Current Trends and Challenges in Applying Metaheuristics to the Innovative Area of Weight and Structure Determination Neuronets
The weights and structure determination (WASD) neuronet (or neural network) is a single-hidden-layer feedforward neuronet that exhibits an excellent approximation ability, despite its simple structure. Thanks to its strong generalization, fast speed, and ease of implementation, the WASD neuronet has...
Saved in:
Published in | Inventions (Basel) Vol. 10; no. 4; p. 62 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2411-5134 2411-5134 |
DOI | 10.3390/inventions10040062 |
Cover
Loading…
Abstract | The weights and structure determination (WASD) neuronet (or neural network) is a single-hidden-layer feedforward neuronet that exhibits an excellent approximation ability, despite its simple structure. Thanks to its strong generalization, fast speed, and ease of implementation, the WASD neuronet has been the subject of many modifications, including metaheuristics, and applications in a wide range of scientific fields. As it has garnered significant attention in the last decade, the aim of this study is to provide an extensive overview of the WASD framework. Furthermore, the WASD has been effectively used in numerous real-time learning tasks like regression, multiclass classification, and binary classification due to its exceptional performance. In addition, we present WASD’s applications in social science, business, engineering, economics, and medicine. We aim to report these developments and provide some avenues for further research. |
---|---|
AbstractList | The weights and structure determination (WASD) neuronet (or neural network) is a single-hidden-layer feedforward neuronet that exhibits an excellent approximation ability, despite its simple structure. Thanks to its strong generalization, fast speed, and ease of implementation, the WASD neuronet has been the subject of many modifications, including metaheuristics, and applications in a wide range of scientific fields. As it has garnered significant attention in the last decade, the aim of this study is to provide an extensive overview of the WASD framework. Furthermore, the WASD has been effectively used in numerous real-time learning tasks like regression, multiclass classification, and binary classification due to its exceptional performance. In addition, we present WASD’s applications in social science, business, engineering, economics, and medicine. We aim to report these developments and provide some avenues for further research. |
Audience | Academic |
Author | Cao, Xinwei Mourtas, Spyridon D. Li, Shuai Katsikis, Vasilios N. Liao, Bolin |
Author_xml | – sequence: 1 givenname: Spyridon D. orcidid: 0000-0002-8299-9916 surname: Mourtas fullname: Mourtas, Spyridon D. – sequence: 2 givenname: Shuai surname: Li fullname: Li, Shuai – sequence: 3 givenname: Xinwei surname: Cao fullname: Cao, Xinwei – sequence: 4 givenname: Bolin orcidid: 0000-0001-9036-2723 surname: Liao fullname: Liao, Bolin – sequence: 5 givenname: Vasilios N. orcidid: 0000-0002-8208-9656 surname: Katsikis fullname: Katsikis, Vasilios N. |
BookMark | eNplkUtrGzEUhUVJoWmaP9CVoGuneo5mlsZ9GZJ20ZQuhUa6GsuMJVfSGLLqX68Sl1IIAklc7vk4h_MaXcQUAaG3lNxwPpD3IZ4g1pBioYQIQjr2Al0yQelKUi4u_vu_Qtel7AkhtJdcDsMl-r1Zcm5qfN9uV7CJDm92Zp4hTlBwiHh9PM4PIU74DqrZwZJDqcEWXBOuO8DbGNPJ1HACvM5gcPL4J4RpV59Q32tebF0y4A9QIR9CNI9G8dfGaSFqeYNeejMXuP77XqEfnz7eb76sbr993m7WtyvLpGArrzijwg_MEas4lZZ6bgxzTg2jZFxRy03HRlCee9vB6LzkRo2U94q5TgC_Qtsz1yWz18ccDiY_6GSCfhqkPGmTW64ZNGHAx6a2RFohmeulGoEp6MWgOtl3jfXuzDrm9GuBUvU-LTk2-5ozIYigvGNt6-a8NZkGDdGnmo1tx8Eh2BbehzZftyK6vmdyaAJ2FticSsng_9mkRD8WrZ8Xzf8AdeSgxQ |
Cites_doi | 10.1103/PhysRevE.98.012215 10.1007/978-3-642-30223-7_87 10.1109/ICCA.2013.6564876 10.1109/ICOMICON.2017.8279151 10.1016/j.patcog.2014.04.026 10.1016/j.asoc.2021.107767 10.3390/ma11050855 10.1155/2018/6264124 10.1016/j.ijforecast.2006.04.001 10.1016/j.jhealeco.2018.01.006 10.1016/j.ifacol.2015.11.036 10.3934/math.2024119 10.3923/tasr.2015.207.215 10.1109/CCDC.2012.6244176 10.4108/airo.v1i.17 10.5772/intechopen.69592 10.4103/jmsr.jmsr_89_18 10.1002/9781119469414 10.1016/j.neucom.2020.08.026 10.2486/indhealth.2018-0169 10.1016/j.neucom.2015.07.138 10.1201/9780429426445 10.1109/HIS.2009.278 10.11613/BM.2012.031 10.1080/21642583.2019.1708829 10.1109/CCDC.2014.6852139 10.1373/clinchem.2015.238691 10.1007/s00431-009-1122-x 10.1002/for.2874 10.1016/j.asoc.2017.05.043 10.1023/A:1022627411411 10.1007/s13721-020-00237-8 10.20965/jaciii.2019.p0847 10.1051/itmconf/20257205006 10.1016/j.asoc.2022.109351 10.1016/j.jmp.2018.03.001 10.3982/ECTA18012 10.1109/WCICA.2012.6357968 10.1016/j.jclepro.2019.118447 10.1023/A:1022643204877 10.15850/amj.v4n1.1038 10.1016/j.engappai.2020.103650 10.1053/j.ackd.2017.09.011 10.1109/TBME.2012.2212278 10.1142/S021821301650007X 10.1016/j.procs.2016.04.224 10.1016/j.chaos.2021.111304 10.1109/CIMCA.2018.8739696 10.1037/h0042519 10.1109/TSMCC.2004.843247 10.1016/j.ijforecast.2014.02.005 10.3390/electronics14132512 10.1109/ICNN.1996.549118 10.1016/j.jmp.2011.08.004 10.3390/math11030629 10.1109/ACCESS.2019.2893877 10.1016/j.matcom.2021.11.007 10.1051/e3sconf/20172101019 10.1016/j.neucom.2022.05.036 10.1093/restud/rdu037 10.3390/biomimetics9020120 10.1109/ACCESS.2020.2982192 10.1016/j.aci.2018.08.003 10.1016/j.ijforecast.2014.02.009 10.1098/rspa.2015.0593 10.1007/BF02478259 10.1007/978-3-642-01507-6_5 10.3934/math.20231237 10.1016/j.eswa.2011.01.120 10.1007/s11063-019-10141-6 10.1007/978-3-030-81850-0_4 10.1109/ACCESS.2025.3529812 10.1016/S1006-1266(07)60029-7 10.1007/978-3-319-70096-0_91 10.3390/math11061506 10.1053/j.ackd.2017.10.013 10.1007/s00521-014-1667-0 10.1016/j.neucom.2019.03.046 10.1142/S0219622022500560 10.1051/itmconf/20245901004 10.1177/0049124111415372 10.1007/s00500-014-1491-6 10.1109/ACCESS.2019.2916141 10.1109/ICECCE47252.2019.8940713 10.1007/978-3-031-61037-0_16 10.1007/s13042-025-02560-w 10.5430/ijrc.v1n1p1 10.37907/5ERP1202JD 10.1016/0893-6080(88)90469-8 10.1109/ACCESS.2019.2903634 10.1542/peds.2005-2126 10.23919/ChiCC.2019.8865697 10.1016/j.ijforecast.2018.10.008 10.1016/j.neucom.2015.12.111 10.1007/s10462-025-11223-9 10.1007/s00521-021-06572-9 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI DOA |
DOI | 10.3390/inventions10040062 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central SciTech Collection (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2411-5134 |
ExternalDocumentID | oai_doaj_org_article_02e3b3a7c05c452d857be27e84976586 A853688259 10_3390_inventions10040062 |
GeographicLocations | United States New Jersey Germany |
GeographicLocations_xml | – name: New Jersey – name: Germany – name: United States |
GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ITC MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC PUEGO ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c2542-f73214f92d0c7315c1f3aa2dd79b52371c3a62be7f3fc6ebdf53a7b13872d64e3 |
IEDL.DBID | DOA |
ISSN | 2411-5134 |
IngestDate | Mon Sep 01 19:40:25 EDT 2025 Tue Sep 02 07:40:42 EDT 2025 Tue Sep 02 03:58:12 EDT 2025 Wed Jul 30 23:53:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2542-f73214f92d0c7315c1f3aa2dd79b52371c3a62be7f3fc6ebdf53a7b13872d64e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9036-2723 0000-0002-8299-9916 0000-0002-8208-9656 |
OpenAccessLink | https://doaj.org/article/02e3b3a7c05c452d857be27e84976586 |
PQID | 3244041362 |
PQPubID | 2055401 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_02e3b3a7c05c452d857be27e84976586 proquest_journals_3244041362 gale_infotracacademiconefile_A853688259 crossref_primary_10_3390_inventions10040062 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-01 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Inventions (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_93 Sun (ref_4) 2007; 17 ref_92 McHugh (ref_49) 2012; 22 ref_91 Mourtas (ref_30) 2023; 22 Settouti (ref_58) 2016; 4 ref_10 ref_98 ref_97 Rosenblatt (ref_2) 1958; 65 Asri (ref_69) 2016; 83 Chen (ref_79) 2018; 25 Generalao (ref_102) 2021; 58 Arar (ref_57) 2017; 59 Matamala (ref_72) 2015; 61 ref_18 Zhang (ref_24) 2016; 20 Sieber (ref_83) 2016; 473 ref_15 Simos (ref_27) 2021; 112 Li (ref_5) 2012; Volume 169 Borisov (ref_80) 2017; 21 Booth (ref_108) 2006; 22 Studer (ref_61) 2011; 40 Liu (ref_64) 2019; 7 Zhang (ref_17) 2008; 34 ref_25 ref_23 ref_22 Zhang (ref_7) 2016; 25 Zhang (ref_12) 2014; 47 ref_26 Alsuhaymi (ref_74) 2019; 3 Mourtas (ref_42) 2022; 1 ref_71 Li (ref_88) 2020; 242 ref_70 Simos (ref_43) 2021; 34 Cepni (ref_95) 2019; 35 (ref_3) 1988; 1 Simos (ref_41) 2022; 193 Popa (ref_63) 2025; 13 Zeng (ref_31) 2020; 8 Cheng (ref_86) 2021; 152 Fabry (ref_73) 2010; 169 Wu (ref_90) 2020; 418 Katsikis (ref_35) 2024; Volume 254 ref_81 Xu (ref_47) 2020; 8 Zhang (ref_11) 2016; 198 Chen (ref_67) 2016; 184 Gershman (ref_52) 2012; 56 Yi (ref_82) 2019; 23 ref_85 Kouziokas (ref_94) 2020; 92 Chen (ref_110) 2018; 2018 Nguyen (ref_68) 1998; Volume 2 Alho (ref_109) 2014; 30 Zhang (ref_21) 2011; 47 Escudero (ref_65) 2013; 60 ref_54 ref_53 Zhang (ref_32) 2014; 53 Zhou (ref_89) 2020; 51 Jin (ref_13) 2019; 350 Chen (ref_16) 2019; 7 Khalis (ref_100) 2018; 66 Heinesen (ref_101) 2018; 58 Mourtas (ref_28) 2022; 14 Lassila (ref_107) 2014; 30 Mourtas (ref_36) 2025; 72 Garg (ref_56) 2001; Volume 2167 Simos (ref_38) 2022; 127 ref_62 Quinlan (ref_60) 1986; 1 Stupina (ref_37) 2023; Volume 1 Rokach (ref_59) 2005; 35 Cortes (ref_50) 1995; 20 Li (ref_14) 2019; 7 Zhang (ref_20) 2014; 25 Mourtas (ref_34) 2024; 59 ref_33 Laaksonen (ref_55) 1996; Volume 3 Hazzaa (ref_75) 2015; 10 Mourtas (ref_29) 2022; 498 Chen (ref_66) 2011; 38 Schulz (ref_51) 2018; 85 Antonik (ref_87) 2018; 98 Xiao (ref_19) 2009; 35 Groes (ref_99) 2015; 82 Tharwat (ref_48) 2020; 17 ref_104 Mourtas (ref_39) 2023; 8 Kim (ref_96) 2025; 58 ref_105 He (ref_44) 2024; 9 ref_46 ref_45 McCulloch (ref_1) 1943; 5 Fung (ref_76) 2017; 4 ref_40 Mian (ref_78) 2017; 24 Pfeiffer (ref_77) 2006; 118 Yamashita (ref_84) 2015; 48 ref_9 ref_8 Hopenhayn (ref_106) 2022; 90 Choi (ref_103) 2020; 58 ref_6 |
References_xml | – ident: ref_9 – volume: 98 start-page: 012215 year: 2018 ident: ref_87 article-title: Using a reservoir computer to learn chaotic attractors, with applications to chaos synchronisation and cryptography publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.98.012215 – volume: Volume 169 start-page: 553 year: 2012 ident: ref_5 article-title: Brief introduction of back propagation (BP) neural network algorithm and its improvement publication-title: Advances in Computer Science and Information Engineering doi: 10.1007/978-3-642-30223-7_87 – ident: ref_26 doi: 10.1109/ICCA.2013.6564876 – ident: ref_93 doi: 10.1109/ICOMICON.2017.8279151 – volume: 47 start-page: 3414 year: 2014 ident: ref_12 article-title: Cross-validation based weights and structure determination of Chebyshev-polynomial neural networks for pattern classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2014.04.026 – volume: 112 start-page: 107767 year: 2021 ident: ref_27 article-title: Time-varying Black-Litterman portfolio optimization using a bio-inspired approach and neuronets publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107767 – ident: ref_81 doi: 10.3390/ma11050855 – volume: 2018 start-page: 6264124 year: 2018 ident: ref_110 article-title: A SA-ANN-based modeling method for human cognition mechanism and the PSACO cognition algorithm publication-title: Complexity doi: 10.1155/2018/6264124 – volume: 22 start-page: 547 year: 2006 ident: ref_108 article-title: Demographic forecasting: 1980 to 2005 in review publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2006.04.001 – volume: 58 start-page: 151 year: 2018 ident: ref_101 article-title: Employment, job skills and occupational mobility of cancer survivors publication-title: J. Health Econ. doi: 10.1016/j.jhealeco.2018.01.006 – volume: 48 start-page: 199 year: 2015 ident: ref_84 article-title: Continuous-time delayed feedback control for chaotic systems using complex number observer publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2015.11.036 – volume: 9 start-page: 2411 year: 2024 ident: ref_44 article-title: A bio-inspired weights and structure determination neural network for multiclass classification: Applications in occupational classification systems publication-title: AIMS Math. doi: 10.3934/math.2024119 – volume: 10 start-page: 207 year: 2015 ident: ref_75 article-title: Correlation between gender and age and flat foot in obese children publication-title: Trends Appl. Sci. Res. doi: 10.3923/tasr.2015.207.215 – ident: ref_10 doi: 10.1109/CCDC.2012.6244176 – volume: 1 start-page: 1 year: 2022 ident: ref_42 article-title: Feedback control systems stabilization using a bio-inspired neural network publication-title: EAI Endorsed Trans. AI Robot. doi: 10.4108/airo.v1i.17 – ident: ref_91 doi: 10.5772/intechopen.69592 – volume: Volume 2 start-page: 1006 year: 1998 ident: ref_68 article-title: Classification of microcalcifications in mammograms using artificial neural networks publication-title: Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society – volume: 3 start-page: 204 year: 2019 ident: ref_74 article-title: Flatfoot among school-age children in Almadinah Almunawwarah: Prevalence and risk factors publication-title: J. Musculoskelet. Surg. Res. doi: 10.4103/jmsr.jmsr_89_18 – ident: ref_85 doi: 10.1002/9781119469414 – volume: 418 start-page: 221 year: 2020 ident: ref_90 article-title: Improved recurrent neural networks for solving Moore-Penrose inverse of real-time full-rank matrix publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.08.026 – volume: 58 start-page: 132 year: 2020 ident: ref_103 article-title: The modified international standard classification of occupations defined by the clustering of occupational characteristics in the Korean working conditions survey publication-title: Ind. Health doi: 10.2486/indhealth.2018-0169 – volume: 184 start-page: 131 year: 2016 ident: ref_67 article-title: An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson’s disease publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.07.138 – ident: ref_8 doi: 10.1201/9780429426445 – ident: ref_22 doi: 10.1109/HIS.2009.278 – volume: 22 start-page: 276 year: 2012 ident: ref_49 article-title: Interrater reliability: The kappa statistic publication-title: Biochem. Medica doi: 10.11613/BM.2012.031 – volume: 8 start-page: 35 year: 2020 ident: ref_47 article-title: A beetle antennae search algorithm based on Lévy flights and adaptive strategy publication-title: Syst. Sci. Control Eng. doi: 10.1080/21642583.2019.1708829 – ident: ref_25 doi: 10.1109/CCDC.2014.6852139 – volume: 61 start-page: 1098 year: 2015 ident: ref_72 article-title: Tumor MicroRNA Expression Profiling Identifies Circulating MicroRNAs for Early Breast Cancer Detection publication-title: Clin. Chem. doi: 10.1373/clinchem.2015.238691 – volume: 169 start-page: 529 year: 2010 ident: ref_73 article-title: Static, axial, and rotational deformities of the lower extremities in children publication-title: Eur. J. Pediatr. doi: 10.1007/s00431-009-1122-x – volume: 14 start-page: 1512 year: 2022 ident: ref_28 article-title: A weights direct determination neuronet for time-series with applications in the industrial indices of the federal reserve bank of St. Louis publication-title: J. Forecast. doi: 10.1002/for.2874 – volume: 59 start-page: 197 year: 2017 ident: ref_57 article-title: A feature dependent Naive Bayes approach and its application to the software defect prediction problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.05.043 – volume: 47 start-page: 29 year: 2011 ident: ref_21 article-title: Optimal-structure determination of power-activation feed-forward neuralnetwork publication-title: Comput. Eng. Appl. – volume: 20 start-page: 273 year: 1995 ident: ref_50 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1023/A:1022627411411 – ident: ref_53 – ident: ref_71 doi: 10.1007/s13721-020-00237-8 – volume: 23 start-page: 847 year: 2019 ident: ref_82 article-title: Combination of Improved OGY and Guiding Orbit Method for Chaos Control publication-title: J. Adv. Comput. Intell. Intell. Inform. doi: 10.20965/jaciii.2019.p0847 – volume: 72 start-page: 05006 year: 2025 ident: ref_36 article-title: Credit approval classification through a WASD neuronet publication-title: ITM Web Conf. doi: 10.1051/itmconf/20257205006 – volume: 127 start-page: 109351 year: 2022 ident: ref_38 article-title: A multi-input with multi-function activated weights and structure determination neuronet for classification problems and applications in firm fraud and loan approval publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.109351 – volume: 85 start-page: 1 year: 2018 ident: ref_51 article-title: A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions publication-title: J. Math. Psychol. doi: 10.1016/j.jmp.2018.03.001 – volume: 90 start-page: 1879 year: 2022 ident: ref_106 article-title: From population growth to firm demographics: Implications for concentration, entrepreneurship and the labor share publication-title: Econometrica doi: 10.3982/ECTA18012 – ident: ref_18 doi: 10.1109/WCICA.2012.6357968 – volume: 242 start-page: 118447 year: 2020 ident: ref_88 article-title: Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.118447 – volume: 1 start-page: 81 year: 1986 ident: ref_60 article-title: Induction of decision trees publication-title: Mach. Learn. doi: 10.1023/A:1022643204877 – volume: 4 start-page: 152 year: 2017 ident: ref_76 article-title: Relationship between nutritional status and flat foot in children publication-title: Althea Med J. doi: 10.15850/amj.v4n1.1038 – ident: ref_6 – volume: 92 start-page: 103650 year: 2020 ident: ref_94 article-title: A new W-SVM kernel combining PSO-neural network transformed vector and Bayesian optimized SVM in GDP forecasting publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103650 – volume: 24 start-page: 348 year: 2017 ident: ref_78 article-title: Measurement and estimation of glomerular filtration rate in children publication-title: Adv. Chronic Kidney Dis. doi: 10.1053/j.ackd.2017.09.011 – volume: 60 start-page: 164 year: 2013 ident: ref_65 article-title: Machine learning-based method for personalized and cost-effective detection of Alzheimer’s disease publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2212278 – volume: 25 start-page: 1650007 year: 2016 ident: ref_7 article-title: WASD algorithm with pruning-while-growing and twice-pruning techniques for multi-input Euler polynomial neural network publication-title: Int. J. Artif. Intell. Tools doi: 10.1142/S021821301650007X – volume: 83 start-page: 1064 year: 2016 ident: ref_69 article-title: Using Machine Learning Algorithms for Breast Cancer Risk Prediction and Diagnosis publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2016.04.224 – volume: 152 start-page: 111304 year: 2021 ident: ref_86 article-title: High-efficiency chaotic time series prediction based on time convolution neural network publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2021.111304 – ident: ref_70 doi: 10.1109/CIMCA.2018.8739696 – volume: 65 start-page: 386 year: 1958 ident: ref_2 article-title: The perceptron: A probabilistic model for information storage and organization in the brain publication-title: Psychol. Rev. doi: 10.1037/h0042519 – volume: 35 start-page: 476 year: 2005 ident: ref_59 article-title: Top-down induction of decision trees classifiers—A survey publication-title: IEEE Trans. Syst. Man Cybern. Part Appl. Rev. doi: 10.1109/TSMCC.2004.843247 – volume: 30 start-page: 1128 year: 2014 ident: ref_109 article-title: Forecasting demographic forecasts publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2014.02.005 – ident: ref_62 doi: 10.3390/electronics14132512 – volume: 34 start-page: 32 year: 2008 ident: ref_17 article-title: Weights immediate determination for feed-forward neuralnetwork with Legendre orthogonal basis function publication-title: J. Dalian Marit. Univ. – volume: 35 start-page: 80 year: 2009 ident: ref_19 article-title: Weights-direct-determination and structure-adaptivedeterminationof feed-forward neural network activated with the 2nd-class Chebyshev orthogonalpolynomials publication-title: J. Dalian Marit. Univ. – volume: Volume 3 start-page: 1480 year: 1996 ident: ref_55 article-title: Classification with learning k-nearest neighbors publication-title: Proceedings of the International Conference on Neural Networks (ICNN’96) doi: 10.1109/ICNN.1996.549118 – volume: 56 start-page: 1 year: 2012 ident: ref_52 article-title: A tutorial on Bayesian nonparametric models publication-title: J. Math. Psychol. doi: 10.1016/j.jmp.2011.08.004 – volume: 66 start-page: S302 year: 2018 ident: ref_100 article-title: Occupation and female breast cancer: A case-control study in Morocco publication-title: Rev. D’éPidéMiologie Et De Santé Publique – ident: ref_40 doi: 10.3390/math11030629 – volume: 7 start-page: 22002 year: 2019 ident: ref_64 article-title: Detecting diseases by human-physiological-parameter-based deep learning publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2893877 – volume: 193 start-page: 451 year: 2022 ident: ref_41 article-title: Multi-input bio-inspired weights and structure determination neuronet with applications in European Central Bank publications publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2021.11.007 – volume: 21 start-page: 01019 year: 2017 ident: ref_80 article-title: Drilling rig operation mode recognition by an artificial neuronet publication-title: E3S Web Conf. doi: 10.1051/e3sconf/20172101019 – volume: 498 start-page: 43 year: 2022 ident: ref_29 article-title: Exploiting the Black-Litterman framework through error-correction neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.05.036 – ident: ref_104 – volume: 82 start-page: 659 year: 2015 ident: ref_99 article-title: The U-shapes of occupational mobility publication-title: Rev. Econ. Stud. doi: 10.1093/restud/rdu037 – ident: ref_45 doi: 10.3390/biomimetics9020120 – volume: 8 start-page: 56630 year: 2020 ident: ref_31 article-title: Predictions of USA presidential parties from 2021 to 2037 using historical data through square wave-activated WASD neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2982192 – volume: 17 start-page: 168 year: 2020 ident: ref_48 article-title: Classification assessment methods publication-title: Appl. Comput. Inform. doi: 10.1016/j.aci.2018.08.003 – volume: 30 start-page: 1098 year: 2014 ident: ref_107 article-title: Demographic forecasts and fiscal policy rules publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2014.02.009 – volume: 473 start-page: 20150593 year: 2016 ident: ref_83 article-title: Generic stabilizability for time-delayed feedback control publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2015.0593 – volume: 5 start-page: 115 year: 1943 ident: ref_1 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: Bull. Math. Biophys. doi: 10.1007/BF02478259 – volume: 4 start-page: 46 year: 2016 ident: ref_58 article-title: Statistical comparisons of the top 10 algorithms in data mining for classification task publication-title: Int. J. Interact. Multimed. Artif. – ident: ref_23 doi: 10.1007/978-3-642-01507-6_5 – volume: 8 start-page: 24254 year: 2023 ident: ref_39 article-title: Forecasting the gross domestic product using a weight direct determination neural network publication-title: AIMS Math. doi: 10.3934/math.20231237 – volume: 38 start-page: 9014 year: 2011 ident: ref_66 article-title: A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.01.120 – volume: 51 start-page: 1299 year: 2020 ident: ref_89 article-title: Complex varying-parameter Zhang neural networks for computing core and core-EP inverse publication-title: Neural Process. Lett. doi: 10.1007/s11063-019-10141-6 – ident: ref_105 doi: 10.1007/978-3-030-81850-0_4 – volume: 13 start-page: 17745 year: 2025 ident: ref_63 article-title: Heavy and lightweight deep learning models for semantic segmentation: A survey publication-title: IEEE Access doi: 10.1109/ACCESS.2025.3529812 – volume: Volume 2167 start-page: 179 year: 2001 ident: ref_56 article-title: Understanding probabilistic classifiers publication-title: Machine Learning, Proceedings of the ECML 2001, Freiburg, Germany, 5–7 September 2001 – volume: 17 start-page: 138 year: 2007 ident: ref_4 article-title: Improved BP neural network for transformer fault diagnosis publication-title: J. China Univ. Min. Technol. doi: 10.1016/S1006-1266(07)60029-7 – ident: ref_98 doi: 10.1007/978-3-319-70096-0_91 – ident: ref_33 doi: 10.3390/math11061506 – volume: 25 start-page: 105 year: 2018 ident: ref_79 article-title: Kinetic glomerular filtration rate in routine clinical practice—Applications and possibilities publication-title: Adv. Chronic Kidney Dis. doi: 10.1053/j.ackd.2017.10.013 – volume: 25 start-page: 1761 year: 2014 ident: ref_20 article-title: Weights and structure determination of multiple-input feed-forward neural network activated by Chebyshev polynomials of Class 2 via cross-validation publication-title: Neural Comput. Appl. doi: 10.1007/s00521-014-1667-0 – volume: 350 start-page: 128 year: 2019 ident: ref_13 article-title: Modified single-output Chebyshev-polynomial feedforward neural network aided with subset method for classification of breast cancer publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.03.046 – volume: Volume 1 start-page: 86 year: 2023 ident: ref_37 article-title: Credit card attrition classification through neuronets publication-title: Hybrid Methods of Modeling and Optimization in Complex Systems – volume: 22 start-page: 855 year: 2023 ident: ref_30 article-title: Stabilization of stochastic exchange rate dynamics under central bank intervention using neuronets publication-title: Int. J. Inf. Technol. Decis. doi: 10.1142/S0219622022500560 – volume: 59 start-page: 01004 year: 2024 ident: ref_34 article-title: Customer churn classification through a weights and structure determination neural network publication-title: ITM Web Conf. doi: 10.1051/itmconf/20245901004 – volume: 40 start-page: 471 year: 2011 ident: ref_61 article-title: Discrepancy analysis of state sequences publication-title: Sociol. Methods Res. doi: 10.1177/0049124111415372 – volume: 20 start-page: 211 year: 2016 ident: ref_24 article-title: Sine neural network (SNN) with double-stage weights and structure determination (DS-WASD) publication-title: Soft Comput. doi: 10.1007/s00500-014-1491-6 – volume: 7 start-page: 63146 year: 2019 ident: ref_14 article-title: Modified weights-and-structure-determination neural network for pattern classification of flatfoot publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2916141 – ident: ref_92 doi: 10.1109/ICECCE47252.2019.8940713 – volume: Volume 254 start-page: 325 year: 2024 ident: ref_35 article-title: A weights direct determination neural network for credit card attrition analysis publication-title: Machine Learning Approaches in Financial Analytics doi: 10.1007/978-3-031-61037-0_16 – ident: ref_97 doi: 10.1007/s13042-025-02560-w – ident: ref_46 doi: 10.5430/ijrc.v1n1p1 – volume: 53 start-page: 1 year: 2014 ident: ref_32 article-title: Signum-function-activated WASD neuronet and its XOR application publication-title: Acta Sci. Nat. Univ. Sunyatseni – volume: 58 start-page: 92 year: 2021 ident: ref_102 article-title: Measuring the telework potential of jobs: Evidence from the international standard classification of occupations publication-title: Philipp. Rev. Econ. doi: 10.37907/5ERP1202JD – volume: 1 start-page: 445 year: 1988 ident: ref_3 article-title: Theory of the backpropagation neural network publication-title: Neural Netw. doi: 10.1016/0893-6080(88)90469-8 – ident: ref_54 – volume: 7 start-page: 33001 year: 2019 ident: ref_16 article-title: Weight and structure determination neural network aided with double pseudoinversion for diagnosis of flat foot publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2903634 – volume: 118 start-page: 634 year: 2006 ident: ref_77 article-title: Prevalence of flat foot in preschool-aged children publication-title: Pediatrics doi: 10.1542/peds.2005-2126 – ident: ref_15 doi: 10.23919/ChiCC.2019.8865697 – volume: 35 start-page: 555 year: 2019 ident: ref_95 article-title: Nowcasting and forecasting GDP in emerging markets using global financial and macroeconomic diffusion indexes publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2018.10.008 – volume: 198 start-page: 48 year: 2016 ident: ref_11 article-title: CP-activated WASD neuronet approach to Asian population prediction with abundant experimental verification publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.12.111 – volume: 58 start-page: 216 year: 2025 ident: ref_96 article-title: A comprehensive survey of deep learning for time series forecasting: Architectural diversity and open challenges publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-025-11223-9 – volume: 34 start-page: 3019 year: 2021 ident: ref_43 article-title: A fuzzy WASD neuronet with application in breast cancer prediction publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06572-9 |
SSID | ssj0001853599 |
Score | 2.2989564 |
SecondaryResourceType | review_article |
Snippet | The weights and structure determination (WASD) neuronet (or neural network) is a single-hidden-layer feedforward neuronet that exhibits an excellent... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 62 |
SubjectTerms | Algorithms Approximation Artificial intelligence Classification Cognitive tasks Forecasts and trends Heuristic methods Machine learning Moore–Penrose inverse Neural networks Neurons Polynomials Real time single-hidden-layer feedforward neuronet Trends weights and structure determination |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXLigVoBY2FY-IHFAURM7tuNT1QdLQVouUNGb5ccYesmWTbZX_nrHXodVheAWJZFjz4znlfE3hLzlrUUpqVH7SR2rNrSs0jGKSkitInCofa7NWX6Rl1ft52txXRJuQymrnHRiVtRh5VOO_BgNf1ujxpXs5PZXlbpGpb-rpYXGY_KkQUuT5LxbfNzlWNAWCa23Z2U4RvfHN1Ml99Bk8ZXsgT3KsP3_Us7Z4iz2ybPiKtLTLW8PyCPon5PfBVCJbotZqe0DPZ8aogz0pqfJr0xnl-gSRvsTNgWKmY4ris4e_VTaoN4BjgyWriL9ntOjeaivGU52swZ6MdXJpHXQjOHRwzi8IFeLD9_OL6vSRKHyGPuxKqrUiihqFmqveCN8E7m1LASlHQahqvHcSuZARR69BBei4Fa5hneKBdkCf0n2evzAK0KFrnWUXEoLyIu6cT4EziNHpwivnJ-R9xMpze0WK8NgjJEIb_4m_IycJWr_eTPhXOcbq_UPU7aNqRlwh_PxtfCtYKETygFT0LXoRolOzsi7xCuTduO4tt6WQwU44YRrZU5RAiQGEULPyHxipynbdDA7oXr9_8dvyFOWGv_myr852UNmwCF6I6M7yiJ3D7U84Y4 priority: 102 providerName: ProQuest |
Title | Current Trends and Challenges in Applying Metaheuristics to the Innovative Area of Weight and Structure Determination Neuronets |
URI | https://www.proquest.com/docview/3244041362 https://doaj.org/article/02e3b3a7c05c452d857be27e84976586 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXLggECAWysoHJA4oquNnfNw-loLYClEqerP8GIteUtRNufavd-wkqAghLpwSRZHjfDP2zFgz3xDyRkiPWsJw99M2NzJJ3ticVaO0NRkEsFhzczYn-vhMfjxX53dafZWcsJEeeARuj3EQQXgTmYpS8dQpE4Ab6CQaUtVVsm1m2Z1gqp6uoBVS1o5VMgLj-r2LOYd721bF1fw3S1QJ-_-2LVdbs35MHk1OIl2Nk3tC7kH_lNxMVEp0TGOlvk_0YG6FsqUXPS0eZalaohsY_He4nkiY6XBJ0c2jH6YGqD8BRwZPLzP9Vg9G61CnlUj2-gro4ZwhU_6DVvaOHobtM3K2Pvp6cNxM7ROaiFEfb7IpTYiy5YlFI1oV2yy85ykZGzD8NG0UXvMAJoscNYSUFeIcWtEZnrQE8Zzs9PiBF4Qqy2zWQmsPErFrQ0xJiCzQHcK7EBfk3Qyl-zGyZDiMLgrw7k_gF2S_oP3rzcJwXR-g3N0kd_cvuS_I2yIrV9bhcOWjn8oJcMKF0cqtUAM0hg_KLsjuLE43LdCtQz9SMjTgmr_8H7N5RR7y0hi4Zgbukh0UGbxGb2UIS3K_W79fkgerw82nU7zuH518_rKs6noLJTztUg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuCASILQV8AHFAURM7tteHCvWpXdpdIWhFb8bxA3rJtpsUxIl_xG9k7CRUCMGttyiJHHtmPA9nZj6AF6w0KCU5aj-hQla6kmYqBJ5xoWTwzOc25ebMF2J6Wr4942dr8HOohYlplYNOTIraLW08I99Cw1_mqHEFfXNxmUXUqPh3dYDQ6MTiyH__hiFbsz3bR_6-pPTw4GRvmvWoApnFYIhmQUZsnqCoy61kBbdFYMZQ56SqMCqThWVG0MrLwIIVvnKBMyOrgk0kdaL0DMe9BetlrGgdwfruweLd--tTHbR-XKmuOocxlW-dD7njTZE2jKB_WMAEFPAvc5Bs3OE9uNs7p2Snk6b7sObrB_Cjb-FEuvRZYmpH9gYIloac1yR6srFaisx9a774q775M2mXBN1LMuuBV796HNkbsgzkYzqQTUN9SA1sr1ae7A-ZOXEdJHUNqX3bPITTGyHwIxjV-IHHQLjKVRBMCOOR-3lRWecYCwzdMLyq7BheD6TUF113Do1RTSS8_pvwY9iN1P79ZuysnW4sV591v1F1Tj2rcD4257bk1E24rDyVflKi48YnYgyvIq903P_tyljTlzHghGMnLb2DEiAwbOFqDJsDO3WvGBp9LcYb_3_8HG5PT-bH-ni2OHoCd2iEHU55h5swQsb4p-gLtdWzXgAJfLppmf8FULUf3g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRCXigoQC6X1AcQBRevYsR0fECpdli6lFRJU9Gb8hF6y7SYFceJ_9dcxdhIqhODWW5RETjL-PA9nZj6EnrDKAEoIaD-hYlH5ihYqRl5woWQMLBCXc3MOj8T-cfX2hJ-socuxFialVY46MStqv3Rpj3wKhr8ioHEFncYhLeL9bP7y7LxIDFLpT-tIp9FD5CD8-A7hW_tiMYO5fkrp_PXHvf1iYBgoHARGtIgy8fRERT1xkpXclZEZQ72XykKEJkvHjKA2yMiiE8H6yJmRtmS1pF5UgcG4N9BNyaRKgV89f3O1vwN2kCvV1-kwpsj0dMwib8u8dAT9wxZmyoB_GYZs7eZ30MbgpuLdHlebaC00d9HPoZkT7hNpsWk83hvJWFp82uDk06a6KXwYOvM1XAxtoHG3xOBo4sVAwfotwMjB4GXEn_LWbB7qQ25le7EKeDbm6KTvwLl_SBO69h46vhbx3kfrDTzgAcJcERUFE8IEwAEprfOescjAIYMj6ybo-ShKfdb36dAQ3yTB678FP0GvkrR_35l6bOcTy9UXPSxZTWhgFt7HEe4qTn3NpQ1UhroCF47XYoKepbnSSRN0K-PMUNAAL5x6auldQICAAIarCdoap1MPKqLVV4B--P_LO-gWIF2_WxwdPEK3aeIfzgmIW2gd5iU8Bqeos9sZfRh9vm64_wJr0iKu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Current+Trends+and+Challenges+in+Applying+Metaheuristics+to+the+Innovative+Area+of+Weight+and+Structure+Determination+Neuronets&rft.jtitle=Inventions+%28Basel%29&rft.au=Mourtas%2C+Spyridon+D&rft.au=Li%2C+Shuai&rft.au=Cao%2C+Xinwei&rft.au=Liao%2C+Bolin&rft.date=2025-08-01&rft.pub=MDPI+AG&rft.issn=2411-5134&rft.eissn=2411-5134&rft.volume=10&rft.issue=4&rft_id=info:doi/10.3390%2Finventions10040062&rft.externalDocID=A853688259 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2411-5134&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2411-5134&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2411-5134&client=summon |