Key‐point‐guided adaptive convolution and instance normalization for continuous transitive face reenactment of any person
Face reenactment technology is widely applied in various applications. However, the reconstruction effects of existing methods are often not quite realistic enough. Thus, this paper proposes a progressive face reenactment method. First, to make full use of the key information, we propose adaptive co...
Saved in:
Published in | Computer animation and virtual worlds Vol. 35; no. 3 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester
Wiley Subscription Services, Inc
01.05.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1546-4261 1546-427X |
DOI | 10.1002/cav.2256 |
Cover
Loading…
Abstract | Face reenactment technology is widely applied in various applications. However, the reconstruction effects of existing methods are often not quite realistic enough. Thus, this paper proposes a progressive face reenactment method. First, to make full use of the key information, we propose adaptive convolution and instance normalization to encode the key information into all learnable parameters in the network, including the weights of the convolution kernels and the means and variances in the normalization layer. Second, we present continuous transitive facial expression generation according to all the weights of the network generated by the key points, resulting in the continuous change of the image generated by the network. Third, in contrast to classical convolution, we apply the combination of depth‐ and point‐wise convolutions, which can greatly reduce the number of weights and improve the efficiency of training. Finally, we extend the proposed face reenactment method to the face editing application. Comprehensive experiments demonstrate the effectiveness of the proposed method, which can generate a clearer and more realistic face from any person and is more generic and applicable than other methods.
This work presents a continuous transitive face reenactment algorithm that uses face key points information to gradually reenact faces based on two stages GAN, which contains the key face points transformation module and the facial expression generation module. The process involves transforming key points from the source face and generating corresponding facial expressions on the target face. |
---|---|
AbstractList | Face reenactment technology is widely applied in various applications. However, the reconstruction effects of existing methods are often not quite realistic enough. Thus, this paper proposes a progressive face reenactment method. First, to make full use of the key information, we propose adaptive convolution and instance normalization to encode the key information into all learnable parameters in the network, including the weights of the convolution kernels and the means and variances in the normalization layer. Second, we present continuous transitive facial expression generation according to all the weights of the network generated by the key points, resulting in the continuous change of the image generated by the network. Third, in contrast to classical convolution, we apply the combination of depth‐ and point‐wise convolutions, which can greatly reduce the number of weights and improve the efficiency of training. Finally, we extend the proposed face reenactment method to the face editing application. Comprehensive experiments demonstrate the effectiveness of the proposed method, which can generate a clearer and more realistic face from any person and is more generic and applicable than other methods. Face reenactment technology is widely applied in various applications. However, the reconstruction effects of existing methods are often not quite realistic enough. Thus, this paper proposes a progressive face reenactment method. First, to make full use of the key information, we propose adaptive convolution and instance normalization to encode the key information into all learnable parameters in the network, including the weights of the convolution kernels and the means and variances in the normalization layer. Second, we present continuous transitive facial expression generation according to all the weights of the network generated by the key points, resulting in the continuous change of the image generated by the network. Third, in contrast to classical convolution, we apply the combination of depth‐ and point‐wise convolutions, which can greatly reduce the number of weights and improve the efficiency of training. Finally, we extend the proposed face reenactment method to the face editing application. Comprehensive experiments demonstrate the effectiveness of the proposed method, which can generate a clearer and more realistic face from any person and is more generic and applicable than other methods. This work presents a continuous transitive face reenactment algorithm that uses face key points information to gradually reenact faces based on two stages GAN, which contains the key face points transformation module and the facial expression generation module. The process involves transforming key points from the source face and generating corresponding facial expressions on the target face. |
Author | Zhang, Zhaohui Zhang, Xiaopeng Xu, Shibiao Hua, Miao Zhang, Jiguang |
Author_xml | – sequence: 1 givenname: Shibiao surname: Xu fullname: Xu, Shibiao organization: Beijing University of Posts and Telecommunication – sequence: 2 givenname: Miao surname: Hua fullname: Hua, Miao organization: Beijing Bytedance Technology Co., Ltd – sequence: 3 givenname: Jiguang surname: Zhang fullname: Zhang, Jiguang email: jiguang.zhang@ia.ac.cn organization: Chinese Academy of Sciences – sequence: 4 givenname: Zhaohui orcidid: 0000-0003-0827-4797 surname: Zhang fullname: Zhang, Zhaohui organization: Chinese Academy of Sciences – sequence: 5 givenname: Xiaopeng surname: Zhang fullname: Zhang, Xiaopeng organization: Chinese Academy of Sciences |
BookMark | eNp10M9KAzEQBvAgFWyr4CMsePGyNclut91jKf7DghcVb8tsMpGUNlmTbKWC4CP4jD6J2Va8eZrA_PgyfAPSM9YgIaeMjhil_ELAZsT5uDggfTbOizTnk-fe37tgR2Tg_TLKgjPaJx93uP3-_GqsNiHOl1ZLlAlIaILeYCKs2dhVG7Q1CRiZaOMDGIGJsW4NK_0Ou5WyrqNBm9a2PgkOjNe7AAURO0QDIqzRhMSqGLRNGnTemmNyqGDl8eR3Dsnj1eXD_CZd3F_fzmeLVPDubqSMl1CqCaVM5qhYKbKSQ42C1rwY16KWSrFMqoJBVoOcMGTTXE7zrAScZmU2JGf73MbZ1xZ9qJa2dSZ-WWV0wgoaKYvqfK-Es947VFXj9BrctmK06sqtYrlVV26k6Z6-6RVu_3XVfPa08z-ZNYJA |
Cites_doi | 10.1109/TMM.2019.2933338 10.1109/CVPR.2016.262 10.1109/TMM.2021.3068567 10.1145/3240508.3240612 10.1109/TMM.2020.2993962 10.1109/CVPR.2019.00179 10.1145/3197517.3201350 10.1023/A:1013737224969 10.1109/TMM.2019.2963621 10.1109/CVPR52688.2022.00072 10.1109/CVPR42600.2020.00813 10.1109/TMM.2022.3156820 10.1109/CVPR.2019.00453 10.1145/3072959.3073640 10.1109/ICCV.2017.244 10.1080/02699930903485076 10.1109/CVPR42600.2020.00537 10.1109/ICCV.2015.425 10.1145/311535.311556 |
ContentType | Journal Article |
Copyright | 2024 John Wiley & Sons Ltd. 2024 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2024 John Wiley & Sons Ltd. – notice: 2024 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/cav.2256 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts |
EISSN | 1546-427X |
EndPage | n/a |
ExternalDocumentID | 10_1002_cav_2256 CAV2256 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 32271983; 52175493; 62162044; 62171321; 62271074 – fundername: Beijing Natural Science Foundation funderid: JQ23014 – fundername: State Key Laboratory of Virtual Reality Technology and Systems funderid: VRLAB2023B01 – fundername: Wenzhou Business School 2024 Talent launch program funderid: RC202401 |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 29F 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA HF~ HGLYW HHY HVGLF HZ~ I-F ITG ITH IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A NF~ O66 O9- OIG P2W P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 TUS UB1 V2E V8K W8V W99 WBKPD WIH WIK WQJ WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2546-e0129a9f7001d4ef19c392abec0b265bcbdff13df61a3bad71e184d8439ae8393 |
IEDL.DBID | DR2 |
ISSN | 1546-4261 |
IngestDate | Sat Jul 26 03:41:00 EDT 2025 Tue Jul 01 02:42:24 EDT 2025 Wed Aug 20 07:26:33 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2546-e0129a9f7001d4ef19c392abec0b265bcbdff13df61a3bad71e184d8439ae8393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0827-4797 |
PQID | 3071608431 |
PQPubID | 2034909 |
PageCount | 15 |
ParticipantIDs | proquest_journals_3071608431 crossref_primary_10_1002_cav_2256 wiley_primary_10_1002_cav_2256_CAV2256 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May/June 2024 2024-05-00 20240501 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: May/June 2024 |
PublicationDecade | 2020 |
PublicationPlace | Chichester |
PublicationPlace_xml | – name: Chichester |
PublicationTitle | Computer animation and virtual worlds |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 23 2010; 24 2022 2017; 36 2020 2019 2018 2017 2016 2015 2020; 22 2014 2018; 37 1999 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_22_1 Simonyan K (e_1_2_10_31_1) Ma L (e_1_2_10_21_1) 2017 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_5_1 Goodfellow IJ (e_1_2_10_14_1) 2014 e_1_2_10_8_1 Isola P (e_1_2_10_15_1) 2017 e_1_2_10_7_1 Park T (e_1_2_10_29_1) 2019 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_10_1 Wang T (e_1_2_10_17_1) 2018 e_1_2_10_33_1 e_1_2_10_11_1 Dong H (e_1_2_10_20_1) 2018 e_1_2_10_30_1 Ma L (e_1_2_10_26_1) 2019 Wu W (e_1_2_10_12_1) Kingma DP (e_1_2_10_32_1) e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 |
References_xml | – start-page: 2337 year: 2019 end-page: 2346 – start-page: 5325 year: 2020 end-page: 5334 – start-page: 1 year: 2022 article-title: 3D face reconstruction and gaze tracking in the HMD for virtual interaction ' publication-title: IEEE Trans Multimed – volume: 23 start-page: 1160 year: 2021 end-page: 1172 article-title: 3D face reconstruction from a single image assisted by 2D face images in the wild publication-title: IEEE Trans Multimed – start-page: 2387 year: 2016 end-page: 2395 – volume: 36 start-page: 95:1 issue: 4 year: 2017 end-page: 95:13 article-title: Synthesizing Obama: learning lip sync from audio publication-title: ACM Trans Graph – volume: 22 start-page: 2808 issue: 11 year: 2020 end-page: 2819 article-title: Learning how to smile: expression video generation with conditional adversarial recurrent nets publication-title: IEEE Trans Multimed – start-page: 8107 year: 2020 end-page: 8116 – start-page: 472 year: 2018 end-page: 482 – start-page: 187 year: 1999 end-page: 194 – start-page: 627 year: 2018 end-page: 635 – start-page: 5967 year: 2017 end-page: 5976 – volume: 37 start-page: 164:1 issue: 4 year: 2018 end-page: 164:13 article-title: : real‐time reenactment of human portrait videos publication-title: ACM Trans. Graph. – volume: 24 start-page: 1377 year: 2010 end-page: 1388 article-title: Presentation and validation of the Radboud faces database publication-title: Cognit Emot – volume: 22 start-page: 730 issue: 3 year: 2020 end-page: 743 article-title: Realistic facial expression reconstruction for VR HMD users publication-title: IEEE Trans Multimed – start-page: 4401 year: 2019 end-page: 4410 – start-page: 406 year: 2017 end-page: 416 – volume: 23 start-page: 2998 year: 2021 end-page: 3012 article-title: Expression‐aware face reconstruction via a dual‐stream network publication-title: IEEE Trans Multimed – year: 2022 – article-title: AnyoneNet: synchronized speech and talking head generation for arbitrary persons publication-title: IEEE Trans Multimed – start-page: 2672 year: 2014 end-page: 2680 – start-page: 11:1 year: 2019 end-page: 11:10 – start-page: 2242 year: 2017 end-page: 2251 – start-page: 2015 – year: 2017 – volume: 2018 start-page: 622 end-page: 638 – start-page: 8798 year: 2018 end-page: 8807 – year: 2019 – year: 2015 – start-page: 1692 year: 2019 end-page: 1701 – start-page: 11:1 volume-title: Proceedings of the ACM SIGGRAPH symposium on interactive 3D graphics and games, I3D 2019, Montreal, QC, Canada, May 21‐23, 2019 year: 2019 ident: e_1_2_10_26_1 – ident: e_1_2_10_7_1 doi: 10.1109/TMM.2019.2933338 – start-page: 472 volume-title: Advances in neural information processing systems 31: annual conference on neural information processing systems 2018, NeurIPS 2018, 3‐8 December 2018, Montréal, Canada year: 2018 ident: e_1_2_10_20_1 – ident: e_1_2_10_25_1 doi: 10.1109/CVPR.2016.262 – ident: e_1_2_10_6_1 doi: 10.1109/TMM.2021.3068567 – ident: e_1_2_10_10_1 doi: 10.1145/3240508.3240612 – start-page: 2672 volume-title: Advances in neural information processing systems 27: annual conference on neural information processing systems 2014, December 8‐13 2014, Montreal, Quebec, Canada year: 2014 ident: e_1_2_10_14_1 – ident: e_1_2_10_28_1 – ident: e_1_2_10_5_1 doi: 10.1109/TMM.2020.2993962 – ident: e_1_2_10_30_1 doi: 10.1109/CVPR.2019.00179 – start-page: 2015 volume-title: 3rd international conference on learning representations, ICLR 2015, San Diego, CA, USA, May 7‐9, 2015, conference track proceedings ident: e_1_2_10_31_1 – ident: e_1_2_10_9_1 doi: 10.1145/3197517.3201350 – ident: e_1_2_10_2_1 doi: 10.1023/A:1013737224969 – ident: e_1_2_10_3_1 doi: 10.1109/TMM.2019.2963621 – ident: e_1_2_10_27_1 – start-page: 8798 volume-title: 2018 {IEEE} conference on computer vision and pattern recognition, {CVPR} 2018, Salt Lake City, UT, USA, June 18‐22, 2018 year: 2018 ident: e_1_2_10_17_1 – start-page: 406 volume-title: Advances in neural information processing systems 30: annual conference on neural information processing systems 2017, 4‐9 December 2017, Long Beach, CA, USA year: 2017 ident: e_1_2_10_21_1 – start-page: 2015 volume-title: 3rd international conference on learning representations, ICLR 2015, San Diego, CA, USA, May 7‐9, 2015, conference track proceedings ident: e_1_2_10_32_1 – ident: e_1_2_10_33_1 doi: 10.1109/CVPR52688.2022.00072 – start-page: 622 volume-title: Computer vision‐ECCV 2018‐15th European conference, Munich, Germany, September 8‐14, 2018, proceedings, part I. 11205 of lecture notes in computer science ident: e_1_2_10_12_1 – ident: e_1_2_10_19_1 doi: 10.1109/CVPR42600.2020.00813 – ident: e_1_2_10_4_1 doi: 10.1109/TMM.2022.3156820 – ident: e_1_2_10_18_1 doi: 10.1109/CVPR.2019.00453 – start-page: 5967 volume-title: 2017 {IEEE} conference on computer vision and pattern recognition, {CVPR} 2017, Honolulu, HI, USA, July 21‐26, 2017 year: 2017 ident: e_1_2_10_15_1 – ident: e_1_2_10_8_1 doi: 10.1145/3072959.3073640 – ident: e_1_2_10_16_1 doi: 10.1109/ICCV.2017.244 – ident: e_1_2_10_22_1 doi: 10.1080/02699930903485076 – start-page: 2337 volume-title: {IEEE} conference on computer vision and pattern recognition, {CVPR} 2019, Long Beach, CA, USA, June 16‐20, 2019 year: 2019 ident: e_1_2_10_29_1 – ident: e_1_2_10_13_1 doi: 10.1109/CVPR42600.2020.00537 – ident: e_1_2_10_23_1 doi: 10.1109/ICCV.2015.425 – ident: e_1_2_10_24_1 doi: 10.1145/311535.311556 – ident: e_1_2_10_11_1 |
SSID | ssj0026210 |
Score | 2.3455055 |
Snippet | Face reenactment technology is widely applied in various applications. However, the reconstruction effects of existing methods are often not quite realistic... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Convolution face reenactment human‐centered computing Image contrast Image reconstruction visualization visualization application domains |
Title | Key‐point‐guided adaptive convolution and instance normalization for continuous transitive face reenactment of any person |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.2256 https://www.proquest.com/docview/3071608431 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LSsQwFIaDuNKFd3G8EUHcdZy0aWdmOQyKKLgQHQZclFylKG2xraAg-Ag-o0_iOWnrDQSxm0JJestJ8iX985eQfc4k04ChXqis8bjkA0_C5uk-M0MRGM6MU1ucRydX_HQaThtVJa6Fqf0hPibcsGa49horuJDF4adpqBIPXQhGdNtGqRby0MWHc5Qf-bURQcgjD0cJre9szz9sM37viT7x8iukul7meJFct_dXi0tuu1Upu-rph3Xj_x5giSw08ElHdbQskxmTrpD5SVJU9dFilTyfmce3l9c8S9IS9jdVoo2mQosc20WKIvUmWKlINU0cXSpDU2Tfu2ZRJwUSxqRlklZZVdASO0QnUqJWQGLU-gjl9O00s3CiR5o78l8jV8dHl-MTr_lFg6fQSN8zOI8lhha_XmtuLBsqAC4BgdGTfhRKJbW1LNA2YiKQAiMAhpR6ABgkDLBZsE5m0yw1G4RqbQeAq7zPLeOQEnIyrWTAA6MGkVIdstcWV5zXThxx7bnsx_AqY3yVHbLdlmPc1MUihlaMRT24JOuQA1cgv-aPx6MJ7jf_mnCLzPlAObUCcpvMlveV2QFKKeWui8d3IUHqgA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS9xAFMcPah-0D9p6oatrHUF8y7qTzGZ36dOilfVSH0TFByHMtYSW7NJNBAXBj-Bn7CfxnEmitSCIeRkIZ3KbMzO_mZz5D8CW4IobxNCgo50NhBK9QOERmC63fRlZwa2PtjiJh-fi8LJzOQXf6rUwpT7E04Qb1QzfXlMFpwnpnWfVUC2vW-iN8TR8oA29afuCvdMn7agwDkspgo6IAxon1Mqz7XCnzvmyL3oGzH8x1fcz-wtwVT9hGV7yq1XkqqVv_xNvfOcrfIL5ij_ZoHSYzzBls0X4eJFOivLsZAnujuzN3_uH8SjNckx_Fqmxhkkjx9Q0MopTr_yVycyw1AOmtiwj_P1dretkCMNkmqdZMSomLKc-0ccpMSfRmMJ9pPYh7mzk8EI3bOzhfxnO97-f7Q6DapeGQJOWfmBpKkv2Hf3ANsI63tfIXBJ9o63CuKO0Ms7xyLiYy0hJcgIcVZoekpC0iGfRCsxko8x-AWaM6yGxiq5wXKAl5uRGq0hEVvdirRuwWZdXMi7FOJJSdjlM8FMm9Ckb0KwLMqmq4yTBhozHbbwlb8C2L5FX8ye7gwtKV99quAGzw7Mfx8nxwcnRGsyFCD1lQGQTZvI_hV1HaMnVV--cj62M7po |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3dStxAFMcPVqHUC7Uf4lprp1B6l9VJZrO7l8vaRbtFSumK0IswnxKUbHATYQXBR-gz-iSeM0l2a6FQmptAOBOSmXNmfjM58w_AR8EVN4ihQUc7GwgleoHCIzBdbvsysoJbn21xGh9PxJfzznmdVUl7YSp9iMWCG0WG768pwHPjDpaioVretNEZ42ewJmKMFQKi7wvpqDAOKyWCjogDmiY0wrOH4UFT8ulQtOTL3ynVDzOjTfjZPGCVXXLZLgvV1rd_aDf-3xtswUZNn2xQuctLWLHZK1g_S2dldXX2Gu7Gdv5w_yufplmB54syNdYwaWROHSOjLPXaW5nMDEs9XmrLMoLfq3pXJ0MUJtMizcppOWMFjYg-S4k5icaU7CO1T3BnU4c3mrPco_8bmIw-_xgeB_U_GgJNSvqBpYUs2Xf0-doI63hfI3FJ9IxDFcYdpZVxjkfGxVxGSpIL4JzS9JCDpEU4i7ZhNZtmdgeYMa6HvCq6wnGBlliSG60iEVndi7VuwYemuZK8kuJIKtHlMMGqTKgqW7DXtGNSB-MswW6Mo4cgKrXgk2-Qv5ZPhoMzOu_-q-F7eP7taJR8PTkdv4UXIRJPlQ25B6vFdWnfIbEUat-75iMhLO1S |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Key%E2%80%90point%E2%80%90guided+adaptive+convolution+and+instance+normalization+for+continuous+transitive+face+reenactment+of+any+person&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Xu%2C+Shibiao&rft.au=Hua%2C+Miao&rft.au=Zhang%2C+Jiguang&rft.au=Zhang%2C+Zhaohui&rft.date=2024-05-01&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=35&rft.issue=3&rft_id=info:doi/10.1002%2Fcav.2256&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cav_2256 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon |