Temporal-Like Bivariate Fay-Herriot Model: Leveraging Past Responses and Advanced Preprocessing for Enhanced Small Area Estimation of Growing Stock Volume

Forest inventories are crucial for effective ecosystem management but often lack precision for smaller geographical units due to limited sample sizes. This study introduces an enhanced temporal-like bivariate Fay-Herriot model, improving upon its univariate counterpart. The model incorporates field...

Full description

Saved in:
Bibliographic Details
Published inOperations Research Forum Vol. 5; no. 1; p. 9
Main Authors Georgakis, Aristeidis, Papageorgiou, Vasileios E., Gatziolis, Demetrios, Stamatellos, Georgios
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.03.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Forest inventories are crucial for effective ecosystem management but often lack precision for smaller geographical units due to limited sample sizes. This study introduces an enhanced temporal-like bivariate Fay-Herriot model, improving upon its univariate counterpart. The model incorporates field data and auxiliary data, including canopy height metrics from WorldView stereo-imagery and past census data, sourced from the University Forest of Pertouli in Central Greece. The model aims to estimate the growing stock volume for 2008 and 2018, focusing on enhancing the precision of the 2018 estimates. The 2008 dependent variable is used as auxiliary information by the model for more reliable 2018 small area estimates. A novel preprocessing pipeline is also introduced, which includes outlier identification, cluster analysis, and variance smoothing. Compared to direct estimates and the standard univariate Fay-Herriot model, our bivariate approach shows a percentage variance reduction of 96.58% and 13.52%, respectively. The methodology not only offers more reliable estimates with reduced variance and bias but also contributes to more accurate decision-making for sustainable forest management.
AbstractList Forest inventories are crucial for effective ecosystem management but often lack precision for smaller geographical units due to limited sample sizes. This study introduces an enhanced temporal-like bivariate Fay-Herriot model, improving upon its univariate counterpart. The model incorporates field data and auxiliary data, including canopy height metrics from WorldView stereo-imagery and past census data, sourced from the University Forest of Pertouli in Central Greece. The model aims to estimate the growing stock volume for 2008 and 2018, focusing on enhancing the precision of the 2018 estimates. The 2008 dependent variable is used as auxiliary information by the model for more reliable 2018 small area estimates. A novel preprocessing pipeline is also introduced, which includes outlier identification, cluster analysis, and variance smoothing. Compared to direct estimates and the standard univariate Fay-Herriot model, our bivariate approach shows a percentage variance reduction of 96.58% and 13.52%, respectively. The methodology not only offers more reliable estimates with reduced variance and bias but also contributes to more accurate decision-making for sustainable forest management.
Abstract Forest inventories are crucial for effective ecosystem management but often lack precision for smaller geographical units due to limited sample sizes. This study introduces an enhanced temporal-like bivariate Fay-Herriot model, improving upon its univariate counterpart. The model incorporates field data and auxiliary data, including canopy height metrics from WorldView stereo-imagery and past census data, sourced from the University Forest of Pertouli in Central Greece. The model aims to estimate the growing stock volume for 2008 and 2018, focusing on enhancing the precision of the 2018 estimates. The 2008 dependent variable is used as auxiliary information by the model for more reliable 2018 small area estimates. A novel preprocessing pipeline is also introduced, which includes outlier identification, cluster analysis, and variance smoothing. Compared to direct estimates and the standard univariate Fay-Herriot model, our bivariate approach shows a percentage variance reduction of 96.58% and 13.52%, respectively. The methodology not only offers more reliable estimates with reduced variance and bias but also contributes to more accurate decision-making for sustainable forest management.
ArticleNumber 9
Author Papageorgiou, Vasileios E.
Georgakis, Aristeidis
Stamatellos, Georgios
Gatziolis, Demetrios
Author_xml – sequence: 1
  givenname: Aristeidis
  surname: Georgakis
  fullname: Georgakis, Aristeidis
  email: arisgeorg@for.auth.gr
  organization: School of Forestry and Natural Environment, Aristotle University of Thessaloniki
– sequence: 2
  givenname: Vasileios E.
  surname: Papageorgiou
  fullname: Papageorgiou, Vasileios E.
  organization: Department of Mathematics, Aristotle University of Thessaloniki
– sequence: 3
  givenname: Demetrios
  surname: Gatziolis
  fullname: Gatziolis, Demetrios
  organization: USDA Forest Service, Pacific Northwest Research Station
– sequence: 4
  givenname: Georgios
  surname: Stamatellos
  fullname: Stamatellos, Georgios
  organization: School of Forestry and Natural Environment, Aristotle University of Thessaloniki
BookMark eNp9kd1KAzEQhYMo-PsCXgW8jmaT7E-9q6WtQkXR4m2Y3Z3UtdukJtuKr-LTGl1Br7yagfnOmQPnkOxaZ5GQ04SfJ5znF0FJng0YF5JxLoqCyR1yILJMMJGm2e6ffZ-chNCUXKm8GCgpD8jHHFdr56Fls2aJ9KrZgm-gQzqBd3aN3jeuo7euxvaSznCLHhaNXdB7CB19wLB2NmCgYGs6rLdgK6zpvce1dxXGT5E0ztOxfe5PjytoWzr0CHQcumYFXeMsdYZOvXv7oh87Vy3pk2s3KzwmewbagCc_84jMJ-P56JrN7qY3o-GMVSJVklVlCqlUkKnSAOSQ1lADTzJeJ0UpRJ4bPsiN4WlZgswNiDKpcpMpUwlUHOQROettY-jXDYZOv7iNt_GjFgMpCqWSVERK9FTlXQgejV77mN-_64TrrxZ034KOLejvFrSMItmLQoTtAv2v9T-qT6-Wjqg
Cites_doi 10.4236/ojf.2019.93013
10.1139/X08-122
10.3934/energy.2022054
10.1080/03610926.2016.1248784
10.1109/TC.1977.1674939
10.1007/s10342-017-1074-z
10.1080/01621459.1995.10476517
10.3390/math11010135
10.1007/s10182-021-00426-4
10.1016/j.csda.2012.09.002
10.1111/rssa.12308
10.1111/j.2517-6161.1996.tb02080.x
10.1007/s10342-012-0596-7
10.1002/9781118814963
10.16929/ajas/2016.69.203
10.1023/A:1010933404324
10.1093/forestry/cpz073
10.1080/01621459.1996.10476710
10.1186/1478-7954-8-26
10.1093/jssam/smad018
10.1016/j.csda.2015.07.013
10.1023/A:1012487302797
10.5849/forsci.12-073
10.3233/SJI-220935
10.1139/x11-033
10.1007/s11135-006-9018-6
10.5558/tfc2013-132
10.1007/978-1-4612-4378-6
10.1111/biom.13552
10.1139/x11-031
10.1080/01621459.1979.10482505
10.1139/cjfr-2013-0448
10.3390/f14101994
10.1016/j.chaos.2022.112914
10.1002/(SICI)1099-095X(199901/02)10:1<67::AID-ENV336>3.0.CO;2-0
10.1371/journal.pone.0189401
10.1002/env.2387
10.1007/s43069-023-00255-y
10.1139/cjfr-2017-0154
10.1016/j.apm.2023.08.011
10.1016/j.rse.2018.04.028
10.1007/978-981-15-1476-0_10
10.1016/j.rse.2017.10.024
10.1093/jssam/smaa040
10.3389/ffgc.2021.695929
10.32614/RJ-2021-096
10.1080/01621459.1988.10478561
10.1016/j.spasta.2017.01.004
10.1016/j.rse.2009.12.004
10.1002/wics.1613
10.1007/978-0-387-35099-8_7
10.3389/ffgc.2022.813569
10.31031/MCDA.2020.07.000654
10.1007/s10260-020-00521-x
10.1016/j.jspi.2021.12.010
10.1007/s11749-019-00688-w
10.1146/annurev-statistics-031219-041212
10.32614/RJ-2018-051
10.2478/jos-2022-0036
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
JQ2
DOI 10.1007/s43069-023-00288-3
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
CrossRef
ProQuest Computer Science Collection
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2662-2556
ExternalDocumentID 10_1007_s43069_023_00288_3
GrantInformation_xml – fundername: State Scholarships Foundation
  grantid: This study is part of A.G.’s doctoral thesis that has been financially supported by the Hellenic Scholarship Foundation (IKY) and the European Social Fund – ESF) through the operational programme ‘Human Resources Development, Education and Lifelong Learning’ in the context of the Act ’Enhancing Human Resources Research Potential by undertaking a Doctoral Research Sub-action 2: IKY Scholar-ship Pro
  funderid: http://dx.doi.org/10.13039/501100003447
– fundername: Aristotle University of Thessaloniki
GroupedDBID 2JN
406
AACDK
AAFGU
AAJBT
AASML
AATNV
AAUYE
ABKAS
ABTEG
ABTKH
ABWNU
ACAOD
ACHSB
ACZOJ
ADOXG
AEFQL
AEMSY
AESKC
AFBBN
AFNRJ
AGMZJ
AGQEE
AGRTI
AIGIU
ALMA_UNASSIGNED_HOLDINGS
AMXSW
C6C
FIGPU
GGCAI
IKXTQ
IWAJR
JZLTJ
LLZTM
NPVJJ
PT4
RSV
SNE
SOJ
ZMTXR
0R~
AAYXX
ACDTI
CITATION
EBLON
ROL
SJYHP
JQ2
ID FETCH-LOGICAL-c2543-cb5a534a64bfaa7a5dada0160d18b2277f097ff05bba37fa2b1c7f64fc2e40a3
IEDL.DBID C6C
ISSN 2662-2556
IngestDate Thu Oct 10 22:08:28 EDT 2024
Wed Nov 13 12:50:12 EST 2024
Wed Mar 27 01:50:35 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Outliers
EBLUP
62P12
Repeated forest inventories
62H30
Remote sensing data
Clustering
62J20
62H11
Multivariate area-level model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2543-cb5a534a64bfaa7a5dada0160d18b2277f097ff05bba37fa2b1c7f64fc2e40a3
OpenAccessLink https://doi.org/10.1007/s43069-023-00288-3
PQID 2932844152
PQPubID 6623304
ParticipantIDs proquest_journals_2932844152
crossref_primary_10_1007_s43069_023_00288_3
springer_journals_10_1007_s43069_023_00288_3
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Aachen
PublicationTitle Operations Research Forum
PublicationTitleAbbrev Oper. Res. Forum
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References RaoJNMolinaISmall area estimation2015John Wiley & Sons Inc
Fuller W, Harter R (1987) “The multivariate components of variance model for small area estimation.” Small Area Stat
Dettmann GT, Radtke PJ, Coulston JW, Green PC, Wilson BT, Moisen GG (2022) “Review and synthesis of estimation strategies to meet small area needs in forest inventory.” 5
Saligkaras D, Papageorgiou VE (2022) “On the detection of patterns in electricity prices across European countries: an unsupervised machine learning approach.” AIMS Energy 10(6)
GuyonIWestonJBarnhillSVapnikVGene selection for cancer classification using support vector machinesMach Learn2002461389422
TemesgenHMauroFHudakATFrankBMonleonVFeketyPPalmerMBryantTUsing Fay-Herriot models and variable radius plot data to develop a stand-level inventory and update a prior inventory in the Western Cascades, OR, United StatesFrontiers in Forests and Global Change2021415717
Corona P, Fattorini L (2008) “Area-based lidar-assisted estimation of forest standing volume.” Can J Forest Res 38:2911
MauroFMonleonVJTemesgenHFordKRAnalysis of area level and unit level models for small area estimation in forest inventories assisted with LiDAR auxiliary informationPLoS ONE2017121214
GuhaSChandraHMeasuring and mapping micro level earning inequality towards addressing the sustainable development goals – a multivariate small area modelling approachJournal of Official Statistics2022383823845
Sun H, Berg E, Zhu Z (2023) “Multivariate small-area estimation for mixed-type response variables with item nonresponse.” J Surv Stat Methodol smad018
KingJRJacksonDAVariable selection in large environmental data sets using principal components analysisEnvironmetrics19991016777
UFAMF (2018) Pertouli University Forest Management Plan 2019–2028, University Forest Administration and Management Fund (UFAMF)
TibshiraniRRegression shrinkage and selection via the lassoJ Roy Stat Soc: Ser B (Methodol)1996581267288
SrebotnjakTMokdadAHMurrayCJLA novel framework for validating and applying standardized small area measurement strategiesPopul Health Metrics20108126
Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. 40th International Joint Conference on Artificial Intelligence, Montreal, Quebec, Canada
Desiyanti A, Ginanjar I, Toharudin T (2023) “Application of an empirical best linear unbiased prediction Fay-Herriot (EBLUP-FH) multivariate method with cluster information to estimate average household expenditure.” Mathematics 11. https://doi.org/10.3390/math11010135
MagnussenSMauroFBreidenbachJLanzAKändlerGArea-level analysis of forest inventory variablesEur J Forest Res20171365839855
BatteseGEHarterRMFullerWAAn Error-components model for prediction of county crop areas using survey and satellite dataJ Am Stat Assoc1988834012836
BreidenbachJAstrupRSmall area estimation of forest attributes in the Norwegian National Forest InventoryEur J Forest Res2012131412551267
BreidenbachJNæssetELienVGobakkenTSolbergSPrediction of species specific forest inventory attributes using a nonparametric semi-individual tree crown approach based on fused airborne laser scanning and multispectral dataRemote Sens Environ20101144911924
Narendra, Fukunaga (1977) “A branch and bound algorithm for feature subset selection.” IEEE Transa Comput C-26(9):917–922
FrancoCBellWRUsing American Community Survey Data to improve estimates from smaller U.S. surveys through bivariate small area estimation modelsJournal of Survey Statistics and Methodology2022101225247
BreimanLRandom ForestsMach Learn2001451532
Pratesi M (2016) Analysis of poverty data by small area estimation
BreidenbachJMagnussenSRahlfJAstrupRUnit-level and area-level small area estimation under heteroscedasticity using digital aerial photogrammetry dataRemote Sens Environ2018212199211
Ghosh M, Datta GS, Fay RE (1991) Hierarchical and empirical multivariate Bayes analysis in small area estimation. Proc 7th Annu Res Conf Bur Cens 63–79
JenniferAHDavidMAdrianERChrisTVBayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authorsStat Sci1999144382417
BurgardJPMoralesDWölwerA-LSmall area estimation of socioeconomic indicators for sampled and unsampled domainsAStA Advances in Statistical Analysis20221062287314
ChandraHSalvatiNChambersRSmall area prediction of counts under a non-stationary spatial modelSpatial Statistics2017203056
TorkashvandEJozaniMJTorabiMClustering in small area estimation with area level linear mixed modelsJ R Stat Soc A Stat Soc2017180412531279
Fay RE (1987) “Application of multivariate regression to small domain estimation.” Small area statistics: 91–102
BenaventRMoralesDSmall area estimation under a temporal bivariate area-level linear mixed model with independent time effectsStat Methods Appl2021301195222
Ver PlanckNRFinleyAOKershawJAWeiskittelARKressMCHierarchical Bayesian models for small area estimation of forest variables using LiDARRemote Sens Environ2018204287295
WhiteJCWulderMAVarholaAVastarantaMCoopsNCCookBDPittDWoodsMA best practices guide for generating forest inventory attributes from airborne laser scanning data using an area-based approachFor Chron20138906722723
EstebanMDLombardíaMJLópez-VizcaínoEMoralesDPérezASmall area estimation of proportions under area-level compositional mixed modelsTEST2020293793818
Ver PlanckNRFinleyAOHuffESHierarchical Bayesian models for small area estimation of county-level private forest landowner populationCan J For Res2017471215771589
CalińskiTHarabaszJA dendrite method for cluster analysisCommun Stat197431127
Guldin RW (2021) “A systematic review of small domain estimation research in forestry during the twenty-first century from outside the United States.” 4(96)
BenaventRMoralesDMultivariate Fay-Herriot models for small area estimationComput Stat Data Anal201694372390
GoerndtMEMonleonVJTemesgenHSmall-area estimation of county-level forest attributes using ground data and remote sensed auxiliary informationForest Science2013595536548
MauroFMolinaIGarcía-AbrilAValbuenaRAyuga-TéllezERemote sensing estimates and measures of uncertainty for forest variables at different aggregation levelsEnvironmetrics2016274225238
O’brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 41(5):673–690
Brown G, Chambers R, Heady P, Heasman D (2001) Evaluation of small area estimation methods—an application to unemployment estimates from the UK LFS. Proc Stat Can Symp
SunHBergEZhuZBivariate small-area estimation for binary and gaussian variables based on a conditionally specified modelBiometrics202278415551565
van den BrakelJABoonstraH-JEstimation of domain discontinuities using Hierarchical Bayesian Fay-Herriot modelsSurv Methodol2021471151190
AngkunsitASuntornchostJAdjusted maximum likelihood method for multivariate Fay-Herriot modelJournal of Statistical Planning and Inference2022219231249
Georgakis A, Gatziolis D, Stamatellos G (2023) “A primer on clustering of forest management units for reliable design-based direct estimates and model-based small area estimation.” Forests 14. https://doi.org/10.3390/f14101994
SärndalCESwenssonBWretmanJHModel assisted survey sampling1992Springer-Verlag
DiamantopoulouMJGeorgakisAExploration of big-BAF sampling potential for volume estimation in Abies borisii-regis Matff. forest standsOperations Research Forum20234471
FayREHerriotRAEstimates of income for small places: an application of James-Stein procedures to census dataJ Am Stat Assoc197974366269277
Jiang J, Rao JS (2020) “Robust small area estimation: an overview.” 7(1):337–360
Corral GR (2020) Investigating selection criteria of constrained cluster analysis: applications in forestry. Statistical Methods and Applications in Forestry and Environmental Sciences. G. Chandra, R. Nautiyal and H. Chandra. Singapore, Springer Singapore 161–180
Georgakis A (2019) Small area estimation in forest inventories. Seventh International Conference On Environmental Management, Engineering, Planning And Economics (CEMEPE 2019) And SECOTOX Conference. Mykonos island, Greece
GhoshMNangiaNKimDHEstimation of median income of four-person families: a Bayesian time series approachJ Am Stat Assoc19969143614231431
MaronnaRAYohaiVJThe behavior of the Stahel-Donoho robust multivariate estimatorJ Am Stat Assoc199590429330341
IlesKSome current subsampling techniques in forestryMathematical and Computational Forestry & Natural Resource Sciences20124277
MagnussenSMandallazDBreidenbachJLanzAGinzlerCNational forest inventories in the service of small area estimation of stem volumeCan J For Res201444910791090
Angkunsit A, Suntornchost J (2020) “Bivariate Fay-Herriot models with application to Thai socio-economic data.” Naresuan Univ J: Sci Technol (NUJST) 29:(1)
Green PC, Burkhart HE, Coulston JW, Radtke PJ (2019) “A novel application of small area estimation in loblolly pine forest inventory.” Forestry: Int J For Res
Ngaruye I (2017) Contributions to small area estimation : using random effects growth curve model doctoral thesis, comprehensive summary, Linköping University Electronic Press
Papageorgiou V, Tsaklidis G (2021) “Modeling of premature mortality rates from chronic diseases in Europe, investigation of correlations, clustering and granger causality.” Commun. Math Biol Neurosci 67
Wolter KM (2007) Generalized variance functions. Introduction to Variance Estimation. K. M. Wolter. New York, NY, Springer New York 272–297
AlmeidaALoyAHofmannHggplot2 compatible quantile-quantile plots in RR J2018102248
Ngaruye I, Nzabanita J, Rosen DVd, Singull M (2017) "Small area estimation under a multivariate linear model for repeated measures data." Commun Stat - Theory Method 46(21):10835–10850
PermatasariNUbaidillahAmsae: an R package of multivariate Fay-Herriot Models for small area estimationThe R Journal20221328
Mauro F, Monleon V, Temesgen H (2015) Using small area estimation and Lidar-derived variables for multivariate prediction of forest attributes. Forest Inventory and Analysis (FIA) symposium 2015, Portland
T Srebotnjak (288_CR61) 2010; 8
288_CR15
288_CR59
NR Ver Planck (288_CR49) 2018; 204
R Tibshirani (288_CR51) 1996; 58
L Breiman (288_CR53) 2001; 45
J Breidenbach (288_CR11) 2012; 131
ME Goerndt (288_CR18) 2011; 41
H Chandra (288_CR66) 2017; 20
R Benavent (288_CR31) 2021; 30
A Georgakis (288_CR9) 2019; 09
D Saligkaras (288_CR42) 2023
BM Frank (288_CR22) 2020
288_CR62
RA Maronna (288_CR47) 1995; 90
288_CR67
J Breidenbach (288_CR14) 2010; 114
288_CR25
288_CR24
N Permatasari (288_CR60) 2022; 13
288_CR27
T Caliński (288_CR45) 1974; 3
K Iles (288_CR10) 2012; 4
288_CR26
S Magnussen (288_CR23) 2014; 44
ME Goerndt (288_CR12) 2013; 59
S Guha (288_CR73) 2022; 38
S Magnussen (288_CR19) 2017; 136
F Mauro (288_CR21) 2017; 12
288_CR70
E Torkashvand (288_CR75) 2017; 180
288_CR30
288_CR74
288_CR76
A Georgakis (288_CR40) 2020; 7
288_CR78
288_CR33
288_CR79
RE Fay (288_CR17) 1979; 74
288_CR38
288_CR37
JN Rao (288_CR1) 2015
N Innocent (288_CR39) 2016; 3
A Angkunsit (288_CR68) 2022; 219
C Franco (288_CR34) 2022; 10
AH Jennifer (288_CR56) 1999; 14
I Guyon (288_CR54) 2002; 46
288_CR4
288_CR5
JC White (288_CR16) 2013; 89
A Almeida (288_CR65) 2018; 10
288_CR6
SA Yilema (288_CR81) 2022; 38
H Sun (288_CR32) 2022; 78
288_CR8
288_CR80
M Ghosh (288_CR28) 1996; 91
R Benavent (288_CR29) 2016; 94
288_CR41
C Franco (288_CR72) 2023; 15
288_CR43
JR King (288_CR55) 1999; 10
Y Marhuenda (288_CR36) 2013; 58
JP Burgard (288_CR77) 2022; 106
288_CR3
288_CR46
288_CR48
JA van den Brakel (288_CR35) 2021; 47
JA Westfall (288_CR44) 2011; 41
F Mauro (288_CR64) 2016; 27
NR Ver Planck (288_CR69) 2017; 47
GE Battese (288_CR2) 1988; 83
MJ Diamantopoulou (288_CR7) 2023; 4
MD Esteban (288_CR63) 2020; 29
H Temesgen (288_CR71) 2021; 4
288_CR52
J Breidenbach (288_CR20) 2018; 212
288_CR58
288_CR13
CE Särndal (288_CR50) 1992
288_CR57
References_xml – ident: 288_CR8
– volume: 09
  start-page: 13
  issue: 03
  year: 2019
  ident: 288_CR9
  publication-title: Open Journal of Forestry
  doi: 10.4236/ojf.2019.93013
  contributor:
    fullname: A Georgakis
– ident: 288_CR15
  doi: 10.1139/X08-122
– ident: 288_CR43
  doi: 10.3934/energy.2022054
– volume: 3
  start-page: 1
  issue: 1
  year: 1974
  ident: 288_CR45
  publication-title: Commun Stat
  contributor:
    fullname: T Caliński
– ident: 288_CR4
– ident: 288_CR38
  doi: 10.1080/03610926.2016.1248784
– ident: 288_CR58
  doi: 10.1109/TC.1977.1674939
– volume: 136
  start-page: 839
  issue: 5
  year: 2017
  ident: 288_CR19
  publication-title: Eur J Forest Res
  doi: 10.1007/s10342-017-1074-z
  contributor:
    fullname: S Magnussen
– ident: 288_CR37
– volume: 4
  start-page: 17
  issue: 157
  year: 2021
  ident: 288_CR71
  publication-title: Frontiers in Forests and Global Change
  contributor:
    fullname: H Temesgen
– volume: 90
  start-page: 330
  issue: 429
  year: 1995
  ident: 288_CR47
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1995.10476517
  contributor:
    fullname: RA Maronna
– volume: 4
  start-page: 77
  issue: 2
  year: 2012
  ident: 288_CR10
  publication-title: Mathematical and Computational Forestry & Natural Resource Sciences
  contributor:
    fullname: K Iles
– ident: 288_CR76
  doi: 10.3390/math11010135
– volume-title: Small area estimation
  year: 2015
  ident: 288_CR1
  contributor:
    fullname: JN Rao
– volume: 106
  start-page: 287
  issue: 2
  year: 2022
  ident: 288_CR77
  publication-title: AStA Advances in Statistical Analysis
  doi: 10.1007/s10182-021-00426-4
  contributor:
    fullname: JP Burgard
– volume: 58
  start-page: 308
  year: 2013
  ident: 288_CR36
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2012.09.002
  contributor:
    fullname: Y Marhuenda
– ident: 288_CR62
– ident: 288_CR24
– volume: 180
  start-page: 1253
  issue: 4
  year: 2017
  ident: 288_CR75
  publication-title: J R Stat Soc A Stat Soc
  doi: 10.1111/rssa.12308
  contributor:
    fullname: E Torkashvand
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 288_CR51
  publication-title: J Roy Stat Soc: Ser B (Methodol)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
  contributor:
    fullname: R Tibshirani
– volume: 131
  start-page: 1255
  issue: 4
  year: 2012
  ident: 288_CR11
  publication-title: Eur J Forest Res
  doi: 10.1007/s10342-012-0596-7
  contributor:
    fullname: J Breidenbach
– ident: 288_CR13
– ident: 288_CR3
  doi: 10.1002/9781118814963
– volume: 3
  start-page: 69
  issue: 1
  year: 2016
  ident: 288_CR39
  publication-title: African Journal of Applied Statistics
  doi: 10.16929/ajas/2016.69.203
  contributor:
    fullname: N Innocent
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 288_CR53
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
  contributor:
    fullname: L Breiman
– ident: 288_CR59
– ident: 288_CR70
  doi: 10.1093/forestry/cpz073
– volume: 91
  start-page: 1423
  issue: 436
  year: 1996
  ident: 288_CR28
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1996.10476710
  contributor:
    fullname: M Ghosh
– ident: 288_CR30
– volume: 14
  start-page: 382
  issue: 4
  year: 1999
  ident: 288_CR56
  publication-title: Stat Sci
  contributor:
    fullname: AH Jennifer
– volume: 47
  start-page: 151
  issue: 1
  year: 2021
  ident: 288_CR35
  publication-title: Surv Methodol
  contributor:
    fullname: JA van den Brakel
– start-page: 2812
  volume-title: Seeking the truth beyond the data
  year: 2023
  ident: 288_CR42
  contributor:
    fullname: D Saligkaras
– ident: 288_CR27
– volume: 8
  start-page: 26
  issue: 1
  year: 2010
  ident: 288_CR61
  publication-title: Popul Health Metrics
  doi: 10.1186/1478-7954-8-26
  contributor:
    fullname: T Srebotnjak
– ident: 288_CR33
  doi: 10.1093/jssam/smad018
– volume: 94
  start-page: 372
  year: 2016
  ident: 288_CR29
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2015.07.013
  contributor:
    fullname: R Benavent
– ident: 288_CR41
– volume: 46
  start-page: 389
  issue: 1
  year: 2002
  ident: 288_CR54
  publication-title: Mach Learn
  doi: 10.1023/A:1012487302797
  contributor:
    fullname: I Guyon
– volume: 59
  start-page: 536
  issue: 5
  year: 2013
  ident: 288_CR12
  publication-title: Forest Science
  doi: 10.5849/forsci.12-073
  contributor:
    fullname: ME Goerndt
– volume: 38
  start-page: 625
  year: 2022
  ident: 288_CR81
  publication-title: Stat J IAOS
  doi: 10.3233/SJI-220935
  contributor:
    fullname: SA Yilema
– volume: 41
  start-page: 1189
  issue: 6
  year: 2011
  ident: 288_CR18
  publication-title: Can J For Res
  doi: 10.1139/x11-033
  contributor:
    fullname: ME Goerndt
– ident: 288_CR78
– ident: 288_CR57
  doi: 10.1007/s11135-006-9018-6
– volume: 89
  start-page: 722
  issue: 06
  year: 2013
  ident: 288_CR16
  publication-title: For Chron
  doi: 10.5558/tfc2013-132
  contributor:
    fullname: JC White
– volume-title: Model assisted survey sampling
  year: 1992
  ident: 288_CR50
  doi: 10.1007/978-1-4612-4378-6
  contributor:
    fullname: CE Särndal
– volume: 78
  start-page: 1555
  issue: 4
  year: 2022
  ident: 288_CR32
  publication-title: Biometrics
  doi: 10.1111/biom.13552
  contributor:
    fullname: H Sun
– volume: 41
  start-page: 1130
  issue: 5
  year: 2011
  ident: 288_CR44
  publication-title: Can J For Res
  doi: 10.1139/x11-031
  contributor:
    fullname: JA Westfall
– volume: 74
  start-page: 269
  issue: 366
  year: 1979
  ident: 288_CR17
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1979.10482505
  contributor:
    fullname: RE Fay
– volume: 44
  start-page: 1079
  issue: 9
  year: 2014
  ident: 288_CR23
  publication-title: Can J For Res
  doi: 10.1139/cjfr-2013-0448
  contributor:
    fullname: S Magnussen
– ident: 288_CR25
  doi: 10.3390/f14101994
– ident: 288_CR79
  doi: 10.1016/j.chaos.2022.112914
– volume: 10
  start-page: 67
  issue: 1
  year: 1999
  ident: 288_CR55
  publication-title: Environmetrics
  doi: 10.1002/(SICI)1099-095X(199901/02)10:1<67::AID-ENV336>3.0.CO;2-0
  contributor:
    fullname: JR King
– volume: 12
  start-page: 14
  issue: 12
  year: 2017
  ident: 288_CR21
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0189401
  contributor:
    fullname: F Mauro
– ident: 288_CR26
– volume: 27
  start-page: 225
  issue: 4
  year: 2016
  ident: 288_CR64
  publication-title: Environmetrics
  doi: 10.1002/env.2387
  contributor:
    fullname: F Mauro
– volume: 4
  start-page: 71
  issue: 4
  year: 2023
  ident: 288_CR7
  publication-title: Operations Research Forum
  doi: 10.1007/s43069-023-00255-y
  contributor:
    fullname: MJ Diamantopoulou
– volume: 47
  start-page: 1577
  issue: 12
  year: 2017
  ident: 288_CR69
  publication-title: Can J For Res
  doi: 10.1139/cjfr-2017-0154
  contributor:
    fullname: NR Ver Planck
– ident: 288_CR80
  doi: 10.1016/j.apm.2023.08.011
– volume: 212
  start-page: 199
  year: 2018
  ident: 288_CR20
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2018.04.028
  contributor:
    fullname: J Breidenbach
– ident: 288_CR46
  doi: 10.1007/978-981-15-1476-0_10
– volume: 204
  start-page: 287
  year: 2018
  ident: 288_CR49
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2017.10.024
  contributor:
    fullname: NR Ver Planck
– volume: 10
  start-page: 225
  issue: 1
  year: 2022
  ident: 288_CR34
  publication-title: Journal of Survey Statistics and Methodology
  doi: 10.1093/jssam/smaa040
  contributor:
    fullname: C Franco
– ident: 288_CR5
  doi: 10.3389/ffgc.2021.695929
– ident: 288_CR52
– volume: 13
  start-page: 28
  year: 2022
  ident: 288_CR60
  publication-title: The R Journal
  doi: 10.32614/RJ-2021-096
  contributor:
    fullname: N Permatasari
– volume: 83
  start-page: 28
  issue: 401
  year: 1988
  ident: 288_CR2
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1988.10478561
  contributor:
    fullname: GE Battese
– volume: 20
  start-page: 30
  year: 2017
  ident: 288_CR66
  publication-title: Spatial Statistics
  doi: 10.1016/j.spasta.2017.01.004
  contributor:
    fullname: H Chandra
– volume: 114
  start-page: 911
  issue: 4
  year: 2010
  ident: 288_CR14
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2009.12.004
  contributor:
    fullname: J Breidenbach
– volume: 15
  start-page: 18
  issue: 6
  year: 2023
  ident: 288_CR72
  publication-title: WIREs Comput Stat
  doi: 10.1002/wics.1613
  contributor:
    fullname: C Franco
– volume-title: Aerial laser scanning for forest inventories: estimation and uncertainty at multiple scales
  year: 2020
  ident: 288_CR22
  contributor:
    fullname: BM Frank
– ident: 288_CR48
  doi: 10.1007/978-0-387-35099-8_7
– ident: 288_CR6
  doi: 10.3389/ffgc.2022.813569
– volume: 7
  start-page: 694
  issue: 1
  year: 2020
  ident: 288_CR40
  publication-title: Modern Concepts & Developments in Agronomy
  doi: 10.31031/MCDA.2020.07.000654
  contributor:
    fullname: A Georgakis
– volume: 30
  start-page: 195
  issue: 1
  year: 2021
  ident: 288_CR31
  publication-title: Stat Methods Appl
  doi: 10.1007/s10260-020-00521-x
  contributor:
    fullname: R Benavent
– volume: 219
  start-page: 231
  year: 2022
  ident: 288_CR68
  publication-title: Journal of Statistical Planning and Inference
  doi: 10.1016/j.jspi.2021.12.010
  contributor:
    fullname: A Angkunsit
– volume: 29
  start-page: 793
  issue: 3
  year: 2020
  ident: 288_CR63
  publication-title: TEST
  doi: 10.1007/s11749-019-00688-w
  contributor:
    fullname: MD Esteban
– ident: 288_CR74
  doi: 10.1146/annurev-statistics-031219-041212
– volume: 10
  start-page: 248
  issue: 2
  year: 2018
  ident: 288_CR65
  publication-title: R J
  doi: 10.32614/RJ-2018-051
  contributor:
    fullname: A Almeida
– volume: 38
  start-page: 823
  issue: 3
  year: 2022
  ident: 288_CR73
  publication-title: Journal of Official Statistics
  doi: 10.2478/jos-2022-0036
  contributor:
    fullname: S Guha
– ident: 288_CR67
SSID ssib044789433
ssib039759318
ssj0003237433
Score 2.2975225
Snippet Forest inventories are crucial for effective ecosystem management but often lack precision for smaller geographical units due to limited sample sizes. This...
Abstract Forest inventories are crucial for effective ecosystem management but often lack precision for smaller geographical units due to limited sample sizes....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 9
SubjectTerms Accuracy
Applications of Mathematics
Bivariate analysis
Business and Management
Cluster analysis
Data analysis
Dependent variables
Estimates
Forest management
Math Applications in Computer Science
Mathematical and Computational Engineering
Operations Research/Decision Theory
Optimization
Outliers (statistics)
Preprocessing
Remote sensing
Sample size
Topical Collection on Mathematical Models and Optimization for Environmental Engineering and Sustainable Technologies
Variables
Variance analysis
Title Temporal-Like Bivariate Fay-Herriot Model: Leveraging Past Responses and Advanced Preprocessing for Enhanced Small Area Estimation of Growing Stock Volume
URI https://link.springer.com/article/10.1007/s43069-023-00288-3
https://www.proquest.com/docview/2932844152
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA3aXryIomK1lhy8aXA_spuut7Z0LaKl2Cq9LclugsW6FbsK_hV_rTP7YbHowXOGEPYlM282mTeEnAaesBLbVsxOuMewxxVTjmVYbIzDpR8IrfA_5O3QH9zz66k3LWVysBZm7f7-YsmB0wYMIgvD9KDN3E1ShxjcxudbPb9X7R0Iq17grvws5wKVxd2yTub3qX7GohXBXLsTzUNNuEO2S45IOwWou2RDp3vkc1KISM3ZzexJ0-7sHbJcIIo0lB9sgPqKi4xiZ7P5Jb3RsEHz9kN0JJcZvSsewuollWlCO-W1Px2homVeJ4CWwF5pP30shsbPco4r0JL2wQkU9Y10YegVpO1oPc7AkdKH3Lftk0nYn_QGrGyswGKsfWex8qTnAhRcGSmF9BKZSJSaS-y2chwhjBUIYyxPKekKIx1lx8L43MSO5pZ0D0gtXaT6kNAkSOBMWyY2Nma3WmpUowF0HG6Ay9gNclZ94eilkM-IvoWSczwiwCPK8YjcBmlWIETlUVpGwEcghCLPaJDzCpjV8N-zHf3P_JhsOUBYivdlTVLLXt_0CRCOTLVIvRN2u8NWvuO-AGZ8ztM
link.rule.ids 315,783,787,27936,27937,41132,42201,51588
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG0UD3oxGjWiqD1408b9aCnrDQmICoQIGm-bdreNRFyMrCb-FX-tM7uLRKIHz22aZl8782an84aQ40BIJ3ZdzdyYC4Y9rpj2HMsiaz2uqoE0Gv9DdnvV9h2_fhAPhUwO1sIs5O_Pphw4bcDAszAMD2rMXyYr3AO3hYnZamN2dsCtisCf21nOJSqL-0WdzO9L_fRFc4K5kBPNXE1rg6wXHJHWc1A3yZJJtsjnMBeRGrPO6MnQi9E7RLlAFGlLfbA26itOUoqdzcbntGPggGbth2hfTVN6mz-ENVOqkpjWi7Q_7aOiZVYngDOBvdJm8pgPDZ7VGHdgFG2CEcjrG-nE0ksI23H2IAVDSu8z27ZNhq3msNFmRWMFFmHtO4u0UMIHKLi2SkklYhUrlJqL3Zr2PCmtE0hrHaG18qVVnnYjaavcRp7hjvJ3SCmZJGaX0DiI4U47NrIuRrdGGVSjEUDbuQUu45bJyewLhy-5fEb4LZSc4RECHmGGR-iXSWUGQlhcpWkIfARcKPKMMjmdATMf_nu1vf9NPyKr7WG3E3auejf7ZM0D8pK_JauQUvr6Zg6AfKT6MDt1X4s10DU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA4-QLyIomJ95uBNg_tIGteb1taqVYpW8bYkmwTFuhW7Cv4Vf60z-2hV9OA5IYSdZOabzXzfELIdCekZ39fMN1ww7HHFdOA5ljgXcFWPpNX4H_List6-4Wd34u4Liz-vdq-eJAtOA6o0pdnes3F7I-IbB6QbMYg3DJOGfRZOkmmOTdPxubbeqE4UBFsRhWPvy7lEvfGwZM_8vtT3CDWGnT9eSvMA1JoncyVypIeFqRfIhE0XyUevkJbqs87Do6VHD2-Q-wJ8pC31ztqoujjIKPY76x_QjoVjmzclol01zOhVUR5rh1Slhh6WxQC0izqXOXsAZwKmpc30vhi6flJ93IFVtAmuoWA90oGjJ5DM4-zrDNwrvc093hLptZq9RpuV7RZYgox4lmihRAgG4topJZUwyigUoDP-vg4CKZ0XSec8obUKpVOB9hPp6twlgeWeCpfJVDpI7QqhJjJw0z2XOB9zXqssatQIAPPcAcLxa2Sn-sLxcyGqEY_kk3N7xGCPOLdHHNbIemWEuLxgwxhQCgRWRB81slsZZjz892qr_5u-RWa6x624c3p5vkZmA0A0RQHaOpnKXl7tBiCSTG_mh-4TWcbYfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal-Like+Bivariate+Fay-Herriot+Model%3A+Leveraging+Past+Responses+and+Advanced+Preprocessing+for+Enhanced+Small+Area+Estimation+of+Growing+Stock+Volume&rft.jtitle=Operations+Research+Forum&rft.au=Georgakis%2C+Aristeidis&rft.au=Papageorgiou%2C+Vasileios+E.&rft.au=Gatziolis%2C+Demetrios&rft.au=Stamatellos%2C+Georgios&rft.date=2024-03-01&rft.pub=Springer+International+Publishing&rft.eissn=2662-2556&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1007%2Fs43069-023-00288-3&rft.externalDocID=10_1007_s43069_023_00288_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-2556&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-2556&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-2556&client=summon