Maximization of sum rate for Wireless Powered Communication Network with Intelligent Reflecting Surface and NOMA in the nonappearance of uplink and downlink beamforming matrix, subject to transmit power and time
Wireless Powered Communication Networks (WPCNs) represent a transformative approach to address the energy demands of mobile and Internet of Things (IoT) devices. By integrating Nonorthogonal Multiple Access (NOMA) and Intelligent Reflecting Surfaces (IRS), we can significantly enhance system perform...
Saved in:
Published in | International journal of communication systems Vol. 37; no. 16 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester
Wiley Subscription Services, Inc
10.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Wireless Powered Communication Networks (WPCNs) represent a transformative approach to address the energy demands of mobile and Internet of Things (IoT) devices. By integrating Nonorthogonal Multiple Access (NOMA) and Intelligent Reflecting Surfaces (IRS), we can significantly enhance system performance, extend coverage, and elevate the sum rate. NOMA efficiently utilizes the entire bandwidth by employing a power allocation strategy, whereas IRS, serving as an alternative to traditional relay amplification, further bolsters the sum rate. Despite these advancements, optimizing the sum rate introduces a nonconvex optimization challenge, primarily owing to the signal‐to‐interference‐plus‐noise ratio (SINR) complexities introduced by NOMA's Successive Interference Cancellation (SIC). Traditional convex optimization solvers, such as the CVX, struggle to address nonconvexity directly. Consequently, they were unable to produce the desired outcome. Moreover, the combination of multiple technologies to improve the sum rate complicates the optimization framework, necessitating a multitude of constraints that not only heightens the mathematical complexity but also induces errors through the requisite approximations for convexity conversion. To circumvent these hurdles, we advocate the application of a minimum constrained nonlinear multivariable function (Fmincon). This approach enables us to tackle the nonconvex problem head‐on, maintaining consistent simulation parameters while limiting constraints to two pivotal factors: joint optimization of the transmit power (
PT) and transmit time (
Tx). This strategic simplification mitigates complexity and minimizes errors. Our numerical analyses confirmed the efficacy of the proposed model and optimization technique. By co‐optimizing the transmission power and time, we achieved a notable sum rate. Comparative evaluations with extant models underscored the superior performance of our proposed framework, marking a significant stride in WPCN advancement.
Wireless powered communication networks (WPCNs) satisfy the energy requirements of mobile and Internet of Things (IoT) devices. Combining Nonorthogonal Multiple Access (NOMA) with Intelligent Reflecting Surface (IRS) boosts performance and coverage, but NOMA's Successive Interference Cancellation (SIC) Signal‐to‐Interference‐plus‐Noise Ratio (SINR) presents a nonconvex optimization issue for sum‐rate enhancement. Traditional convex optimization solvers fail with nonconvex problems. The work proposes using Fmincon to address such challenges. Our method directly addresses nonconvex issues by focusing on two key aspects: joint optimization of transmit power and time, leading to a significant increase in the sum rate compared with previous works. |
---|---|
AbstractList | Wireless Powered Communication Networks (WPCNs) represent a transformative approach to address the energy demands of mobile and Internet of Things (IoT) devices. By integrating Nonorthogonal Multiple Access (NOMA) and Intelligent Reflecting Surfaces (IRS), we can significantly enhance system performance, extend coverage, and elevate the sum rate. NOMA efficiently utilizes the entire bandwidth by employing a power allocation strategy, whereas IRS, serving as an alternative to traditional relay amplification, further bolsters the sum rate. Despite these advancements, optimizing the sum rate introduces a nonconvex optimization challenge, primarily owing to the signal‐to‐interference‐plus‐noise ratio (SINR) complexities introduced by NOMA's Successive Interference Cancellation (SIC). Traditional convex optimization solvers, such as the CVX, struggle to address nonconvexity directly. Consequently, they were unable to produce the desired outcome. Moreover, the combination of multiple technologies to improve the sum rate complicates the optimization framework, necessitating a multitude of constraints that not only heightens the mathematical complexity but also induces errors through the requisite approximations for convexity conversion. To circumvent these hurdles, we advocate the application of a minimum constrained nonlinear multivariable function (Fmincon). This approach enables us to tackle the nonconvex problem head‐on, maintaining consistent simulation parameters while limiting constraints to two pivotal factors: joint optimization of the transmit power (
PT) and transmit time (
Tx). This strategic simplification mitigates complexity and minimizes errors. Our numerical analyses confirmed the efficacy of the proposed model and optimization technique. By co‐optimizing the transmission power and time, we achieved a notable sum rate. Comparative evaluations with extant models underscored the superior performance of our proposed framework, marking a significant stride in WPCN advancement.
Wireless powered communication networks (WPCNs) satisfy the energy requirements of mobile and Internet of Things (IoT) devices. Combining Nonorthogonal Multiple Access (NOMA) with Intelligent Reflecting Surface (IRS) boosts performance and coverage, but NOMA's Successive Interference Cancellation (SIC) Signal‐to‐Interference‐plus‐Noise Ratio (SINR) presents a nonconvex optimization issue for sum‐rate enhancement. Traditional convex optimization solvers fail with nonconvex problems. The work proposes using Fmincon to address such challenges. Our method directly addresses nonconvex issues by focusing on two key aspects: joint optimization of transmit power and time, leading to a significant increase in the sum rate compared with previous works. Wireless Powered Communication Networks (WPCNs) represent a transformative approach to address the energy demands of mobile and Internet of Things (IoT) devices. By integrating Nonorthogonal Multiple Access (NOMA) and Intelligent Reflecting Surfaces (IRS), we can significantly enhance system performance, extend coverage, and elevate the sum rate. NOMA efficiently utilizes the entire bandwidth by employing a power allocation strategy, whereas IRS, serving as an alternative to traditional relay amplification, further bolsters the sum rate. Despite these advancements, optimizing the sum rate introduces a nonconvex optimization challenge, primarily owing to the signal‐to‐interference‐plus‐noise ratio (SINR) complexities introduced by NOMA's Successive Interference Cancellation (SIC). Traditional convex optimization solvers, such as the CVX, struggle to address nonconvexity directly. Consequently, they were unable to produce the desired outcome. Moreover, the combination of multiple technologies to improve the sum rate complicates the optimization framework, necessitating a multitude of constraints that not only heightens the mathematical complexity but also induces errors through the requisite approximations for convexity conversion. To circumvent these hurdles, we advocate the application of a minimum constrained nonlinear multivariable function (Fmincon). This approach enables us to tackle the nonconvex problem head‐on, maintaining consistent simulation parameters while limiting constraints to two pivotal factors: joint optimization of the transmit power (PT) and transmit time (Tx). This strategic simplification mitigates complexity and minimizes errors. Our numerical analyses confirmed the efficacy of the proposed model and optimization technique. By co‐optimizing the transmission power and time, we achieved a notable sum rate. Comparative evaluations with extant models underscored the superior performance of our proposed framework, marking a significant stride in WPCN advancement. Wireless Powered Communication Networks (WPCNs) represent a transformative approach to address the energy demands of mobile and Internet of Things (IoT) devices. By integrating Nonorthogonal Multiple Access (NOMA) and Intelligent Reflecting Surfaces (IRS), we can significantly enhance system performance, extend coverage, and elevate the sum rate. NOMA efficiently utilizes the entire bandwidth by employing a power allocation strategy, whereas IRS, serving as an alternative to traditional relay amplification, further bolsters the sum rate. Despite these advancements, optimizing the sum rate introduces a nonconvex optimization challenge, primarily owing to the signal‐to‐interference‐plus‐noise ratio (SINR) complexities introduced by NOMA's Successive Interference Cancellation (SIC). Traditional convex optimization solvers, such as the CVX, struggle to address nonconvexity directly. Consequently, they were unable to produce the desired outcome. Moreover, the combination of multiple technologies to improve the sum rate complicates the optimization framework, necessitating a multitude of constraints that not only heightens the mathematical complexity but also induces errors through the requisite approximations for convexity conversion. To circumvent these hurdles, we advocate the application of a minimum constrained nonlinear multivariable function (Fmincon). This approach enables us to tackle the nonconvex problem head‐on, maintaining consistent simulation parameters while limiting constraints to two pivotal factors: joint optimization of the transmit power ( ) and transmit time ( ). This strategic simplification mitigates complexity and minimizes errors. Our numerical analyses confirmed the efficacy of the proposed model and optimization technique. By co‐optimizing the transmission power and time, we achieved a notable sum rate. Comparative evaluations with extant models underscored the superior performance of our proposed framework, marking a significant stride in WPCN advancement. |
Author | Adeola Ajagbe, Sunday Agyeman Antwi, Owusu Adigun, Matthew Ampoma Affum, Emmanuel Kubi Appiah, Michael Tweneboah‐Koduah, Samuel Gyamfi, Eric |
Author_xml | – sequence: 1 givenname: Emmanuel surname: Ampoma Affum fullname: Ampoma Affum, Emmanuel organization: Kwame Nkrumah University of Science and Technology – sequence: 2 givenname: Samuel orcidid: 0000-0003-0054-3200 surname: Tweneboah‐Koduah fullname: Tweneboah‐Koduah, Samuel email: samuel.tweneboah-koduah@uenr.edu.gh organization: University of Energy and Natural Resources – sequence: 3 givenname: Michael surname: Kubi Appiah fullname: Kubi Appiah, Michael organization: Kwame Nkrumah University of Science and Technology – sequence: 4 givenname: Eric surname: Gyamfi fullname: Gyamfi, Eric organization: University College Dublin – sequence: 5 givenname: Sunday surname: Adeola Ajagbe fullname: Adeola Ajagbe, Sunday organization: First Technical University – sequence: 6 givenname: Owusu surname: Agyeman Antwi fullname: Agyeman Antwi, Owusu organization: Ghana Communication Technology University – sequence: 7 givenname: Matthew surname: Adigun fullname: Adigun, Matthew organization: Cape Peninsula University of Technology |
BookMark | eNp1kctu3DAMRY0iBZqkBfoJBLrpok4ke2SPl4PpK0AeRR_o0qBlKtHEkhxJhpP-Zn8o8ky33YgieHh5gXuSHVlnKcvecnbGGSvOe5RnouH8RXbMWdPknJf8aPnXq1yUgr_KTkLYMcbWRSWOs79X-KiN_oNROwtOQZgMeIwEynn4rT0NFAJ8czN56mHrjJmslgf8muLs_D3MOt7BhY00DPqWbITvpAaSUdtb-DF5hZIAbQ_XN1cb0BbiHUGyjeNI6NGmaTo8jYO293uud7PdNx2hST7MImQwev34IRnsdkkbooOYloPREcbF3n41akOvs5cKh0Bv_tXT7NfnTz-3X_PLmy8X281lLgux4nlX9Ygdr0UlZSFr1dcdlUyQUE0nGimFRF72rFDIK1XXpFjZ4Vp1fCVLtlbr8jR7d9AdvXuYKMR25yZv08m25LyoqvTWiXp_oKR3IXhS7ei1Qf_UctYukbUpsnaJLKH5AZ31QE__5dqPm-2efwYZkZ8j |
Cites_doi | 10.1016/j.jestch.2023.101365 10.1109/LWC.2021.3087495 10.1109/TSP.2021.3073813 10.1007/978-3-031-30171-1_23 10.1109/TCOMM.2019.2919558 10.1109/JIOT.2021.3072987 10.1109/TCOMM.2020.3028875 10.1109/TGCN.2022.3144465 10.1109/JIOT.2023.3331737 10.1109/COMST.2014.2368999 10.1109/VTC2020-Fall49728.2020.9348801 10.1109/TCOMM.2020.3001125 10.1109/ACCESS.2023.3243848 10.1109/TCOMM.2021.3051897 10.1109/MNET.011.1900601 10.1364/OE.510558 10.1109/LWC.2020.3046722 10.1109/LCOMM.2020.2974196 10.1109/TWC.2019.2936025 10.1109/TCOMM.2019.2958916 10.1049/cmu2.12648 10.1109/TVT.2021.3126013 10.1155/2021/8836757 10.1109/LWC.2021.3072502 10.1049/cmu2.12571 10.1007/978-3-319-91578-4 10.1109/ACCESS.2023.3266375 10.1109/TVT.2023.3260976 10.1109/ACCESS.2024.3352085 10.1109/MWC.003.2300013 10.1109/TNSM.2024.3374527 |
ContentType | Journal Article |
Copyright | 2024 John Wiley & Sons Ltd. 2024 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2024 John Wiley & Sons Ltd. – notice: 2024 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SP 8FD JQ2 L7M |
DOI | 10.1002/dac.5911 |
DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts ProQuest Computer Science Collection |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-1131 |
EndPage | n/a |
ExternalDocumentID | 10_1002_dac_5911 DAC5911 |
Genre | article |
GroupedDBID | .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ESX F00 F01 F04 G-S G.N GNP GODZA H.T H.X HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WRC WWI WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION 7SP 8FD AAMMB ACUHS AEFGJ AGXDD AIDQK AIDYY JQ2 L7M |
ID | FETCH-LOGICAL-c2541-b6daab1756cc2c7fd7be305e5f9b59cc5ca13d02fa16f77ef03ba8fb14c308f83 |
IEDL.DBID | DR2 |
ISSN | 1074-5351 |
IngestDate | Fri Jul 25 12:16:05 EDT 2025 Tue Jul 01 02:36:23 EDT 2025 Wed Jan 22 17:16:11 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2541-b6daab1756cc2c7fd7be305e5f9b59cc5ca13d02fa16f77ef03ba8fb14c308f83 |
Notes | Funding information Post Office Box 214, Sunyani, Bono Region, Ghana The authors declare that the work in this manuscript received no specific grant from any funding agency in the public, commercial, or not‐for‐profit sectors. Present address ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0054-3200 |
PQID | 3112663117 |
PQPubID | 996367 |
PageCount | 18 |
ParticipantIDs | proquest_journals_3112663117 crossref_primary_10_1002_dac_5911 wiley_primary_10_1002_dac_5911_DAC5911 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 10 November 2024 |
PublicationDateYYYYMMDD | 2024-11-10 |
PublicationDate_xml | – month: 11 year: 2024 text: 10 November 2024 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Chichester |
PublicationPlace_xml | – name: Chichester |
PublicationTitle | International journal of communication systems |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 69 2021; 8 2023; 11 2023; 17 2019; 18 2024; 32 2020; 34 2024 2020; 10 2021; 71 2023; 40 2021; 10 2023 2022 2020 2022; 6 2019; 68 2019; 67 2024; 2024 2022; 13 2018 2020; 69 2020; 24 2020; 68 2022; 2 2014; 17 2021; 2021 e_1_2_10_23_1 e_1_2_10_24_1 Liu Y (e_1_2_10_7_1) 2022; 2 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_20_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_17_1 e_1_2_10_8_1 e_1_2_10_15_1 e_1_2_10_36_1 Fang Y (e_1_2_10_5_1) 2024; 2024 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 Tweneboah‐Koduah S (e_1_2_10_14_1) 2022; 13 e_1_2_10_30_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1 |
References_xml | – volume: 11 start-page: 16021 year: 2023 end-page: 16031 article-title: Intelligent reflecting surfaces for sum‐rate maximization in cognitive radio enabled wireless powered communication network publication-title: IEEE Access – volume: 71 start-page: 1083 issue: 1 year: 2021 end-page: 1088 article-title: IRS‐assisted downlink and uplink NOMA in wireless powered communication networks publication-title: IEEE Trans Veh Technol – volume: 13 issue: 10 year: 2022 article-title: Decode and forward coding scheme for cooperative relay noma system with cylindrical array transmitter publication-title: Int J Adv Comput Sci Appl – volume: 68 start-page: 5849 issue: 9 year: 2020 end-page: 5863 article-title: Intelligent reflecting surface: practical phase shift model and beamforming optimization publication-title: IEEE Trans Commun – volume: 10 start-page: 1944 issue: 9 year: 2021 end-page: 1948 article-title: Throughput maximization for irs‐assisted wireless powered hybrid NOMA and TDMA publication-title: IEEE Wirel Commun Lett – volume: 24 start-page: 1119 issue: 5 year: 2020 end-page: 1123 article-title: A simple design of irs‐noma transmission publication-title: IEEE Commun Lett – volume: 17 start-page: 757 issue: 2 year: 2014 end-page: 789 article-title: Wireless networks with RF energy harvesting: a contemporary survey publication-title: IEEE Commun Surv Tutor – volume: 2 start-page: 136 issue: 4 year: 2022 end-page: 142 article-title: A study on irs‐assisted communications: problems, challenges, and solutions publication-title: J Netw Netw Appl – year: 2024 – volume: 10 start-page: 849 issue: 4 year: 2020 end-page: 853 article-title: A maximum throughput design for wireless powered communication networks with IRS‐NOMA publication-title: IEEE Wirel Commun Lett – volume: 34 start-page: 205 issue: 5 year: 2020 end-page: 211 article-title: Cooperative NOMA: state of the art, key techniques, and open challenges publication-title: IEEE Netw – volume: 8 start-page: 14959 issue: 19 year: 2021 end-page: 14970 article-title: Sum‐rate maximization in IRS‐assisted wireless power communication networks publication-title: IEEE Internet Things J – volume: 6 start-page: 163 issue: 1 year: 2022 end-page: 174 article-title: Exploiting intelligent reflecting surface for energy efficiency in ambient backscatter communication‐enabled noma networks publication-title: IEEE Trans Green Commun Netw – year: 2024 article-title: Active‐irs‐aided wireless communication: fundamentals, designs and open issues publication-title: IEEE Wireless Commun – year: 2018 – volume: 17 start-page: 1730 issue: 14 year: 2023 end-page: 1740 article-title: Stochastic geometry modelling and analysis for cooperative noma with large transmit antennas for 5g applications and beyond publication-title: IET Commun – volume: 11 start-page: 36713 year: 2023 end-page: 36726 article-title: Resource configuration for throughput maximization in UAV‐WPCN with intelligent reflecting surface publication-title: IEEE Access – volume: 2024 start-page: 1 year: 2024 end-page: 1 article-title: Multi‐IRS‐enabled integrated sensing and communications publication-title: IEEE Trans Commun – volume: 18 start-page: 5394 issue: 11 year: 2019 end-page: 5409 article-title: Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming publication-title: IEEE Trans Wireless Commun – volume: 40 year: 2023 article-title: Achievable rate optimization for space–time block code‐aided cooperative NOMA with energy harvesting publication-title: Eng Sci Technol, an Int J – volume: 67 start-page: 6499 issue: 9 year: 2019 end-page: 6511 article-title: Noma throughput and energy efficiency in energy harvesting enabled networks publication-title: IEEE Trans Commun – volume: 10 start-page: 1493 issue: 7 year: 2021 end-page: 1497 article-title: Irs‐assisted wireless powered NOMA: do we really need different phase shifts in DL and UL? publication-title: IEEE Wirel Commun Lett – volume: 69 start-page: 2706 year: 2021 end-page: 2724 article-title: Throughput maximization for intelligent reflecting surface aided MIMO WPCNS with different DL/UL reflection patterns publication-title: IEEE Trans Sig Process – volume: 69 start-page: 619 issue: 1 year: 2020 end-page: 633 article-title: Optimized energy and information relaying in self‐sustainable irs‐empowered WPCN publication-title: IEEE Trans Commun – volume: 2021 issue: 1 year: 2021 article-title: Enhanced secure swipt in heterogeneous network via intelligent reflecting surface publication-title: Sec Commun Netw – year: 2022 – year: 2023 – start-page: 209 year: 2022 end-page: 219 – volume: 68 start-page: 1838 issue: 3 year: 2019 end-page: 1851 article-title: Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts publication-title: IEEE Trans Commun – start-page: 1 year: 2020 end-page: 6 – volume: 17 start-page: 497 issue: 5 year: 2023 end-page: 537 article-title: A survey on reconfigurable intelligent surfaces: wireless communication perspective publication-title: IET Commun – volume: 69 start-page: 3313 issue: 5 year: 2021 end-page: 3351 article-title: Intelligent reflecting surface‐aided wireless communications: a tutorial publication-title: IEEE Trans Commun – volume: 32 start-page: 1979 issue: 2 year: 2024 end-page: 1997 article-title: Highly secure non‐orthogonal multiple access based on key accompanying transmission in training sequence publication-title: Optics Express – volume: 13 issue: 10 year: 2022 ident: e_1_2_10_14_1 article-title: Decode and forward coding scheme for cooperative relay noma system with cylindrical array transmitter publication-title: Int J Adv Comput Sci Appl – ident: e_1_2_10_12_1 doi: 10.1016/j.jestch.2023.101365 – ident: e_1_2_10_17_1 doi: 10.1109/LWC.2021.3087495 – ident: e_1_2_10_23_1 doi: 10.1109/TSP.2021.3073813 – volume: 2 start-page: 136 issue: 4 year: 2022 ident: e_1_2_10_7_1 article-title: A study on irs‐assisted communications: problems, challenges, and solutions publication-title: J Netw Netw Appl – ident: e_1_2_10_31_1 doi: 10.1007/978-3-031-30171-1_23 – ident: e_1_2_10_10_1 – volume: 2024 start-page: 1 year: 2024 ident: e_1_2_10_5_1 article-title: Multi‐IRS‐enabled integrated sensing and communications publication-title: IEEE Trans Commun – ident: e_1_2_10_15_1 doi: 10.1109/TCOMM.2019.2919558 – ident: e_1_2_10_21_1 doi: 10.1109/JIOT.2021.3072987 – ident: e_1_2_10_16_1 doi: 10.1109/TCOMM.2020.3028875 – ident: e_1_2_10_36_1 doi: 10.1109/TGCN.2022.3144465 – ident: e_1_2_10_18_1 doi: 10.1109/JIOT.2023.3331737 – ident: e_1_2_10_11_1 doi: 10.1109/COMST.2014.2368999 – ident: e_1_2_10_22_1 doi: 10.1109/VTC2020-Fall49728.2020.9348801 – ident: e_1_2_10_34_1 doi: 10.1109/TCOMM.2020.3001125 – ident: e_1_2_10_26_1 doi: 10.1109/ACCESS.2023.3243848 – ident: e_1_2_10_6_1 doi: 10.1109/TCOMM.2021.3051897 – ident: e_1_2_10_13_1 doi: 10.1109/MNET.011.1900601 – ident: e_1_2_10_3_1 doi: 10.1364/OE.510558 – ident: e_1_2_10_28_1 doi: 10.1109/LWC.2020.3046722 – ident: e_1_2_10_20_1 doi: 10.1109/LCOMM.2020.2974196 – ident: e_1_2_10_9_1 doi: 10.1109/TWC.2019.2936025 – ident: e_1_2_10_35_1 doi: 10.1109/TCOMM.2019.2958916 – ident: e_1_2_10_2_1 doi: 10.1049/cmu2.12648 – ident: e_1_2_10_27_1 doi: 10.1109/TVT.2021.3126013 – ident: e_1_2_10_30_1 doi: 10.1155/2021/8836757 – ident: e_1_2_10_25_1 doi: 10.1109/LWC.2021.3072502 – ident: e_1_2_10_8_1 doi: 10.1049/cmu2.12571 – ident: e_1_2_10_33_1 doi: 10.1007/978-3-319-91578-4 – ident: e_1_2_10_19_1 doi: 10.1109/ACCESS.2023.3266375 – ident: e_1_2_10_29_1 doi: 10.1109/TVT.2023.3260976 – ident: e_1_2_10_24_1 doi: 10.1109/ACCESS.2024.3352085 – ident: e_1_2_10_4_1 doi: 10.1109/MWC.003.2300013 – ident: e_1_2_10_32_1 doi: 10.1109/TNSM.2024.3374527 |
SSID | ssj0008265 |
Score | 2.344979 |
Snippet | Wireless Powered Communication Networks (WPCNs) represent a transformative approach to address the energy demands of mobile and Internet of Things (IoT)... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Beamforming Communication networks Complexity Constraints convex optimization solver (CVX) Convexity Errors Functions (mathematics) intelligent reflecting surface (IRS) Internet of Things minimum of constrained nonlinear multivariable function (Fmincon) Nonorthogonal multiple access nonorthogonal multiple access (NOMA) Optimization Optimization techniques Performance evaluation Power management Reconfigurable intelligent surfaces successive interference cancellation (SIC) Wireless communications wireless energy transfer (WET) wireless information transfer (WIT) Wireless networks wireless powered communication networks (WPCN) WPCN |
Title | Maximization of sum rate for Wireless Powered Communication Network with Intelligent Reflecting Surface and NOMA in the nonappearance of uplink and downlink beamforming matrix, subject to transmit power and time |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fdac.5911 https://www.proquest.com/docview/3112663117 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9tAEF5KntKH3qVu0zCFkqcq0bU6Hk0O0oLd4DYQ6IPY2QOMI9s4MoT-zfyhzKyk2CkUSl90wB4jdmbn29XMt0J8LlOTOitNgHGOtEApLD1ZG2QJ-ZMSQyc9z-xonJ1fpt-u5FUXVcm5MC0_xMOGG1uGn6_ZwBXeHG1IQw31J0uf1suhWoyHJhvmKELNsg83lImMet7ZMD7qKz72RBt4uQ1SvZc5ey5-9fK1wSWzw3WDh_r3H9SN__cBL8SzDnzCsNWWl-KJnb8ST7coCV-Lu5G6ndZdciYsHJCmAtNJAKFb4FjZa5ob4YIPV7MGHuWXwLiNKQfe3IWvD2SfDUys498D1AP8WK-c0hbU3MD4-2gI0zkQCIU5LQmWS7I7VkPueM25wjNfzjCjP7-gVTWjbG6o5sMFbr-QgMh7SdAsoGHHW08bWLJ4vmozre0bcXl2-vP4POgOfgg0rVejADOjFBKw4aBunTuTo6V5yUpXoiy1llpFiQljp6LM5bl1YYKqcBilOgkLVyRvxQ5Jbd8JcOR9jUFqpEhTWdCCDbNMGReFiUYZqoH41CtBtWz5PaqWyTmuaIAqHqCB2Ou1o-os_KZKOPcqo2s-EAd-mP9avzoZHvP9_b8W_CB2Y8JOgY823BM7zWptPxL2aXDfa_k98JUGgQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSxxBEC7EHJIckmgSssZoBcRTRufV8yCnRSNr4q7BKHgIDP2ERWddzCyIf9M_lKqeHVcDgZDLPKAfNXR111c9VV8DbJWpSZ0VJlBxrshBKSw9WRtkCdmTUoVOeJ7Z4SgbnKVfz8X5EnzucmFafoj7DTeeGX695gnOG9K7C9ZQQx2KkvN6n_CB3t6fOllwRxFuFl3AoUhE1DHPhvFuV_OxLVoAzIcw1duZg5fws5OwDS-52Jk1akff_kHe-J-f8ApezPEn9luFWYElO1mF5w9YCV_D3VDejOt5fiZeOSRlRWaUQAK4yOGyl7Q84nc-X80afJRigqM2rBx5fxcP7_k-Gzyxjv8QUA_4Y3btpLYoJwZHx8M-jidIOBQn5BVMpzT1WBO54xmnC1_4coZJ_flFWVkz0OaGaj5f4OYTCah4OwmbK2zY9tbjBqcsnq_ajGv7Bs4OvpzuDYL52Q-BJpc1ClRmpFSEbTiuW-fO5MrS0mSFK5UotRZaRokJYyejzOW5dWGiZOFUlOokLFyRvIVlktq-A3RkgI1R1EiRpqIgn01lmTQuChOtRCh78LHTgmraUnxULZlzXNEAVTxAPVjv1KOaT_JfVcLpVxld8x5s-3H-a_1qv7_H97V_LbgJTwenw6Pq6HD07T08iwlKBT74cB2Wm-uZ_UBQqFEbXuV_AzP3Cpw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSxxBEG6CQogPMV64yaoliE8ZnavneFx2s6jJrmIUhDwMfcKisw5mFsS_6R-yag5XA0LwZQ7oo4au6vq6p-prxvbSUIfWcO1IP5a4QEkMPhnjRAH6k1S6llc8s6NxdHQZnlzxqyaqknJhan6I5w03soxqviYDL7Q9nJOGauyPp5TWuxhGbkIaPTifU0chbOZtvCEPuNcSz7r-YVvztSua48uXKLVyM8Nl9qcVsI4uuT6YlfJAPfzD3fi-L_jCPjfoE3q1uqywD2a6ypZecBKusceRuJ_kTXYm3FpAVQXikwCEt0DBsjc4OcIZna5mNLxKMIFxHVQOtLsLx89snyWcG0v_B7AH-D27s0IZEFMN49NRDyZTQBQKU1wTFAUaHukhdTyjZOHrqpwmSn96kUbkBLOpoZxOF7j_jgJK2kyC8hZK8rz5pISCxKuqlpPcrLPL4Y-L_pHTnPzgKFyweo6MtBASkQ1FdavY6lganJgMt6nkqVJcCS_Qrm-FF9k4NtYNpEis9EIVuIlNgg22gFKbTQYW3a_WEhtJwpAnuGKTUSS09dxASe6KDtttlSAraoKPrKZy9jMcoIwGqMO6rXZkjYn_zQJKvorwGnfYfjXMb9bPBr0-3b_-b8Ed9vFsMMx-HY9_fmOffMRRThV52GUL5d3MbCEOKuV2pfBPPWQJVA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximization+of+sum+rate+for+Wireless+Powered+Communication+Network+with+Intelligent+Reflecting+Surface+and+NOMA+in+the+nonappearance+of+uplink+and+downlink+beamforming+matrix%2C+subject+to+transmit+power+and+time&rft.jtitle=International+journal+of+communication+systems&rft.au=Ampoma+Affum%2C+Emmanuel&rft.au=Tweneboah%E2%80%90Koduah%2C+Samuel&rft.au=Kubi+Appiah%2C+Michael&rft.au=Gyamfi%2C+Eric&rft.date=2024-11-10&rft.issn=1074-5351&rft.eissn=1099-1131&rft.volume=37&rft.issue=16&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fdac.5911&rft.externalDBID=10.1002%252Fdac.5911&rft.externalDocID=DAC5911 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-5351&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-5351&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-5351&client=summon |