  publication-title: Proc R Soc London Ser B
– year: 2017
– volume: 38
  start-page: 178
  issue: 6
  year: 2019
  end-page: 214
  article-title: Neural state machine for character‐scene interactions
  publication-title: ACM Trans Graph
– volume: 41
  start-page: 1
  issue: 6
  year: 2022
  end-page: 11
  article-title: Differentiable simulation of inertial musculotendons
  publication-title: ACM Trans Graph
– start-page: 358
  year: 2022
  end-page: 374
– volume: 33
  start-page: 1
  issue: 6
  year: 2014
  end-page: 11
  article-title: Locomotion control for many‐muscle humanoids
  publication-title: ACM Trans Graph
– volume: 37
  start-page: 1
  issue: 4
  year: 2018
  end-page: 14
  article-title: Deepmimic: example‐guided deep reinforcement learning of physics‐based character skills
  publication-title: ACM Trans Graph
– volume: 35
  start-page: 1
  issue: 4
  year: 2016
  end-page: 11
  article-title: Task‐based locomotion
  publication-title: ACM Trans Graph
– ident: e_1_2_12_18_1
  doi: 10.1109/IROS.2012.6386025
– volume: 41
  start-page: 1
  issue: 6
  year: 2022
  ident: e_1_2_12_10_1
  article-title: Differentiable simulation of inertial musculotendons
  publication-title: ACM Trans Graph
  doi: 10.1145/3550454.3555490
– ident: e_1_2_12_13_1
  doi: 10.1145/1186822.1073208
– ident: e_1_2_12_28_1
  doi: 10.1145/3072959.3073663
– ident: e_1_2_12_5_1
  doi: 10.1109/CVPR.2019.00687
– ident: e_1_2_12_21_1
– ident: e_1_2_12_35_1
  doi: 10.1145/3550469.3555391
– ident: e_1_2_12_11_1
  doi: 10.1145/1399504.1360682
– ident: e_1_2_12_32_1
  doi: 10.1016/j.robot.2018.07.006
– volume: 33
  start-page: 1877
  year: 2020
  ident: e_1_2_12_2_1
  article-title: Language models are few‐shot learners
  publication-title: Adv Neural Inf Process Syst
– ident: e_1_2_12_24_1
  doi: 10.1145/3450626.3459817
– ident: e_1_2_12_14_1
  doi: 10.1109/TNSRE.2010.2047592
– ident: e_1_2_12_29_1
  doi: 10.1145/3355089.3356505
– ident: e_1_2_12_37_1
  doi: 10.1002/cav.2092
– ident: e_1_2_12_30_1
  doi: 10.1109/3DV.2019.00084
– start-page: 358
  volume-title: Motionclip: exposing human motion generation to clip space. European conference on computer vision
  year: 2022
  ident: e_1_2_12_34_1
– ident: e_1_2_12_20_1
– ident: e_1_2_12_27_1
  doi: 10.1145/2897824.2925893
– ident: e_1_2_12_6_1
  doi: 10.1145/3072959.3073602
– ident: e_1_2_12_8_1
  doi: 10.1098/rspb.1938.0050
– ident: e_1_2_12_38_1
  doi: 10.1002/cav.2209
– ident: e_1_2_12_19_1
  doi: 10.1145/3450626.3459670
– ident: e_1_2_12_9_1
  doi: 10.1145/2508363.2508399
– ident: e_1_2_12_26_1
– ident: e_1_2_12_15_1
  doi: 10.1145/2661229.2661233
– ident: e_1_2_12_4_1
– volume: 37
  start-page: 1
  issue: 4
  year: 2018
  ident: e_1_2_12_22_1
  article-title: Learning basketball dribbling skills using trajectory optimization and deep reinforcement learning
  publication-title: ACM Trans Graph
  doi: 10.1145/3197517.3201315
– volume: 35
  start-page: 1
  issue: 3
  year: 2016
  ident: e_1_2_12_7_1
  article-title: Guided learning of control graphs for physics‐based characters
  publication-title: ACM Trans Graph
  doi: 10.1145/2893476
– ident: e_1_2_12_36_1
– ident: e_1_2_12_31_1
  doi: 10.1109/ICCV48922.2021.00143
– ident: e_1_2_12_25_1
  doi: 10.1109/Humanoids43949.2019.9035034
– ident: e_1_2_12_12_1
  doi: 10.1145/1141911.1142013
– ident: e_1_2_12_3_1
– ident: e_1_2_12_17_1
  doi: 10.1115/1.1392310
– ident: e_1_2_12_33_1
– ident: e_1_2_12_23_1
  doi: 10.1145/3528233.3530735
– ident: e_1_2_12_16_1
  doi: 10.1145/3306346.3322972
SSID ssj0026210
Score 2.3514183
Snippet The development of the systems capable of synthesizing natural and life‐like motions for virtual characters has long been a central focus in computer...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms character animation
Computer animation
deep reinforcement learning
Human motion
Language
language commands
Large language models
musculoskeletal model
Natural language
Natural language processing
Optimal control
Virtual humans
Virtual reality
Title A language‐directed virtual human motion generation approach based on musculoskeletal models
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.2257
https://www.proquest.com/docview/3071608551
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA6ykx78LU6nRBBv3dokTZfjGI7hwYO4MRAseWkrY7jJuu3gyT_Bv9G_xLxm3VQQxFNLaKB9ycv7kn7ve4RccuZH4IvE0yAyTySBQRKA8PAPH2DmJji2xa3s9sTNIBwsWZWYC-P0IVYHbugZxXqNDq4hb6xFQ41e1O1kxERypGohHrpbKUcxyZwQQSikh7uEUnfWZ42y4_dItIaXX0FqEWU6O-ShfD9HLhnV5zOom9cf0o3_-4Bdsr0En7TlZsse2UjH-2SrP8znrjU_II8tWh5hfry9u4CXJnQxnGKiCS1K-lFX-oc-FZLVxW0pTU4xKibUtjzPkeI6yUc2rlmAT4uSO_kh6XWu79tdb1mDwTN26xh5gVQZz6SJNIRcJ5xF0jfKpFyJUEASZMCNgFRpX0sJSiuhpGasmUIzzAAUPyKV8WScHhOq7IZVgJFcY5lrLXRkPV4z2eQBQKbCKrkoxyN-cVIbsRNVZrG1VYy2qpJaOVDx0tny2C5TgUS-XVAlV4XFf-0ft1t9vJ789cFTssksjHEUxxqpzKbz9MzCkBmcFxPuE-k72o0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTttAEB4hONAeoPRHBGjZSm1vDvZ6vc4eOERJUdLQHKok4lR3Z20jhAgIJyA48Qi8B6_CU_Ak7HhjoJUq9cKhJ1srW7J3Zudvv_0G4FPI_Rh9kXoaRe6JNDAEAhAe7fAhndxEh7boy85QfNuL9ubgpjoL4_ghHgputDJKe00LnArSW4-soUaf1a02xjNEZS-7OLf5WrHdbVvhfuZ85-ug1fFmLQU8YzOh2AukysNcmlhjFOo05LH0jTJZqEQkMA1yDI3ATGlfS4lKK6Gk5ryRYSPKEYl5ydr7BWogTkT97R8PXFVcckd9EAnpUV5SMd36fKv60t9932NA-zQsLv3azjLcVjPi4CyH9ekE6-byD7LI_2TKXsHSLL5mTbcgVmAuG7-Gl6ODYupGizfws8mqKu3d1bXz6VnKzg5O6SwNK7sWMtfdiO2XrNzlbcW-zsjxp8yOHE0JxXtcHFrXbXMYVnYVKt7C8Fl-8B3Mj4_H2SowZXNygUaGmjp5a6Fja9Q0l40wQMxVVIOPlQIkJ45NJHG80TyxsklINjXYqDQjmdmTIrGWOJAEKQxq8KUU8V_fT1rNEV3X_vXBTVjsDL7vJrvdfm8dXnAbtTlE5wbMT06n2XsbdU3wQ6ntDH49t67cA22yObM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LSsQwFL2IgujCtzg-I6i7jm2appOFi8Fx8IWIqLiy5qatDOI4TGcUXfkJfoe_4l_4JSbN1BcIbly4agkttLk395Gcey7Aik_dEF0WOxJZ6rDYUwYEwBxzwoemchMt2uKAb5-w3bPgrA-ei1oYyw_xvuFmVkZur80Cb8Xp-gdpqJK3Za2MYQ9QuZfc3-l0LdvYqWnZrlJa3zre3HZ6HQUcpROh0PG4SP2Uq1Bi4MvYpyF3lVCJL1jAMPZS9BXDREhXco5CCia4pLSSYCVIEQ3xkjb3A4y7wrSJqB29U1VRTi3zQcC4Y9KSgujWpevFl351fR_x7OeoOHdr9VF4KSbEolmuyt0OltXDN67I_zFjYzDSi65J1S6HcehLmhMwfNrIunY0m4TzKin2aF8fn6xHT2Jy22ibShqS9ywktrcRucw5ufPbgnudGLcfEz1y3TUY3pvsSjtuncGQvKdQNgUnf_KD09DfvGkmM0CEzsgZKu5L08dbMhlqkyYpr_geYiqCEiwX8o9alksksqzRNNKyiYxsSjBfKEbUsyZZpO2wxw2g0CvBWi7hH9-PNqun5jr72weXYPCwVo_2dw725mCI6pDNwjnnob_T7iYLOuTq4GKu6wQu_lpV3gB0fThi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+language%E2%80%90directed+virtual+human+motion+generation+approach+based+on+musculoskeletal+models&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Sun%2C+Libo&rft.au=Wang%2C+Yongxiang&rft.au=Qin%2C+Wenhu&rft.date=2024-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=35&rft.issue=3&rft_id=info:doi/10.1002%2Fcav.2257&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon