Mastering broom‐like tools for object transportation animation using deep reinforcement learning
Summary In this paper, we propose a deep reinforcement‐based approach to generate an animation of an agent using a broom‐like tool to transport a target object. The tool is attached to the agent. So when the agent moves, the tool moves as well.The challenge is to control the agent to move and use th...
Saved in:
Published in | Computer animation and virtual worlds Vol. 35; no. 3 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Chichester
Wiley Subscription Services, Inc
01.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
In this paper, we propose a deep reinforcement‐based approach to generate an animation of an agent using a broom‐like tool to transport a target object. The tool is attached to the agent. So when the agent moves, the tool moves as well.The challenge is to control the agent to move and use the tool to push the target while avoiding obstacles. We propose a direction sensor to guide the agent's movement direction in environments with static obstacles. Furthermore, different rewards and a curriculum learning are implemented to make the agent efficiently learn skills for manipulating the tool. Experimental results show that the agent can naturally control the tool with different shapes to transport target objects. The result of ablation tests revealed the impacts of the rewards and some state components.
We propose a deep reinforcement‐based approach to generate an animation of an agent using a broom‐like tool to transport a target object. We develop various reward terms, a direction sensor, and a curriculum learning to make the agent learn skills for object manipulation and transportation. |
---|---|
AbstractList | Summary
In this paper, we propose a deep reinforcement‐based approach to generate an animation of an agent using a broom‐like tool to transport a target object. The tool is attached to the agent. So when the agent moves, the tool moves as well.The challenge is to control the agent to move and use the tool to push the target while avoiding obstacles. We propose a direction sensor to guide the agent's movement direction in environments with static obstacles. Furthermore, different rewards and a curriculum learning are implemented to make the agent efficiently learn skills for manipulating the tool. Experimental results show that the agent can naturally control the tool with different shapes to transport target objects. The result of ablation tests revealed the impacts of the rewards and some state components.
We propose a deep reinforcement‐based approach to generate an animation of an agent using a broom‐like tool to transport a target object. We develop various reward terms, a direction sensor, and a curriculum learning to make the agent learn skills for object manipulation and transportation. In this paper, we propose a deep reinforcement‐based approach to generate an animation of an agent using a broom‐like tool to transport a target object. The tool is attached to the agent. So when the agent moves, the tool moves as well.The challenge is to control the agent to move and use the tool to push the target while avoiding obstacles. We propose a direction sensor to guide the agent's movement direction in environments with static obstacles. Furthermore, different rewards and a curriculum learning are implemented to make the agent efficiently learn skills for manipulating the tool. Experimental results show that the agent can naturally control the tool with different shapes to transport target objects. The result of ablation tests revealed the impacts of the rewards and some state components. |
Author | Liu, Guan‐Ting Wong, Sai‐Keung |
Author_xml | – sequence: 1 givenname: Guan‐Ting surname: Liu fullname: Liu, Guan‐Ting organization: National Yang Ming Chiao Tung University – sequence: 2 givenname: Sai‐Keung orcidid: 0000-0002-4248-0052 surname: Wong fullname: Wong, Sai‐Keung email: cswingo@nycu.edu.tw organization: National Yang Ming Chiao Tung University |
BookMark | eNp1kM1KAzEUhYNUsFbBRwi4cTM1yUzSmWUp_kHFjYq7kGTuyNRpMiap0p2P4DP6JKaOuHN1D5zv3Ms9h2hknQWETiiZUkLYuVFvU8Y430NjyguRFWz2NPrTgh6gwxBWiRSMkjHStypE8K19xto7t_76-OzaF8DRuS7gxnns9ApMxNErG3rno4qts1jZdj2oTdiFa4Aee2htihhYg424A-Vt8o7QfqO6AMe_c4IeLi_uF9fZ8u7qZjFfZobxgmcKqlILVnFtyrwpONREF5DnTS5AN5QVUGtVGWqYMDx5QhcMaAmEk9wQU-cTdDrs7b173UCIcuU23qaTMiczKsisKnmizgbKeBeCh0b2Pr3it5ISuWtQpgblrsGEZgP63naw_ZeTi_njD_8N0ed3Cw |
Cites_doi | 10.7551/978-0-262-33027-5-ch083 10.1145/3550454.3555434 10.1145/3386569.3392433 10.1002/cav.2081 10.1109/ICRA.2017.7989250 10.1504/IJBIC.2009.022770 10.1109/ICRA40945.2020.9197468 10.1109/ACCESS.2021.3118109 10.1002/cav.2017 10.1145/3130800.3130833 10.1145/3072959.3073602 10.1145/3522618 10.1145/3320283 10.1145/3328756.3328760 10.1002/cav.1779 10.1145/3272127.3275048 10.1145/3190834.3190839 10.1145/3197517.3201315 10.1145/3528223.3530110 10.1002/cav.2168 |
ContentType | Journal Article |
Copyright | 2024 John Wiley & Sons Ltd. 2024 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2024 John Wiley & Sons Ltd. – notice: 2024 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/cav.2255 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts |
EISSN | 1546-427X |
EndPage | n/a |
ExternalDocumentID | 10_1002_cav_2255 CAV2255 |
Genre | article |
GrantInformation_xml | – fundername: National Science and Technology Council of the ROC funderid: NSTC 112‐2221‐E‐A49‐118 |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 29F 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA HF~ HGLYW HHY HVGLF HZ~ I-F ITG ITH IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A NF~ O66 O9- OIG P2W P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 TUS UB1 V2E V8K W8V W99 WBKPD WIH WIK WQJ WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2545-ae98b6295bc83f45ed0b4e33f36ebf124edba9c1c26c5d0b6b42e18e0503c0cd3 |
IEDL.DBID | DR2 |
ISSN | 1546-4261 |
IngestDate | Sat Jul 26 03:30:39 EDT 2025 Tue Jul 01 02:42:24 EDT 2025 Wed Aug 20 07:26:33 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2545-ae98b6295bc83f45ed0b4e33f36ebf124edba9c1c26c5d0b6b42e18e0503c0cd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4248-0052 |
PQID | 3071607985 |
PQPubID | 2034909 |
PageCount | 15 |
ParticipantIDs | proquest_journals_3071607985 crossref_primary_10_1002_cav_2255 wiley_primary_10_1002_cav_2255_CAV2255 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May/June 2024 2024-05-00 20240501 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: May/June 2024 |
PublicationDecade | 2020 |
PublicationPlace | Chichester |
PublicationPlace_xml | – name: Chichester |
PublicationTitle | Computer animation and virtual worlds |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 9 2023; 42 2021; 32 2023 2017; 36 2022; 5 2019; 2 2017; 28 2020 2020; 39 2019 2018 2017 2022; 41 2015 2012; 28 2022; 33 2009; 1 2018; 37 e_1_2_10_12_1 e_1_2_10_23_1 e_1_2_10_9_1 e_1_2_10_13_1 Yang HY (e_1_2_10_8_1) 2019; 2 e_1_2_10_10_1 e_1_2_10_11_1 e_1_2_10_22_1 e_1_2_10_20_1 Wong SK (e_1_2_10_21_1) 2012; 28 Liu L (e_1_2_10_5_1) 2018; 37 Zhang Y (e_1_2_10_24_1) 2023 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_17_1 Haarnoja T (e_1_2_10_25_1) 2018 e_1_2_10_14_1 e_1_2_10_7_1 e_1_2_10_15_1 |
References_xml | – year: 2023 article-title: Animation generation for object transportation with a rope using deep reinforcement learning publication-title: Comput Animat Virtual Worlds – volume: 1 start-page: 1 issue: 1‐2 year: 2009 end-page: 13 article-title: Towards group transport by swarms of robots publication-title: Int J Bio‐Inspired Comput – volume: 37 start-page: 1 issue: 4 year: 2018 end-page: 14 article-title: Learning basketball dribbling skills using trajectory optimization and deep reinforcement learning publication-title: ACM Trans Graph – volume: 28 issue: 3‐4 year: 2017 article-title: Simulating collective transport of virtual ants publication-title: Comput Animat Virtual Worlds – volume: 41 start-page: 1 issue: 6 year: 2022 end-page: 16 article-title: ControlVAE: model‐based learning of generative controllers for physics‐based characters publication-title: ACM Trans Graph – volume: 9 start-page: 137281 year: 2021 end-page: 137294 article-title: Automatic curriculum design for object transportation based on deep reinforcement learning publication-title: IEEE Access – volume: 41 start-page: 1 issue: 4 year: 2022 end-page: 17 article-title: Ase: large‐scale reusable adversarial skill embeddings for physically simulated characters publication-title: ACM Trans Graph – volume: 36 start-page: 198 issue: 6 year: 2017 article-title: How to train your dragon: example‐guided control of flapping flight publication-title: ACM Trans Graph – volume: 32 issue: 3‐4 year: 2021 article-title: Generation of multiagent animation for object transportation using deep reinforcement learning and blend‐trees publication-title: Comput Animat Virtual Worlds. – year: 2020 – volume: 42 start-page: 25 year: 2023 end-page: 36 – volume: 33 issue: 3‐4 year: 2022 article-title: Generation of cart‐pulling animation in a multiagent environment using deep learning publication-title: Comput Animat Virtual Worlds – volume: 5 start-page: 1 issue: 1 year: 2022 end-page: 18 article-title: Real‐time style modelling of human locomotion via feature‐wise transformations and local motion phases publication-title: Proc ACM Comput Graph Interact Techn – year: 2017 – start-page: 1861 year: 2018 end-page: 1870 – year: 2018 – volume: 2 start-page: 1 issue: 1 year: 2019 end-page: 18 article-title: Agent‐based cooperative animation for box‐manipulation using reinforcement learning publication-title: Proc ACM Comput Graph Interact Techn – volume: 36 start-page: 41 issue: 4 year: 2017 article-title: Deeploco: dynamic locomotion skills using hierarchical deep reinforcement learning publication-title: ACM Trans Graph – year: 2019 – volume: 28 start-page: 145 issue: 1 year: 2012 end-page: 159 article-title: A study on genetic algorithm and neural network for mini‐games publication-title: J Inf Sci Eng – volume: 37 issue: 6 year: 2018 article-title: Learning to dress: synthesizing human dressing motion via deep reinforcement learning publication-title: ACM Trans Graph – year: 2015 – volume: 39 start-page: 31 issue: 4 year: 2020 end-page: 38 article-title: Carl: controllable agent with reinforcement learning for quadruped locomotion publication-title: ACM Trans Graph – ident: e_1_2_10_17_1 doi: 10.7551/978-0-262-33027-5-ch083 – ident: e_1_2_10_14_1 doi: 10.1145/3550454.3555434 – ident: e_1_2_10_3_1 doi: 10.1145/3386569.3392433 – ident: e_1_2_10_9_1 doi: 10.1002/cav.2081 – ident: e_1_2_10_18_1 doi: 10.1109/ICRA.2017.7989250 – ident: e_1_2_10_13_1 – ident: e_1_2_10_16_1 doi: 10.1504/IJBIC.2009.022770 – ident: e_1_2_10_22_1 doi: 10.1109/ICRA40945.2020.9197468 – ident: e_1_2_10_23_1 doi: 10.1109/ACCESS.2021.3118109 – ident: e_1_2_10_20_1 doi: 10.1002/cav.2017 – ident: e_1_2_10_2_1 doi: 10.1145/3130800.3130833 – ident: e_1_2_10_12_1 doi: 10.1145/3072959.3073602 – ident: e_1_2_10_4_1 doi: 10.1145/3522618 – volume: 2 start-page: 1 issue: 1 year: 2019 ident: e_1_2_10_8_1 article-title: Agent‐based cooperative animation for box‐manipulation using reinforcement learning publication-title: Proc ACM Comput Graph Interact Techn doi: 10.1145/3320283 – ident: e_1_2_10_15_1 doi: 10.1145/3328756.3328760 – ident: e_1_2_10_19_1 doi: 10.1002/cav.1779 – ident: e_1_2_10_11_1 doi: 10.1145/3272127.3275048 – start-page: 25 volume-title: Computer graphics forum year: 2023 ident: e_1_2_10_24_1 – ident: e_1_2_10_7_1 doi: 10.1145/3190834.3190839 – volume: 37 start-page: 1 issue: 4 year: 2018 ident: e_1_2_10_5_1 article-title: Learning basketball dribbling skills using trajectory optimization and deep reinforcement learning publication-title: ACM Trans Graph doi: 10.1145/3197517.3201315 – ident: e_1_2_10_6_1 doi: 10.1145/3528223.3530110 – volume: 28 start-page: 145 issue: 1 year: 2012 ident: e_1_2_10_21_1 article-title: A study on genetic algorithm and neural network for mini‐games publication-title: J Inf Sci Eng – ident: e_1_2_10_10_1 doi: 10.1002/cav.2168 – start-page: 1861 volume-title: International conference on machine learning year: 2018 ident: e_1_2_10_25_1 |
SSID | ssj0026210 |
Score | 2.3450992 |
Snippet | Summary
In this paper, we propose a deep reinforcement‐based approach to generate an animation of an agent using a broom‐like tool to transport a target... In this paper, we propose a deep reinforcement‐based approach to generate an animation of an agent using a broom‐like tool to transport a target object. The... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Ablation agents Animation curriculum learning Deep learning object transportation Obstacle avoidance reinforcement learning |
Title | Mastering broom‐like tools for object transportation animation using deep reinforcement learning |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.2255 https://www.proquest.com/docview/3071607985 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMeD7KQHf4vTKRHEW_cjTbPmOIZjCHoQNwYeSl6SjrGxjrXz4Mk_wb_Rv8SkaTcVBPFUaBJoX95LvgkvnyB0HYpYyBZRJtLMSocaH_E4NYOhYhAKolQzhDzL94H1B_RuFIyKrEp7FsbxIdYbbjYy8vHaBriAtLGBhkrxUjfOaM-X21Qtq4ce1-QowogDEQSUeXaVUHJnm6RRNvw-E23k5VeRms8yvT30XH6fSy6Z1lcZ1OXrD3Tj_35gH-0W4hN3nLccoC09P0Q7w0m6cm_TIwT3wqITzISGwYrqj7f32WSqcZYksxQbhYsTsFs3OCup6HnXYjGfuEOQ2GbSj7HSeoGXOueyynwLEhcXVIyP0aB3-9Tte8U9DJ40y8fAE5qHwAgPQIZ-TAOtmkC178c-0xAbgaAVCC5bkjAZmDIGlOhWqC1qRjal8k9QZZ7M9SnCARNt6cegWiBpGDMOwm9zHsdUcV8TUUVXZZ9EC4fbiBxYmUTGXpG1VxXVys6KioBLIzNUWVQeD03xTW71X9tH3c7QPs_-WvEcbRMjZVyaYw1VsuVKXxgpksFl7nSf9eLeaA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JbtswFP1wnUXaRYYOqJuhLNB2J8emKFpcZBEkMZxmWBSxkZ3KSYbhwA4sOUWz6hF6j16lp8hJ8iladhOgQDdZZCVAlASR__0Rn48AH2OZSt2kBjUNMx2GGAkEQ2NouIolNaYRq6LL94x3uuzLRXRRgd_lXhjPDzEvuDnNKOy1U3BXkN5ZsIZqeV1HNJYdlcf2x3fM17LdowMU7idK24fn-51gdqRAoDETigJpRaw4FZHScZiyyJqGYjYM05BblaKvs0ZJoZuach3hGFeM2mZsHWuKbmgT4nefwZI7QNwR9R98nXNVUU499UHEeODykpLptkF3yj-97_sWAe3fYXHh19qr8KdcEd_OMqxPc1XXNw_IIp_Ikq3Byiy-JnteIdahYkcv4UVvkE393ewVqFPp2CHQZxPl8obbn78uB0NL8vH4MiMYxJOxctUpkpfE7wV6iRwN_D5P4jYL9Imx9opMbEE9q4sqK5mdwdF_Dd1HmeQbqI7GI_sWSMRlS4epMk2lWZxyoWTYEiJNmRGhpbIGH0oQJFeeUSTx3NE0QfkkTj412CzRkcxsSpagNXZsgCLG4c-FmP_5frK_13PXd__74HtY7pyfniQnR2fHG_CcYuTmuzo3oZpPpnYLI69cbReIJ_DtsfFyBx62PkU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL2iVKraBY9C1WmBGqlllyHjOCZesEAMI15FVVUQu-AnGoFmRpMMVbviE_gOfoW_4Eu4jifQVqrEhgWrSHESxb7nPnV9DPA5k07qFjWoaZjpMMRIJBgaQ8NVJqkxcaaqLt8Dvn3Ido_T4wm4rvfCBH6I-4Kb14zKXnsFHxi3-kAaquVFE8FYN1Tu2V8_MV0r1nfaKNsvlHa2fmxuR-MTBSKNiVAaSSsyxalIlc4Sx1JrYsVskriEW-XQ1VmjpNAtTblOcYwrRm0rs540RcfaJPjdF_CS8Vj4YyLa3--pqiingfkgZTzyaUlNdBvT1fpP_3Z9D_Hsn1Fx5dY603BTL0joZjlrjkrV1L__4Yp8His2A1Pj6JpsBHWYhQnbewtvjrrFKNwt5kB9lZ4bAj02UT5ruL28Ou-eWVL2--cFwRCe9JWvTZGypn2vsEtkrxt2eRK_VeCUGGsHZGgr4lld1VjJ-ASO03k4fJJJvoPJXr9n3wNJuVzTiVOmpTTLHBdKJmtCOMeMSCyVDViuMZAPAp9IHpijaY7yyb18GrBQgyMfW5QiR1vsuQBFhsMrlZT_-36-uXHkrx8e--AnePWt3cn3dw72PsJrimFbaOlcgMlyOLKLGHaVaqnCO4GTp4bLHRw1PPQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mastering+broom%E2%80%90like+tools+for+object+transportation+animation+using+deep+reinforcement+learning&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Guan%E2%80%90Ting+Liu&rft.au=Sai%E2%80%90Keung+Wong&rft.date=2024-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=35&rft.issue=3&rft_id=info:doi/10.1002%2Fcav.2255&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon |