QoS prediction of cloud services by selective ensemble learning on prefilling‐based matrix factorizations

Summary When selecting services from a cloud center to build applications, the quality of service (QoS) is an important nonfunctional attribute to be considered. However, in actual application scenarios, the QoS details for many services may not be available. This has led to a situation where predic...

Full description

Saved in:
Bibliographic Details
Published inConcurrency and computation Vol. 36; no. 27
Main Authors Mao, Chengying, Chen, Jifu, Towey, Dave, Zhao, Zhuang, Wen, Linlin
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 10.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary When selecting services from a cloud center to build applications, the quality of service (QoS) is an important nonfunctional attribute to be considered. However, in actual application scenarios, the QoS details for many services may not be available. This has led to a situation where prediction of the missing QoS records for services has become a key problem for service selection. This article presents a selective ensemble learning (SEL) framework for prefilling‐based matrix factorization (PFMF) predictors. In each PFMF predictor, the improved collaborative filtering is defined by examining the stability of the QoS records when measuring the similarity of users (or services), and then used to prefill empty records in the initial QoS matrix. To ensure the diversity of the basic PFMF predictors, various prefilled QoS matrices are constructed for the matrix factorization. In this process, different reference weights are assigned to the original and the prefilled QoS records. Finally, particle swarm optimization is used to set the ensemble weights for the basic PFMF predictors. The proposed SEL on PFMF (SEL‐PFMF) algorithm is validated on a public dataset, where its prediction performance outperforms the state‐of‐the‐art algorithms, and also shows good stability.
AbstractList When selecting services from a cloud center to build applications, the quality of service (QoS) is an important nonfunctional attribute to be considered. However, in actual application scenarios, the QoS details for many services may not be available. This has led to a situation where prediction of the missing QoS records for services has become a key problem for service selection. This article presents a selective ensemble learning (SEL) framework for prefilling‐based matrix factorization (PFMF) predictors. In each PFMF predictor, the improved collaborative filtering is defined by examining the stability of the QoS records when measuring the similarity of users (or services), and then used to prefill empty records in the initial QoS matrix. To ensure the diversity of the basic PFMF predictors, various prefilled QoS matrices are constructed for the matrix factorization. In this process, different reference weights are assigned to the original and the prefilled QoS records. Finally, particle swarm optimization is used to set the ensemble weights for the basic PFMF predictors. The proposed SEL on PFMF (SEL‐PFMF) algorithm is validated on a public dataset, where its prediction performance outperforms the state‐of‐the‐art algorithms, and also shows good stability.
Summary When selecting services from a cloud center to build applications, the quality of service (QoS) is an important nonfunctional attribute to be considered. However, in actual application scenarios, the QoS details for many services may not be available. This has led to a situation where prediction of the missing QoS records for services has become a key problem for service selection. This article presents a selective ensemble learning (SEL) framework for prefilling‐based matrix factorization (PFMF) predictors. In each PFMF predictor, the improved collaborative filtering is defined by examining the stability of the QoS records when measuring the similarity of users (or services), and then used to prefill empty records in the initial QoS matrix. To ensure the diversity of the basic PFMF predictors, various prefilled QoS matrices are constructed for the matrix factorization. In this process, different reference weights are assigned to the original and the prefilled QoS records. Finally, particle swarm optimization is used to set the ensemble weights for the basic PFMF predictors. The proposed SEL on PFMF (SEL‐PFMF) algorithm is validated on a public dataset, where its prediction performance outperforms the state‐of‐the‐art algorithms, and also shows good stability.
Author Mao, Chengying
Towey, Dave
Wen, Linlin
Chen, Jifu
Zhao, Zhuang
Author_xml – sequence: 1
  givenname: Chengying
  orcidid: 0000-0001-8178-1205
  surname: Mao
  fullname: Mao, Chengying
  organization: Jiangxi University of Finance and Economics
– sequence: 2
  givenname: Jifu
  surname: Chen
  fullname: Chen, Jifu
  email: chenjifu1989@sina.com
  organization: Jiangxi University of Finance and Economics
– sequence: 3
  givenname: Dave
  surname: Towey
  fullname: Towey, Dave
  organization: University of Nottingham Ningbo China
– sequence: 4
  givenname: Zhuang
  surname: Zhao
  fullname: Zhao, Zhuang
  organization: Bank of Ningbo Corporation Ltd
– sequence: 5
  givenname: Linlin
  surname: Wen
  fullname: Wen, Linlin
  organization: Jiangxi University of Finance and Economics
BookMark eNp1kM1KAzEQx4NUsK2CjxDw4mVrkt10t0cp9QMKKuo5ZJOJpKabNdlW68lH8Bl9ElMr3jwM8_WbGeY_QL3GN4DQMSUjSgg7Uy2MKlaxPdSnPGcZGedF7y9m4wM0iHFBCKUkp330fOfvcRtAW9VZ32BvsHJ-pXGEsLYKIq43KXaQ2mvA0ERY1g6wAxka2zzhNJPGjXUuZV8fn7WMoPFSdsG-YSNV54N9l9vd8RDtG-kiHP36IXq8mD1Mr7L5zeX19HyeKcYLltWGSaBASwljpqjhumbSUF0lg5owXua5ZqkExEjNYFJRrirJC0O0LPkkH6KT3d42-JcVxE4s_Co06aTIKSsLUjDOEnW6o1TwMaYXRBvsUoaNoERspRRJSrGVMqHZDn21Djb_cmJ6O_vhvwHxZHor
Cites_doi 10.1109/TKDE.2012.51
10.1016/j.ins.2018.02.030
10.1016/j.knosys.2018.09.011
10.1145/2983528
10.1016/j.knosys.2013.11.006
10.1016/j.knosys.2022.110081
10.1137/1.9781611972757.43
10.1145/2556270
10.1109/SCC.2012.36
10.1016/j.procs.2015.04.237
10.1109/TSC.2011.59
10.1016/j.engappai.2015.08.010
10.1016/j.jnca.2014.07.019
10.1109/MC.2009.263
10.1016/j.future.2017.06.020
10.1016/j.neucom.2021.02.107
10.1007/s11036-019-01241-7
10.1002/cpe.6318
10.1016/j.knosys.2017.10.001
10.1109/TPDS.2020.3016344
10.1016/j.knosys.2021.108062
10.1109/ICDM.2010.127
10.1145/3158369
10.1109/TSC.2019.2891517
10.1109/TSC.2018.2876532
10.1016/j.chemolab.2015.08.020
10.1038/nature14539
10.1145/963770.963776
10.1109/TSC.2015.2433251
10.1016/j.future.2015.01.008
10.1007/s13042-017-0762-9
10.1109/TSC.2020.2980793
10.1016/j.future.2017.05.036
10.1109/TSC.2020.2995571
10.1002/9780470940105
10.1145/2801164
10.1109/TSC.2012.34
10.3233/JIFS-224565
10.1016/j.cosrev.2022.100514
10.1145/1401890.1401944
10.1145/3485447.3512107
10.1038/44565
10.2307/2685263
10.1109/SCC.2014.23
10.1007/978-1-4614-7518-7_15
10.1109/TSC.2010.52
10.1109/TPDS.2020.3010521
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cpe.8282
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
EndPage n/a
ExternalDocumentID 10_1002_cpe_8282
CPE8282
Genre researchArticle
GrantInformation_xml – fundername: Natural Science Foundation of the Jiangxi Province
  funderid: 20162BCB23036; 20171ACB21031
– fundername: National Natural Science Foundation of China
  funderid: 62172195; 61872167
– fundername: Science Foundation of Jiangxi Educational Committee
  funderid: GJJ180276
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AGHNM
AGYGG
AHBTC
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HGLYW
HHY
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2542-bf2ae1e17ae62c1f5db2af1d8f1deb025733d22afe0fad2e9815c8a54f0da7593
IEDL.DBID DR2
ISSN 1532-0626
IngestDate Sat Jul 26 00:05:32 EDT 2025
Tue Jul 01 02:35:33 EDT 2025
Sun Jul 06 04:44:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2542-bf2ae1e17ae62c1f5db2af1d8f1deb025733d22afe0fad2e9815c8a54f0da7593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8178-1205
PQID 3127404252
PQPubID 2045170
PageCount 20
ParticipantIDs proquest_journals_3127404252
crossref_primary_10_1002_cpe_8282
wiley_primary_10_1002_cpe_8282_CPE8282
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 10 December 2024
PublicationDateYYYYMMDD 2024-12-10
PublicationDate_xml – month: 12
  year: 2024
  text: 10 December 2024
  day: 10
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Concurrency and computation
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 22
2009; 42
2019; 52
2015; 149
2019; 10
2018; 80
2018; 82
2019; 163
1999; 401
2013; 6
2015; 46
2022; 241
2021; 32
2015; 49
2021; 33
2001
2000
2023; 259
1988; 42
2012; 25
2014; 7
2014; 56
2022; 471
2017; 60
2012
2011
2010
2015; 521
2015; 50
2016; 10
2009
1998
2022; 46
2008
2014; 47
2007
2005
2018; 442‐443
2011; 4
2014; 45
2017; 138
2021; 14
2019; 40
2023; 44
2020; 151
2022
2019
2022; 15
2020; 25
2017
2014
2016; 9
e_1_2_9_52_1
e_1_2_9_50_1
Sarwar B (e_1_2_9_44_1) 2001
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Symeonidis P (e_1_2_9_46_1) 2017
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_8_1
Lee DD (e_1_2_9_49_1) 2000
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
Breese JS (e_1_2_9_43_1) 1998
Cai D (e_1_2_9_22_1) 2009
Mao C (e_1_2_9_13_1) 2019
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_34_1
e_1_2_9_57_1
Paterek A (e_1_2_9_11_1) 2007
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
Singh PK (e_1_2_9_26_1) 2019; 40
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_23_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
Salakhutdinov R (e_1_2_9_58_1) 2007
Botangen KA (e_1_2_9_31_1) 2020; 151
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – year: 2011
– volume: 151
  start-page: 1
  issue: 113347
  year: 2020
  end-page: 18
  article-title: Geographic‐aware collaborative filtering for web service recommendation
  publication-title: Expert Syst Appl
– volume: 149
  start-page: 153
  year: 2015
  end-page: 165
  article-title: Particle swarm optimization (PSO): a tutorial
  publication-title: Chemometr Intell Lab Syst
– volume: 9
  start-page: 686
  issue: 5
  year: 2016
  end-page: 699
  article-title: Location‐aware and personalized collaborative filtering for web service recommendation
  publication-title: IEEE Trans Serv Comput
– volume: 241
  year: 2022
  article-title: DeepTSQP: temporal‐aware service QoS prediction via deep neural network and feature integration
  publication-title: Knowl‐Based Syst
– volume: 401
  start-page: 788
  issue: 6755
  year: 1999
  end-page: 791
  article-title: Learning the parts of objects by non‐negative matrix factorization
  publication-title: Nature
– start-page: 375
  year: 2014
  end-page: 397
– volume: 163
  start-page: 484
  year: 2019
  end-page: 494
  article-title: Singular value decomposition based recommendation using imputed data
  publication-title: Knowl‐Based Syst
– volume: 42
  start-page: 30
  issue: 8
  year: 2009
  end-page: 37
  article-title: Matrix factorization techniques for recommender systems
  publication-title: Computer
– volume: 44
  start-page: 9879
  issue: 6
  year: 2023
  end-page: 9899
  article-title: Deep learning based web service recommendation methods: a survey
  publication-title: J Intell Fuzzy Syst
– start-page: 285
  year: 2001
  end-page: 295
– volume: 50
  start-page: 111
  year: 2015
  end-page: 126
  article-title: Search‐based QoS ranking prediction for web services in cloud environments
  publication-title: Future Gener Comput Syst
– volume: 22
  start-page: 143
  issue: 1
  year: 2004
  end-page: 177
  article-title: Item‐based top‐N recommendation algorithms
  publication-title: ACM Trans Inf Syst
– volume: 80
  start-page: 355
  year: 2018
  end-page: 367
  article-title: Social collaborative service recommendation approach based on user's trust and domain‐specific expertise
  publication-title: Future Gener Comput Syst
– start-page: 107
  year: 2014
  end-page: 114
– volume: 15
  start-page: 2439
  issue: 4
  year: 2022
  end-page: 2454
  article-title: A survey on web service QoS prediction methods
  publication-title: IEEE Trans Serv Comput
– start-page: 25
  year: 2019
  end-page: 30
– volume: 10
  start-page: 813
  year: 2019
  end-page: 831
  article-title: How good your recommender system is? A survey on evaluations in recommendation
  publication-title: Int J Mach Learn Cybern
– volume: 46
  start-page: 58
  year: 2015
  end-page: 66
  article-title: An imputation‐based matrix factorization method for improving accuracy of collaborative filtering systems
  publication-title: Eng Appl Artif Intel
– volume: 33
  start-page: 1
  issue: 17
  year: 2021
  end-page: 16
  article-title: Web service quality of service prediction via regional reputation‐based matrix factorization
  publication-title: Concurr Comput
– volume: 32
  start-page: 281
  issue: 2
  year: 2021
  end-page: 294
  article-title: Online collaborative data caching in edge computing
  publication-title: IEEE Trans Parallel Distrib Syst
– start-page: 1010
  year: 2009
  end-page: 1015
– volume: 49
  start-page: 136
  year: 2015
  end-page: 146
  article-title: Matrix factorization model in collaborative filtering algorithms: a survey
  publication-title: Procedia Comput Sci
– volume: 25
  start-page: 1336
  issue: 6
  year: 2012
  end-page: 1353
  article-title: Nonnegative matrix factorization: a comprehensive review
  publication-title: IEEE Trans Knowl Data Eng
– start-page: 1257
  year: 2007
  end-page: 1264
– volume: 56
  start-page: 156
  year: 2014
  end-page: 166
  article-title: A new user similarity model to improve the accuracy of collaborative filtering
  publication-title: Knowl‐Based Syst
– volume: 42
  start-page: 59
  issue: 1
  year: 1988
  end-page: 66
  article-title: Thirteen ways to look at the correlation coefficient
  publication-title: Am Stat
– volume: 259
  year: 2023
  article-title: QoS prediction for web services in cloud environments based on swarm intelligence search
  publication-title: Knowl‐Based Syst
– volume: 45
  start-page: 134
  issue: C
  year: 2014
  end-page: 150
  article-title: Cloud service selection: state‐of‐the‐art and future research directions
  publication-title: J Netw Comput Appl
– start-page: 1
  year: 2007
  end-page: 4
– volume: 40
  start-page: 397
  issue: 2
  year: 2019
  end-page: 412
  article-title: An improved similarity calculation method for collaborative filtering‐based recommendation, considering neighbor's liking and disliking of categorical attributes of items
  publication-title: J Inf Optim Sci
– volume: 46
  year: 2022
  article-title: Cloud services selection: a systematic review and future research directions
  publication-title: Comput Sci Rev
– start-page: 995
  year: 2010
  end-page: 1000
– start-page: 1
  year: 2005
  end-page: 5
– volume: 60
  start-page: 64
  issue: 4
  year: 2017
  end-page: 72
  article-title: A service computing manifesto: the next 10 years
  publication-title: Commun ACM
– volume: 47
  start-page: 1
  issue: 1
  year: 2014
  end-page: 45
  article-title: Collaborative filtering beyond the user‐item matrix: a survey of the state of the art and future challenges
  publication-title: ACM Comput Surv
– volume: 10
  start-page: 1
  issue: 1
  year: 2016
  end-page: 25
  article-title: A spatial‐temporal QoS prediction approach for time‐aware web service recommendation
  publication-title: ACM Trans Web
– volume: 15
  start-page: 2455
  issue: 4
  year: 2022
  end-page: 2472
  article-title: Web service QoS prediction via collaborative filtering: a survey
  publication-title: IEEE Trans Serv Comput
– volume: 7
  start-page: 32
  issue: 1
  year: 2014
  end-page: 39
  article-title: Investigating QoS of real‐world web services
  publication-title: IEEE Trans Serv Comput
– volume: 4
  start-page: 140
  issue: 2
  year: 2011
  end-page: 152
  article-title: QoS‐aware web service recommendation by collaborative filtering
  publication-title: IEEE Trans Serv Comput
– volume: 14
  start-page: 1333
  issue: 5
  year: 2021
  end-page: 1344
  article-title: Covering‐based web service quality prediction via neighborhood‐aware matrix factorization
  publication-title: IEEE Trans Serv Comput
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  article-title: Deep learning
  publication-title: Nature
– start-page: 43
  year: 1998
  end-page: 52
– start-page: 1987
  year: 2022
  end-page: 1996
– volume: 471
  start-page: 12
  year: 2022
  end-page: 20
  article-title: QoS prediction for smart service management and recommendation based on the location of mobile users
  publication-title: Neurocomputing
– volume: 442‐443
  start-page: 145
  year: 2018
  end-page: 157
  article-title: Reliability quality measures for recommender systems
  publication-title: Inform Sci
– volume: 52
  start-page: 1
  issue: 1
  year: 2019
  end-page: 38
  article-title: Deep learning based recommender system: a survey and new perspectives
  publication-title: ACM Comput Surv
– volume: 6
  start-page: 289
  issue: 3
  year: 2013
  end-page: 299
  article-title: Collaborative web service QoS prediction via neighborhood integrated matrix factorization
  publication-title: IEEE Trans Serv Comput
– start-page: 162
  year: 2012
  end-page: 169
– volume: 14
  start-page: 1264
  issue: 5
  year: 2021
  end-page: 1277
  article-title: A location‐based factorization machine model for web service QoS prediction
  publication-title: IEEE Trans Serv Comput
– volume: 25
  start-page: 391
  year: 2020
  end-page: 401
  article-title: QoS prediction for service recommendation with deep feature learning in edge computing environment
  publication-title: Mob Netw Appl
– year: 2017
– volume: 82
  start-page: 669
  year: 2018
  end-page: 678
  article-title: Collaborative QoS prediction with context‐sensitive matrix factorization
  publication-title: Future Gener Comput Syst
– volume: 32
  start-page: 31
  issue: 1
  year: 2021
  end-page: 44
  article-title: Cost‐effective app data distribution in edge computing
  publication-title: IEEE Trans Parallel Distrib Syst
– volume: 138
  start-page: 188
  year: 2017
  end-page: 201
  article-title: Your neighbors alleviate cold‐start: on geographical neighborhood influence to collaborative web service QoS prediction
  publication-title: Knowl‐Based Syst
– start-page: 535
  year: 2000
  end-page: 541
– start-page: 426
  year: 2008
  end-page: 434
– ident: e_1_2_9_48_1
  doi: 10.1109/TKDE.2012.51
– ident: e_1_2_9_53_1
  doi: 10.1016/j.ins.2018.02.030
– ident: e_1_2_9_14_1
  doi: 10.1016/j.knosys.2018.09.011
– start-page: 535
  volume-title: Proceedings of the 13th International Conference on Neural Information Processing Systems (NIPS'00)
  year: 2000
  ident: e_1_2_9_49_1
– ident: e_1_2_9_3_1
  doi: 10.1145/2983528
– ident: e_1_2_9_25_1
  doi: 10.1016/j.knosys.2013.11.006
– ident: e_1_2_9_55_1
  doi: 10.1016/j.knosys.2022.110081
– ident: e_1_2_9_54_1
  doi: 10.1137/1.9781611972757.43
– ident: e_1_2_9_8_1
  doi: 10.1145/2556270
– start-page: 25
  volume-title: Proceedings of the 7th International Conference on Advanced Cloud and Big Data (CBD'19)
  year: 2019
  ident: e_1_2_9_13_1
– ident: e_1_2_9_23_1
  doi: 10.1109/SCC.2012.36
– ident: e_1_2_9_45_1
  doi: 10.1016/j.procs.2015.04.237
– ident: e_1_2_9_28_1
  doi: 10.1109/TSC.2011.59
– ident: e_1_2_9_12_1
  doi: 10.1016/j.engappai.2015.08.010
– ident: e_1_2_9_4_1
  doi: 10.1016/j.jnca.2014.07.019
– ident: e_1_2_9_10_1
  doi: 10.1109/MC.2009.263
– start-page: 1
  volume-title: Proceedings of the KDD Cup and Workshop (KDDCup'07)
  year: 2007
  ident: e_1_2_9_11_1
– ident: e_1_2_9_27_1
  doi: 10.1016/j.future.2017.06.020
– ident: e_1_2_9_19_1
  doi: 10.1016/j.neucom.2021.02.107
– ident: e_1_2_9_37_1
  doi: 10.1007/s11036-019-01241-7
– ident: e_1_2_9_29_1
  doi: 10.1002/cpe.6318
– ident: e_1_2_9_30_1
  doi: 10.1016/j.knosys.2017.10.001
– ident: e_1_2_9_17_1
  doi: 10.1109/TPDS.2020.3016344
– ident: e_1_2_9_38_1
  doi: 10.1016/j.knosys.2021.108062
– ident: e_1_2_9_32_1
  doi: 10.1109/ICDM.2010.127
– ident: e_1_2_9_36_1
  doi: 10.1145/3158369
– volume: 151
  start-page: 1
  issue: 113347
  year: 2020
  ident: e_1_2_9_31_1
  article-title: Geographic‐aware collaborative filtering for web service recommendation
  publication-title: Expert Syst Appl
– ident: e_1_2_9_24_1
  doi: 10.1109/TSC.2019.2891517
– ident: e_1_2_9_34_1
  doi: 10.1109/TSC.2018.2876532
– ident: e_1_2_9_59_1
  doi: 10.1016/j.chemolab.2015.08.020
– ident: e_1_2_9_35_1
  doi: 10.1038/nature14539
– ident: e_1_2_9_9_1
  doi: 10.1145/963770.963776
– volume-title: Matrix and Tensor Factorization Techniques for Recommender Systems
  year: 2017
  ident: e_1_2_9_46_1
– start-page: 1010
  volume-title: Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI'09)
  year: 2009
  ident: e_1_2_9_22_1
– start-page: 1257
  volume-title: Proceedings of the 20th International Conference on Neural Information Processing Systems (NIPS'07)
  year: 2007
  ident: e_1_2_9_58_1
– ident: e_1_2_9_20_1
  doi: 10.1109/TSC.2015.2433251
– ident: e_1_2_9_41_1
  doi: 10.1016/j.future.2015.01.008
– ident: e_1_2_9_52_1
  doi: 10.1007/s13042-017-0762-9
– ident: e_1_2_9_7_1
  doi: 10.1109/TSC.2020.2980793
– ident: e_1_2_9_21_1
  doi: 10.1016/j.future.2017.05.036
– volume: 40
  start-page: 397
  issue: 2
  year: 2019
  ident: e_1_2_9_26_1
  article-title: An improved similarity calculation method for collaborative filtering‐based recommendation, considering neighbor's liking and disliking of categorical attributes of items
  publication-title: J Inf Optim Sci
– ident: e_1_2_9_15_1
  doi: 10.1109/TSC.2020.2995571
– ident: e_1_2_9_2_1
  doi: 10.1002/9780470940105
– ident: e_1_2_9_18_1
  doi: 10.1145/2801164
– ident: e_1_2_9_51_1
  doi: 10.1109/TSC.2012.34
– ident: e_1_2_9_40_1
  doi: 10.3233/JIFS-224565
– ident: e_1_2_9_5_1
  doi: 10.1016/j.cosrev.2022.100514
– ident: e_1_2_9_56_1
  doi: 10.1145/1401890.1401944
– ident: e_1_2_9_39_1
  doi: 10.1145/3485447.3512107
– ident: e_1_2_9_47_1
  doi: 10.1038/44565
– ident: e_1_2_9_42_1
  doi: 10.2307/2685263
– start-page: 285
  volume-title: Proceedings of the 10th International Conference on World Wide Web (WWW'01)
  year: 2001
  ident: e_1_2_9_44_1
– start-page: 43
  volume-title: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98)
  year: 1998
  ident: e_1_2_9_43_1
– ident: e_1_2_9_50_1
– ident: e_1_2_9_57_1
  doi: 10.1109/SCC.2014.23
– ident: e_1_2_9_6_1
  doi: 10.1007/978-1-4614-7518-7_15
– ident: e_1_2_9_16_1
  doi: 10.1109/TSC.2010.52
– ident: e_1_2_9_33_1
  doi: 10.1109/TPDS.2020.3010521
SSID ssj0011031
Score 2.379724
Snippet Summary When selecting services from a cloud center to build applications, the quality of service (QoS) is an important nonfunctional attribute to be...
When selecting services from a cloud center to build applications, the quality of service (QoS) is an important nonfunctional attribute to be considered....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
Cloud computing
collaborative filtering
Ensemble learning
Factorization
matrix factorization
Particle swarm optimization
prefilling
QoS prediction
Quality of service
selective ensemble learning
Stability
Title QoS prediction of cloud services by selective ensemble learning on prefilling‐based matrix factorizations
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.8282
https://www.proquest.com/docview/3127404252
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kJy_WJ1arrCDe0mY3SZMcpbQUQfFVKHgI-4pIHylNC-rJn-Bv9Jc4k0ergiAeQiDJQLKzM_vNZPYbQk6V74oA8xpBoLXl-sJYYQD2yCSgU-GHnGlMDVxetXp992LgDYqqStwLk_NDLBNuaBmZv0YDFzJtrkhD1dQ0IFxA94ulWoiHbpfMUQy7F-RUqdyyAbSXvLM2b5aC31eiFbz8ClKzVaZbJQ_l--XFJcPGYi4b6vUHdeP_PmCTbBTgk57ns2WLrJnJNqmWjR1oYec7ZHiT3NHpDP_hoN5oElM1ShaapoVnofKFplkHHXCWFCJhM5YjQ4sWFI8UZEA8fsoIvz_e3nGt1HSM7QCead7ip9z_uUv63c59u2cVXRksBcEkt2TMhWGGgVpbXLHY05KLmOkADiMBQvmOozlcMnYsNDdhwDwVCM-NbS18L3T2SGWSTMw-oQGAZUCkqsVd5QpbSCE0OAVbO55RkpsaOSk1FE1z8o0op1nmEYxehKNXI_VSdVFhfmnkMAi20R3B7bNMB7_KR-3rDp4P_vrgIVnnAGywpIXZdVKZzxbmCIDJXB5nU_ATW_jjGA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsNAFB1KXejG-sRq1RHEXdrMJGkSXElpqdoWHy10IYR5RaRP-gB15Sf4jX6Jd_JoVRDERQgkGUjmzr1z7s3MOQidCtdmnq5reJ6Uhu0yZfge-CPhgE6Z61MidWmg2SrXO_ZV1-lm0Hm6Fybmh1gU3LRnRPFaO7guSJeWrKFirIqQL0D8XdGC3lE-dbfgjiJavyAmS6WGCbA9ZZ41aSlt-X0uWgLMrzA1mmdqOfSQvmG8vKRXnM94Ubz-IG_85ydsoPUEf-KLeMBsoowabqFcqu2AE1ffRr3b0T0eT_RvHG06PAqx6I_mEk-T4IL5C55GIjoQLzEkw2rA-wonKhSPGNpA8_Ap4vz-eHvX06XEA60I8IxjlZ90C-gO6tSq7UrdSIQZDAH5JDV4SJkiioBly1SQ0JGcspBIDw7FAUW5liUpXFJmyCRVvkcc4THHDk3JXMe3dlF2OBqqPYQ9wMsASkWZ2sJmJuOMSYgLprQcJThVeXSSmigYx_wbQcy0TAPovUD3Xh4VUtsFiQdOA4tAvq0jEtw-i4zwa_ugclPV5_2_PniMVuvtZiNoXLauD9AaBZyjV7gQs4Cys8lcHQJOmfGjaDx-An-f5zM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ZSsNAFB2kgvhiXbFadQTxLW1mkjTTR-lC3UpdCgUfwmwR6UoXUJ_8BL_RL_FOllYFQXwIgSQXkrlz75w7mTkHoRPpu5yZeQ3GlLJcn2urzCAeiQB0yv0yJcpMDVw3S422e9HxOsmqSrMXJuaHmE-4mciI8rUJ8JEKiwvSUDnSBSgXIP0uuyWbmR5dvZ1TRxEjXxBzpVLLBtSeEs_atJhafh-KFvjyK0qNhpl6Fj2kLxivLukWZlNRkK8_uBv_9wXraC1Bn_gs7i4baEkPNlE2VXbASaBvoe7N8A6PxuYnjnEcHoZY9oYzhSdJasHiBU8iCR3IlhhKYd0XPY0TDYpHDDZgHj5FjN8fb-9msFS4b_QAnnGs8ZNuAN1G7XrtvtKwElkGS0I1SS0RUq6JJuDXEpUk9JSgPCSKwaEFYCjfcRSFS9oOuaK6zIgnGffc0Fbc98rODsoMhgO9izADtAyQVJaoK11uc8G5gqxgK8fTUlCdQ8eph4JRzL4RxDzLNIDWC0zr5VA-dV2QxN8kcAhU2yYfwe3TyAe_2geVVs2c9_764BFaaVXrwdV583IfrVIAOWZ5C7HzKDMdz_QBgJSpOIx64ycIpOXr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=QoS+prediction+of+cloud+services+by+selective+ensemble+learning+on+prefilling%E2%80%90based+matrix+factorizations&rft.jtitle=Concurrency+and+computation&rft.au=Mao%2C+Chengying&rft.au=Chen%2C+Jifu&rft.au=Towey%2C+Dave&rft.au=Zhao%2C+Zhuang&rft.date=2024-12-10&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=36&rft.issue=27&rft_id=info:doi/10.1002%2Fcpe.8282&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpe_8282
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon