Temporal-Like Bivariate Fay-Herriot Model: Leveraging Past Responses and Advanced Preprocessing for Enhanced Small Area Estimation of Growing Stock Volume
Forest inventories are crucial for effective ecosystem management but often lack precision for smaller geographical units due to limited sample sizes. This study introduces an enhanced temporal-like bivariate Fay-Herriot model, improving upon its univariate counterpart. The model incorporates field...
Saved in:
Published in | Operations Research Forum Vol. 5; no. 1; p. 9 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.03.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Forest inventories are crucial for effective ecosystem management but often lack precision for smaller geographical units due to limited sample sizes. This study introduces an enhanced temporal-like bivariate Fay-Herriot model, improving upon its univariate counterpart. The model incorporates field data and auxiliary data, including canopy height metrics from WorldView stereo-imagery and past census data, sourced from the University Forest of Pertouli in Central Greece. The model aims to estimate the growing stock volume for 2008 and 2018, focusing on enhancing the precision of the 2018 estimates. The 2008 dependent variable is used as auxiliary information by the model for more reliable 2018 small area estimates. A novel preprocessing pipeline is also introduced, which includes outlier identification, cluster analysis, and variance smoothing. Compared to direct estimates and the standard univariate Fay-Herriot model, our bivariate approach shows a percentage variance reduction of 96.58% and 13.52%, respectively. The methodology not only offers more reliable estimates with reduced variance and bias but also contributes to more accurate decision-making for sustainable forest management. |
---|---|
AbstractList | Forest inventories are crucial for effective ecosystem management but often lack precision for smaller geographical units due to limited sample sizes. This study introduces an enhanced temporal-like bivariate Fay-Herriot model, improving upon its univariate counterpart. The model incorporates field data and auxiliary data, including canopy height metrics from WorldView stereo-imagery and past census data, sourced from the University Forest of Pertouli in Central Greece. The model aims to estimate the growing stock volume for 2008 and 2018, focusing on enhancing the precision of the 2018 estimates. The 2008 dependent variable is used as auxiliary information by the model for more reliable 2018 small area estimates. A novel preprocessing pipeline is also introduced, which includes outlier identification, cluster analysis, and variance smoothing. Compared to direct estimates and the standard univariate Fay-Herriot model, our bivariate approach shows a percentage variance reduction of 96.58% and 13.52%, respectively. The methodology not only offers more reliable estimates with reduced variance and bias but also contributes to more accurate decision-making for sustainable forest management. Abstract Forest inventories are crucial for effective ecosystem management but often lack precision for smaller geographical units due to limited sample sizes. This study introduces an enhanced temporal-like bivariate Fay-Herriot model, improving upon its univariate counterpart. The model incorporates field data and auxiliary data, including canopy height metrics from WorldView stereo-imagery and past census data, sourced from the University Forest of Pertouli in Central Greece. The model aims to estimate the growing stock volume for 2008 and 2018, focusing on enhancing the precision of the 2018 estimates. The 2008 dependent variable is used as auxiliary information by the model for more reliable 2018 small area estimates. A novel preprocessing pipeline is also introduced, which includes outlier identification, cluster analysis, and variance smoothing. Compared to direct estimates and the standard univariate Fay-Herriot model, our bivariate approach shows a percentage variance reduction of 96.58% and 13.52%, respectively. The methodology not only offers more reliable estimates with reduced variance and bias but also contributes to more accurate decision-making for sustainable forest management. |
ArticleNumber | 9 |
Author | Papageorgiou, Vasileios E. Georgakis, Aristeidis Stamatellos, Georgios Gatziolis, Demetrios |
Author_xml | – sequence: 1 givenname: Aristeidis surname: Georgakis fullname: Georgakis, Aristeidis email: arisgeorg@for.auth.gr organization: School of Forestry and Natural Environment, Aristotle University of Thessaloniki – sequence: 2 givenname: Vasileios E. surname: Papageorgiou fullname: Papageorgiou, Vasileios E. organization: Department of Mathematics, Aristotle University of Thessaloniki – sequence: 3 givenname: Demetrios surname: Gatziolis fullname: Gatziolis, Demetrios organization: USDA Forest Service, Pacific Northwest Research Station – sequence: 4 givenname: Georgios surname: Stamatellos fullname: Stamatellos, Georgios organization: School of Forestry and Natural Environment, Aristotle University of Thessaloniki |
BookMark | eNp9kd1KAzEQhYMo-PsCXgW8jmaT7E-9q6WtQkXR4m2Y3Z3UtdukJtuKr-LTGl1Br7yagfnOmQPnkOxaZ5GQ04SfJ5znF0FJng0YF5JxLoqCyR1yILJMMJGm2e6ffZ-chNCUXKm8GCgpD8jHHFdr56Fls2aJ9KrZgm-gQzqBd3aN3jeuo7euxvaSznCLHhaNXdB7CB19wLB2NmCgYGs6rLdgK6zpvce1dxXGT5E0ztOxfe5PjytoWzr0CHQcumYFXeMsdYZOvXv7oh87Vy3pk2s3KzwmewbagCc_84jMJ-P56JrN7qY3o-GMVSJVklVlCqlUkKnSAOSQ1lADTzJeJ0UpRJ4bPsiN4WlZgswNiDKpcpMpUwlUHOQROettY-jXDYZOv7iNt_GjFgMpCqWSVERK9FTlXQgejV77mN-_64TrrxZ034KOLejvFrSMItmLQoTtAv2v9T-qT6-Wjqg |
Cites_doi | 10.4236/ojf.2019.93013 10.1139/X08-122 10.3934/energy.2022054 10.1080/03610926.2016.1248784 10.1109/TC.1977.1674939 10.1007/s10342-017-1074-z 10.1080/01621459.1995.10476517 10.3390/math11010135 10.1007/s10182-021-00426-4 10.1016/j.csda.2012.09.002 10.1111/rssa.12308 10.1111/j.2517-6161.1996.tb02080.x 10.1007/s10342-012-0596-7 10.1002/9781118814963 10.16929/ajas/2016.69.203 10.1023/A:1010933404324 10.1093/forestry/cpz073 10.1080/01621459.1996.10476710 10.1186/1478-7954-8-26 10.1093/jssam/smad018 10.1016/j.csda.2015.07.013 10.1023/A:1012487302797 10.5849/forsci.12-073 10.3233/SJI-220935 10.1139/x11-033 10.1007/s11135-006-9018-6 10.5558/tfc2013-132 10.1007/978-1-4612-4378-6 10.1111/biom.13552 10.1139/x11-031 10.1080/01621459.1979.10482505 10.1139/cjfr-2013-0448 10.3390/f14101994 10.1016/j.chaos.2022.112914 10.1002/(SICI)1099-095X(199901/02)10:1<67::AID-ENV336>3.0.CO;2-0 10.1371/journal.pone.0189401 10.1002/env.2387 10.1007/s43069-023-00255-y 10.1139/cjfr-2017-0154 10.1016/j.apm.2023.08.011 10.1016/j.rse.2018.04.028 10.1007/978-981-15-1476-0_10 10.1016/j.rse.2017.10.024 10.1093/jssam/smaa040 10.3389/ffgc.2021.695929 10.32614/RJ-2021-096 10.1080/01621459.1988.10478561 10.1016/j.spasta.2017.01.004 10.1016/j.rse.2009.12.004 10.1002/wics.1613 10.1007/978-0-387-35099-8_7 10.3389/ffgc.2022.813569 10.31031/MCDA.2020.07.000654 10.1007/s10260-020-00521-x 10.1016/j.jspi.2021.12.010 10.1007/s11749-019-00688-w 10.1146/annurev-statistics-031219-041212 10.32614/RJ-2018-051 10.2478/jos-2022-0036 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION JQ2 |
DOI | 10.1007/s43069-023-00288-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | CrossRef ProQuest Computer Science Collection |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2662-2556 |
ExternalDocumentID | 10_1007_s43069_023_00288_3 |
GrantInformation_xml | – fundername: State Scholarships Foundation grantid: This study is part of A.G.’s doctoral thesis that has been financially supported by the Hellenic Scholarship Foundation (IKY) and the European Social Fund – ESF) through the operational programme ‘Human Resources Development, Education and Lifelong Learning’ in the context of the Act ’Enhancing Human Resources Research Potential by undertaking a Doctoral Research Sub-action 2: IKY Scholar-ship Pro funderid: http://dx.doi.org/10.13039/501100003447 – fundername: Aristotle University of Thessaloniki |
GroupedDBID | 2JN 406 AACDK AAFGU AAJBT AASML AATNV AAUYE ABKAS ABTEG ABTKH ABWNU ACAOD ACHSB ACZOJ ADOXG AEFQL AEMSY AESKC AFBBN AFNRJ AGMZJ AGQEE AGRTI AIGIU ALMA_UNASSIGNED_HOLDINGS AMXSW C6C FIGPU GGCAI IKXTQ IWAJR JZLTJ LLZTM NPVJJ PT4 RSV SNE SOJ ZMTXR 0R~ AAYXX ACDTI CITATION EBLON ROL SJYHP JQ2 |
ID | FETCH-LOGICAL-c2543-cb5a534a64bfaa7a5dada0160d18b2277f097ff05bba37fa2b1c7f64fc2e40a3 |
IEDL.DBID | C6C |
ISSN | 2662-2556 |
IngestDate | Thu Oct 10 22:08:28 EDT 2024 Wed Nov 13 12:50:12 EST 2024 Wed Mar 27 01:50:35 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Outliers EBLUP 62P12 Repeated forest inventories 62H30 Remote sensing data Clustering 62J20 62H11 Multivariate area-level model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2543-cb5a534a64bfaa7a5dada0160d18b2277f097ff05bba37fa2b1c7f64fc2e40a3 |
OpenAccessLink | https://doi.org/10.1007/s43069-023-00288-3 |
PQID | 2932844152 |
PQPubID | 6623304 |
ParticipantIDs | proquest_journals_2932844152 crossref_primary_10_1007_s43069_023_00288_3 springer_journals_10_1007_s43069_023_00288_3 |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Aachen |
PublicationTitle | Operations Research Forum |
PublicationTitleAbbrev | Oper. Res. Forum |
PublicationYear | 2024 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | RaoJNMolinaISmall area estimation2015John Wiley & Sons Inc Fuller W, Harter R (1987) “The multivariate components of variance model for small area estimation.” Small Area Stat Dettmann GT, Radtke PJ, Coulston JW, Green PC, Wilson BT, Moisen GG (2022) “Review and synthesis of estimation strategies to meet small area needs in forest inventory.” 5 Saligkaras D, Papageorgiou VE (2022) “On the detection of patterns in electricity prices across European countries: an unsupervised machine learning approach.” AIMS Energy 10(6) GuyonIWestonJBarnhillSVapnikVGene selection for cancer classification using support vector machinesMach Learn2002461389422 TemesgenHMauroFHudakATFrankBMonleonVFeketyPPalmerMBryantTUsing Fay-Herriot models and variable radius plot data to develop a stand-level inventory and update a prior inventory in the Western Cascades, OR, United StatesFrontiers in Forests and Global Change2021415717 Corona P, Fattorini L (2008) “Area-based lidar-assisted estimation of forest standing volume.” Can J Forest Res 38:2911 MauroFMonleonVJTemesgenHFordKRAnalysis of area level and unit level models for small area estimation in forest inventories assisted with LiDAR auxiliary informationPLoS ONE2017121214 GuhaSChandraHMeasuring and mapping micro level earning inequality towards addressing the sustainable development goals – a multivariate small area modelling approachJournal of Official Statistics2022383823845 Sun H, Berg E, Zhu Z (2023) “Multivariate small-area estimation for mixed-type response variables with item nonresponse.” J Surv Stat Methodol smad018 KingJRJacksonDAVariable selection in large environmental data sets using principal components analysisEnvironmetrics19991016777 UFAMF (2018) Pertouli University Forest Management Plan 2019–2028, University Forest Administration and Management Fund (UFAMF) TibshiraniRRegression shrinkage and selection via the lassoJ Roy Stat Soc: Ser B (Methodol)1996581267288 SrebotnjakTMokdadAHMurrayCJLA novel framework for validating and applying standardized small area measurement strategiesPopul Health Metrics20108126 Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. 40th International Joint Conference on Artificial Intelligence, Montreal, Quebec, Canada Desiyanti A, Ginanjar I, Toharudin T (2023) “Application of an empirical best linear unbiased prediction Fay-Herriot (EBLUP-FH) multivariate method with cluster information to estimate average household expenditure.” Mathematics 11. https://doi.org/10.3390/math11010135 MagnussenSMauroFBreidenbachJLanzAKändlerGArea-level analysis of forest inventory variablesEur J Forest Res20171365839855 BatteseGEHarterRMFullerWAAn Error-components model for prediction of county crop areas using survey and satellite dataJ Am Stat Assoc1988834012836 BreidenbachJAstrupRSmall area estimation of forest attributes in the Norwegian National Forest InventoryEur J Forest Res2012131412551267 BreidenbachJNæssetELienVGobakkenTSolbergSPrediction of species specific forest inventory attributes using a nonparametric semi-individual tree crown approach based on fused airborne laser scanning and multispectral dataRemote Sens Environ20101144911924 Narendra, Fukunaga (1977) “A branch and bound algorithm for feature subset selection.” IEEE Transa Comput C-26(9):917–922 FrancoCBellWRUsing American Community Survey Data to improve estimates from smaller U.S. surveys through bivariate small area estimation modelsJournal of Survey Statistics and Methodology2022101225247 BreimanLRandom ForestsMach Learn2001451532 Pratesi M (2016) Analysis of poverty data by small area estimation BreidenbachJMagnussenSRahlfJAstrupRUnit-level and area-level small area estimation under heteroscedasticity using digital aerial photogrammetry dataRemote Sens Environ2018212199211 Ghosh M, Datta GS, Fay RE (1991) Hierarchical and empirical multivariate Bayes analysis in small area estimation. Proc 7th Annu Res Conf Bur Cens 63–79 JenniferAHDavidMAdrianERChrisTVBayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authorsStat Sci1999144382417 BurgardJPMoralesDWölwerA-LSmall area estimation of socioeconomic indicators for sampled and unsampled domainsAStA Advances in Statistical Analysis20221062287314 ChandraHSalvatiNChambersRSmall area prediction of counts under a non-stationary spatial modelSpatial Statistics2017203056 TorkashvandEJozaniMJTorabiMClustering in small area estimation with area level linear mixed modelsJ R Stat Soc A Stat Soc2017180412531279 Fay RE (1987) “Application of multivariate regression to small domain estimation.” Small area statistics: 91–102 BenaventRMoralesDSmall area estimation under a temporal bivariate area-level linear mixed model with independent time effectsStat Methods Appl2021301195222 Ver PlanckNRFinleyAOKershawJAWeiskittelARKressMCHierarchical Bayesian models for small area estimation of forest variables using LiDARRemote Sens Environ2018204287295 WhiteJCWulderMAVarholaAVastarantaMCoopsNCCookBDPittDWoodsMA best practices guide for generating forest inventory attributes from airborne laser scanning data using an area-based approachFor Chron20138906722723 EstebanMDLombardíaMJLópez-VizcaínoEMoralesDPérezASmall area estimation of proportions under area-level compositional mixed modelsTEST2020293793818 Ver PlanckNRFinleyAOHuffESHierarchical Bayesian models for small area estimation of county-level private forest landowner populationCan J For Res2017471215771589 CalińskiTHarabaszJA dendrite method for cluster analysisCommun Stat197431127 Guldin RW (2021) “A systematic review of small domain estimation research in forestry during the twenty-first century from outside the United States.” 4(96) BenaventRMoralesDMultivariate Fay-Herriot models for small area estimationComput Stat Data Anal201694372390 GoerndtMEMonleonVJTemesgenHSmall-area estimation of county-level forest attributes using ground data and remote sensed auxiliary informationForest Science2013595536548 MauroFMolinaIGarcía-AbrilAValbuenaRAyuga-TéllezERemote sensing estimates and measures of uncertainty for forest variables at different aggregation levelsEnvironmetrics2016274225238 O’brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 41(5):673–690 Brown G, Chambers R, Heady P, Heasman D (2001) Evaluation of small area estimation methods—an application to unemployment estimates from the UK LFS. Proc Stat Can Symp SunHBergEZhuZBivariate small-area estimation for binary and gaussian variables based on a conditionally specified modelBiometrics202278415551565 van den BrakelJABoonstraH-JEstimation of domain discontinuities using Hierarchical Bayesian Fay-Herriot modelsSurv Methodol2021471151190 AngkunsitASuntornchostJAdjusted maximum likelihood method for multivariate Fay-Herriot modelJournal of Statistical Planning and Inference2022219231249 Georgakis A, Gatziolis D, Stamatellos G (2023) “A primer on clustering of forest management units for reliable design-based direct estimates and model-based small area estimation.” Forests 14. https://doi.org/10.3390/f14101994 SärndalCESwenssonBWretmanJHModel assisted survey sampling1992Springer-Verlag DiamantopoulouMJGeorgakisAExploration of big-BAF sampling potential for volume estimation in Abies borisii-regis Matff. forest standsOperations Research Forum20234471 FayREHerriotRAEstimates of income for small places: an application of James-Stein procedures to census dataJ Am Stat Assoc197974366269277 Jiang J, Rao JS (2020) “Robust small area estimation: an overview.” 7(1):337–360 Corral GR (2020) Investigating selection criteria of constrained cluster analysis: applications in forestry. Statistical Methods and Applications in Forestry and Environmental Sciences. G. Chandra, R. Nautiyal and H. Chandra. Singapore, Springer Singapore 161–180 Georgakis A (2019) Small area estimation in forest inventories. Seventh International Conference On Environmental Management, Engineering, Planning And Economics (CEMEPE 2019) And SECOTOX Conference. Mykonos island, Greece GhoshMNangiaNKimDHEstimation of median income of four-person families: a Bayesian time series approachJ Am Stat Assoc19969143614231431 MaronnaRAYohaiVJThe behavior of the Stahel-Donoho robust multivariate estimatorJ Am Stat Assoc199590429330341 IlesKSome current subsampling techniques in forestryMathematical and Computational Forestry & Natural Resource Sciences20124277 MagnussenSMandallazDBreidenbachJLanzAGinzlerCNational forest inventories in the service of small area estimation of stem volumeCan J For Res201444910791090 Angkunsit A, Suntornchost J (2020) “Bivariate Fay-Herriot models with application to Thai socio-economic data.” Naresuan Univ J: Sci Technol (NUJST) 29:(1) Green PC, Burkhart HE, Coulston JW, Radtke PJ (2019) “A novel application of small area estimation in loblolly pine forest inventory.” Forestry: Int J For Res Ngaruye I (2017) Contributions to small area estimation : using random effects growth curve model doctoral thesis, comprehensive summary, Linköping University Electronic Press Papageorgiou V, Tsaklidis G (2021) “Modeling of premature mortality rates from chronic diseases in Europe, investigation of correlations, clustering and granger causality.” Commun. Math Biol Neurosci 67 Wolter KM (2007) Generalized variance functions. Introduction to Variance Estimation. K. M. Wolter. New York, NY, Springer New York 272–297 AlmeidaALoyAHofmannHggplot2 compatible quantile-quantile plots in RR J2018102248 Ngaruye I, Nzabanita J, Rosen DVd, Singull M (2017) "Small area estimation under a multivariate linear model for repeated measures data." Commun Stat - Theory Method 46(21):10835–10850 PermatasariNUbaidillahAmsae: an R package of multivariate Fay-Herriot Models for small area estimationThe R Journal20221328 Mauro F, Monleon V, Temesgen H (2015) Using small area estimation and Lidar-derived variables for multivariate prediction of forest attributes. Forest Inventory and Analysis (FIA) symposium 2015, Portland T Srebotnjak (288_CR61) 2010; 8 288_CR15 288_CR59 NR Ver Planck (288_CR49) 2018; 204 R Tibshirani (288_CR51) 1996; 58 L Breiman (288_CR53) 2001; 45 J Breidenbach (288_CR11) 2012; 131 ME Goerndt (288_CR18) 2011; 41 H Chandra (288_CR66) 2017; 20 R Benavent (288_CR31) 2021; 30 A Georgakis (288_CR9) 2019; 09 D Saligkaras (288_CR42) 2023 BM Frank (288_CR22) 2020 288_CR62 RA Maronna (288_CR47) 1995; 90 288_CR67 J Breidenbach (288_CR14) 2010; 114 288_CR25 288_CR24 N Permatasari (288_CR60) 2022; 13 288_CR27 T Caliński (288_CR45) 1974; 3 K Iles (288_CR10) 2012; 4 288_CR26 S Magnussen (288_CR23) 2014; 44 ME Goerndt (288_CR12) 2013; 59 S Guha (288_CR73) 2022; 38 S Magnussen (288_CR19) 2017; 136 F Mauro (288_CR21) 2017; 12 288_CR70 E Torkashvand (288_CR75) 2017; 180 288_CR30 288_CR74 288_CR76 A Georgakis (288_CR40) 2020; 7 288_CR78 288_CR33 288_CR79 RE Fay (288_CR17) 1979; 74 288_CR38 288_CR37 JN Rao (288_CR1) 2015 N Innocent (288_CR39) 2016; 3 A Angkunsit (288_CR68) 2022; 219 C Franco (288_CR34) 2022; 10 AH Jennifer (288_CR56) 1999; 14 I Guyon (288_CR54) 2002; 46 288_CR4 288_CR5 JC White (288_CR16) 2013; 89 A Almeida (288_CR65) 2018; 10 288_CR6 SA Yilema (288_CR81) 2022; 38 H Sun (288_CR32) 2022; 78 288_CR8 288_CR80 M Ghosh (288_CR28) 1996; 91 R Benavent (288_CR29) 2016; 94 288_CR41 C Franco (288_CR72) 2023; 15 288_CR43 JR King (288_CR55) 1999; 10 Y Marhuenda (288_CR36) 2013; 58 JP Burgard (288_CR77) 2022; 106 288_CR3 288_CR46 288_CR48 JA van den Brakel (288_CR35) 2021; 47 JA Westfall (288_CR44) 2011; 41 F Mauro (288_CR64) 2016; 27 NR Ver Planck (288_CR69) 2017; 47 GE Battese (288_CR2) 1988; 83 MJ Diamantopoulou (288_CR7) 2023; 4 MD Esteban (288_CR63) 2020; 29 H Temesgen (288_CR71) 2021; 4 288_CR52 J Breidenbach (288_CR20) 2018; 212 288_CR58 288_CR13 CE Särndal (288_CR50) 1992 288_CR57 |
References_xml | – ident: 288_CR8 – volume: 09 start-page: 13 issue: 03 year: 2019 ident: 288_CR9 publication-title: Open Journal of Forestry doi: 10.4236/ojf.2019.93013 contributor: fullname: A Georgakis – ident: 288_CR15 doi: 10.1139/X08-122 – ident: 288_CR43 doi: 10.3934/energy.2022054 – volume: 3 start-page: 1 issue: 1 year: 1974 ident: 288_CR45 publication-title: Commun Stat contributor: fullname: T Caliński – ident: 288_CR4 – ident: 288_CR38 doi: 10.1080/03610926.2016.1248784 – ident: 288_CR58 doi: 10.1109/TC.1977.1674939 – volume: 136 start-page: 839 issue: 5 year: 2017 ident: 288_CR19 publication-title: Eur J Forest Res doi: 10.1007/s10342-017-1074-z contributor: fullname: S Magnussen – ident: 288_CR37 – volume: 4 start-page: 17 issue: 157 year: 2021 ident: 288_CR71 publication-title: Frontiers in Forests and Global Change contributor: fullname: H Temesgen – volume: 90 start-page: 330 issue: 429 year: 1995 ident: 288_CR47 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1995.10476517 contributor: fullname: RA Maronna – volume: 4 start-page: 77 issue: 2 year: 2012 ident: 288_CR10 publication-title: Mathematical and Computational Forestry & Natural Resource Sciences contributor: fullname: K Iles – ident: 288_CR76 doi: 10.3390/math11010135 – volume-title: Small area estimation year: 2015 ident: 288_CR1 contributor: fullname: JN Rao – volume: 106 start-page: 287 issue: 2 year: 2022 ident: 288_CR77 publication-title: AStA Advances in Statistical Analysis doi: 10.1007/s10182-021-00426-4 contributor: fullname: JP Burgard – volume: 58 start-page: 308 year: 2013 ident: 288_CR36 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2012.09.002 contributor: fullname: Y Marhuenda – ident: 288_CR62 – ident: 288_CR24 – volume: 180 start-page: 1253 issue: 4 year: 2017 ident: 288_CR75 publication-title: J R Stat Soc A Stat Soc doi: 10.1111/rssa.12308 contributor: fullname: E Torkashvand – volume: 58 start-page: 267 issue: 1 year: 1996 ident: 288_CR51 publication-title: J Roy Stat Soc: Ser B (Methodol) doi: 10.1111/j.2517-6161.1996.tb02080.x contributor: fullname: R Tibshirani – volume: 131 start-page: 1255 issue: 4 year: 2012 ident: 288_CR11 publication-title: Eur J Forest Res doi: 10.1007/s10342-012-0596-7 contributor: fullname: J Breidenbach – ident: 288_CR13 – ident: 288_CR3 doi: 10.1002/9781118814963 – volume: 3 start-page: 69 issue: 1 year: 2016 ident: 288_CR39 publication-title: African Journal of Applied Statistics doi: 10.16929/ajas/2016.69.203 contributor: fullname: N Innocent – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 288_CR53 publication-title: Mach Learn doi: 10.1023/A:1010933404324 contributor: fullname: L Breiman – ident: 288_CR59 – ident: 288_CR70 doi: 10.1093/forestry/cpz073 – volume: 91 start-page: 1423 issue: 436 year: 1996 ident: 288_CR28 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1996.10476710 contributor: fullname: M Ghosh – ident: 288_CR30 – volume: 14 start-page: 382 issue: 4 year: 1999 ident: 288_CR56 publication-title: Stat Sci contributor: fullname: AH Jennifer – volume: 47 start-page: 151 issue: 1 year: 2021 ident: 288_CR35 publication-title: Surv Methodol contributor: fullname: JA van den Brakel – start-page: 2812 volume-title: Seeking the truth beyond the data year: 2023 ident: 288_CR42 contributor: fullname: D Saligkaras – ident: 288_CR27 – volume: 8 start-page: 26 issue: 1 year: 2010 ident: 288_CR61 publication-title: Popul Health Metrics doi: 10.1186/1478-7954-8-26 contributor: fullname: T Srebotnjak – ident: 288_CR33 doi: 10.1093/jssam/smad018 – volume: 94 start-page: 372 year: 2016 ident: 288_CR29 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2015.07.013 contributor: fullname: R Benavent – ident: 288_CR41 – volume: 46 start-page: 389 issue: 1 year: 2002 ident: 288_CR54 publication-title: Mach Learn doi: 10.1023/A:1012487302797 contributor: fullname: I Guyon – volume: 59 start-page: 536 issue: 5 year: 2013 ident: 288_CR12 publication-title: Forest Science doi: 10.5849/forsci.12-073 contributor: fullname: ME Goerndt – volume: 38 start-page: 625 year: 2022 ident: 288_CR81 publication-title: Stat J IAOS doi: 10.3233/SJI-220935 contributor: fullname: SA Yilema – volume: 41 start-page: 1189 issue: 6 year: 2011 ident: 288_CR18 publication-title: Can J For Res doi: 10.1139/x11-033 contributor: fullname: ME Goerndt – ident: 288_CR78 – ident: 288_CR57 doi: 10.1007/s11135-006-9018-6 – volume: 89 start-page: 722 issue: 06 year: 2013 ident: 288_CR16 publication-title: For Chron doi: 10.5558/tfc2013-132 contributor: fullname: JC White – volume-title: Model assisted survey sampling year: 1992 ident: 288_CR50 doi: 10.1007/978-1-4612-4378-6 contributor: fullname: CE Särndal – volume: 78 start-page: 1555 issue: 4 year: 2022 ident: 288_CR32 publication-title: Biometrics doi: 10.1111/biom.13552 contributor: fullname: H Sun – volume: 41 start-page: 1130 issue: 5 year: 2011 ident: 288_CR44 publication-title: Can J For Res doi: 10.1139/x11-031 contributor: fullname: JA Westfall – volume: 74 start-page: 269 issue: 366 year: 1979 ident: 288_CR17 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1979.10482505 contributor: fullname: RE Fay – volume: 44 start-page: 1079 issue: 9 year: 2014 ident: 288_CR23 publication-title: Can J For Res doi: 10.1139/cjfr-2013-0448 contributor: fullname: S Magnussen – ident: 288_CR25 doi: 10.3390/f14101994 – ident: 288_CR79 doi: 10.1016/j.chaos.2022.112914 – volume: 10 start-page: 67 issue: 1 year: 1999 ident: 288_CR55 publication-title: Environmetrics doi: 10.1002/(SICI)1099-095X(199901/02)10:1<67::AID-ENV336>3.0.CO;2-0 contributor: fullname: JR King – volume: 12 start-page: 14 issue: 12 year: 2017 ident: 288_CR21 publication-title: PLoS ONE doi: 10.1371/journal.pone.0189401 contributor: fullname: F Mauro – ident: 288_CR26 – volume: 27 start-page: 225 issue: 4 year: 2016 ident: 288_CR64 publication-title: Environmetrics doi: 10.1002/env.2387 contributor: fullname: F Mauro – volume: 4 start-page: 71 issue: 4 year: 2023 ident: 288_CR7 publication-title: Operations Research Forum doi: 10.1007/s43069-023-00255-y contributor: fullname: MJ Diamantopoulou – volume: 47 start-page: 1577 issue: 12 year: 2017 ident: 288_CR69 publication-title: Can J For Res doi: 10.1139/cjfr-2017-0154 contributor: fullname: NR Ver Planck – ident: 288_CR80 doi: 10.1016/j.apm.2023.08.011 – volume: 212 start-page: 199 year: 2018 ident: 288_CR20 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2018.04.028 contributor: fullname: J Breidenbach – ident: 288_CR46 doi: 10.1007/978-981-15-1476-0_10 – volume: 204 start-page: 287 year: 2018 ident: 288_CR49 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2017.10.024 contributor: fullname: NR Ver Planck – volume: 10 start-page: 225 issue: 1 year: 2022 ident: 288_CR34 publication-title: Journal of Survey Statistics and Methodology doi: 10.1093/jssam/smaa040 contributor: fullname: C Franco – ident: 288_CR5 doi: 10.3389/ffgc.2021.695929 – ident: 288_CR52 – volume: 13 start-page: 28 year: 2022 ident: 288_CR60 publication-title: The R Journal doi: 10.32614/RJ-2021-096 contributor: fullname: N Permatasari – volume: 83 start-page: 28 issue: 401 year: 1988 ident: 288_CR2 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1988.10478561 contributor: fullname: GE Battese – volume: 20 start-page: 30 year: 2017 ident: 288_CR66 publication-title: Spatial Statistics doi: 10.1016/j.spasta.2017.01.004 contributor: fullname: H Chandra – volume: 114 start-page: 911 issue: 4 year: 2010 ident: 288_CR14 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2009.12.004 contributor: fullname: J Breidenbach – volume: 15 start-page: 18 issue: 6 year: 2023 ident: 288_CR72 publication-title: WIREs Comput Stat doi: 10.1002/wics.1613 contributor: fullname: C Franco – volume-title: Aerial laser scanning for forest inventories: estimation and uncertainty at multiple scales year: 2020 ident: 288_CR22 contributor: fullname: BM Frank – ident: 288_CR48 doi: 10.1007/978-0-387-35099-8_7 – ident: 288_CR6 doi: 10.3389/ffgc.2022.813569 – volume: 7 start-page: 694 issue: 1 year: 2020 ident: 288_CR40 publication-title: Modern Concepts & Developments in Agronomy doi: 10.31031/MCDA.2020.07.000654 contributor: fullname: A Georgakis – volume: 30 start-page: 195 issue: 1 year: 2021 ident: 288_CR31 publication-title: Stat Methods Appl doi: 10.1007/s10260-020-00521-x contributor: fullname: R Benavent – volume: 219 start-page: 231 year: 2022 ident: 288_CR68 publication-title: Journal of Statistical Planning and Inference doi: 10.1016/j.jspi.2021.12.010 contributor: fullname: A Angkunsit – volume: 29 start-page: 793 issue: 3 year: 2020 ident: 288_CR63 publication-title: TEST doi: 10.1007/s11749-019-00688-w contributor: fullname: MD Esteban – ident: 288_CR74 doi: 10.1146/annurev-statistics-031219-041212 – volume: 10 start-page: 248 issue: 2 year: 2018 ident: 288_CR65 publication-title: R J doi: 10.32614/RJ-2018-051 contributor: fullname: A Almeida – volume: 38 start-page: 823 issue: 3 year: 2022 ident: 288_CR73 publication-title: Journal of Official Statistics doi: 10.2478/jos-2022-0036 contributor: fullname: S Guha – ident: 288_CR67 |
SSID | ssib044789433 ssib039759318 ssj0003237433 |
Score | 2.2975225 |
Snippet | Forest inventories are crucial for effective ecosystem management but often lack precision for smaller geographical units due to limited sample sizes. This... Abstract Forest inventories are crucial for effective ecosystem management but often lack precision for smaller geographical units due to limited sample sizes.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 9 |
SubjectTerms | Accuracy Applications of Mathematics Bivariate analysis Business and Management Cluster analysis Data analysis Dependent variables Estimates Forest management Math Applications in Computer Science Mathematical and Computational Engineering Operations Research/Decision Theory Optimization Outliers (statistics) Preprocessing Remote sensing Sample size Topical Collection on Mathematical Models and Optimization for Environmental Engineering and Sustainable Technologies Variables Variance analysis |
Title | Temporal-Like Bivariate Fay-Herriot Model: Leveraging Past Responses and Advanced Preprocessing for Enhanced Small Area Estimation of Growing Stock Volume |
URI | https://link.springer.com/article/10.1007/s43069-023-00288-3 https://www.proquest.com/docview/2932844152 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA3aXryIomK1lhy8aXA_spuut7Z0LaKl2Cq9LclugsW6FbsK_hV_rTP7YbHowXOGEPYlM282mTeEnAaesBLbVsxOuMewxxVTjmVYbIzDpR8IrfA_5O3QH9zz66k3LWVysBZm7f7-YsmB0wYMIgvD9KDN3E1ShxjcxudbPb9X7R0Iq17grvws5wKVxd2yTub3qX7GohXBXLsTzUNNuEO2S45IOwWou2RDp3vkc1KISM3ZzexJ0-7sHbJcIIo0lB9sgPqKi4xiZ7P5Jb3RsEHz9kN0JJcZvSsewuollWlCO-W1Px2homVeJ4CWwF5pP30shsbPco4r0JL2wQkU9Y10YegVpO1oPc7AkdKH3Lftk0nYn_QGrGyswGKsfWex8qTnAhRcGSmF9BKZSJSaS-y2chwhjBUIYyxPKekKIx1lx8L43MSO5pZ0D0gtXaT6kNAkSOBMWyY2Nma3WmpUowF0HG6Ay9gNclZ94eilkM-IvoWSczwiwCPK8YjcBmlWIETlUVpGwEcghCLPaJDzCpjV8N-zHf3P_JhsOUBYivdlTVLLXt_0CRCOTLVIvRN2u8NWvuO-AGZ8ztM |
link.rule.ids | 315,783,787,27936,27937,41132,42201,51588 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG0UD3oxGjWiqD1408b9aCnrDQmICoQIGm-bdreNRFyMrCb-FX-tM7uLRKIHz22aZl8782an84aQ40BIJ3ZdzdyYC4Y9rpj2HMsiaz2uqoE0Gv9DdnvV9h2_fhAPhUwO1sIs5O_Pphw4bcDAszAMD2rMXyYr3AO3hYnZamN2dsCtisCf21nOJSqL-0WdzO9L_fRFc4K5kBPNXE1rg6wXHJHWc1A3yZJJtsjnMBeRGrPO6MnQi9E7RLlAFGlLfbA26itOUoqdzcbntGPggGbth2hfTVN6mz-ENVOqkpjWi7Q_7aOiZVYngDOBvdJm8pgPDZ7VGHdgFG2CEcjrG-nE0ksI23H2IAVDSu8z27ZNhq3msNFmRWMFFmHtO4u0UMIHKLi2SkklYhUrlJqL3Zr2PCmtE0hrHaG18qVVnnYjaavcRp7hjvJ3SCmZJGaX0DiI4U47NrIuRrdGGVSjEUDbuQUu45bJyewLhy-5fEb4LZSc4RECHmGGR-iXSWUGQlhcpWkIfARcKPKMMjmdATMf_nu1vf9NPyKr7WG3E3auejf7ZM0D8pK_JauQUvr6Zg6AfKT6MDt1X4s10DU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA4-QLyIomJ95uBNg_tIGteb1taqVYpW8bYkmwTFuhW7Cv4Vf60z-2hV9OA5IYSdZOabzXzfELIdCekZ39fMN1ww7HHFdOA5ljgXcFWPpNX4H_List6-4Wd34u4Liz-vdq-eJAtOA6o0pdnes3F7I-IbB6QbMYg3DJOGfRZOkmmOTdPxubbeqE4UBFsRhWPvy7lEvfGwZM_8vtT3CDWGnT9eSvMA1JoncyVypIeFqRfIhE0XyUevkJbqs87Do6VHD2-Q-wJ8pC31ztqoujjIKPY76x_QjoVjmzclol01zOhVUR5rh1Slhh6WxQC0izqXOXsAZwKmpc30vhi6flJ93IFVtAmuoWA90oGjJ5DM4-zrDNwrvc093hLptZq9RpuV7RZYgox4lmihRAgG4topJZUwyigUoDP-vg4CKZ0XSec8obUKpVOB9hPp6twlgeWeCpfJVDpI7QqhJjJw0z2XOB9zXqssatQIAPPcAcLxa2Sn-sLxcyGqEY_kk3N7xGCPOLdHHNbIemWEuLxgwxhQCgRWRB81slsZZjz892qr_5u-RWa6x624c3p5vkZmA0A0RQHaOpnKXl7tBiCSTG_mh-4TWcbYfw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal-Like+Bivariate+Fay-Herriot+Model%3A+Leveraging+Past+Responses+and+Advanced+Preprocessing+for+Enhanced+Small+Area+Estimation+of+Growing+Stock+Volume&rft.jtitle=Operations+Research+Forum&rft.au=Georgakis%2C+Aristeidis&rft.au=Papageorgiou%2C+Vasileios+E.&rft.au=Gatziolis%2C+Demetrios&rft.au=Stamatellos%2C+Georgios&rft.date=2024-03-01&rft.pub=Springer+International+Publishing&rft.eissn=2662-2556&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1007%2Fs43069-023-00288-3&rft.externalDocID=10_1007_s43069_023_00288_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-2556&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-2556&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-2556&client=summon |