Current Trends and Challenges in Applying Metaheuristics to the Innovative Area of Weight and Structure Determination Neuronets

The weights and structure determination (WASD) neuronet (or neural network) is a single-hidden-layer feedforward neuronet that exhibits an excellent approximation ability, despite its simple structure. Thanks to its strong generalization, fast speed, and ease of implementation, the WASD neuronet has...

Full description

Saved in:
Bibliographic Details
Published inInventions (Basel) Vol. 10; no. 4; p. 62
Main Authors Mourtas, Spyridon D., Li, Shuai, Cao, Xinwei, Liao, Bolin, Katsikis, Vasilios N.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2025
Subjects
Online AccessGet full text
ISSN2411-5134
2411-5134
DOI10.3390/inventions10040062

Cover

Loading…
Abstract The weights and structure determination (WASD) neuronet (or neural network) is a single-hidden-layer feedforward neuronet that exhibits an excellent approximation ability, despite its simple structure. Thanks to its strong generalization, fast speed, and ease of implementation, the WASD neuronet has been the subject of many modifications, including metaheuristics, and applications in a wide range of scientific fields. As it has garnered significant attention in the last decade, the aim of this study is to provide an extensive overview of the WASD framework. Furthermore, the WASD has been effectively used in numerous real-time learning tasks like regression, multiclass classification, and binary classification due to its exceptional performance. In addition, we present WASD’s applications in social science, business, engineering, economics, and medicine. We aim to report these developments and provide some avenues for further research.
AbstractList The weights and structure determination (WASD) neuronet (or neural network) is a single-hidden-layer feedforward neuronet that exhibits an excellent approximation ability, despite its simple structure. Thanks to its strong generalization, fast speed, and ease of implementation, the WASD neuronet has been the subject of many modifications, including metaheuristics, and applications in a wide range of scientific fields. As it has garnered significant attention in the last decade, the aim of this study is to provide an extensive overview of the WASD framework. Furthermore, the WASD has been effectively used in numerous real-time learning tasks like regression, multiclass classification, and binary classification due to its exceptional performance. In addition, we present WASD’s applications in social science, business, engineering, economics, and medicine. We aim to report these developments and provide some avenues for further research.
Audience Academic
Author Cao, Xinwei
Mourtas, Spyridon D.
Li, Shuai
Katsikis, Vasilios N.
Liao, Bolin
Author_xml – sequence: 1
  givenname: Spyridon D.
  orcidid: 0000-0002-8299-9916
  surname: Mourtas
  fullname: Mourtas, Spyridon D.
– sequence: 2
  givenname: Shuai
  surname: Li
  fullname: Li, Shuai
– sequence: 3
  givenname: Xinwei
  surname: Cao
  fullname: Cao, Xinwei
– sequence: 4
  givenname: Bolin
  orcidid: 0000-0001-9036-2723
  surname: Liao
  fullname: Liao, Bolin
– sequence: 5
  givenname: Vasilios N.
  orcidid: 0000-0002-8208-9656
  surname: Katsikis
  fullname: Katsikis, Vasilios N.
BookMark eNplkUtrGzEUhUVJoWmaP9CVoGuneo5mlsZ9GZJ20ZQuhUa6GsuMJVfSGLLqX68Sl1IIAklc7vk4h_MaXcQUAaG3lNxwPpD3IZ4g1pBioYQIQjr2Al0yQelKUi4u_vu_Qtel7AkhtJdcDsMl-r1Zcm5qfN9uV7CJDm92Zp4hTlBwiHh9PM4PIU74DqrZwZJDqcEWXBOuO8DbGNPJ1HACvM5gcPL4J4RpV59Q32tebF0y4A9QIR9CNI9G8dfGaSFqeYNeejMXuP77XqEfnz7eb76sbr993m7WtyvLpGArrzijwg_MEas4lZZ6bgxzTg2jZFxRy03HRlCee9vB6LzkRo2U94q5TgC_Qtsz1yWz18ccDiY_6GSCfhqkPGmTW64ZNGHAx6a2RFohmeulGoEp6MWgOtl3jfXuzDrm9GuBUvU-LTk2-5ozIYigvGNt6-a8NZkGDdGnmo1tx8Eh2BbehzZftyK6vmdyaAJ2FticSsng_9mkRD8WrZ8Xzf8AdeSgxQ
Cites_doi 10.1103/PhysRevE.98.012215
10.1007/978-3-642-30223-7_87
10.1109/ICCA.2013.6564876
10.1109/ICOMICON.2017.8279151
10.1016/j.patcog.2014.04.026
10.1016/j.asoc.2021.107767
10.3390/ma11050855
10.1155/2018/6264124
10.1016/j.ijforecast.2006.04.001
10.1016/j.jhealeco.2018.01.006
10.1016/j.ifacol.2015.11.036
10.3934/math.2024119
10.3923/tasr.2015.207.215
10.1109/CCDC.2012.6244176
10.4108/airo.v1i.17
10.5772/intechopen.69592
10.4103/jmsr.jmsr_89_18
10.1002/9781119469414
10.1016/j.neucom.2020.08.026
10.2486/indhealth.2018-0169
10.1016/j.neucom.2015.07.138
10.1201/9780429426445
10.1109/HIS.2009.278
10.11613/BM.2012.031
10.1080/21642583.2019.1708829
10.1109/CCDC.2014.6852139
10.1373/clinchem.2015.238691
10.1007/s00431-009-1122-x
10.1002/for.2874
10.1016/j.asoc.2017.05.043
10.1023/A:1022627411411
10.1007/s13721-020-00237-8
10.20965/jaciii.2019.p0847
10.1051/itmconf/20257205006
10.1016/j.asoc.2022.109351
10.1016/j.jmp.2018.03.001
10.3982/ECTA18012
10.1109/WCICA.2012.6357968
10.1016/j.jclepro.2019.118447
10.1023/A:1022643204877
10.15850/amj.v4n1.1038
10.1016/j.engappai.2020.103650
10.1053/j.ackd.2017.09.011
10.1109/TBME.2012.2212278
10.1142/S021821301650007X
10.1016/j.procs.2016.04.224
10.1016/j.chaos.2021.111304
10.1109/CIMCA.2018.8739696
10.1037/h0042519
10.1109/TSMCC.2004.843247
10.1016/j.ijforecast.2014.02.005
10.3390/electronics14132512
10.1109/ICNN.1996.549118
10.1016/j.jmp.2011.08.004
10.3390/math11030629
10.1109/ACCESS.2019.2893877
10.1016/j.matcom.2021.11.007
10.1051/e3sconf/20172101019
10.1016/j.neucom.2022.05.036
10.1093/restud/rdu037
10.3390/biomimetics9020120
10.1109/ACCESS.2020.2982192
10.1016/j.aci.2018.08.003
10.1016/j.ijforecast.2014.02.009
10.1098/rspa.2015.0593
10.1007/BF02478259
10.1007/978-3-642-01507-6_5
10.3934/math.20231237
10.1016/j.eswa.2011.01.120
10.1007/s11063-019-10141-6
10.1007/978-3-030-81850-0_4
10.1109/ACCESS.2025.3529812
10.1016/S1006-1266(07)60029-7
10.1007/978-3-319-70096-0_91
10.3390/math11061506
10.1053/j.ackd.2017.10.013
10.1007/s00521-014-1667-0
10.1016/j.neucom.2019.03.046
10.1142/S0219622022500560
10.1051/itmconf/20245901004
10.1177/0049124111415372
10.1007/s00500-014-1491-6
10.1109/ACCESS.2019.2916141
10.1109/ICECCE47252.2019.8940713
10.1007/978-3-031-61037-0_16
10.1007/s13042-025-02560-w
10.5430/ijrc.v1n1p1
10.37907/5ERP1202JD
10.1016/0893-6080(88)90469-8
10.1109/ACCESS.2019.2903634
10.1542/peds.2005-2126
10.23919/ChiCC.2019.8865697
10.1016/j.ijforecast.2018.10.008
10.1016/j.neucom.2015.12.111
10.1007/s10462-025-11223-9
10.1007/s00521-021-06572-9
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOA
DOI 10.3390/inventions10040062
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
SciTech Collection (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2411-5134
ExternalDocumentID oai_doaj_org_article_02e3b3a7c05c452d857be27e84976586
A853688259
10_3390_inventions10040062
GeographicLocations United States
New Jersey
Germany
GeographicLocations_xml – name: New Jersey
– name: Germany
– name: United States
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ITC
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PUEGO
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c2542-f73214f92d0c7315c1f3aa2dd79b52371c3a62be7f3fc6ebdf53a7b13872d64e3
IEDL.DBID DOA
ISSN 2411-5134
IngestDate Mon Sep 01 19:40:25 EDT 2025
Tue Sep 02 07:40:42 EDT 2025
Tue Sep 02 03:58:12 EDT 2025
Wed Jul 30 23:53:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2542-f73214f92d0c7315c1f3aa2dd79b52371c3a62be7f3fc6ebdf53a7b13872d64e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9036-2723
0000-0002-8299-9916
0000-0002-8208-9656
OpenAccessLink https://doaj.org/article/02e3b3a7c05c452d857be27e84976586
PQID 3244041362
PQPubID 2055401
ParticipantIDs doaj_primary_oai_doaj_org_article_02e3b3a7c05c452d857be27e84976586
proquest_journals_3244041362
gale_infotracacademiconefile_A853688259
crossref_primary_10_3390_inventions10040062
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Inventions (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_93
Sun (ref_4) 2007; 17
ref_92
McHugh (ref_49) 2012; 22
ref_91
Mourtas (ref_30) 2023; 22
Settouti (ref_58) 2016; 4
ref_10
ref_98
ref_97
Rosenblatt (ref_2) 1958; 65
Asri (ref_69) 2016; 83
Chen (ref_79) 2018; 25
Generalao (ref_102) 2021; 58
Arar (ref_57) 2017; 59
Matamala (ref_72) 2015; 61
ref_18
Zhang (ref_24) 2016; 20
Sieber (ref_83) 2016; 473
ref_15
Simos (ref_27) 2021; 112
Li (ref_5) 2012; Volume 169
Borisov (ref_80) 2017; 21
Booth (ref_108) 2006; 22
Studer (ref_61) 2011; 40
Liu (ref_64) 2019; 7
Zhang (ref_17) 2008; 34
ref_25
ref_23
ref_22
Zhang (ref_7) 2016; 25
Zhang (ref_12) 2014; 47
ref_26
Alsuhaymi (ref_74) 2019; 3
Mourtas (ref_42) 2022; 1
ref_71
Li (ref_88) 2020; 242
ref_70
Simos (ref_43) 2021; 34
Cepni (ref_95) 2019; 35
(ref_3) 1988; 1
Simos (ref_41) 2022; 193
Popa (ref_63) 2025; 13
Zeng (ref_31) 2020; 8
Cheng (ref_86) 2021; 152
Fabry (ref_73) 2010; 169
Wu (ref_90) 2020; 418
Katsikis (ref_35) 2024; Volume 254
ref_81
Xu (ref_47) 2020; 8
Zhang (ref_11) 2016; 198
Chen (ref_67) 2016; 184
Gershman (ref_52) 2012; 56
Yi (ref_82) 2019; 23
ref_85
Kouziokas (ref_94) 2020; 92
Chen (ref_110) 2018; 2018
Nguyen (ref_68) 1998; Volume 2
Alho (ref_109) 2014; 30
Zhang (ref_21) 2011; 47
Escudero (ref_65) 2013; 60
ref_54
ref_53
Zhang (ref_32) 2014; 53
Zhou (ref_89) 2020; 51
Jin (ref_13) 2019; 350
Chen (ref_16) 2019; 7
Khalis (ref_100) 2018; 66
Heinesen (ref_101) 2018; 58
Mourtas (ref_28) 2022; 14
Lassila (ref_107) 2014; 30
Mourtas (ref_36) 2025; 72
Garg (ref_56) 2001; Volume 2167
Simos (ref_38) 2022; 127
ref_62
Quinlan (ref_60) 1986; 1
Stupina (ref_37) 2023; Volume 1
Rokach (ref_59) 2005; 35
Cortes (ref_50) 1995; 20
Li (ref_14) 2019; 7
Zhang (ref_20) 2014; 25
Mourtas (ref_34) 2024; 59
ref_33
Laaksonen (ref_55) 1996; Volume 3
Hazzaa (ref_75) 2015; 10
Mourtas (ref_29) 2022; 498
Chen (ref_66) 2011; 38
Schulz (ref_51) 2018; 85
Antonik (ref_87) 2018; 98
Xiao (ref_19) 2009; 35
Groes (ref_99) 2015; 82
Tharwat (ref_48) 2020; 17
ref_104
Mourtas (ref_39) 2023; 8
Kim (ref_96) 2025; 58
ref_105
He (ref_44) 2024; 9
ref_46
ref_45
McCulloch (ref_1) 1943; 5
Fung (ref_76) 2017; 4
ref_40
Mian (ref_78) 2017; 24
Pfeiffer (ref_77) 2006; 118
Yamashita (ref_84) 2015; 48
ref_9
ref_8
Hopenhayn (ref_106) 2022; 90
Choi (ref_103) 2020; 58
ref_6
References_xml – ident: ref_9
– volume: 98
  start-page: 012215
  year: 2018
  ident: ref_87
  article-title: Using a reservoir computer to learn chaotic attractors, with applications to chaos synchronisation and cryptography
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.98.012215
– volume: Volume 169
  start-page: 553
  year: 2012
  ident: ref_5
  article-title: Brief introduction of back propagation (BP) neural network algorithm and its improvement
  publication-title: Advances in Computer Science and Information Engineering
  doi: 10.1007/978-3-642-30223-7_87
– ident: ref_26
  doi: 10.1109/ICCA.2013.6564876
– ident: ref_93
  doi: 10.1109/ICOMICON.2017.8279151
– volume: 47
  start-page: 3414
  year: 2014
  ident: ref_12
  article-title: Cross-validation based weights and structure determination of Chebyshev-polynomial neural networks for pattern classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.04.026
– volume: 112
  start-page: 107767
  year: 2021
  ident: ref_27
  article-title: Time-varying Black-Litterman portfolio optimization using a bio-inspired approach and neuronets
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107767
– ident: ref_81
  doi: 10.3390/ma11050855
– volume: 2018
  start-page: 6264124
  year: 2018
  ident: ref_110
  article-title: A SA-ANN-based modeling method for human cognition mechanism and the PSACO cognition algorithm
  publication-title: Complexity
  doi: 10.1155/2018/6264124
– volume: 22
  start-page: 547
  year: 2006
  ident: ref_108
  article-title: Demographic forecasting: 1980 to 2005 in review
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2006.04.001
– volume: 58
  start-page: 151
  year: 2018
  ident: ref_101
  article-title: Employment, job skills and occupational mobility of cancer survivors
  publication-title: J. Health Econ.
  doi: 10.1016/j.jhealeco.2018.01.006
– volume: 48
  start-page: 199
  year: 2015
  ident: ref_84
  article-title: Continuous-time delayed feedback control for chaotic systems using complex number observer
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2015.11.036
– volume: 9
  start-page: 2411
  year: 2024
  ident: ref_44
  article-title: A bio-inspired weights and structure determination neural network for multiclass classification: Applications in occupational classification systems
  publication-title: AIMS Math.
  doi: 10.3934/math.2024119
– volume: 10
  start-page: 207
  year: 2015
  ident: ref_75
  article-title: Correlation between gender and age and flat foot in obese children
  publication-title: Trends Appl. Sci. Res.
  doi: 10.3923/tasr.2015.207.215
– ident: ref_10
  doi: 10.1109/CCDC.2012.6244176
– volume: 1
  start-page: 1
  year: 2022
  ident: ref_42
  article-title: Feedback control systems stabilization using a bio-inspired neural network
  publication-title: EAI Endorsed Trans. AI Robot.
  doi: 10.4108/airo.v1i.17
– ident: ref_91
  doi: 10.5772/intechopen.69592
– volume: Volume 2
  start-page: 1006
  year: 1998
  ident: ref_68
  article-title: Classification of microcalcifications in mammograms using artificial neural networks
  publication-title: Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– volume: 3
  start-page: 204
  year: 2019
  ident: ref_74
  article-title: Flatfoot among school-age children in Almadinah Almunawwarah: Prevalence and risk factors
  publication-title: J. Musculoskelet. Surg. Res.
  doi: 10.4103/jmsr.jmsr_89_18
– ident: ref_85
  doi: 10.1002/9781119469414
– volume: 418
  start-page: 221
  year: 2020
  ident: ref_90
  article-title: Improved recurrent neural networks for solving Moore-Penrose inverse of real-time full-rank matrix
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.08.026
– volume: 58
  start-page: 132
  year: 2020
  ident: ref_103
  article-title: The modified international standard classification of occupations defined by the clustering of occupational characteristics in the Korean working conditions survey
  publication-title: Ind. Health
  doi: 10.2486/indhealth.2018-0169
– volume: 184
  start-page: 131
  year: 2016
  ident: ref_67
  article-title: An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson’s disease
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.07.138
– ident: ref_8
  doi: 10.1201/9780429426445
– ident: ref_22
  doi: 10.1109/HIS.2009.278
– volume: 22
  start-page: 276
  year: 2012
  ident: ref_49
  article-title: Interrater reliability: The kappa statistic
  publication-title: Biochem. Medica
  doi: 10.11613/BM.2012.031
– volume: 8
  start-page: 35
  year: 2020
  ident: ref_47
  article-title: A beetle antennae search algorithm based on Lévy flights and adaptive strategy
  publication-title: Syst. Sci. Control Eng.
  doi: 10.1080/21642583.2019.1708829
– ident: ref_25
  doi: 10.1109/CCDC.2014.6852139
– volume: 61
  start-page: 1098
  year: 2015
  ident: ref_72
  article-title: Tumor MicroRNA Expression Profiling Identifies Circulating MicroRNAs for Early Breast Cancer Detection
  publication-title: Clin. Chem.
  doi: 10.1373/clinchem.2015.238691
– volume: 169
  start-page: 529
  year: 2010
  ident: ref_73
  article-title: Static, axial, and rotational deformities of the lower extremities in children
  publication-title: Eur. J. Pediatr.
  doi: 10.1007/s00431-009-1122-x
– volume: 14
  start-page: 1512
  year: 2022
  ident: ref_28
  article-title: A weights direct determination neuronet for time-series with applications in the industrial indices of the federal reserve bank of St. Louis
  publication-title: J. Forecast.
  doi: 10.1002/for.2874
– volume: 59
  start-page: 197
  year: 2017
  ident: ref_57
  article-title: A feature dependent Naive Bayes approach and its application to the software defect prediction problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.05.043
– volume: 47
  start-page: 29
  year: 2011
  ident: ref_21
  article-title: Optimal-structure determination of power-activation feed-forward neuralnetwork
  publication-title: Comput. Eng. Appl.
– volume: 20
  start-page: 273
  year: 1995
  ident: ref_50
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022627411411
– ident: ref_53
– ident: ref_71
  doi: 10.1007/s13721-020-00237-8
– volume: 23
  start-page: 847
  year: 2019
  ident: ref_82
  article-title: Combination of Improved OGY and Guiding Orbit Method for Chaos Control
  publication-title: J. Adv. Comput. Intell. Intell. Inform.
  doi: 10.20965/jaciii.2019.p0847
– volume: 72
  start-page: 05006
  year: 2025
  ident: ref_36
  article-title: Credit approval classification through a WASD neuronet
  publication-title: ITM Web Conf.
  doi: 10.1051/itmconf/20257205006
– volume: 127
  start-page: 109351
  year: 2022
  ident: ref_38
  article-title: A multi-input with multi-function activated weights and structure determination neuronet for classification problems and applications in firm fraud and loan approval
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.109351
– volume: 85
  start-page: 1
  year: 2018
  ident: ref_51
  article-title: A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions
  publication-title: J. Math. Psychol.
  doi: 10.1016/j.jmp.2018.03.001
– volume: 90
  start-page: 1879
  year: 2022
  ident: ref_106
  article-title: From population growth to firm demographics: Implications for concentration, entrepreneurship and the labor share
  publication-title: Econometrica
  doi: 10.3982/ECTA18012
– ident: ref_18
  doi: 10.1109/WCICA.2012.6357968
– volume: 242
  start-page: 118447
  year: 2020
  ident: ref_88
  article-title: Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.118447
– volume: 1
  start-page: 81
  year: 1986
  ident: ref_60
  article-title: Induction of decision trees
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022643204877
– volume: 4
  start-page: 152
  year: 2017
  ident: ref_76
  article-title: Relationship between nutritional status and flat foot in children
  publication-title: Althea Med J.
  doi: 10.15850/amj.v4n1.1038
– ident: ref_6
– volume: 92
  start-page: 103650
  year: 2020
  ident: ref_94
  article-title: A new W-SVM kernel combining PSO-neural network transformed vector and Bayesian optimized SVM in GDP forecasting
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103650
– volume: 24
  start-page: 348
  year: 2017
  ident: ref_78
  article-title: Measurement and estimation of glomerular filtration rate in children
  publication-title: Adv. Chronic Kidney Dis.
  doi: 10.1053/j.ackd.2017.09.011
– volume: 60
  start-page: 164
  year: 2013
  ident: ref_65
  article-title: Machine learning-based method for personalized and cost-effective detection of Alzheimer’s disease
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2212278
– volume: 25
  start-page: 1650007
  year: 2016
  ident: ref_7
  article-title: WASD algorithm with pruning-while-growing and twice-pruning techniques for multi-input Euler polynomial neural network
  publication-title: Int. J. Artif. Intell. Tools
  doi: 10.1142/S021821301650007X
– volume: 83
  start-page: 1064
  year: 2016
  ident: ref_69
  article-title: Using Machine Learning Algorithms for Breast Cancer Risk Prediction and Diagnosis
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2016.04.224
– volume: 152
  start-page: 111304
  year: 2021
  ident: ref_86
  article-title: High-efficiency chaotic time series prediction based on time convolution neural network
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2021.111304
– ident: ref_70
  doi: 10.1109/CIMCA.2018.8739696
– volume: 65
  start-page: 386
  year: 1958
  ident: ref_2
  article-title: The perceptron: A probabilistic model for information storage and organization in the brain
  publication-title: Psychol. Rev.
  doi: 10.1037/h0042519
– volume: 35
  start-page: 476
  year: 2005
  ident: ref_59
  article-title: Top-down induction of decision trees classifiers—A survey
  publication-title: IEEE Trans. Syst. Man Cybern. Part Appl. Rev.
  doi: 10.1109/TSMCC.2004.843247
– volume: 30
  start-page: 1128
  year: 2014
  ident: ref_109
  article-title: Forecasting demographic forecasts
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2014.02.005
– ident: ref_62
  doi: 10.3390/electronics14132512
– volume: 34
  start-page: 32
  year: 2008
  ident: ref_17
  article-title: Weights immediate determination for feed-forward neuralnetwork with Legendre orthogonal basis function
  publication-title: J. Dalian Marit. Univ.
– volume: 35
  start-page: 80
  year: 2009
  ident: ref_19
  article-title: Weights-direct-determination and structure-adaptivedeterminationof feed-forward neural network activated with the 2nd-class Chebyshev orthogonalpolynomials
  publication-title: J. Dalian Marit. Univ.
– volume: Volume 3
  start-page: 1480
  year: 1996
  ident: ref_55
  article-title: Classification with learning k-nearest neighbors
  publication-title: Proceedings of the International Conference on Neural Networks (ICNN’96)
  doi: 10.1109/ICNN.1996.549118
– volume: 56
  start-page: 1
  year: 2012
  ident: ref_52
  article-title: A tutorial on Bayesian nonparametric models
  publication-title: J. Math. Psychol.
  doi: 10.1016/j.jmp.2011.08.004
– volume: 66
  start-page: S302
  year: 2018
  ident: ref_100
  article-title: Occupation and female breast cancer: A case-control study in Morocco
  publication-title: Rev. D’éPidéMiologie Et De Santé Publique
– ident: ref_40
  doi: 10.3390/math11030629
– volume: 7
  start-page: 22002
  year: 2019
  ident: ref_64
  article-title: Detecting diseases by human-physiological-parameter-based deep learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2893877
– volume: 193
  start-page: 451
  year: 2022
  ident: ref_41
  article-title: Multi-input bio-inspired weights and structure determination neuronet with applications in European Central Bank publications
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2021.11.007
– volume: 21
  start-page: 01019
  year: 2017
  ident: ref_80
  article-title: Drilling rig operation mode recognition by an artificial neuronet
  publication-title: E3S Web Conf.
  doi: 10.1051/e3sconf/20172101019
– volume: 498
  start-page: 43
  year: 2022
  ident: ref_29
  article-title: Exploiting the Black-Litterman framework through error-correction neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.05.036
– ident: ref_104
– volume: 82
  start-page: 659
  year: 2015
  ident: ref_99
  article-title: The U-shapes of occupational mobility
  publication-title: Rev. Econ. Stud.
  doi: 10.1093/restud/rdu037
– ident: ref_45
  doi: 10.3390/biomimetics9020120
– volume: 8
  start-page: 56630
  year: 2020
  ident: ref_31
  article-title: Predictions of USA presidential parties from 2021 to 2037 using historical data through square wave-activated WASD neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2982192
– volume: 17
  start-page: 168
  year: 2020
  ident: ref_48
  article-title: Classification assessment methods
  publication-title: Appl. Comput. Inform.
  doi: 10.1016/j.aci.2018.08.003
– volume: 30
  start-page: 1098
  year: 2014
  ident: ref_107
  article-title: Demographic forecasts and fiscal policy rules
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2014.02.009
– volume: 473
  start-page: 20150593
  year: 2016
  ident: ref_83
  article-title: Generic stabilizability for time-delayed feedback control
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2015.0593
– volume: 5
  start-page: 115
  year: 1943
  ident: ref_1
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull. Math. Biophys.
  doi: 10.1007/BF02478259
– volume: 4
  start-page: 46
  year: 2016
  ident: ref_58
  article-title: Statistical comparisons of the top 10 algorithms in data mining for classification task
  publication-title: Int. J. Interact. Multimed. Artif.
– ident: ref_23
  doi: 10.1007/978-3-642-01507-6_5
– volume: 8
  start-page: 24254
  year: 2023
  ident: ref_39
  article-title: Forecasting the gross domestic product using a weight direct determination neural network
  publication-title: AIMS Math.
  doi: 10.3934/math.20231237
– volume: 38
  start-page: 9014
  year: 2011
  ident: ref_66
  article-title: A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.01.120
– volume: 51
  start-page: 1299
  year: 2020
  ident: ref_89
  article-title: Complex varying-parameter Zhang neural networks for computing core and core-EP inverse
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-019-10141-6
– ident: ref_105
  doi: 10.1007/978-3-030-81850-0_4
– volume: 13
  start-page: 17745
  year: 2025
  ident: ref_63
  article-title: Heavy and lightweight deep learning models for semantic segmentation: A survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2025.3529812
– volume: Volume 2167
  start-page: 179
  year: 2001
  ident: ref_56
  article-title: Understanding probabilistic classifiers
  publication-title: Machine Learning, Proceedings of the ECML 2001, Freiburg, Germany, 5–7 September 2001
– volume: 17
  start-page: 138
  year: 2007
  ident: ref_4
  article-title: Improved BP neural network for transformer fault diagnosis
  publication-title: J. China Univ. Min. Technol.
  doi: 10.1016/S1006-1266(07)60029-7
– ident: ref_98
  doi: 10.1007/978-3-319-70096-0_91
– ident: ref_33
  doi: 10.3390/math11061506
– volume: 25
  start-page: 105
  year: 2018
  ident: ref_79
  article-title: Kinetic glomerular filtration rate in routine clinical practice—Applications and possibilities
  publication-title: Adv. Chronic Kidney Dis.
  doi: 10.1053/j.ackd.2017.10.013
– volume: 25
  start-page: 1761
  year: 2014
  ident: ref_20
  article-title: Weights and structure determination of multiple-input feed-forward neural network activated by Chebyshev polynomials of Class 2 via cross-validation
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-014-1667-0
– volume: 350
  start-page: 128
  year: 2019
  ident: ref_13
  article-title: Modified single-output Chebyshev-polynomial feedforward neural network aided with subset method for classification of breast cancer
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.03.046
– volume: Volume 1
  start-page: 86
  year: 2023
  ident: ref_37
  article-title: Credit card attrition classification through neuronets
  publication-title: Hybrid Methods of Modeling and Optimization in Complex Systems
– volume: 22
  start-page: 855
  year: 2023
  ident: ref_30
  article-title: Stabilization of stochastic exchange rate dynamics under central bank intervention using neuronets
  publication-title: Int. J. Inf. Technol. Decis.
  doi: 10.1142/S0219622022500560
– volume: 59
  start-page: 01004
  year: 2024
  ident: ref_34
  article-title: Customer churn classification through a weights and structure determination neural network
  publication-title: ITM Web Conf.
  doi: 10.1051/itmconf/20245901004
– volume: 40
  start-page: 471
  year: 2011
  ident: ref_61
  article-title: Discrepancy analysis of state sequences
  publication-title: Sociol. Methods Res.
  doi: 10.1177/0049124111415372
– volume: 20
  start-page: 211
  year: 2016
  ident: ref_24
  article-title: Sine neural network (SNN) with double-stage weights and structure determination (DS-WASD)
  publication-title: Soft Comput.
  doi: 10.1007/s00500-014-1491-6
– volume: 7
  start-page: 63146
  year: 2019
  ident: ref_14
  article-title: Modified weights-and-structure-determination neural network for pattern classification of flatfoot
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2916141
– ident: ref_92
  doi: 10.1109/ICECCE47252.2019.8940713
– volume: Volume 254
  start-page: 325
  year: 2024
  ident: ref_35
  article-title: A weights direct determination neural network for credit card attrition analysis
  publication-title: Machine Learning Approaches in Financial Analytics
  doi: 10.1007/978-3-031-61037-0_16
– ident: ref_97
  doi: 10.1007/s13042-025-02560-w
– ident: ref_46
  doi: 10.5430/ijrc.v1n1p1
– volume: 53
  start-page: 1
  year: 2014
  ident: ref_32
  article-title: Signum-function-activated WASD neuronet and its XOR application
  publication-title: Acta Sci. Nat. Univ. Sunyatseni
– volume: 58
  start-page: 92
  year: 2021
  ident: ref_102
  article-title: Measuring the telework potential of jobs: Evidence from the international standard classification of occupations
  publication-title: Philipp. Rev. Econ.
  doi: 10.37907/5ERP1202JD
– volume: 1
  start-page: 445
  year: 1988
  ident: ref_3
  article-title: Theory of the backpropagation neural network
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(88)90469-8
– ident: ref_54
– volume: 7
  start-page: 33001
  year: 2019
  ident: ref_16
  article-title: Weight and structure determination neural network aided with double pseudoinversion for diagnosis of flat foot
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2903634
– volume: 118
  start-page: 634
  year: 2006
  ident: ref_77
  article-title: Prevalence of flat foot in preschool-aged children
  publication-title: Pediatrics
  doi: 10.1542/peds.2005-2126
– ident: ref_15
  doi: 10.23919/ChiCC.2019.8865697
– volume: 35
  start-page: 555
  year: 2019
  ident: ref_95
  article-title: Nowcasting and forecasting GDP in emerging markets using global financial and macroeconomic diffusion indexes
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2018.10.008
– volume: 198
  start-page: 48
  year: 2016
  ident: ref_11
  article-title: CP-activated WASD neuronet approach to Asian population prediction with abundant experimental verification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.12.111
– volume: 58
  start-page: 216
  year: 2025
  ident: ref_96
  article-title: A comprehensive survey of deep learning for time series forecasting: Architectural diversity and open challenges
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-025-11223-9
– volume: 34
  start-page: 3019
  year: 2021
  ident: ref_43
  article-title: A fuzzy WASD neuronet with application in breast cancer prediction
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06572-9
SSID ssj0001853599
Score 2.2989564
SecondaryResourceType review_article
Snippet The weights and structure determination (WASD) neuronet (or neural network) is a single-hidden-layer feedforward neuronet that exhibits an excellent...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 62
SubjectTerms Algorithms
Approximation
Artificial intelligence
Classification
Cognitive tasks
Forecasts and trends
Heuristic methods
Machine learning
Moore–Penrose inverse
Neural networks
Neurons
Polynomials
Real time
single-hidden-layer feedforward neuronet
Trends
weights and structure determination
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXLigVoBY2FY-IHFAURM7tuNT1QdLQVouUNGb5ccYesmWTbZX_nrHXodVheAWJZFjz4znlfE3hLzlrUUpqVH7SR2rNrSs0jGKSkitInCofa7NWX6Rl1ft52txXRJuQymrnHRiVtRh5VOO_BgNf1ujxpXs5PZXlbpGpb-rpYXGY_KkQUuT5LxbfNzlWNAWCa23Z2U4RvfHN1Ml99Bk8ZXsgT3KsP3_Us7Z4iz2ybPiKtLTLW8PyCPon5PfBVCJbotZqe0DPZ8aogz0pqfJr0xnl-gSRvsTNgWKmY4ris4e_VTaoN4BjgyWriL9ntOjeaivGU52swZ6MdXJpHXQjOHRwzi8IFeLD9_OL6vSRKHyGPuxKqrUiihqFmqveCN8E7m1LASlHQahqvHcSuZARR69BBei4Fa5hneKBdkCf0n2evzAK0KFrnWUXEoLyIu6cT4EziNHpwivnJ-R9xMpze0WK8NgjJEIb_4m_IycJWr_eTPhXOcbq_UPU7aNqRlwh_PxtfCtYKETygFT0LXoRolOzsi7xCuTduO4tt6WQwU44YRrZU5RAiQGEULPyHxipynbdDA7oXr9_8dvyFOWGv_myr852UNmwCF6I6M7yiJ3D7U84Y4
  priority: 102
  providerName: ProQuest
Title Current Trends and Challenges in Applying Metaheuristics to the Innovative Area of Weight and Structure Determination Neuronets
URI https://www.proquest.com/docview/3244041362
https://doaj.org/article/02e3b3a7c05c452d857be27e84976586
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXLggECAWysoHJA4oquNnfNw-loLYClEqerP8GIteUtRNufavd-wkqAghLpwSRZHjfDP2zFgz3xDyRkiPWsJw99M2NzJJ3ticVaO0NRkEsFhzczYn-vhMfjxX53dafZWcsJEeeARuj3EQQXgTmYpS8dQpE4Ab6CQaUtVVsm1m2Z1gqp6uoBVS1o5VMgLj-r2LOYd721bF1fw3S1QJ-_-2LVdbs35MHk1OIl2Nk3tC7kH_lNxMVEp0TGOlvk_0YG6FsqUXPS0eZalaohsY_He4nkiY6XBJ0c2jH6YGqD8BRwZPLzP9Vg9G61CnlUj2-gro4ZwhU_6DVvaOHobtM3K2Pvp6cNxM7ROaiFEfb7IpTYiy5YlFI1oV2yy85ykZGzD8NG0UXvMAJoscNYSUFeIcWtEZnrQE8Zzs9PiBF4Qqy2zWQmsPErFrQ0xJiCzQHcK7EBfk3Qyl-zGyZDiMLgrw7k_gF2S_oP3rzcJwXR-g3N0kd_cvuS_I2yIrV9bhcOWjn8oJcMKF0cqtUAM0hg_KLsjuLE43LdCtQz9SMjTgmr_8H7N5RR7y0hi4Zgbukh0UGbxGb2UIS3K_W79fkgerw82nU7zuH518_rKs6noLJTztUg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuCASILQV8AHFAURM7tteHCvWpXdpdIWhFb8bxA3rJtpsUxIl_xG9k7CRUCMGttyiJHHtmPA9nZj6AF6w0KCU5aj-hQla6kmYqBJ5xoWTwzOc25ebMF2J6Wr4942dr8HOohYlplYNOTIraLW08I99Cw1_mqHEFfXNxmUXUqPh3dYDQ6MTiyH__hiFbsz3bR_6-pPTw4GRvmvWoApnFYIhmQUZsnqCoy61kBbdFYMZQ56SqMCqThWVG0MrLwIIVvnKBMyOrgk0kdaL0DMe9BetlrGgdwfruweLd--tTHbR-XKmuOocxlW-dD7njTZE2jKB_WMAEFPAvc5Bs3OE9uNs7p2Snk6b7sObrB_Cjb-FEuvRZYmpH9gYIloac1yR6srFaisx9a774q775M2mXBN1LMuuBV796HNkbsgzkYzqQTUN9SA1sr1ae7A-ZOXEdJHUNqX3bPITTGyHwIxjV-IHHQLjKVRBMCOOR-3lRWecYCwzdMLyq7BheD6TUF113Do1RTSS8_pvwY9iN1P79ZuysnW4sV591v1F1Tj2rcD4257bk1E24rDyVflKi48YnYgyvIq903P_tyljTlzHghGMnLb2DEiAwbOFqDJsDO3WvGBp9LcYb_3_8HG5PT-bH-ni2OHoCd2iEHU55h5swQsb4p-gLtdWzXgAJfLppmf8FULUf3g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRCXigoQC6X1AcQBRevYsR0fECpdli6lFRJU9Gb8hF6y7SYFceJ_9dcxdhIqhODWW5RETjL-PA9nZj6EnrDKAEoIaD-hYlH5ihYqRl5woWQMLBCXc3MOj8T-cfX2hJ-socuxFialVY46MStqv3Rpj3wKhr8ioHEFncYhLeL9bP7y7LxIDFLpT-tIp9FD5CD8-A7hW_tiMYO5fkrp_PXHvf1iYBgoHARGtIgy8fRERT1xkpXclZEZQ72XykKEJkvHjKA2yMiiE8H6yJmRtmS1pF5UgcG4N9BNyaRKgV89f3O1vwN2kCvV1-kwpsj0dMwib8u8dAT9wxZmyoB_GYZs7eZ30MbgpuLdHlebaC00d9HPoZkT7hNpsWk83hvJWFp82uDk06a6KXwYOvM1XAxtoHG3xOBo4sVAwfotwMjB4GXEn_LWbB7qQ25le7EKeDbm6KTvwLl_SBO69h46vhbx3kfrDTzgAcJcERUFE8IEwAEprfOescjAIYMj6ybo-ShKfdb36dAQ3yTB678FP0GvkrR_35l6bOcTy9UXPSxZTWhgFt7HEe4qTn3NpQ1UhroCF47XYoKepbnSSRN0K-PMUNAAL5x6auldQICAAIarCdoap1MPKqLVV4B--P_LO-gWIF2_WxwdPEK3aeIfzgmIW2gd5iU8Bqeos9sZfRh9vm64_wJr0iKu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Current+Trends+and+Challenges+in+Applying+Metaheuristics+to+the+Innovative+Area+of+Weight+and+Structure+Determination+Neuronets&rft.jtitle=Inventions+%28Basel%29&rft.au=Mourtas%2C+Spyridon+D&rft.au=Li%2C+Shuai&rft.au=Cao%2C+Xinwei&rft.au=Liao%2C+Bolin&rft.date=2025-08-01&rft.pub=MDPI+AG&rft.issn=2411-5134&rft.eissn=2411-5134&rft.volume=10&rft.issue=4&rft_id=info:doi/10.3390%2Finventions10040062&rft.externalDocID=A853688259
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2411-5134&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2411-5134&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2411-5134&client=summon