Elucidating the effects of silicon carbide sludge and waste glass fiber on the characteristics of porous eco‐fireproof materials

This study used silicon carbide sludge (SCS) and waste glass fiber (WGF) to prepare SCS/WGF porous (SWP) eco‐fireproof materials by a hydrogen peroxide foaming agent. The results showed that the compressive strength of samples that were cured for 1 day and had an SCS replacement level of 10% and add...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental progress & sustainable energy Vol. 40; no. 6
Main Authors Lo, Kang‐Wei, Lin, Kae‐Long, Cheng, Ta‐Wui, Lin, Ya‐Wen
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study used silicon carbide sludge (SCS) and waste glass fiber (WGF) to prepare SCS/WGF porous (SWP) eco‐fireproof materials by a hydrogen peroxide foaming agent. The results showed that the compressive strength of samples that were cured for 1 day and had an SCS replacement level of 10% and added amounts of WGF of 0.5% and 2.0% were 0.32 and 0.46 MPa, respectively. Additionally, it was observed that the stress–strain curves were relatively extended. WGF could improve the geopolymeric matrix of the composites in terms of formation and/or redistribution of cracks by bridging cracks and perforations within the matrix. When the added amounts of WGF were 0.5% and 2.0%, the reverse‐side temperatures of the samples were 238 and 262°C, respectively, which showed that adding an appropriate amount of WGF could effectively reduce the reverse‐side temperature of SWP eco‐fireproof materials. The results displayed the beneficial influence of SCS and WGF in improving bulking density, compressive strength, and flexural strength and in reducing porosity and thermal conductivity. Therefore, the results showed that SWP eco‐fireproof materials reinforced using SCS and WGF have potential as building materials.
AbstractList This study used silicon carbide sludge (SCS) and waste glass fiber (WGF) to prepare SCS/WGF porous (SWP) eco‐fireproof materials by a hydrogen peroxide foaming agent. The results showed that the compressive strength of samples that were cured for 1 day and had an SCS replacement level of 10% and added amounts of WGF of 0.5% and 2.0% were 0.32 and 0.46 MPa, respectively. Additionally, it was observed that the stress–strain curves were relatively extended. WGF could improve the geopolymeric matrix of the composites in terms of formation and/or redistribution of cracks by bridging cracks and perforations within the matrix. When the added amounts of WGF were 0.5% and 2.0%, the reverse‐side temperatures of the samples were 238 and 262°C, respectively, which showed that adding an appropriate amount of WGF could effectively reduce the reverse‐side temperature of SWP eco‐fireproof materials. The results displayed the beneficial influence of SCS and WGF in improving bulking density, compressive strength, and flexural strength and in reducing porosity and thermal conductivity. Therefore, the results showed that SWP eco‐fireproof materials reinforced using SCS and WGF have potential as building materials.
Abstract This study used silicon carbide sludge (SCS) and waste glass fiber (WGF) to prepare SCS/WGF porous (SWP) eco‐fireproof materials by a hydrogen peroxide foaming agent. The results showed that the compressive strength of samples that were cured for 1 day and had an SCS replacement level of 10% and added amounts of WGF of 0.5% and 2.0% were 0.32 and 0.46 MPa, respectively. Additionally, it was observed that the stress–strain curves were relatively extended. WGF could improve the geopolymeric matrix of the composites in terms of formation and/or redistribution of cracks by bridging cracks and perforations within the matrix. When the added amounts of WGF were 0.5% and 2.0%, the reverse‐side temperatures of the samples were 238 and 262°C, respectively, which showed that adding an appropriate amount of WGF could effectively reduce the reverse‐side temperature of SWP eco‐fireproof materials. The results displayed the beneficial influence of SCS and WGF in improving bulking density, compressive strength, and flexural strength and in reducing porosity and thermal conductivity. Therefore, the results showed that SWP eco‐fireproof materials reinforced using SCS and WGF have potential as building materials.
Author Cheng, Ta‐Wui
Lin, Kae‐Long
Lo, Kang‐Wei
Lin, Ya‐Wen
Author_xml – sequence: 1
  givenname: Kang‐Wei
  orcidid: 0000-0001-8264-7171
  surname: Lo
  fullname: Lo, Kang‐Wei
  organization: National Taipei University of Technology
– sequence: 2
  givenname: Kae‐Long
  orcidid: 0000-0002-8549-5721
  surname: Lin
  fullname: Lin, Kae‐Long
  email: kllin@niu.edu.tw
  organization: National Ilan University
– sequence: 3
  givenname: Ta‐Wui
  orcidid: 0000-0002-0503-8353
  surname: Cheng
  fullname: Cheng, Ta‐Wui
  organization: National Taipei University of Technology
– sequence: 4
  givenname: Ya‐Wen
  orcidid: 0000-0002-4745-9527
  surname: Lin
  fullname: Lin, Ya‐Wen
  organization: National Taipei University of Technology
BookMark eNp1kM1KAzEcxINUsK2Cj5Cjl61J9iO7Ryn1Awp60PPyT_JPG9lulmRL6U18Ap_RJ3HbijdPMwy_mcNMyKj1LRJyzdmMMyZusZvxtCjFGRnzKssSmeVs9OczcUEmMb4zVqRZVY3J56LZamegd-2K9mukaC3qPlJvaXSN076lGoJyBmlstmaFFFpDdxB7pKsGYqTWKQx04A51vYYAusfgYu_0cabzwW8jRe2_P76sC9gFP8QbOFDQxEtybgfBq1-dkrf7xev8MVk-PzzN75aJFnkmEqssK1UBpZamAskLWeS5qlAKrYRMmeFDkOaFsZhqsEyDkVDJvOTIc2VVOiU3p10dfIwBbd0Ft4GwrzmrD9_V2NXH7wY0OaE71-D-X65evJz4H0aZdXk
Cites_doi 10.1016/j.jeurceramsoc.2019.10.056
10.1016/j.conbuildmat.2020.120328
10.1016/j.ijheatmasstransfer.2013.10.062
10.1016/j.conbuildmat.2018.07.006
10.1016/j.compositesb.2019.04.025
10.1016/j.jclepro.2020.122400
10.1016/j.jclepro.2017.07.242
10.1016/j.conbuildmat.2018.02.061
10.1002/ep.11798
10.1002/ep.13305
10.1016/j.ijhydene.2020.05.244
10.1016/j.jobe.2018.12.008
10.1016/j.compositesb.2016.08.036
10.1016/j.ceramint.2016.06.033
10.1016/j.conbuildmat.2013.02.033
10.1016/j.jobe.2020.101343
10.1016/j.cej.2020.125250
10.1016/j.conbuildmat.2020.118282
10.1016/j.compositesb.2017.02.011
10.1016/j.conbuildmat.2020.120508
10.1016/j.jeurceramsoc.2017.09.021
10.1016/j.jobe.2015.06.006
10.1016/j.conbuildmat.2016.07.037
10.1016/j.carbon.2020.08.052
10.1016/j.jobe.2020.101519
10.1016/j.compositesb.2020.108230
10.1016/j.ceramint.2016.06.080
10.1016/j.applthermaleng.2006.04.006
10.1016/j.jobe.2020.101656
ContentType Journal Article
Copyright 2021 American Institute of Chemical Engineers.
Copyright_xml – notice: 2021 American Institute of Chemical Engineers.
DBID AAYXX
CITATION
DOI 10.1002/ep.13682
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-7450
EndPage n/a
ExternalDocumentID 10_1002_ep_13682
EP13682
Genre article
GroupedDBID ..I
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJCF
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOD
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADOZA
ADXAS
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BCU
BDRZF
BEC
BFHJK
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDH
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
GUQSH
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
ITG
ITH
IX1
J0M
JPC
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PATMY
PQQKQ
PROAC
PTHSS
PYCSY
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
S0X
SJFOW
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
~IA
~WT
AAYXX
CITATION
ID FETCH-LOGICAL-c2542-fbf08b6a8c7d9a7167655b9e72cb2730d1765356dfe3caf0cad7a97581e15bfb3
IEDL.DBID DR2
ISSN 1944-7442
IngestDate Fri Aug 23 02:44:35 EDT 2024
Sat Aug 24 00:59:21 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2542-fbf08b6a8c7d9a7167655b9e72cb2730d1765356dfe3caf0cad7a97581e15bfb3
ORCID 0000-0002-0503-8353
0000-0002-4745-9527
0000-0002-8549-5721
0000-0001-8264-7171
PageCount 11
ParticipantIDs crossref_primary_10_1002_ep_13682
wiley_primary_10_1002_ep_13682_EP13682
PublicationCentury 2000
PublicationDate November/December 2021
2021-11-00
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November/December 2021
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
PublicationTitle Environmental progress & sustainable energy
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2018; 185
2015; 3
2020; 261
2013; 43
2020; 40
2018; 167
2019; 39
2020; 269
2016; 123
2020; 243
2020; 265
2016; 105
2003
2020; 32
2017; 114
2020; 31
2019; 22
2020; 198
2020
2020; 170
2006; 26
2016; 42
2020; 45
2020; 397
2017; 166
2019; 171
2014; 71
2018; 38
2014; 33
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
ASTM C109/C109M (e_1_2_7_17_1) 2020
William Jr DC (e_1_2_7_18_1) 2003
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 261
  year: 2020
  article-title: Effect of brushing & abrading of laminae on the mode I fracture toughness of glass fiber/epoxy composite
  publication-title: Constr Build Mater
– volume: 22
  start-page: 227
  year: 2019
  end-page: 241
  article-title: Structural glass beams with embedded GFRP, CFRP or steel reinforcement rods: Comparative experimental, analytical and numerical investigations
  publication-title: J Build Eng
– volume: 71
  start-page: 790
  year: 2014
  end-page: 807
  article-title: Determining the thermal conductivity of liquids using the transient hot disk method. Part II: Establishing an accurate and repeatable experimental methodology
  publication-title: Int J Heat Mass Transf
– volume: 114
  start-page: 289
  year: 2017
  end-page: 298
  article-title: Effects of high‐temperature heat treatment on the microstructure and mechanical performance of hybrid Cf‐SiCf‐(Al O p) reinforced geopolymer composites
  publication-title: Compos. B.
– volume: 167
  start-page: 505
  year: 2018
  end-page: 513
  article-title: Mechanical and microstructural characterization of fiber reinforced fly ash based geopolymer composites
  publication-title: Constr Build Mater
– year: 2003
– volume: 33
  start-page: 168
  year: 2014
  end-page: 170
  article-title: Effects of foam agent on characteristics of thin‐film transistor liquid crystal display waste glass‐Metakaolin‐based cellular Geopolymer
  publication-title: Environ Prog Sustain Energy
– volume: 170
  start-page: 517
  year: 2020
  end-page: 526
  article-title: Efficient high‐temperature electromagnetic wave absorption enabled by structuring binary porous SiC with multiple interfaces
  publication-title: Carbon
– volume: 42
  year: 2016
  article-title: Effects of Si/Al ratio on the structure and properties of metakaolin based geopolymer
  publication-title: Ceram Int
– volume: 269
  year: 2020
  article-title: Functionalized geopolymer foams for cesium removal from liquid nuclear waste
  publication-title: J Clean Prod
– volume: 42
  year: 2016
  article-title: Microstructure and mechanical properties of a metakaolinite‐based geopolymer nanocomposite reinforced with carbon nanotubes
  publication-title: Ceram Int
– volume: 265
  year: 2020
  article-title: Effect of expanded polystyrene on the flexural behavior of lightweight glass fiber reinforced cement
  publication-title: Constr Build Mater
– volume: 31
  year: 2020
  article-title: Effects of Diethanolamine (DEA) and glass fibre reinforced polymer (GFRP) on setting time and mechanical properties of shotcrete
  publication-title: J Build Eng
– volume: 198
  year: 2020
  article-title: Regenerating performance of glass fibre recycled from wind turbine blade
  publication-title: Compos B
– volume: 39
  year: 2019
  article-title: The influence of sapphire substrate silicon carbide sludge on structural properties of metakaolin‐based geopolymers
  publication-title: Environ Prog Sustain Energy
– volume: 32
  year: 2020
  article-title: Dust filter of secondary aluminium industry as raw material of geopolymer foams
  publication-title: J Build Eng
– volume: 105
  start-page: 93
  year: 2016
  end-page: 100
  article-title: Microstructure and compressive properties of silicon carbide reinforced geopolymer
  publication-title: Compos B
– volume: 38
  start-page: 799
  year: 2018
  end-page: 805
  article-title: Porosity, mechanical and insulating properties of geopolymer foams using vegetable oil as the stabilizing agent
  publication-title: Eur Ceram Soc
– volume: 45
  year: 2020
  article-title: Hydrogen production in microreactor using porous SiC ceramic with a pore‐in‐pore hierarchical structure as catalyst support
  publication-title: Int J Hydrogen Energ
– volume: 243
  year: 2020
  article-title: Effects of surfactant on thermo‐mechanical behavior of geopolymer foam paste made with sodium perborate foaming agent
  publication-title: Constr Build Mater
– volume: 123
  start-page: 501
  year: 2016
  end-page: 507
  article-title: Geopolymer‐bamboo composite‐a novel sustainable construction material
  publication-title: Constr Build Mater
– volume: 40
  start-page: 594
  year: 2020
  end-page: 602
  article-title: High interfacial thermal resistance induced low thermal conductivity in porous SiC‐SiO composites with hierarchical porosity
  publication-title: J Eur Ceram Soc
– volume: 32
  year: 2020
  article-title: An experimental study on fracture energy of alkali activated slag composites incor porated different fibers
  publication-title: J Build Eng
– year: 2020
– volume: 26
  start-page: 2184
  year: 2006
  end-page: 2191
  article-title: Measurements of thermal properties of insulation materials by using transient plane source technique
  publication-title: Appl Therm Eng
– volume: 185
  start-page: 285
  year: 2018
  end-page: 292
  article-title: Lightweight hybrid organic‐inorganic geopolymers obtained using polyurethane waste
  publication-title: Constr Build Mater
– volume: 171
  start-page: 46
  year: 2019
  end-page: 60
  article-title: Experimental research on the performance of lightweight concrete containing foam and expanded clay aggregate
  publication-title: Compos B
– volume: 397
  year: 2020
  article-title: High‐temperature electromagnetic wave absorption, mechanical and thermal insulation properties of in‐situ grown SiC on porous SiC skeleton
  publication-title: Chem Eng J
– volume: 3
  start-page: 58
  year: 2015
  end-page: 69
  article-title: Recycled natural wastes in metakaolin based porous geopolymers for insulating applications
  publication-title: J Build Eng
– volume: 166
  start-page: 343
  year: 2017
  end-page: 349
  article-title: Effective mechanical reinforcement of inorganic polymers using glass fibre waste
  publication-title: J Clean Prod
– volume: 43
  start-page: 589
  year: 2013
  end-page: 597
  article-title: Main factors affecting mechanical characteristics of geopolymer revealed by experimental design and associated statistical analysis
  publication-title: Constr Build Mater
– ident: e_1_2_7_4_1
  doi: 10.1016/j.jeurceramsoc.2019.10.056
– ident: e_1_2_7_12_1
  doi: 10.1016/j.conbuildmat.2020.120328
– ident: e_1_2_7_19_1
  doi: 10.1016/j.ijheatmasstransfer.2013.10.062
– volume-title: Materials Science and Engineering
  year: 2003
  ident: e_1_2_7_18_1
  contributor:
    fullname: William Jr DC
– ident: e_1_2_7_26_1
  doi: 10.1016/j.conbuildmat.2018.07.006
– ident: e_1_2_7_6_1
  doi: 10.1016/j.compositesb.2019.04.025
– ident: e_1_2_7_10_1
  doi: 10.1016/j.jclepro.2020.122400
– ident: e_1_2_7_24_1
  doi: 10.1016/j.jclepro.2017.07.242
– ident: e_1_2_7_25_1
  doi: 10.1016/j.conbuildmat.2018.02.061
– ident: e_1_2_7_27_1
  doi: 10.1002/ep.11798
– volume-title: Standard test method for compressive strength of hydraulic cement mortars
  year: 2020
  ident: e_1_2_7_17_1
  contributor:
    fullname: ASTM C109/C109M
– ident: e_1_2_7_28_1
  doi: 10.1002/ep.13305
– ident: e_1_2_7_3_1
  doi: 10.1016/j.ijhydene.2020.05.244
– ident: e_1_2_7_23_1
  doi: 10.1016/j.jobe.2018.12.008
– ident: e_1_2_7_32_1
  doi: 10.1016/j.compositesb.2016.08.036
– ident: e_1_2_7_29_1
  doi: 10.1016/j.ceramint.2016.06.033
– ident: e_1_2_7_31_1
  doi: 10.1016/j.conbuildmat.2013.02.033
– ident: e_1_2_7_13_1
  doi: 10.1016/j.jobe.2020.101343
– ident: e_1_2_7_5_1
  doi: 10.1016/j.cej.2020.125250
– ident: e_1_2_7_7_1
  doi: 10.1016/j.conbuildmat.2020.118282
– ident: e_1_2_7_11_1
  doi: 10.1016/j.compositesb.2017.02.011
– ident: e_1_2_7_15_1
  doi: 10.1016/j.conbuildmat.2020.120508
– ident: e_1_2_7_21_1
  doi: 10.1016/j.jeurceramsoc.2017.09.021
– ident: e_1_2_7_8_1
  doi: 10.1016/j.jobe.2015.06.006
– ident: e_1_2_7_22_1
  doi: 10.1016/j.conbuildmat.2016.07.037
– ident: e_1_2_7_2_1
  doi: 10.1016/j.carbon.2020.08.052
– ident: e_1_2_7_16_1
  doi: 10.1016/j.jobe.2020.101519
– ident: e_1_2_7_14_1
  doi: 10.1016/j.compositesb.2020.108230
– ident: e_1_2_7_30_1
  doi: 10.1016/j.ceramint.2016.06.080
– ident: e_1_2_7_20_1
  doi: 10.1016/j.applthermaleng.2006.04.006
– ident: e_1_2_7_9_1
  doi: 10.1016/j.jobe.2020.101656
SSID ssj0063499
Score 2.3194926
Snippet This study used silicon carbide sludge (SCS) and waste glass fiber (WGF) to prepare SCS/WGF porous (SWP) eco‐fireproof materials by a hydrogen peroxide foaming...
Abstract This study used silicon carbide sludge (SCS) and waste glass fiber (WGF) to prepare SCS/WGF porous (SWP) eco‐fireproof materials by a hydrogen...
SourceID crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms porous eco‐fireproof materials
silicon carbide sludge
thermal conductivity
waste glass fiber
Title Elucidating the effects of silicon carbide sludge and waste glass fiber on the characteristics of porous eco‐fireproof materials
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fep.13682
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iSQ--xTcRxFu1TdMmPYquLB5EREHwUPKYyOLSXXa3CJ7EX-Bv9Jc4SXfXBwjiqRAmJaQzk2_KN18IObAZZL4xL5IJMCxQOESyUJ42xWJMmpg1TWD5XubtW35xl92NWZW-F6bRh5j-cPOREfK1D3Clh8efoqHQ9xQt6dNvkgrP5jq7nipH5SkPV0diic4jwTmb6M7G7Hgy8dtJ9BWZhqPlfJHcTxbVMEoej-qRPjLPP_Qa_7fqJbIwRpz0pHGRZTID1QqZ_6JDuEpeW93adHyjQ_VAERHSMcuD9hwddrroLBU1aqA7FuiwW9sHoKqy9Emhi9CAv6nzzBOKdn66-a4C7V-DML9XDykWu-8vb67jtTR7OIx4uQmBNXJ73ro5bUfjyxkigzUli5x2sdS5kkbYQmHVJfIs0wUIZjRCotgmOJBmuXWQGuVio6xQBVYnCSSZdjpdJ7NVr4INQlOmMsGdEwoEl6ooAHIpTcI1B86t3CT7kw9V9hsNjrJRW2Yl9Muwn5vkMGz7rwZl6yo8t_5quE3mmOevhL7DHTI7GtSwiwBkpPeCq30AxHDZQQ
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dSxwxFA2iD7UPaqvF76YgfRudyWRmMvgkurJt7SJlF3woDPm4kcVldnF3EHwSf4G_0V_iTWZHXaEgfRoIyRCSe2_ODeeeELJnEkhcYV4gImCYoHAIRC4dbYqFGDQxamrP8u2k7R7_eZFczJHDpham1od4vnBznuHjtXNwdyF98KIaCiPH0RIYfxfQ22P3bsPJn2ftqDTm_vFITNJ5kHHOGuXZkB00I2fOotfY1B8up8vkbzOtmlNytV9N1L6-faPY-J_zXiFLU9BJj2or-UTmoPxMPr6SIlwl961Bpfuu1qG8pAgK6ZToQYeWjvsDtJeSanmt-gboeFCZS6CyNPRGopVQD8GpdeQTiv3ccD0rBO1-g0h_WI0p5ruPdw-27-Q0h9iMkLn2gjXSO211j9vB9H2GQGNayQKrbChUKoXOTC4x8crSJFE5ZEwrREWhibAhTlJjIdbShlqaTOaYoEQQJcqq-AuZL4clrBMaM5lk3NpMQsaFzHOAVAgdccWBcyM2yLdmp4pRLcNR1ILLrIBR4ddzg3z36_7PDkXr3H8339vxK_nQ7v4-K85-dH5tkUXm6Cy-DHGbzE-uK9hBPDJRu97ungBNad1Z
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bSsQwEA2iIPrgXbwbQXyrtmnapo-iu3hDRBQEH0ouE1lcuou7RfBJ_AK_0S9xku56A0F8KoRJCenM5Ew5c0LItkkgcY15gYiAYYHCIRC5dLQpFmLSxKypPcv3PD265ic3yc2AVel6YWp9iI8fbi4yfL52Ad41du9TNBS6jqIlMP2O8RSBrwNElx_SUWnM_d2RWKPzIOOcDYVnQ7Y3nPntKPoKTf3Z0pwmt8NV1ZSS-92qr3b10w_Bxv8te4ZMDSAn3a99ZJaMQDlHJr8IEc6Tl0a70i3X6VDeUYSEdEDzoB1Le602ektJtXxQLQO0167MHVBZGvoo0UeoB-DUOuoJRTs3XX-XgXavQZzfqXoUq92351fbcmKaHRxGwFzHwAK5bjauDo6Cwe0MgcaikgVW2VCoVAqdmVxi2ZWlSaJyyJhWiIlCE-FAnKTGQqylDbU0mcyxPIkgSpRV8SIZLTslLBEaM5lk3NpMQsaFzHOAVAgdccWBcyOWydbwQxXdWoSjqOWWWQHdwu_nMtnx2_6rQdG48M-VvxpukvGLw2Zxdnx-ukommOOy-B7ENTLaf6hgHcFIX214r3sH3-rcCA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elucidating+the+effects+of+silicon+carbide+sludge+and+waste+glass+fiber+on+the+characteristics+of+porous+eco%E2%80%90fireproof+materials&rft.jtitle=Environmental+progress+%26+sustainable+energy&rft.au=Lo%2C+Kang%E2%80%90Wei&rft.au=Lin%2C+Kae%E2%80%90Long&rft.au=Cheng%2C+Ta%E2%80%90Wui&rft.au=Lin%2C+Ya%E2%80%90Wen&rft.date=2021-11-01&rft.issn=1944-7442&rft.eissn=1944-7450&rft.volume=40&rft.issue=6&rft_id=info:doi/10.1002%2Fep.13682&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ep_13682
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-7442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-7442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-7442&client=summon