Mastering broom‐like tools for object transportation animation using deep reinforcement learning

Summary In this paper, we propose a deep reinforcement‐based approach to generate an animation of an agent using a broom‐like tool to transport a target object. The tool is attached to the agent. So when the agent moves, the tool moves as well.The challenge is to control the agent to move and use th...

Full description

Saved in:
Bibliographic Details
Published inComputer animation and virtual worlds Vol. 35; no. 3
Main Authors Liu, Guan‐Ting, Wong, Sai‐Keung
Format Journal Article
LanguageEnglish
Published Chichester Wiley Subscription Services, Inc 01.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary In this paper, we propose a deep reinforcement‐based approach to generate an animation of an agent using a broom‐like tool to transport a target object. The tool is attached to the agent. So when the agent moves, the tool moves as well.The challenge is to control the agent to move and use the tool to push the target while avoiding obstacles. We propose a direction sensor to guide the agent's movement direction in environments with static obstacles. Furthermore, different rewards and a curriculum learning are implemented to make the agent efficiently learn skills for manipulating the tool. Experimental results show that the agent can naturally control the tool with different shapes to transport target objects. The result of ablation tests revealed the impacts of the rewards and some state components. We propose a deep reinforcement‐based approach to generate an animation of an agent using a broom‐like tool to transport a target object. We develop various reward terms, a direction sensor, and a curriculum learning to make the agent learn skills for object manipulation and transportation.
AbstractList Summary In this paper, we propose a deep reinforcement‐based approach to generate an animation of an agent using a broom‐like tool to transport a target object. The tool is attached to the agent. So when the agent moves, the tool moves as well.The challenge is to control the agent to move and use the tool to push the target while avoiding obstacles. We propose a direction sensor to guide the agent's movement direction in environments with static obstacles. Furthermore, different rewards and a curriculum learning are implemented to make the agent efficiently learn skills for manipulating the tool. Experimental results show that the agent can naturally control the tool with different shapes to transport target objects. The result of ablation tests revealed the impacts of the rewards and some state components. We propose a deep reinforcement‐based approach to generate an animation of an agent using a broom‐like tool to transport a target object. We develop various reward terms, a direction sensor, and a curriculum learning to make the agent learn skills for object manipulation and transportation.
In this paper, we propose a deep reinforcement‐based approach to generate an animation of an agent using a broom‐like tool to transport a target object. The tool is attached to the agent. So when the agent moves, the tool moves as well.The challenge is to control the agent to move and use the tool to push the target while avoiding obstacles. We propose a direction sensor to guide the agent's movement direction in environments with static obstacles. Furthermore, different rewards and a curriculum learning are implemented to make the agent efficiently learn skills for manipulating the tool. Experimental results show that the agent can naturally control the tool with different shapes to transport target objects. The result of ablation tests revealed the impacts of the rewards and some state components.
Author Liu, Guan‐Ting
Wong, Sai‐Keung
Author_xml – sequence: 1
  givenname: Guan‐Ting
  surname: Liu
  fullname: Liu, Guan‐Ting
  organization: National Yang Ming Chiao Tung University
– sequence: 2
  givenname: Sai‐Keung
  orcidid: 0000-0002-4248-0052
  surname: Wong
  fullname: Wong, Sai‐Keung
  email: cswingo@nycu.edu.tw
  organization: National Yang Ming Chiao Tung University
BookMark eNp1kM1KAzEUhYNUsFbBRwi4cTM1yUzSmWUp_kHFjYq7kGTuyNRpMiap0p2P4DP6JKaOuHN1D5zv3Ms9h2hknQWETiiZUkLYuVFvU8Y430NjyguRFWz2NPrTgh6gwxBWiRSMkjHStypE8K19xto7t_76-OzaF8DRuS7gxnns9ApMxNErG3rno4qts1jZdj2oTdiFa4Aee2htihhYg424A-Vt8o7QfqO6AMe_c4IeLi_uF9fZ8u7qZjFfZobxgmcKqlILVnFtyrwpONREF5DnTS5AN5QVUGtVGWqYMDx5QhcMaAmEk9wQU-cTdDrs7b173UCIcuU23qaTMiczKsisKnmizgbKeBeCh0b2Pr3it5ISuWtQpgblrsGEZgP63naw_ZeTi_njD_8N0ed3Cw
Cites_doi 10.7551/978-0-262-33027-5-ch083
10.1145/3550454.3555434
10.1145/3386569.3392433
10.1002/cav.2081
10.1109/ICRA.2017.7989250
10.1504/IJBIC.2009.022770
10.1109/ICRA40945.2020.9197468
10.1109/ACCESS.2021.3118109
10.1002/cav.2017
10.1145/3130800.3130833
10.1145/3072959.3073602
10.1145/3522618
10.1145/3320283
10.1145/3328756.3328760
10.1002/cav.1779
10.1145/3272127.3275048
10.1145/3190834.3190839
10.1145/3197517.3201315
10.1145/3528223.3530110
10.1002/cav.2168
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cav.2255
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 1546-427X
EndPage n/a
ExternalDocumentID 10_1002_cav_2255
CAV2255
Genre article
GrantInformation_xml – fundername: National Science and Technology Council of the ROC
  funderid: NSTC 112‐2221‐E‐A49‐118
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
29F
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
ITG
ITH
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
NF~
O66
O9-
OIG
P2W
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WQJ
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2545-ae98b6295bc83f45ed0b4e33f36ebf124edba9c1c26c5d0b6b42e18e0503c0cd3
IEDL.DBID DR2
ISSN 1546-4261
IngestDate Sat Jul 26 03:30:39 EDT 2025
Tue Jul 01 02:42:24 EDT 2025
Wed Aug 20 07:26:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2545-ae98b6295bc83f45ed0b4e33f36ebf124edba9c1c26c5d0b6b42e18e0503c0cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4248-0052
PQID 3071607985
PQPubID 2034909
PageCount 15
ParticipantIDs proquest_journals_3071607985
crossref_primary_10_1002_cav_2255
wiley_primary_10_1002_cav_2255_CAV2255
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May/June 2024
2024-05-00
20240501
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May/June 2024
PublicationDecade 2020
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Computer animation and virtual worlds
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2023; 42
2021; 32
2023
2017; 36
2022; 5
2019; 2
2017; 28
2020
2020; 39
2019
2018
2017
2022; 41
2015
2012; 28
2022; 33
2009; 1
2018; 37
e_1_2_10_12_1
e_1_2_10_23_1
e_1_2_10_9_1
e_1_2_10_13_1
Yang HY (e_1_2_10_8_1) 2019; 2
e_1_2_10_10_1
e_1_2_10_11_1
e_1_2_10_22_1
e_1_2_10_20_1
Wong SK (e_1_2_10_21_1) 2012; 28
Liu L (e_1_2_10_5_1) 2018; 37
Zhang Y (e_1_2_10_24_1) 2023
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_17_1
Haarnoja T (e_1_2_10_25_1) 2018
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
References_xml – year: 2023
  article-title: Animation generation for object transportation with a rope using deep reinforcement learning
  publication-title: Comput Animat Virtual Worlds
– volume: 1
  start-page: 1
  issue: 1‐2
  year: 2009
  end-page: 13
  article-title: Towards group transport by swarms of robots
  publication-title: Int J Bio‐Inspired Comput
– volume: 37
  start-page: 1
  issue: 4
  year: 2018
  end-page: 14
  article-title: Learning basketball dribbling skills using trajectory optimization and deep reinforcement learning
  publication-title: ACM Trans Graph
– volume: 28
  issue: 3‐4
  year: 2017
  article-title: Simulating collective transport of virtual ants
  publication-title: Comput Animat Virtual Worlds
– volume: 41
  start-page: 1
  issue: 6
  year: 2022
  end-page: 16
  article-title: ControlVAE: model‐based learning of generative controllers for physics‐based characters
  publication-title: ACM Trans Graph
– volume: 9
  start-page: 137281
  year: 2021
  end-page: 137294
  article-title: Automatic curriculum design for object transportation based on deep reinforcement learning
  publication-title: IEEE Access
– volume: 41
  start-page: 1
  issue: 4
  year: 2022
  end-page: 17
  article-title: Ase: large‐scale reusable adversarial skill embeddings for physically simulated characters
  publication-title: ACM Trans Graph
– volume: 36
  start-page: 198
  issue: 6
  year: 2017
  article-title: How to train your dragon: example‐guided control of flapping flight
  publication-title: ACM Trans Graph
– volume: 32
  issue: 3‐4
  year: 2021
  article-title: Generation of multiagent animation for object transportation using deep reinforcement learning and blend‐trees
  publication-title: Comput Animat Virtual Worlds.
– year: 2020
– volume: 42
  start-page: 25
  year: 2023
  end-page: 36
– volume: 33
  issue: 3‐4
  year: 2022
  article-title: Generation of cart‐pulling animation in a multiagent environment using deep learning
  publication-title: Comput Animat Virtual Worlds
– volume: 5
  start-page: 1
  issue: 1
  year: 2022
  end-page: 18
  article-title: Real‐time style modelling of human locomotion via feature‐wise transformations and local motion phases
  publication-title: Proc ACM Comput Graph Interact Techn
– year: 2017
– start-page: 1861
  year: 2018
  end-page: 1870
– year: 2018
– volume: 2
  start-page: 1
  issue: 1
  year: 2019
  end-page: 18
  article-title: Agent‐based cooperative animation for box‐manipulation using reinforcement learning
  publication-title: Proc ACM Comput Graph Interact Techn
– volume: 36
  start-page: 41
  issue: 4
  year: 2017
  article-title: Deeploco: dynamic locomotion skills using hierarchical deep reinforcement learning
  publication-title: ACM Trans Graph
– year: 2019
– volume: 28
  start-page: 145
  issue: 1
  year: 2012
  end-page: 159
  article-title: A study on genetic algorithm and neural network for mini‐games
  publication-title: J Inf Sci Eng
– volume: 37
  issue: 6
  year: 2018
  article-title: Learning to dress: synthesizing human dressing motion via deep reinforcement learning
  publication-title: ACM Trans Graph
– year: 2015
– volume: 39
  start-page: 31
  issue: 4
  year: 2020
  end-page: 38
  article-title: Carl: controllable agent with reinforcement learning for quadruped locomotion
  publication-title: ACM Trans Graph
– ident: e_1_2_10_17_1
  doi: 10.7551/978-0-262-33027-5-ch083
– ident: e_1_2_10_14_1
  doi: 10.1145/3550454.3555434
– ident: e_1_2_10_3_1
  doi: 10.1145/3386569.3392433
– ident: e_1_2_10_9_1
  doi: 10.1002/cav.2081
– ident: e_1_2_10_18_1
  doi: 10.1109/ICRA.2017.7989250
– ident: e_1_2_10_13_1
– ident: e_1_2_10_16_1
  doi: 10.1504/IJBIC.2009.022770
– ident: e_1_2_10_22_1
  doi: 10.1109/ICRA40945.2020.9197468
– ident: e_1_2_10_23_1
  doi: 10.1109/ACCESS.2021.3118109
– ident: e_1_2_10_20_1
  doi: 10.1002/cav.2017
– ident: e_1_2_10_2_1
  doi: 10.1145/3130800.3130833
– ident: e_1_2_10_12_1
  doi: 10.1145/3072959.3073602
– ident: e_1_2_10_4_1
  doi: 10.1145/3522618
– volume: 2
  start-page: 1
  issue: 1
  year: 2019
  ident: e_1_2_10_8_1
  article-title: Agent‐based cooperative animation for box‐manipulation using reinforcement learning
  publication-title: Proc ACM Comput Graph Interact Techn
  doi: 10.1145/3320283
– ident: e_1_2_10_15_1
  doi: 10.1145/3328756.3328760
– ident: e_1_2_10_19_1
  doi: 10.1002/cav.1779
– ident: e_1_2_10_11_1
  doi: 10.1145/3272127.3275048
– start-page: 25
  volume-title: Computer graphics forum
  year: 2023
  ident: e_1_2_10_24_1
– ident: e_1_2_10_7_1
  doi: 10.1145/3190834.3190839
– volume: 37
  start-page: 1
  issue: 4
  year: 2018
  ident: e_1_2_10_5_1
  article-title: Learning basketball dribbling skills using trajectory optimization and deep reinforcement learning
  publication-title: ACM Trans Graph
  doi: 10.1145/3197517.3201315
– ident: e_1_2_10_6_1
  doi: 10.1145/3528223.3530110
– volume: 28
  start-page: 145
  issue: 1
  year: 2012
  ident: e_1_2_10_21_1
  article-title: A study on genetic algorithm and neural network for mini‐games
  publication-title: J Inf Sci Eng
– ident: e_1_2_10_10_1
  doi: 10.1002/cav.2168
– start-page: 1861
  volume-title: International conference on machine learning
  year: 2018
  ident: e_1_2_10_25_1
SSID ssj0026210
Score 2.3450992
Snippet Summary In this paper, we propose a deep reinforcement‐based approach to generate an animation of an agent using a broom‐like tool to transport a target...
In this paper, we propose a deep reinforcement‐based approach to generate an animation of an agent using a broom‐like tool to transport a target object. The...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Ablation
agents
Animation
curriculum learning
Deep learning
object transportation
Obstacle avoidance
reinforcement learning
Title Mastering broom‐like tools for object transportation animation using deep reinforcement learning
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.2255
https://www.proquest.com/docview/3071607985
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMeD7KQHf4vTKRHEW_cjTbPmOIZjCHoQNwYeSl6SjrGxjrXz4Mk_wb_Rv8SkaTcVBPFUaBJoX95LvgkvnyB0HYpYyBZRJtLMSocaH_E4NYOhYhAKolQzhDzL94H1B_RuFIyKrEp7FsbxIdYbbjYy8vHaBriAtLGBhkrxUjfOaM-X21Qtq4ce1-QowogDEQSUeXaVUHJnm6RRNvw-E23k5VeRms8yvT30XH6fSy6Z1lcZ1OXrD3Tj_35gH-0W4hN3nLccoC09P0Q7w0m6cm_TIwT3wqITzISGwYrqj7f32WSqcZYksxQbhYsTsFs3OCup6HnXYjGfuEOQ2GbSj7HSeoGXOueyynwLEhcXVIyP0aB3-9Tte8U9DJ40y8fAE5qHwAgPQIZ-TAOtmkC178c-0xAbgaAVCC5bkjAZmDIGlOhWqC1qRjal8k9QZZ7M9SnCARNt6cegWiBpGDMOwm9zHsdUcV8TUUVXZZ9EC4fbiBxYmUTGXpG1VxXVys6KioBLIzNUWVQeD03xTW71X9tH3c7QPs_-WvEcbRMjZVyaYw1VsuVKXxgpksFl7nSf9eLeaA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JbtswFP1wnUXaRYYOqJuhLNB2J8emKFpcZBEkMZxmWBSxkZ3KSYbhwA4sOUWz6hF6j16lp8hJ8iladhOgQDdZZCVAlASR__0Rn48AH2OZSt2kBjUNMx2GGAkEQ2NouIolNaYRq6LL94x3uuzLRXRRgd_lXhjPDzEvuDnNKOy1U3BXkN5ZsIZqeV1HNJYdlcf2x3fM17LdowMU7idK24fn-51gdqRAoDETigJpRaw4FZHScZiyyJqGYjYM05BblaKvs0ZJoZuach3hGFeM2mZsHWuKbmgT4nefwZI7QNwR9R98nXNVUU499UHEeODykpLptkF3yj-97_sWAe3fYXHh19qr8KdcEd_OMqxPc1XXNw_IIp_Ikq3Byiy-JnteIdahYkcv4UVvkE393ewVqFPp2CHQZxPl8obbn78uB0NL8vH4MiMYxJOxctUpkpfE7wV6iRwN_D5P4jYL9Imx9opMbEE9q4sqK5mdwdF_Dd1HmeQbqI7GI_sWSMRlS4epMk2lWZxyoWTYEiJNmRGhpbIGH0oQJFeeUSTx3NE0QfkkTj412CzRkcxsSpagNXZsgCLG4c-FmP_5frK_13PXd__74HtY7pyfniQnR2fHG_CcYuTmuzo3oZpPpnYLI69cbReIJ_DtsfFyBx62PkU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL2iVKraBY9C1WmBGqlllyHjOCZesEAMI15FVVUQu-AnGoFmRpMMVbviE_gOfoW_4Eu4jifQVqrEhgWrSHESxb7nPnV9DPA5k07qFjWoaZjpMMRIJBgaQ8NVJqkxcaaqLt8Dvn3Ido_T4wm4rvfCBH6I-4Kb14zKXnsFHxi3-kAaquVFE8FYN1Tu2V8_MV0r1nfaKNsvlHa2fmxuR-MTBSKNiVAaSSsyxalIlc4Sx1JrYsVskriEW-XQ1VmjpNAtTblOcYwrRm0rs540RcfaJPjdF_CS8Vj4YyLa3--pqiingfkgZTzyaUlNdBvT1fpP_3Z9D_Hsn1Fx5dY603BTL0joZjlrjkrV1L__4Yp8His2A1Pj6JpsBHWYhQnbewtvjrrFKNwt5kB9lZ4bAj02UT5ruL28Ou-eWVL2--cFwRCe9JWvTZGypn2vsEtkrxt2eRK_VeCUGGsHZGgr4lld1VjJ-ASO03k4fJJJvoPJXr9n3wNJuVzTiVOmpTTLHBdKJmtCOMeMSCyVDViuMZAPAp9IHpijaY7yyb18GrBQgyMfW5QiR1vsuQBFhsMrlZT_-36-uXHkrx8e--AnePWt3cn3dw72PsJrimFbaOlcgMlyOLKLGHaVaqnCO4GTp4bLHRw1PPQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mastering+broom%E2%80%90like+tools+for+object+transportation+animation+using+deep+reinforcement+learning&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Guan%E2%80%90Ting+Liu&rft.au=Sai%E2%80%90Keung+Wong&rft.date=2024-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=35&rft.issue=3&rft_id=info:doi/10.1002%2Fcav.2255&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon