Two‐particle debris flow simulation based on SPH

Debris flow is a highly destructive natural disaster, necessitating accurate simulation and prediction. Existing simulation methods tend to be overly simplified, neglecting the three‐dimensional complexity and multiphase fluid interactions, and they also lack comprehensive consideration of soil cond...

Full description

Saved in:
Bibliographic Details
Published inComputer animation and virtual worlds Vol. 35; no. 3
Main Authors Zhang, Jiaxiu, Yang, Meng, Li, Xiaomin, Jiang, Qun'ou, Zhang, Heng, Meng, Weiliang
Format Journal Article
LanguageEnglish
Published Chichester Wiley Subscription Services, Inc 01.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Debris flow is a highly destructive natural disaster, necessitating accurate simulation and prediction. Existing simulation methods tend to be overly simplified, neglecting the three‐dimensional complexity and multiphase fluid interactions, and they also lack comprehensive consideration of soil conditions. We propose a novel two‐particle debris flow simulation method based on smoothed particle hydrodynamics (SPH) for enhanced accuracy. Our method employs a sophisticated two‐particle model coupling debris flow dynamics with SPH to simulate fluid‐solid interaction effectively, which considers various soil factors, dividing terrain into variable and fixed areas, incorporating soil impact factors for realistic simulation. By dynamically updating positions and reconstructing surfaces, and employing GPU and hash lookup acceleration methods, we achieve accurate simulation with significantly efficiency. Experimental results validate the effectiveness of our method across different conditions, making it valuable for debris flow risk assessment in natural disaster management.
AbstractList Debris flow is a highly destructive natural disaster, necessitating accurate simulation and prediction. Existing simulation methods tend to be overly simplified, neglecting the three‐dimensional complexity and multiphase fluid interactions, and they also lack comprehensive consideration of soil conditions. We propose a novel two‐particle debris flow simulation method based on smoothed particle hydrodynamics (SPH) for enhanced accuracy. Our method employs a sophisticated two‐particle model coupling debris flow dynamics with SPH to simulate fluid‐solid interaction effectively, which considers various soil factors, dividing terrain into variable and fixed areas, incorporating soil impact factors for realistic simulation. By dynamically updating positions and reconstructing surfaces, and employing GPU and hash lookup acceleration methods, we achieve accurate simulation with significantly efficiency. Experimental results validate the effectiveness of our method across different conditions, making it valuable for debris flow risk assessment in natural disaster management.
Author Yang, Meng
Jiang, Qun'ou
Zhang, Jiaxiu
Li, Xiaomin
Zhang, Heng
Meng, Weiliang
Author_xml – sequence: 1
  givenname: Jiaxiu
  orcidid: 0000-0002-9351-9893
  surname: Zhang
  fullname: Zhang, Jiaxiu
  organization: Beijing Forestry University
– sequence: 2
  givenname: Meng
  orcidid: 0000-0001-6439-2873
  surname: Yang
  fullname: Yang, Meng
  email: yangmeng@bjfu.edu.cn
  organization: National Forestry and Grassland Administration
– sequence: 3
  givenname: Xiaomin
  orcidid: 0009-0003-9197-6737
  surname: Li
  fullname: Li, Xiaomin
  organization: Beijing Forestry University
– sequence: 4
  givenname: Qun'ou
  orcidid: 0000-0002-7942-5890
  surname: Jiang
  fullname: Jiang, Qun'ou
  organization: Beijing Forestry University
– sequence: 5
  givenname: Heng
  orcidid: 0009-0005-5238-9286
  surname: Zhang
  fullname: Zhang, Heng
  organization: Beijing Forestry University
– sequence: 6
  givenname: Weiliang
  orcidid: 0000-0002-3221-4981
  surname: Meng
  fullname: Meng, Weiliang
  organization: University of Chinese Academy of Sciences
BookMark eNp10EFLwzAYBuAgE9ym4E8oePHSmaRp0hxH0U0YKDjFW0jTr9DRNTVpLbv5E_yN_hI7K948fe_h4f3gnaFJbWtA6JLgBcGY3hj9vqCUkxM0JTHjIaPidfKXOTlDM-93g-SU4Cmi295-fXw22rWlqSDIIXOlD4rK9oEv912l29LWQaY95MEQnh7X5-i00JWHi987R893t9t0HW4eVvfpchMaGjMS5kxAnHFpSBzFMhKMGSOLPJegNcsKnCeYawAQvOBUSiNJoqMk5iRKhMCZjuboauxtnH3rwLdqZztXDy9VhAXhOMGMD-p6VMZZ7x0UqnHlXruDIlgdF1HDIuq4yEDDkfZlBYd_nUqXLz_-G6A-Yqg
Cites_doi 10.1016/j.compgeo.2020.103669
10.1145/383259.383261
10.1007/s11069-022-05487-5
10.1145/1141911.1141961
10.1145/965139.507101
10.1109/TVCG.2008.107
10.1061/JYCEAJ.0005381
10.1029/97RG00426
10.1515/geo-2022-0407
10.3917/ridp.781.0209
10.1109/TGRS.2020.3035469
10.1007/s11440-020-00957-1
10.1145/280811.280996
10.1061/(ASCE)0733-9429(1988)114:3(237)
10.1145/1242073.1242279
10.3390/app10228189
10.1155/2021/9098250
10.1017/S0022112089000340
10.1109/CVIDLICCEA56201.2022.9824223
10.1002/cav.1499
10.1016/j.enggeo.2018.09.003
10.1016/j.geomorph.2021.107664
10.1007/s10346-021-01640-6
10.1002/cav.162
10.1007/978-3-7091-7486-9_5
10.1145/218380.218430
10.1029/2000JB900330
10.1080/10106049.2021.1912194
10.1109/MCG.1987.276961
10.1007/s11440-023-02106-w
10.1145/311535.311548
10.1029/2000JB900329
10.1145/258734.258838
10.1145/2185520.2185558
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cav.2261
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 1546-427X
EndPage n/a
ExternalDocumentID 10_1002_cav_2261
CAV2261
Genre article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  funderid: 2023YFF1304204
– fundername: National Natural Science Foundation of China
  funderid: 42371291; 32271983; 52175493; 62172416; 62365014; 62376271; U22B2034
– fundername: Beijing Natural Science Foundation
  funderid: L231013
– fundername: The Open Project Program of State Key Laboratory of Virtual Reality Technology and Systems, Beihang University
  funderid: VRLAB2023B01
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
29F
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
ITG
ITH
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
NF~
O66
O9-
OIG
P2W
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WQJ
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2541-d47e5b69c153593744cc9fdd9eaa4bf0d806aeee76f6299c918a3856138770ba3
IEDL.DBID DR2
ISSN 1546-4261
IngestDate Sat Jul 26 03:40:51 EDT 2025
Tue Jul 01 02:42:24 EDT 2025
Wed Aug 20 07:26:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2541-d47e5b69c153593744cc9fdd9eaa4bf0d806aeee76f6299c918a3856138770ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6439-2873
0000-0002-9351-9893
0009-0005-5238-9286
0000-0002-3221-4981
0009-0003-9197-6737
0000-0002-7942-5890
PQID 3071608046
PQPubID 2034909
PageCount 17
ParticipantIDs proquest_journals_3071608046
crossref_primary_10_1002_cav_2261
wiley_primary_10_1002_cav_2261_CAV2261
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May/June 2024
2024-05-00
20240501
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May/June 2024
PublicationDecade 2020
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Computer animation and virtual worlds
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1970; 9
2007; 18
1978; 12
2013; 24
2018; 245
1989; 199
1987; 7
1998
1997
2020; 15
2007
1996
2021; 381
1995
2003
2020; 10
2002
2020; 125
2012; 31
2024; 19
2001; 106
1999
2022; 114
1980; 106
2001
2022
2022; 60
2021; 18
1997; 35
2006; 25
1988; 114
2022; 14
2022; 37
2015
2014
1980
2009; 15
2021; 2021
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Müller M (e_1_2_8_18_1) 2003
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
Johnson A (e_1_2_8_4_1) 1970; 9
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Serway RA (e_1_2_8_40_1) 2014
Shao X (e_1_2_8_30_1) 2015
Goldstein H (e_1_2_8_39_1) 1980
Li B (e_1_2_8_35_1) 2021; 2021
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
References_xml – start-page: 129
  year: 1995
  end-page: 136
– volume: 19
  start-page: 1019
  issue: 2
  year: 2024
  end-page: 1045
  article-title: Study of the dynamics of water‐enriched debris flow and its impact on slit‐type barriers by a modified SPH–DEM coupling approach
  publication-title: Acta Geotech
– volume: 35
  start-page: 245
  issue: 3
  year: 1997
  end-page: 296
  article-title: The physics of debris flows
  publication-title: Rev Geophys
– start-page: 209
  year: 2007
  end-page: 217
– volume: 18
  start-page: 2403
  issue: 7
  year: 2021
  end-page: 2425
  article-title: A coupled SPH‐DEM‐FEM model for fluid‐particle‐structure interaction and a case study of Wenjia gully debris flow impact estimation
  publication-title: Landslides
– volume: 15
  start-page: 2757
  issue: 10
  year: 2020
  end-page: 2777
  article-title: Simulation of debris flow on an instrumented test slope using an updated Lagrangian continuum particle method
  publication-title: Acta Geotech
– volume: 245
  start-page: 309
  year: 2018
  end-page: 321
  article-title: Coupled CFD‐DEM model for the direct numerical simulation of sediment bed erosion by viscous shear flow
  publication-title: Eng Geol
– volume: 106
  start-page: 553
  issue: B1
  year: 2001
  end-page: 566
  article-title: Flow of variably fluidized granular masses across three‐dimensional terrain: 2. Numerical predictions and experimental tests
  publication-title: J Geophys Res Solid Earth
– volume: 114
  start-page: 237
  issue: 3
  year: 1988
  end-page: 258
  article-title: Generalized viscoplastic modeling of debris flow
  publication-title: J Hydraul Eng
– volume: 18
  start-page: 69
  issue: 1
  year: 2007
  end-page: 82
  article-title: A unified particle model for fluid–solid interactions
  publication-title: Comput Animat Virtual Worlds
– start-page: 191
  year: 2015
  end-page: 204
– volume: 24
  start-page: 195
  issue: 3‐4
  year: 2013
  end-page: 203
  article-title: Coupling elastic solids with smoothed particle hydrodynamics fluids
  publication-title: Comput Animat Virtual Worlds
– volume: 12
  start-page: 286
  issue: 3
  year: 1978
  end-page: 292
  article-title: Simulation of wrinkled surfaces
  publication-title: ACM SIGGRAPH Comput Graph
– start-page: 121
  year: 1999
  end-page: 128
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 12
  article-title: Dynamic response study of impulsive force of debris flow evaluation and flexible retaining structure based on SPH‐DEM‐FEM coupling
  publication-title: Adv Civil Eng
– start-page: 61
  year: 1996
  end-page: 76
– start-page: 23
  year: 2001
  end-page: 30
– volume: 15
  start-page: 493
  issue: 3
  year: 2009
  end-page: 503
  article-title: Direct Forcing for Lagrangian Rigid‐Fluid Coupling
  publication-title: IEEE Trans Vis Comput Graph
– year: 2014
– volume: 25
  start-page: 820
  issue: 3
  year: 2006
  end-page: 825
  article-title: Fluid animation with dynamic meshes
  publication-title: ACM Trans Graph
– volume: 199
  start-page: 177
  year: 1989
  end-page: 215
  article-title: The motion of a finite mass of granular material down a rough incline
  publication-title: J Fluid Mech
– start-page: 1
  year: 2022
  end-page: 6
– volume: 381
  start-page: 107664
  year: 2021
  article-title: Advances in the simulation of debris flow erosion: The case study of the Rio Gere (Italy) event of the 4th August 2017
  publication-title: Geomorphology
– start-page: 266
  year: 2002
– volume: 37
  start-page: 5150
  issue: 17
  year: 2022
  end-page: 5173
  article-title: Debris flows modeling using geo‐environmental factors: developing hybridized deep‐learning algorithms
  publication-title: Geocarto Int
– year: 1980
– volume: 125
  year: 2020
  article-title: Smooth particle hydrodynamics and discrete element method coupling scheme for the simulation of debris flows
  publication-title: Comput Geotech
– volume: 31
  start-page: 62:1
  issue: 4
  year: 2012
  end-page: 62:8
  article-title: Versatile rigid‐fluid coupling for incompressible SPH
  publication-title: ACM Trans Graph
– volume: 114
  start-page: 2709
  issue: 3
  year: 2022
  end-page: 2738
  article-title: Establishing a GIS‐based evaluation method considering spatial heterogeneity for debris flow susceptibility mapping at the regional scale
  publication-title: Nat Hazards
– start-page: 154
  year: 2003
  end-page: 159
– volume: 60
  start-page: 1
  year: 2022
  end-page: 15
  article-title: Breaking Limits of Remote Sensing by Deep Learning From Simulated Data for Flood and Debris‐Flow Mapping
  publication-title: IEEE Trans Geosci Remote Sens
– volume: 9
  start-page: 168
  year: 1970
  end-page: 186
  article-title: Mobilization of debris flows
  publication-title: Zeitschrift fur Geomorphol (Annal Geomorphol) Supp
– volume: 106
  start-page: 537
  issue: B1
  year: 2001
  end-page: 552
  article-title: Flow of variably fluidized granular masses across three‐dimensional terrain: 1. Coulomb mixture theory
  publication-title: J Geophys Res Solid Earth
– volume: 14
  start-page: 1020
  issue: 1
  year: 2022
  end-page: 1047
  article-title: Numerical simulation of impact and entrainment behaviors of debris flow by using SPH–DEM–FEM coupling method
  publication-title: Open Geo
– volume: 106
  start-page: 381
  issue: 3
  year: 1980
  end-page: 396
  article-title: Debris flow on prismatic open channel
  publication-title: J Hydraul Div
– start-page: 181
  year: 1997
  end-page: 188
– volume: 7
  start-page: 16
  issue: 3
  year: 1987
  end-page: 23
  article-title: Fourier synthesis of ocean scenes
  publication-title: IEEE Comput Graph Appl
– start-page: 203
  year: 1998
  end-page: 220
– volume: 10
  start-page: 8189
  issue: 22
  year: 2020
  article-title: Susceptibility Mapping on Urban Landslides Using Deep Learning Approaches in Mt. Umyeon
  publication-title: Appl Sci
– ident: e_1_2_8_32_1
  doi: 10.1016/j.compgeo.2020.103669
– ident: e_1_2_8_15_1
  doi: 10.1145/383259.383261
– ident: e_1_2_8_22_1
  doi: 10.1007/s11069-022-05487-5
– ident: e_1_2_8_25_1
  doi: 10.1145/1141911.1141961
– ident: e_1_2_8_11_1
  doi: 10.1145/965139.507101
– ident: e_1_2_8_27_1
  doi: 10.1109/TVCG.2008.107
– ident: e_1_2_8_5_1
  doi: 10.1061/JYCEAJ.0005381
– ident: e_1_2_8_8_1
  doi: 10.1029/97RG00426
– ident: e_1_2_8_36_1
  doi: 10.1515/geo-2022-0407
– ident: e_1_2_8_37_1
  doi: 10.3917/ridp.781.0209
– ident: e_1_2_8_23_1
  doi: 10.1109/TGRS.2020.3035469
– ident: e_1_2_8_2_1
  doi: 10.1007/s11440-020-00957-1
– ident: e_1_2_8_16_1
  doi: 10.1145/280811.280996
– ident: e_1_2_8_6_1
  doi: 10.1061/(ASCE)0733-9429(1988)114:3(237)
– ident: e_1_2_8_24_1
  doi: 10.1145/1242073.1242279
– start-page: 191
  volume-title: Computer Graphics Forum
  year: 2015
  ident: e_1_2_8_30_1
– ident: e_1_2_8_21_1
  doi: 10.3390/app10228189
– volume: 2021
  start-page: 1
  year: 2021
  ident: e_1_2_8_35_1
  article-title: Dynamic response study of impulsive force of debris flow evaluation and flexible retaining structure based on SPH‐DEM‐FEM coupling
  publication-title: Adv Civil Eng
  doi: 10.1155/2021/9098250
– ident: e_1_2_8_7_1
  doi: 10.1017/S0022112089000340
– ident: e_1_2_8_19_1
  doi: 10.1109/CVIDLICCEA56201.2022.9824223
– ident: e_1_2_8_29_1
  doi: 10.1002/cav.1499
– ident: e_1_2_8_31_1
  doi: 10.1016/j.enggeo.2018.09.003
– ident: e_1_2_8_3_1
  doi: 10.1016/j.geomorph.2021.107664
– ident: e_1_2_8_33_1
  doi: 10.1007/s10346-021-01640-6
– ident: e_1_2_8_26_1
  doi: 10.1002/cav.162
– ident: e_1_2_8_38_1
  doi: 10.1007/978-3-7091-7486-9_5
– ident: e_1_2_8_17_1
  doi: 10.1145/218380.218430
– volume: 9
  start-page: 168
  year: 1970
  ident: e_1_2_8_4_1
  article-title: Mobilization of debris flows
  publication-title: Zeitschrift fur Geomorphol (Annal Geomorphol) Supp
– ident: e_1_2_8_10_1
  doi: 10.1029/2000JB900330
– volume-title: Classical Mechanics
  year: 1980
  ident: e_1_2_8_39_1
– ident: e_1_2_8_20_1
  doi: 10.1080/10106049.2021.1912194
– ident: e_1_2_8_12_1
  doi: 10.1109/MCG.1987.276961
– volume-title: Physics for Scientists and Engineers with Modern Physics
  year: 2014
  ident: e_1_2_8_40_1
– ident: e_1_2_8_34_1
  doi: 10.1007/s11440-023-02106-w
– ident: e_1_2_8_14_1
  doi: 10.1145/311535.311548
– start-page: 154
  volume-title: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation
  year: 2003
  ident: e_1_2_8_18_1
– ident: e_1_2_8_9_1
  doi: 10.1029/2000JB900329
– ident: e_1_2_8_13_1
  doi: 10.1145/258734.258838
– ident: e_1_2_8_28_1
  doi: 10.1145/2185520.2185558
SSID ssj0026210
Score 2.3452368
Snippet Debris flow is a highly destructive natural disaster, necessitating accurate simulation and prediction. Existing simulation methods tend to be overly...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Debris flow
Flow simulation
Fluid flow
GPU acceleration
natural disaster simulation
Natural disasters
Risk assessment
Smooth particle hydrodynamics
Soil conditions
SPH
Title Two‐particle debris flow simulation based on SPH
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.2261
https://www.proquest.com/docview/3071608046
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6kXvTgW6zWEkG8pU02m01yLNVSxIrYBwUPYV-BorbFtBY8-RP8jf4Sd7OJVUEQTwkhCzvDPL7Znf0W4FSoiMeF9GyPUb3NyHybcRzYLpJhEFEc0YysunNN2n18OfSHeVelPgtj-CE-F9y0Z2TxWjs4ZWl9SRrK6XNNYQdd-ehWLY2Hbj-ZoxBBhojAx8TWVULBO-ugejHweyZawsuvIDXLMq1NuCvmZ5pL7mvzGavxlx_Ujf8TYAs2cvBpNYy1bMOKHO_A-mCUzs3XdBdQbzF5f32b5hZlCamPBFjJw2RhpaPH_LIvSyc_YamX7k17D_qti16zbef3KthclYOuLXAgfUYirqKdr-AJxpxHiRCRpBSzxBGhQ6iUMiAJUdmKR25IvVBXGmEQOIx6-1AaT8byACyhIEZCEeMKd2JKOI1UzeurwBByhv0kKsNJoeN4augzYkOUjGIlf6zlL0OlUH6cO1Aaq9DjEoVmMSnDWabFX8fHzcZAPw__-uMRrCEFTUzbYgVKs6e5PFbQYsaqsNo471x1q5kxfQA7CMrj
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6KHtSDb7FaNYJ4S9ukm02Cp1ItVdsi2pYehLCvQFHbYlsLnvwJ_kZ_ibN5tCoI4ilLyMLOMI9vNrvfAJxIjHhCqpJZ4kz_ZuSOyQVxTctWnusz4rOIrLrRpLU2ueo63QycpXdhYn6I2Yab9owoXmsH1xvShTlrqGAveQQPWPos6obemjj__HbGHWVTO6YicAg1dZ2QMs8W7UI683sumgPMrzA1yjPVNbhPVxgfL3nIT8Y8L15_kDf-U4R1WE3wp1GODWYDMqq_CSud3mgSvx1tgd2aDj7e3oeJURlS6VsBRvg4mBqj3lPS78vQ-U8aOLi7qW1Du3rRqtTMpLWCKbAitExJXOVw6gsMeA4iFEKE8EMpfcUY4WFRekXKlFIuDSkmLOFbHit5utjwXLfIWWkHFvqDvtoFQyLKCJnNBUJPwqhgPpa9DsYGT3DihH4WjlMlB8OYQSOIuZLtAOUPtPxZyKXaDxIfGgUYfSyKgJbQLJxGavx1flApd_Rz768fHsFSrdWoB_XL5vU-LNuIVOJTjDlYGD9P1AEijTE_jCzqE5DRzWs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEF5EQfTBW6xWjSC-pc2x2WQfS2upVynaloIPYa9AUdtiWgs--RP8jf4SZ3O0KgjiU0LIQmaY45vs7DcInUqIeEIq13Q509uM3DO5wL5pOyrwKcOUJWTVN03S6ODLntfLuir1WZiUH2L2w017RhKvtYOPZFSek4YK9lIC7ACVzxImFtVjG2q3M-oohzgpE4GHianLhJx41nLK-crvqWiOL7-i1CTN1NfRff6BaXfJQ2ky5iXx-oO78X8SbKC1DH0aldRcNtGCGmyh1W4_nqRP423ktKfDj7f3UWZShlT6TIARPQ6nRtx_yqZ9GTr7SQNu7lqNHdSpn7erDTMbrGAKqAdtU2JfeZxQAeHOA3yCsRA0kpIqxjCPLBlYhCmlfBIRSFeC2gFzA11qBL5vcebuosXBcKD2kCEBY0TM4QKAJ2ZEMApFrweRIRAcexEtoJNcx-Eo5c8IU6ZkJwT5Qy1_ARVz5YeZB8UhxB6bAJzFpIDOEi3-uj6sVrr6uv_XF4_RcqtWD68vmlcHaMUBmJK2MBbR4vh5og4BZoz5UWJPn1a2zBo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two%E2%80%90particle+debris+flow+simulation+based+on+SPH&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Zhang%2C+Jiaxiu&rft.au=Yang%2C+Meng&rft.au=Li%2C+Xiaomin&rft.au=Jiang%2C+Qun%27ou&rft.date=2024-05-01&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=35&rft.issue=3&rft_id=info:doi/10.1002%2Fcav.2261&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cav_2261
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon