QoS prediction of cloud services by selective ensemble learning on prefilling‐based matrix factorizations
Summary When selecting services from a cloud center to build applications, the quality of service (QoS) is an important nonfunctional attribute to be considered. However, in actual application scenarios, the QoS details for many services may not be available. This has led to a situation where predic...
Saved in:
Published in | Concurrency and computation Vol. 36; no. 27 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
10.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
When selecting services from a cloud center to build applications, the quality of service (QoS) is an important nonfunctional attribute to be considered. However, in actual application scenarios, the QoS details for many services may not be available. This has led to a situation where prediction of the missing QoS records for services has become a key problem for service selection. This article presents a selective ensemble learning (SEL) framework for prefilling‐based matrix factorization (PFMF) predictors. In each PFMF predictor, the improved collaborative filtering is defined by examining the stability of the QoS records when measuring the similarity of users (or services), and then used to prefill empty records in the initial QoS matrix. To ensure the diversity of the basic PFMF predictors, various prefilled QoS matrices are constructed for the matrix factorization. In this process, different reference weights are assigned to the original and the prefilled QoS records. Finally, particle swarm optimization is used to set the ensemble weights for the basic PFMF predictors. The proposed SEL on PFMF (SEL‐PFMF) algorithm is validated on a public dataset, where its prediction performance outperforms the state‐of‐the‐art algorithms, and also shows good stability. |
---|---|
AbstractList | When selecting services from a cloud center to build applications, the quality of service (QoS) is an important nonfunctional attribute to be considered. However, in actual application scenarios, the QoS details for many services may not be available. This has led to a situation where prediction of the missing QoS records for services has become a key problem for service selection. This article presents a selective ensemble learning (SEL) framework for prefilling‐based matrix factorization (PFMF) predictors. In each PFMF predictor, the improved collaborative filtering is defined by examining the stability of the QoS records when measuring the similarity of users (or services), and then used to prefill empty records in the initial QoS matrix. To ensure the diversity of the basic PFMF predictors, various prefilled QoS matrices are constructed for the matrix factorization. In this process, different reference weights are assigned to the original and the prefilled QoS records. Finally, particle swarm optimization is used to set the ensemble weights for the basic PFMF predictors. The proposed SEL on PFMF (SEL‐PFMF) algorithm is validated on a public dataset, where its prediction performance outperforms the state‐of‐the‐art algorithms, and also shows good stability. Summary When selecting services from a cloud center to build applications, the quality of service (QoS) is an important nonfunctional attribute to be considered. However, in actual application scenarios, the QoS details for many services may not be available. This has led to a situation where prediction of the missing QoS records for services has become a key problem for service selection. This article presents a selective ensemble learning (SEL) framework for prefilling‐based matrix factorization (PFMF) predictors. In each PFMF predictor, the improved collaborative filtering is defined by examining the stability of the QoS records when measuring the similarity of users (or services), and then used to prefill empty records in the initial QoS matrix. To ensure the diversity of the basic PFMF predictors, various prefilled QoS matrices are constructed for the matrix factorization. In this process, different reference weights are assigned to the original and the prefilled QoS records. Finally, particle swarm optimization is used to set the ensemble weights for the basic PFMF predictors. The proposed SEL on PFMF (SEL‐PFMF) algorithm is validated on a public dataset, where its prediction performance outperforms the state‐of‐the‐art algorithms, and also shows good stability. |
Author | Mao, Chengying Towey, Dave Wen, Linlin Chen, Jifu Zhao, Zhuang |
Author_xml | – sequence: 1 givenname: Chengying orcidid: 0000-0001-8178-1205 surname: Mao fullname: Mao, Chengying organization: Jiangxi University of Finance and Economics – sequence: 2 givenname: Jifu surname: Chen fullname: Chen, Jifu email: chenjifu1989@sina.com organization: Jiangxi University of Finance and Economics – sequence: 3 givenname: Dave surname: Towey fullname: Towey, Dave organization: University of Nottingham Ningbo China – sequence: 4 givenname: Zhuang surname: Zhao fullname: Zhao, Zhuang organization: Bank of Ningbo Corporation Ltd – sequence: 5 givenname: Linlin surname: Wen fullname: Wen, Linlin organization: Jiangxi University of Finance and Economics |
BookMark | eNp1kM1KAzEQx4NUsK2CjxDw4mVrkt10t0cp9QMKKuo5ZJOJpKabNdlW68lH8Bl9ElMr3jwM8_WbGeY_QL3GN4DQMSUjSgg7Uy2MKlaxPdSnPGcZGedF7y9m4wM0iHFBCKUkp330fOfvcRtAW9VZ32BvsHJ-pXGEsLYKIq43KXaQ2mvA0ERY1g6wAxka2zzhNJPGjXUuZV8fn7WMoPFSdsG-YSNV54N9l9vd8RDtG-kiHP36IXq8mD1Mr7L5zeX19HyeKcYLltWGSaBASwljpqjhumbSUF0lg5owXua5ZqkExEjNYFJRrirJC0O0LPkkH6KT3d42-JcVxE4s_Co06aTIKSsLUjDOEnW6o1TwMaYXRBvsUoaNoERspRRJSrGVMqHZDn21Djb_cmJ6O_vhvwHxZHor |
Cites_doi | 10.1109/TKDE.2012.51 10.1016/j.ins.2018.02.030 10.1016/j.knosys.2018.09.011 10.1145/2983528 10.1016/j.knosys.2013.11.006 10.1016/j.knosys.2022.110081 10.1137/1.9781611972757.43 10.1145/2556270 10.1109/SCC.2012.36 10.1016/j.procs.2015.04.237 10.1109/TSC.2011.59 10.1016/j.engappai.2015.08.010 10.1016/j.jnca.2014.07.019 10.1109/MC.2009.263 10.1016/j.future.2017.06.020 10.1016/j.neucom.2021.02.107 10.1007/s11036-019-01241-7 10.1002/cpe.6318 10.1016/j.knosys.2017.10.001 10.1109/TPDS.2020.3016344 10.1016/j.knosys.2021.108062 10.1109/ICDM.2010.127 10.1145/3158369 10.1109/TSC.2019.2891517 10.1109/TSC.2018.2876532 10.1016/j.chemolab.2015.08.020 10.1038/nature14539 10.1145/963770.963776 10.1109/TSC.2015.2433251 10.1016/j.future.2015.01.008 10.1007/s13042-017-0762-9 10.1109/TSC.2020.2980793 10.1016/j.future.2017.05.036 10.1109/TSC.2020.2995571 10.1002/9780470940105 10.1145/2801164 10.1109/TSC.2012.34 10.3233/JIFS-224565 10.1016/j.cosrev.2022.100514 10.1145/1401890.1401944 10.1145/3485447.3512107 10.1038/44565 10.2307/2685263 10.1109/SCC.2014.23 10.1007/978-1-4614-7518-7_15 10.1109/TSC.2010.52 10.1109/TPDS.2020.3010521 |
ContentType | Journal Article |
Copyright | 2024 John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2024 John Wiley & Sons Ltd. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/cpe.8282 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1532-0634 |
EndPage | n/a |
ExternalDocumentID | 10_1002_cpe_8282 CPE8282 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Natural Science Foundation of the Jiangxi Province funderid: 20162BCB23036; 20171ACB21031 – fundername: National Natural Science Foundation of China funderid: 62172195; 61872167 – fundername: Science Foundation of Jiangxi Educational Committee funderid: GJJ180276 |
GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACCZN ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AGHNM AGYGG AHBTC AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA HGLYW HHY HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIH WIK WOHZO WQJ WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2542-bf2ae1e17ae62c1f5db2af1d8f1deb025733d22afe0fad2e9815c8a54f0da7593 |
IEDL.DBID | DR2 |
ISSN | 1532-0626 |
IngestDate | Sat Jul 26 00:05:32 EDT 2025 Tue Jul 01 02:35:33 EDT 2025 Sun Jul 06 04:44:59 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2542-bf2ae1e17ae62c1f5db2af1d8f1deb025733d22afe0fad2e9815c8a54f0da7593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8178-1205 |
PQID | 3127404252 |
PQPubID | 2045170 |
PageCount | 20 |
ParticipantIDs | proquest_journals_3127404252 crossref_primary_10_1002_cpe_8282 wiley_primary_10_1002_cpe_8282_CPE8282 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 10 December 2024 |
PublicationDateYYYYMMDD | 2024-12-10 |
PublicationDate_xml | – month: 12 year: 2024 text: 10 December 2024 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Concurrency and computation |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2004; 22 2009; 42 2019; 52 2015; 149 2019; 10 2018; 80 2018; 82 2019; 163 1999; 401 2013; 6 2015; 46 2022; 241 2021; 32 2015; 49 2021; 33 2001 2000 2023; 259 1988; 42 2012; 25 2014; 7 2014; 56 2022; 471 2017; 60 2012 2011 2010 2015; 521 2015; 50 2016; 10 2009 1998 2022; 46 2008 2014; 47 2007 2005 2018; 442‐443 2011; 4 2014; 45 2017; 138 2021; 14 2019; 40 2023; 44 2020; 151 2022 2019 2022; 15 2020; 25 2017 2014 2016; 9 e_1_2_9_52_1 e_1_2_9_50_1 Sarwar B (e_1_2_9_44_1) 2001 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 Symeonidis P (e_1_2_9_46_1) 2017 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_8_1 Lee DD (e_1_2_9_49_1) 2000 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 Breese JS (e_1_2_9_43_1) 1998 Cai D (e_1_2_9_22_1) 2009 Mao C (e_1_2_9_13_1) 2019 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_34_1 e_1_2_9_57_1 Paterek A (e_1_2_9_11_1) 2007 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 Singh PK (e_1_2_9_26_1) 2019; 40 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_23_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 Salakhutdinov R (e_1_2_9_58_1) 2007 Botangen KA (e_1_2_9_31_1) 2020; 151 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – year: 2011 – volume: 151 start-page: 1 issue: 113347 year: 2020 end-page: 18 article-title: Geographic‐aware collaborative filtering for web service recommendation publication-title: Expert Syst Appl – volume: 149 start-page: 153 year: 2015 end-page: 165 article-title: Particle swarm optimization (PSO): a tutorial publication-title: Chemometr Intell Lab Syst – volume: 9 start-page: 686 issue: 5 year: 2016 end-page: 699 article-title: Location‐aware and personalized collaborative filtering for web service recommendation publication-title: IEEE Trans Serv Comput – volume: 241 year: 2022 article-title: DeepTSQP: temporal‐aware service QoS prediction via deep neural network and feature integration publication-title: Knowl‐Based Syst – volume: 401 start-page: 788 issue: 6755 year: 1999 end-page: 791 article-title: Learning the parts of objects by non‐negative matrix factorization publication-title: Nature – start-page: 375 year: 2014 end-page: 397 – volume: 163 start-page: 484 year: 2019 end-page: 494 article-title: Singular value decomposition based recommendation using imputed data publication-title: Knowl‐Based Syst – volume: 42 start-page: 30 issue: 8 year: 2009 end-page: 37 article-title: Matrix factorization techniques for recommender systems publication-title: Computer – volume: 44 start-page: 9879 issue: 6 year: 2023 end-page: 9899 article-title: Deep learning based web service recommendation methods: a survey publication-title: J Intell Fuzzy Syst – start-page: 285 year: 2001 end-page: 295 – volume: 50 start-page: 111 year: 2015 end-page: 126 article-title: Search‐based QoS ranking prediction for web services in cloud environments publication-title: Future Gener Comput Syst – volume: 22 start-page: 143 issue: 1 year: 2004 end-page: 177 article-title: Item‐based top‐N recommendation algorithms publication-title: ACM Trans Inf Syst – volume: 80 start-page: 355 year: 2018 end-page: 367 article-title: Social collaborative service recommendation approach based on user's trust and domain‐specific expertise publication-title: Future Gener Comput Syst – start-page: 107 year: 2014 end-page: 114 – volume: 15 start-page: 2439 issue: 4 year: 2022 end-page: 2454 article-title: A survey on web service QoS prediction methods publication-title: IEEE Trans Serv Comput – start-page: 25 year: 2019 end-page: 30 – volume: 10 start-page: 813 year: 2019 end-page: 831 article-title: How good your recommender system is? A survey on evaluations in recommendation publication-title: Int J Mach Learn Cybern – volume: 46 start-page: 58 year: 2015 end-page: 66 article-title: An imputation‐based matrix factorization method for improving accuracy of collaborative filtering systems publication-title: Eng Appl Artif Intel – volume: 33 start-page: 1 issue: 17 year: 2021 end-page: 16 article-title: Web service quality of service prediction via regional reputation‐based matrix factorization publication-title: Concurr Comput – volume: 32 start-page: 281 issue: 2 year: 2021 end-page: 294 article-title: Online collaborative data caching in edge computing publication-title: IEEE Trans Parallel Distrib Syst – start-page: 1010 year: 2009 end-page: 1015 – volume: 49 start-page: 136 year: 2015 end-page: 146 article-title: Matrix factorization model in collaborative filtering algorithms: a survey publication-title: Procedia Comput Sci – volume: 25 start-page: 1336 issue: 6 year: 2012 end-page: 1353 article-title: Nonnegative matrix factorization: a comprehensive review publication-title: IEEE Trans Knowl Data Eng – start-page: 1257 year: 2007 end-page: 1264 – volume: 56 start-page: 156 year: 2014 end-page: 166 article-title: A new user similarity model to improve the accuracy of collaborative filtering publication-title: Knowl‐Based Syst – volume: 42 start-page: 59 issue: 1 year: 1988 end-page: 66 article-title: Thirteen ways to look at the correlation coefficient publication-title: Am Stat – volume: 259 year: 2023 article-title: QoS prediction for web services in cloud environments based on swarm intelligence search publication-title: Knowl‐Based Syst – volume: 45 start-page: 134 issue: C year: 2014 end-page: 150 article-title: Cloud service selection: state‐of‐the‐art and future research directions publication-title: J Netw Comput Appl – start-page: 1 year: 2007 end-page: 4 – volume: 40 start-page: 397 issue: 2 year: 2019 end-page: 412 article-title: An improved similarity calculation method for collaborative filtering‐based recommendation, considering neighbor's liking and disliking of categorical attributes of items publication-title: J Inf Optim Sci – volume: 46 year: 2022 article-title: Cloud services selection: a systematic review and future research directions publication-title: Comput Sci Rev – start-page: 995 year: 2010 end-page: 1000 – start-page: 1 year: 2005 end-page: 5 – volume: 60 start-page: 64 issue: 4 year: 2017 end-page: 72 article-title: A service computing manifesto: the next 10 years publication-title: Commun ACM – volume: 47 start-page: 1 issue: 1 year: 2014 end-page: 45 article-title: Collaborative filtering beyond the user‐item matrix: a survey of the state of the art and future challenges publication-title: ACM Comput Surv – volume: 10 start-page: 1 issue: 1 year: 2016 end-page: 25 article-title: A spatial‐temporal QoS prediction approach for time‐aware web service recommendation publication-title: ACM Trans Web – volume: 15 start-page: 2455 issue: 4 year: 2022 end-page: 2472 article-title: Web service QoS prediction via collaborative filtering: a survey publication-title: IEEE Trans Serv Comput – volume: 7 start-page: 32 issue: 1 year: 2014 end-page: 39 article-title: Investigating QoS of real‐world web services publication-title: IEEE Trans Serv Comput – volume: 4 start-page: 140 issue: 2 year: 2011 end-page: 152 article-title: QoS‐aware web service recommendation by collaborative filtering publication-title: IEEE Trans Serv Comput – volume: 14 start-page: 1333 issue: 5 year: 2021 end-page: 1344 article-title: Covering‐based web service quality prediction via neighborhood‐aware matrix factorization publication-title: IEEE Trans Serv Comput – volume: 521 start-page: 436 year: 2015 end-page: 444 article-title: Deep learning publication-title: Nature – start-page: 43 year: 1998 end-page: 52 – start-page: 1987 year: 2022 end-page: 1996 – volume: 471 start-page: 12 year: 2022 end-page: 20 article-title: QoS prediction for smart service management and recommendation based on the location of mobile users publication-title: Neurocomputing – volume: 442‐443 start-page: 145 year: 2018 end-page: 157 article-title: Reliability quality measures for recommender systems publication-title: Inform Sci – volume: 52 start-page: 1 issue: 1 year: 2019 end-page: 38 article-title: Deep learning based recommender system: a survey and new perspectives publication-title: ACM Comput Surv – volume: 6 start-page: 289 issue: 3 year: 2013 end-page: 299 article-title: Collaborative web service QoS prediction via neighborhood integrated matrix factorization publication-title: IEEE Trans Serv Comput – start-page: 162 year: 2012 end-page: 169 – volume: 14 start-page: 1264 issue: 5 year: 2021 end-page: 1277 article-title: A location‐based factorization machine model for web service QoS prediction publication-title: IEEE Trans Serv Comput – volume: 25 start-page: 391 year: 2020 end-page: 401 article-title: QoS prediction for service recommendation with deep feature learning in edge computing environment publication-title: Mob Netw Appl – year: 2017 – volume: 82 start-page: 669 year: 2018 end-page: 678 article-title: Collaborative QoS prediction with context‐sensitive matrix factorization publication-title: Future Gener Comput Syst – volume: 32 start-page: 31 issue: 1 year: 2021 end-page: 44 article-title: Cost‐effective app data distribution in edge computing publication-title: IEEE Trans Parallel Distrib Syst – volume: 138 start-page: 188 year: 2017 end-page: 201 article-title: Your neighbors alleviate cold‐start: on geographical neighborhood influence to collaborative web service QoS prediction publication-title: Knowl‐Based Syst – start-page: 535 year: 2000 end-page: 541 – start-page: 426 year: 2008 end-page: 434 – ident: e_1_2_9_48_1 doi: 10.1109/TKDE.2012.51 – ident: e_1_2_9_53_1 doi: 10.1016/j.ins.2018.02.030 – ident: e_1_2_9_14_1 doi: 10.1016/j.knosys.2018.09.011 – start-page: 535 volume-title: Proceedings of the 13th International Conference on Neural Information Processing Systems (NIPS'00) year: 2000 ident: e_1_2_9_49_1 – ident: e_1_2_9_3_1 doi: 10.1145/2983528 – ident: e_1_2_9_25_1 doi: 10.1016/j.knosys.2013.11.006 – ident: e_1_2_9_55_1 doi: 10.1016/j.knosys.2022.110081 – ident: e_1_2_9_54_1 doi: 10.1137/1.9781611972757.43 – ident: e_1_2_9_8_1 doi: 10.1145/2556270 – start-page: 25 volume-title: Proceedings of the 7th International Conference on Advanced Cloud and Big Data (CBD'19) year: 2019 ident: e_1_2_9_13_1 – ident: e_1_2_9_23_1 doi: 10.1109/SCC.2012.36 – ident: e_1_2_9_45_1 doi: 10.1016/j.procs.2015.04.237 – ident: e_1_2_9_28_1 doi: 10.1109/TSC.2011.59 – ident: e_1_2_9_12_1 doi: 10.1016/j.engappai.2015.08.010 – ident: e_1_2_9_4_1 doi: 10.1016/j.jnca.2014.07.019 – ident: e_1_2_9_10_1 doi: 10.1109/MC.2009.263 – start-page: 1 volume-title: Proceedings of the KDD Cup and Workshop (KDDCup'07) year: 2007 ident: e_1_2_9_11_1 – ident: e_1_2_9_27_1 doi: 10.1016/j.future.2017.06.020 – ident: e_1_2_9_19_1 doi: 10.1016/j.neucom.2021.02.107 – ident: e_1_2_9_37_1 doi: 10.1007/s11036-019-01241-7 – ident: e_1_2_9_29_1 doi: 10.1002/cpe.6318 – ident: e_1_2_9_30_1 doi: 10.1016/j.knosys.2017.10.001 – ident: e_1_2_9_17_1 doi: 10.1109/TPDS.2020.3016344 – ident: e_1_2_9_38_1 doi: 10.1016/j.knosys.2021.108062 – ident: e_1_2_9_32_1 doi: 10.1109/ICDM.2010.127 – ident: e_1_2_9_36_1 doi: 10.1145/3158369 – volume: 151 start-page: 1 issue: 113347 year: 2020 ident: e_1_2_9_31_1 article-title: Geographic‐aware collaborative filtering for web service recommendation publication-title: Expert Syst Appl – ident: e_1_2_9_24_1 doi: 10.1109/TSC.2019.2891517 – ident: e_1_2_9_34_1 doi: 10.1109/TSC.2018.2876532 – ident: e_1_2_9_59_1 doi: 10.1016/j.chemolab.2015.08.020 – ident: e_1_2_9_35_1 doi: 10.1038/nature14539 – ident: e_1_2_9_9_1 doi: 10.1145/963770.963776 – volume-title: Matrix and Tensor Factorization Techniques for Recommender Systems year: 2017 ident: e_1_2_9_46_1 – start-page: 1010 volume-title: Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI'09) year: 2009 ident: e_1_2_9_22_1 – start-page: 1257 volume-title: Proceedings of the 20th International Conference on Neural Information Processing Systems (NIPS'07) year: 2007 ident: e_1_2_9_58_1 – ident: e_1_2_9_20_1 doi: 10.1109/TSC.2015.2433251 – ident: e_1_2_9_41_1 doi: 10.1016/j.future.2015.01.008 – ident: e_1_2_9_52_1 doi: 10.1007/s13042-017-0762-9 – ident: e_1_2_9_7_1 doi: 10.1109/TSC.2020.2980793 – ident: e_1_2_9_21_1 doi: 10.1016/j.future.2017.05.036 – volume: 40 start-page: 397 issue: 2 year: 2019 ident: e_1_2_9_26_1 article-title: An improved similarity calculation method for collaborative filtering‐based recommendation, considering neighbor's liking and disliking of categorical attributes of items publication-title: J Inf Optim Sci – ident: e_1_2_9_15_1 doi: 10.1109/TSC.2020.2995571 – ident: e_1_2_9_2_1 doi: 10.1002/9780470940105 – ident: e_1_2_9_18_1 doi: 10.1145/2801164 – ident: e_1_2_9_51_1 doi: 10.1109/TSC.2012.34 – ident: e_1_2_9_40_1 doi: 10.3233/JIFS-224565 – ident: e_1_2_9_5_1 doi: 10.1016/j.cosrev.2022.100514 – ident: e_1_2_9_56_1 doi: 10.1145/1401890.1401944 – ident: e_1_2_9_39_1 doi: 10.1145/3485447.3512107 – ident: e_1_2_9_47_1 doi: 10.1038/44565 – ident: e_1_2_9_42_1 doi: 10.2307/2685263 – start-page: 285 volume-title: Proceedings of the 10th International Conference on World Wide Web (WWW'01) year: 2001 ident: e_1_2_9_44_1 – start-page: 43 volume-title: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98) year: 1998 ident: e_1_2_9_43_1 – ident: e_1_2_9_50_1 – ident: e_1_2_9_57_1 doi: 10.1109/SCC.2014.23 – ident: e_1_2_9_6_1 doi: 10.1007/978-1-4614-7518-7_15 – ident: e_1_2_9_16_1 doi: 10.1109/TSC.2010.52 – ident: e_1_2_9_33_1 doi: 10.1109/TPDS.2020.3010521 |
SSID | ssj0011031 |
Score | 2.379724 |
Snippet | Summary
When selecting services from a cloud center to build applications, the quality of service (QoS) is an important nonfunctional attribute to be... When selecting services from a cloud center to build applications, the quality of service (QoS) is an important nonfunctional attribute to be considered.... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Algorithms Cloud computing collaborative filtering Ensemble learning Factorization matrix factorization Particle swarm optimization prefilling QoS prediction Quality of service selective ensemble learning Stability |
Title | QoS prediction of cloud services by selective ensemble learning on prefilling‐based matrix factorizations |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.8282 https://www.proquest.com/docview/3127404252 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kJy_WJ1arrCDe0mY3SZMcpbQUQfFVKHgI-4pIHylNC-rJn-Bv9Jc4k0ergiAeQiDJQLKzM_vNZPYbQk6V74oA8xpBoLXl-sJYYQD2yCSgU-GHnGlMDVxetXp992LgDYqqStwLk_NDLBNuaBmZv0YDFzJtrkhD1dQ0IFxA94ulWoiHbpfMUQy7F-RUqdyyAbSXvLM2b5aC31eiFbz8ClKzVaZbJQ_l--XFJcPGYi4b6vUHdeP_PmCTbBTgk57ns2WLrJnJNqmWjR1oYec7ZHiT3NHpDP_hoN5oElM1ShaapoVnofKFplkHHXCWFCJhM5YjQ4sWFI8UZEA8fsoIvz_e3nGt1HSM7QCead7ip9z_uUv63c59u2cVXRksBcEkt2TMhWGGgVpbXLHY05KLmOkADiMBQvmOozlcMnYsNDdhwDwVCM-NbS18L3T2SGWSTMw-oQGAZUCkqsVd5QpbSCE0OAVbO55RkpsaOSk1FE1z8o0op1nmEYxehKNXI_VSdVFhfmnkMAi20R3B7bNMB7_KR-3rDp4P_vrgIVnnAGywpIXZdVKZzxbmCIDJXB5nU_ATW_jjGA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsNAFB1KXejG-sRq1RHEXdrMJGkSXElpqdoWHy10IYR5RaRP-gB15Sf4jX6Jd_JoVRDERQgkGUjmzr1z7s3MOQidCtdmnq5reJ6Uhu0yZfge-CPhgE6Z61MidWmg2SrXO_ZV1-lm0Hm6Fybmh1gU3LRnRPFaO7guSJeWrKFirIqQL0D8XdGC3lE-dbfgjiJavyAmS6WGCbA9ZZ41aSlt-X0uWgLMrzA1mmdqOfSQvmG8vKRXnM94Ubz-IG_85ydsoPUEf-KLeMBsoowabqFcqu2AE1ffRr3b0T0eT_RvHG06PAqx6I_mEk-T4IL5C55GIjoQLzEkw2rA-wonKhSPGNpA8_Ap4vz-eHvX06XEA60I8IxjlZ90C-gO6tSq7UrdSIQZDAH5JDV4SJkiioBly1SQ0JGcspBIDw7FAUW5liUpXFJmyCRVvkcc4THHDk3JXMe3dlF2OBqqPYQ9wMsASkWZ2sJmJuOMSYgLprQcJThVeXSSmigYx_wbQcy0TAPovUD3Xh4VUtsFiQdOA4tAvq0jEtw-i4zwa_ugclPV5_2_PniMVuvtZiNoXLauD9AaBZyjV7gQs4Cys8lcHQJOmfGjaDx-An-f5zM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ZSsNAFB2kgvhiXbFadQTxLW1mkjTTR-lC3UpdCgUfwmwR6UoXUJ_8BL_RL_FOllYFQXwIgSQXkrlz75w7mTkHoRPpu5yZeQ3GlLJcn2urzCAeiQB0yv0yJcpMDVw3S422e9HxOsmqSrMXJuaHmE-4mciI8rUJ8JEKiwvSUDnSBSgXIP0uuyWbmR5dvZ1TRxEjXxBzpVLLBtSeEs_atJhafh-KFvjyK0qNhpl6Fj2kLxivLukWZlNRkK8_uBv_9wXraC1Bn_gs7i4baEkPNlE2VXbASaBvoe7N8A6PxuYnjnEcHoZY9oYzhSdJasHiBU8iCR3IlhhKYd0XPY0TDYpHDDZgHj5FjN8fb-9msFS4b_QAnnGs8ZNuAN1G7XrtvtKwElkGS0I1SS0RUq6JJuDXEpUk9JSgPCSKwaEFYCjfcRSFS9oOuaK6zIgnGffc0Fbc98rODsoMhgO9izADtAyQVJaoK11uc8G5gqxgK8fTUlCdQ8eph4JRzL4RxDzLNIDWC0zr5VA-dV2QxN8kcAhU2yYfwe3TyAe_2geVVs2c9_764BFaaVXrwdV583IfrVIAOWZ5C7HzKDMdz_QBgJSpOIx64ycIpOXr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=QoS+prediction+of+cloud+services+by+selective+ensemble+learning+on+prefilling%E2%80%90based+matrix+factorizations&rft.jtitle=Concurrency+and+computation&rft.au=Mao%2C+Chengying&rft.au=Chen%2C+Jifu&rft.au=Towey%2C+Dave&rft.au=Zhao%2C+Zhuang&rft.date=2024-12-10&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=36&rft.issue=27&rft_id=info:doi/10.1002%2Fcpe.8282&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpe_8282 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon |