Two‐particle debris flow simulation based on SPH
Debris flow is a highly destructive natural disaster, necessitating accurate simulation and prediction. Existing simulation methods tend to be overly simplified, neglecting the three‐dimensional complexity and multiphase fluid interactions, and they also lack comprehensive consideration of soil cond...
Saved in:
Published in | Computer animation and virtual worlds Vol. 35; no. 3 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester
Wiley Subscription Services, Inc
01.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Debris flow is a highly destructive natural disaster, necessitating accurate simulation and prediction. Existing simulation methods tend to be overly simplified, neglecting the three‐dimensional complexity and multiphase fluid interactions, and they also lack comprehensive consideration of soil conditions. We propose a novel two‐particle debris flow simulation method based on smoothed particle hydrodynamics (SPH) for enhanced accuracy. Our method employs a sophisticated two‐particle model coupling debris flow dynamics with SPH to simulate fluid‐solid interaction effectively, which considers various soil factors, dividing terrain into variable and fixed areas, incorporating soil impact factors for realistic simulation. By dynamically updating positions and reconstructing surfaces, and employing GPU and hash lookup acceleration methods, we achieve accurate simulation with significantly efficiency. Experimental results validate the effectiveness of our method across different conditions, making it valuable for debris flow risk assessment in natural disaster management. |
---|---|
AbstractList | Debris flow is a highly destructive natural disaster, necessitating accurate simulation and prediction. Existing simulation methods tend to be overly simplified, neglecting the three‐dimensional complexity and multiphase fluid interactions, and they also lack comprehensive consideration of soil conditions. We propose a novel two‐particle debris flow simulation method based on smoothed particle hydrodynamics (SPH) for enhanced accuracy. Our method employs a sophisticated two‐particle model coupling debris flow dynamics with SPH to simulate fluid‐solid interaction effectively, which considers various soil factors, dividing terrain into variable and fixed areas, incorporating soil impact factors for realistic simulation. By dynamically updating positions and reconstructing surfaces, and employing GPU and hash lookup acceleration methods, we achieve accurate simulation with significantly efficiency. Experimental results validate the effectiveness of our method across different conditions, making it valuable for debris flow risk assessment in natural disaster management. |
Author | Yang, Meng Jiang, Qun'ou Zhang, Jiaxiu Li, Xiaomin Zhang, Heng Meng, Weiliang |
Author_xml | – sequence: 1 givenname: Jiaxiu orcidid: 0000-0002-9351-9893 surname: Zhang fullname: Zhang, Jiaxiu organization: Beijing Forestry University – sequence: 2 givenname: Meng orcidid: 0000-0001-6439-2873 surname: Yang fullname: Yang, Meng email: yangmeng@bjfu.edu.cn organization: National Forestry and Grassland Administration – sequence: 3 givenname: Xiaomin orcidid: 0009-0003-9197-6737 surname: Li fullname: Li, Xiaomin organization: Beijing Forestry University – sequence: 4 givenname: Qun'ou orcidid: 0000-0002-7942-5890 surname: Jiang fullname: Jiang, Qun'ou organization: Beijing Forestry University – sequence: 5 givenname: Heng orcidid: 0009-0005-5238-9286 surname: Zhang fullname: Zhang, Heng organization: Beijing Forestry University – sequence: 6 givenname: Weiliang orcidid: 0000-0002-3221-4981 surname: Meng fullname: Meng, Weiliang organization: University of Chinese Academy of Sciences |
BookMark | eNp10EFLwzAYBuAgE9ym4E8oePHSmaRp0hxH0U0YKDjFW0jTr9DRNTVpLbv5E_yN_hI7K948fe_h4f3gnaFJbWtA6JLgBcGY3hj9vqCUkxM0JTHjIaPidfKXOTlDM-93g-SU4Cmi295-fXw22rWlqSDIIXOlD4rK9oEv912l29LWQaY95MEQnh7X5-i00JWHi987R893t9t0HW4eVvfpchMaGjMS5kxAnHFpSBzFMhKMGSOLPJegNcsKnCeYawAQvOBUSiNJoqMk5iRKhMCZjuboauxtnH3rwLdqZztXDy9VhAXhOMGMD-p6VMZZ7x0UqnHlXruDIlgdF1HDIuq4yEDDkfZlBYd_nUqXLz_-G6A-Yqg |
Cites_doi | 10.1016/j.compgeo.2020.103669 10.1145/383259.383261 10.1007/s11069-022-05487-5 10.1145/1141911.1141961 10.1145/965139.507101 10.1109/TVCG.2008.107 10.1061/JYCEAJ.0005381 10.1029/97RG00426 10.1515/geo-2022-0407 10.3917/ridp.781.0209 10.1109/TGRS.2020.3035469 10.1007/s11440-020-00957-1 10.1145/280811.280996 10.1061/(ASCE)0733-9429(1988)114:3(237) 10.1145/1242073.1242279 10.3390/app10228189 10.1155/2021/9098250 10.1017/S0022112089000340 10.1109/CVIDLICCEA56201.2022.9824223 10.1002/cav.1499 10.1016/j.enggeo.2018.09.003 10.1016/j.geomorph.2021.107664 10.1007/s10346-021-01640-6 10.1002/cav.162 10.1007/978-3-7091-7486-9_5 10.1145/218380.218430 10.1029/2000JB900330 10.1080/10106049.2021.1912194 10.1109/MCG.1987.276961 10.1007/s11440-023-02106-w 10.1145/311535.311548 10.1029/2000JB900329 10.1145/258734.258838 10.1145/2185520.2185558 |
ContentType | Journal Article |
Copyright | 2024 John Wiley & Sons Ltd. 2024 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2024 John Wiley & Sons Ltd. – notice: 2024 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/cav.2261 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts |
EISSN | 1546-427X |
EndPage | n/a |
ExternalDocumentID | 10_1002_cav_2261 CAV2261 |
Genre | article |
GrantInformation_xml | – fundername: National Key Research and Development Program of China funderid: 2023YFF1304204 – fundername: National Natural Science Foundation of China funderid: 42371291; 32271983; 52175493; 62172416; 62365014; 62376271; U22B2034 – fundername: Beijing Natural Science Foundation funderid: L231013 – fundername: The Open Project Program of State Key Laboratory of Virtual Reality Technology and Systems, Beihang University funderid: VRLAB2023B01 |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 29F 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA HF~ HGLYW HHY HVGLF HZ~ I-F ITG ITH IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A NF~ O66 O9- OIG P2W P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 TUS UB1 V2E V8K W8V W99 WBKPD WIH WIK WQJ WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2541-d47e5b69c153593744cc9fdd9eaa4bf0d806aeee76f6299c918a3856138770ba3 |
IEDL.DBID | DR2 |
ISSN | 1546-4261 |
IngestDate | Sat Jul 26 03:40:51 EDT 2025 Tue Jul 01 02:42:24 EDT 2025 Wed Aug 20 07:26:33 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2541-d47e5b69c153593744cc9fdd9eaa4bf0d806aeee76f6299c918a3856138770ba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6439-2873 0000-0002-9351-9893 0009-0005-5238-9286 0000-0002-3221-4981 0009-0003-9197-6737 0000-0002-7942-5890 |
PQID | 3071608046 |
PQPubID | 2034909 |
PageCount | 17 |
ParticipantIDs | proquest_journals_3071608046 crossref_primary_10_1002_cav_2261 wiley_primary_10_1002_cav_2261_CAV2261 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May/June 2024 2024-05-00 20240501 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: May/June 2024 |
PublicationDecade | 2020 |
PublicationPlace | Chichester |
PublicationPlace_xml | – name: Chichester |
PublicationTitle | Computer animation and virtual worlds |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1970; 9 2007; 18 1978; 12 2013; 24 2018; 245 1989; 199 1987; 7 1998 1997 2020; 15 2007 1996 2021; 381 1995 2003 2020; 10 2002 2020; 125 2012; 31 2024; 19 2001; 106 1999 2022; 114 1980; 106 2001 2022 2022; 60 2021; 18 1997; 35 2006; 25 1988; 114 2022; 14 2022; 37 2015 2014 1980 2009; 15 2021; 2021 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 Müller M (e_1_2_8_18_1) 2003 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 Johnson A (e_1_2_8_4_1) 1970; 9 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Serway RA (e_1_2_8_40_1) 2014 Shao X (e_1_2_8_30_1) 2015 Goldstein H (e_1_2_8_39_1) 1980 Li B (e_1_2_8_35_1) 2021; 2021 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 |
References_xml | – start-page: 129 year: 1995 end-page: 136 – volume: 19 start-page: 1019 issue: 2 year: 2024 end-page: 1045 article-title: Study of the dynamics of water‐enriched debris flow and its impact on slit‐type barriers by a modified SPH–DEM coupling approach publication-title: Acta Geotech – volume: 35 start-page: 245 issue: 3 year: 1997 end-page: 296 article-title: The physics of debris flows publication-title: Rev Geophys – start-page: 209 year: 2007 end-page: 217 – volume: 18 start-page: 2403 issue: 7 year: 2021 end-page: 2425 article-title: A coupled SPH‐DEM‐FEM model for fluid‐particle‐structure interaction and a case study of Wenjia gully debris flow impact estimation publication-title: Landslides – volume: 15 start-page: 2757 issue: 10 year: 2020 end-page: 2777 article-title: Simulation of debris flow on an instrumented test slope using an updated Lagrangian continuum particle method publication-title: Acta Geotech – volume: 245 start-page: 309 year: 2018 end-page: 321 article-title: Coupled CFD‐DEM model for the direct numerical simulation of sediment bed erosion by viscous shear flow publication-title: Eng Geol – volume: 106 start-page: 553 issue: B1 year: 2001 end-page: 566 article-title: Flow of variably fluidized granular masses across three‐dimensional terrain: 2. Numerical predictions and experimental tests publication-title: J Geophys Res Solid Earth – volume: 114 start-page: 237 issue: 3 year: 1988 end-page: 258 article-title: Generalized viscoplastic modeling of debris flow publication-title: J Hydraul Eng – volume: 18 start-page: 69 issue: 1 year: 2007 end-page: 82 article-title: A unified particle model for fluid–solid interactions publication-title: Comput Animat Virtual Worlds – start-page: 191 year: 2015 end-page: 204 – volume: 24 start-page: 195 issue: 3‐4 year: 2013 end-page: 203 article-title: Coupling elastic solids with smoothed particle hydrodynamics fluids publication-title: Comput Animat Virtual Worlds – volume: 12 start-page: 286 issue: 3 year: 1978 end-page: 292 article-title: Simulation of wrinkled surfaces publication-title: ACM SIGGRAPH Comput Graph – start-page: 121 year: 1999 end-page: 128 – volume: 2021 start-page: 1 year: 2021 end-page: 12 article-title: Dynamic response study of impulsive force of debris flow evaluation and flexible retaining structure based on SPH‐DEM‐FEM coupling publication-title: Adv Civil Eng – start-page: 61 year: 1996 end-page: 76 – start-page: 23 year: 2001 end-page: 30 – volume: 15 start-page: 493 issue: 3 year: 2009 end-page: 503 article-title: Direct Forcing for Lagrangian Rigid‐Fluid Coupling publication-title: IEEE Trans Vis Comput Graph – year: 2014 – volume: 25 start-page: 820 issue: 3 year: 2006 end-page: 825 article-title: Fluid animation with dynamic meshes publication-title: ACM Trans Graph – volume: 199 start-page: 177 year: 1989 end-page: 215 article-title: The motion of a finite mass of granular material down a rough incline publication-title: J Fluid Mech – start-page: 1 year: 2022 end-page: 6 – volume: 381 start-page: 107664 year: 2021 article-title: Advances in the simulation of debris flow erosion: The case study of the Rio Gere (Italy) event of the 4th August 2017 publication-title: Geomorphology – start-page: 266 year: 2002 – volume: 37 start-page: 5150 issue: 17 year: 2022 end-page: 5173 article-title: Debris flows modeling using geo‐environmental factors: developing hybridized deep‐learning algorithms publication-title: Geocarto Int – year: 1980 – volume: 125 year: 2020 article-title: Smooth particle hydrodynamics and discrete element method coupling scheme for the simulation of debris flows publication-title: Comput Geotech – volume: 31 start-page: 62:1 issue: 4 year: 2012 end-page: 62:8 article-title: Versatile rigid‐fluid coupling for incompressible SPH publication-title: ACM Trans Graph – volume: 114 start-page: 2709 issue: 3 year: 2022 end-page: 2738 article-title: Establishing a GIS‐based evaluation method considering spatial heterogeneity for debris flow susceptibility mapping at the regional scale publication-title: Nat Hazards – start-page: 154 year: 2003 end-page: 159 – volume: 60 start-page: 1 year: 2022 end-page: 15 article-title: Breaking Limits of Remote Sensing by Deep Learning From Simulated Data for Flood and Debris‐Flow Mapping publication-title: IEEE Trans Geosci Remote Sens – volume: 9 start-page: 168 year: 1970 end-page: 186 article-title: Mobilization of debris flows publication-title: Zeitschrift fur Geomorphol (Annal Geomorphol) Supp – volume: 106 start-page: 537 issue: B1 year: 2001 end-page: 552 article-title: Flow of variably fluidized granular masses across three‐dimensional terrain: 1. Coulomb mixture theory publication-title: J Geophys Res Solid Earth – volume: 14 start-page: 1020 issue: 1 year: 2022 end-page: 1047 article-title: Numerical simulation of impact and entrainment behaviors of debris flow by using SPH–DEM–FEM coupling method publication-title: Open Geo – volume: 106 start-page: 381 issue: 3 year: 1980 end-page: 396 article-title: Debris flow on prismatic open channel publication-title: J Hydraul Div – start-page: 181 year: 1997 end-page: 188 – volume: 7 start-page: 16 issue: 3 year: 1987 end-page: 23 article-title: Fourier synthesis of ocean scenes publication-title: IEEE Comput Graph Appl – start-page: 203 year: 1998 end-page: 220 – volume: 10 start-page: 8189 issue: 22 year: 2020 article-title: Susceptibility Mapping on Urban Landslides Using Deep Learning Approaches in Mt. Umyeon publication-title: Appl Sci – ident: e_1_2_8_32_1 doi: 10.1016/j.compgeo.2020.103669 – ident: e_1_2_8_15_1 doi: 10.1145/383259.383261 – ident: e_1_2_8_22_1 doi: 10.1007/s11069-022-05487-5 – ident: e_1_2_8_25_1 doi: 10.1145/1141911.1141961 – ident: e_1_2_8_11_1 doi: 10.1145/965139.507101 – ident: e_1_2_8_27_1 doi: 10.1109/TVCG.2008.107 – ident: e_1_2_8_5_1 doi: 10.1061/JYCEAJ.0005381 – ident: e_1_2_8_8_1 doi: 10.1029/97RG00426 – ident: e_1_2_8_36_1 doi: 10.1515/geo-2022-0407 – ident: e_1_2_8_37_1 doi: 10.3917/ridp.781.0209 – ident: e_1_2_8_23_1 doi: 10.1109/TGRS.2020.3035469 – ident: e_1_2_8_2_1 doi: 10.1007/s11440-020-00957-1 – ident: e_1_2_8_16_1 doi: 10.1145/280811.280996 – ident: e_1_2_8_6_1 doi: 10.1061/(ASCE)0733-9429(1988)114:3(237) – ident: e_1_2_8_24_1 doi: 10.1145/1242073.1242279 – start-page: 191 volume-title: Computer Graphics Forum year: 2015 ident: e_1_2_8_30_1 – ident: e_1_2_8_21_1 doi: 10.3390/app10228189 – volume: 2021 start-page: 1 year: 2021 ident: e_1_2_8_35_1 article-title: Dynamic response study of impulsive force of debris flow evaluation and flexible retaining structure based on SPH‐DEM‐FEM coupling publication-title: Adv Civil Eng doi: 10.1155/2021/9098250 – ident: e_1_2_8_7_1 doi: 10.1017/S0022112089000340 – ident: e_1_2_8_19_1 doi: 10.1109/CVIDLICCEA56201.2022.9824223 – ident: e_1_2_8_29_1 doi: 10.1002/cav.1499 – ident: e_1_2_8_31_1 doi: 10.1016/j.enggeo.2018.09.003 – ident: e_1_2_8_3_1 doi: 10.1016/j.geomorph.2021.107664 – ident: e_1_2_8_33_1 doi: 10.1007/s10346-021-01640-6 – ident: e_1_2_8_26_1 doi: 10.1002/cav.162 – ident: e_1_2_8_38_1 doi: 10.1007/978-3-7091-7486-9_5 – ident: e_1_2_8_17_1 doi: 10.1145/218380.218430 – volume: 9 start-page: 168 year: 1970 ident: e_1_2_8_4_1 article-title: Mobilization of debris flows publication-title: Zeitschrift fur Geomorphol (Annal Geomorphol) Supp – ident: e_1_2_8_10_1 doi: 10.1029/2000JB900330 – volume-title: Classical Mechanics year: 1980 ident: e_1_2_8_39_1 – ident: e_1_2_8_20_1 doi: 10.1080/10106049.2021.1912194 – ident: e_1_2_8_12_1 doi: 10.1109/MCG.1987.276961 – volume-title: Physics for Scientists and Engineers with Modern Physics year: 2014 ident: e_1_2_8_40_1 – ident: e_1_2_8_34_1 doi: 10.1007/s11440-023-02106-w – ident: e_1_2_8_14_1 doi: 10.1145/311535.311548 – start-page: 154 volume-title: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation year: 2003 ident: e_1_2_8_18_1 – ident: e_1_2_8_9_1 doi: 10.1029/2000JB900329 – ident: e_1_2_8_13_1 doi: 10.1145/258734.258838 – ident: e_1_2_8_28_1 doi: 10.1145/2185520.2185558 |
SSID | ssj0026210 |
Score | 2.3452368 |
Snippet | Debris flow is a highly destructive natural disaster, necessitating accurate simulation and prediction. Existing simulation methods tend to be overly... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Debris flow Flow simulation Fluid flow GPU acceleration natural disaster simulation Natural disasters Risk assessment Smooth particle hydrodynamics Soil conditions SPH |
Title | Two‐particle debris flow simulation based on SPH |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.2261 https://www.proquest.com/docview/3071608046 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6kXvTgW6zWEkG8pU02m01yLNVSxIrYBwUPYV-BorbFtBY8-RP8jf4Sd7OJVUEQTwkhCzvDPL7Znf0W4FSoiMeF9GyPUb3NyHybcRzYLpJhEFEc0YysunNN2n18OfSHeVelPgtj-CE-F9y0Z2TxWjs4ZWl9SRrK6XNNYQdd-ehWLY2Hbj-ZoxBBhojAx8TWVULBO-ugejHweyZawsuvIDXLMq1NuCvmZ5pL7mvzGavxlx_Ujf8TYAs2cvBpNYy1bMOKHO_A-mCUzs3XdBdQbzF5f32b5hZlCamPBFjJw2RhpaPH_LIvSyc_YamX7k17D_qti16zbef3KthclYOuLXAgfUYirqKdr-AJxpxHiRCRpBSzxBGhQ6iUMiAJUdmKR25IvVBXGmEQOIx6-1AaT8byACyhIEZCEeMKd2JKOI1UzeurwBByhv0kKsNJoeN4augzYkOUjGIlf6zlL0OlUH6cO1Aaq9DjEoVmMSnDWabFX8fHzcZAPw__-uMRrCEFTUzbYgVKs6e5PFbQYsaqsNo471x1q5kxfQA7CMrj |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6KHtSDb7FaNYJ4S9ukm02Cp1ItVdsi2pYehLCvQFHbYlsLnvwJ_kZ_ibN5tCoI4ilLyMLOMI9vNrvfAJxIjHhCqpJZ4kz_ZuSOyQVxTctWnusz4rOIrLrRpLU2ueo63QycpXdhYn6I2Yab9owoXmsH1xvShTlrqGAveQQPWPos6obemjj__HbGHWVTO6YicAg1dZ2QMs8W7UI683sumgPMrzA1yjPVNbhPVxgfL3nIT8Y8L15_kDf-U4R1WE3wp1GODWYDMqq_CSud3mgSvx1tgd2aDj7e3oeJURlS6VsBRvg4mBqj3lPS78vQ-U8aOLi7qW1Du3rRqtTMpLWCKbAitExJXOVw6gsMeA4iFEKE8EMpfcUY4WFRekXKlFIuDSkmLOFbHit5utjwXLfIWWkHFvqDvtoFQyLKCJnNBUJPwqhgPpa9DsYGT3DihH4WjlMlB8OYQSOIuZLtAOUPtPxZyKXaDxIfGgUYfSyKgJbQLJxGavx1flApd_Rz768fHsFSrdWoB_XL5vU-LNuIVOJTjDlYGD9P1AEijTE_jCzqE5DRzWs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEF5EQfTBW6xWjSC-pc2x2WQfS2upVynaloIPYa9AUdtiWgs--RP8jf4SZ3O0KgjiU0LIQmaY45vs7DcInUqIeEIq13Q509uM3DO5wL5pOyrwKcOUJWTVN03S6ODLntfLuir1WZiUH2L2w017RhKvtYOPZFSek4YK9lIC7ACVzxImFtVjG2q3M-oohzgpE4GHianLhJx41nLK-crvqWiOL7-i1CTN1NfRff6BaXfJQ2ky5iXx-oO78X8SbKC1DH0aldRcNtGCGmyh1W4_nqRP423ktKfDj7f3UWZShlT6TIARPQ6nRtx_yqZ9GTr7SQNu7lqNHdSpn7erDTMbrGAKqAdtU2JfeZxQAeHOA3yCsRA0kpIqxjCPLBlYhCmlfBIRSFeC2gFzA11qBL5vcebuosXBcKD2kCEBY0TM4QKAJ2ZEMApFrweRIRAcexEtoJNcx-Eo5c8IU6ZkJwT5Qy1_ARVz5YeZB8UhxB6bAJzFpIDOEi3-uj6sVrr6uv_XF4_RcqtWD68vmlcHaMUBmJK2MBbR4vh5og4BZoz5UWJPn1a2zBo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two%E2%80%90particle+debris+flow+simulation+based+on+SPH&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Zhang%2C+Jiaxiu&rft.au=Yang%2C+Meng&rft.au=Li%2C+Xiaomin&rft.au=Jiang%2C+Qun%27ou&rft.date=2024-05-01&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=35&rft.issue=3&rft_id=info:doi/10.1002%2Fcav.2261&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cav_2261 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon |