Maximization of sum rate for Wireless Powered Communication Network with Intelligent Reflecting Surface and NOMA in the nonappearance of uplink and downlink beamforming matrix, subject to transmit power and time

Wireless Powered Communication Networks (WPCNs) represent a transformative approach to address the energy demands of mobile and Internet of Things (IoT) devices. By integrating Nonorthogonal Multiple Access (NOMA) and Intelligent Reflecting Surfaces (IRS), we can significantly enhance system perform...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of communication systems Vol. 37; no. 16
Main Authors Ampoma Affum, Emmanuel, Tweneboah‐Koduah, Samuel, Kubi Appiah, Michael, Gyamfi, Eric, Adeola Ajagbe, Sunday, Agyeman Antwi, Owusu, Adigun, Matthew
Format Journal Article
LanguageEnglish
Published Chichester Wiley Subscription Services, Inc 10.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Wireless Powered Communication Networks (WPCNs) represent a transformative approach to address the energy demands of mobile and Internet of Things (IoT) devices. By integrating Nonorthogonal Multiple Access (NOMA) and Intelligent Reflecting Surfaces (IRS), we can significantly enhance system performance, extend coverage, and elevate the sum rate. NOMA efficiently utilizes the entire bandwidth by employing a power allocation strategy, whereas IRS, serving as an alternative to traditional relay amplification, further bolsters the sum rate. Despite these advancements, optimizing the sum rate introduces a nonconvex optimization challenge, primarily owing to the signal‐to‐interference‐plus‐noise ratio (SINR) complexities introduced by NOMA's Successive Interference Cancellation (SIC). Traditional convex optimization solvers, such as the CVX, struggle to address nonconvexity directly. Consequently, they were unable to produce the desired outcome. Moreover, the combination of multiple technologies to improve the sum rate complicates the optimization framework, necessitating a multitude of constraints that not only heightens the mathematical complexity but also induces errors through the requisite approximations for convexity conversion. To circumvent these hurdles, we advocate the application of a minimum constrained nonlinear multivariable function (Fmincon). This approach enables us to tackle the nonconvex problem head‐on, maintaining consistent simulation parameters while limiting constraints to two pivotal factors: joint optimization of the transmit power ( PT) and transmit time ( Tx). This strategic simplification mitigates complexity and minimizes errors. Our numerical analyses confirmed the efficacy of the proposed model and optimization technique. By co‐optimizing the transmission power and time, we achieved a notable sum rate. Comparative evaluations with extant models underscored the superior performance of our proposed framework, marking a significant stride in WPCN advancement. Wireless powered communication networks (WPCNs) satisfy the energy requirements of mobile and Internet of Things (IoT) devices. Combining Nonorthogonal Multiple Access (NOMA) with Intelligent Reflecting Surface (IRS) boosts performance and coverage, but NOMA's Successive Interference Cancellation (SIC) Signal‐to‐Interference‐plus‐Noise Ratio (SINR) presents a nonconvex optimization issue for sum‐rate enhancement. Traditional convex optimization solvers fail with nonconvex problems. The work proposes using Fmincon to address such challenges. Our method directly addresses nonconvex issues by focusing on two key aspects: joint optimization of transmit power and time, leading to a significant increase in the sum rate compared with previous works.
AbstractList Wireless Powered Communication Networks (WPCNs) represent a transformative approach to address the energy demands of mobile and Internet of Things (IoT) devices. By integrating Nonorthogonal Multiple Access (NOMA) and Intelligent Reflecting Surfaces (IRS), we can significantly enhance system performance, extend coverage, and elevate the sum rate. NOMA efficiently utilizes the entire bandwidth by employing a power allocation strategy, whereas IRS, serving as an alternative to traditional relay amplification, further bolsters the sum rate. Despite these advancements, optimizing the sum rate introduces a nonconvex optimization challenge, primarily owing to the signal‐to‐interference‐plus‐noise ratio (SINR) complexities introduced by NOMA's Successive Interference Cancellation (SIC). Traditional convex optimization solvers, such as the CVX, struggle to address nonconvexity directly. Consequently, they were unable to produce the desired outcome. Moreover, the combination of multiple technologies to improve the sum rate complicates the optimization framework, necessitating a multitude of constraints that not only heightens the mathematical complexity but also induces errors through the requisite approximations for convexity conversion. To circumvent these hurdles, we advocate the application of a minimum constrained nonlinear multivariable function (Fmincon). This approach enables us to tackle the nonconvex problem head‐on, maintaining consistent simulation parameters while limiting constraints to two pivotal factors: joint optimization of the transmit power ( PT) and transmit time ( Tx). This strategic simplification mitigates complexity and minimizes errors. Our numerical analyses confirmed the efficacy of the proposed model and optimization technique. By co‐optimizing the transmission power and time, we achieved a notable sum rate. Comparative evaluations with extant models underscored the superior performance of our proposed framework, marking a significant stride in WPCN advancement. Wireless powered communication networks (WPCNs) satisfy the energy requirements of mobile and Internet of Things (IoT) devices. Combining Nonorthogonal Multiple Access (NOMA) with Intelligent Reflecting Surface (IRS) boosts performance and coverage, but NOMA's Successive Interference Cancellation (SIC) Signal‐to‐Interference‐plus‐Noise Ratio (SINR) presents a nonconvex optimization issue for sum‐rate enhancement. Traditional convex optimization solvers fail with nonconvex problems. The work proposes using Fmincon to address such challenges. Our method directly addresses nonconvex issues by focusing on two key aspects: joint optimization of transmit power and time, leading to a significant increase in the sum rate compared with previous works.
Wireless Powered Communication Networks (WPCNs) represent a transformative approach to address the energy demands of mobile and Internet of Things (IoT) devices. By integrating Nonorthogonal Multiple Access (NOMA) and Intelligent Reflecting Surfaces (IRS), we can significantly enhance system performance, extend coverage, and elevate the sum rate. NOMA efficiently utilizes the entire bandwidth by employing a power allocation strategy, whereas IRS, serving as an alternative to traditional relay amplification, further bolsters the sum rate. Despite these advancements, optimizing the sum rate introduces a nonconvex optimization challenge, primarily owing to the signal‐to‐interference‐plus‐noise ratio (SINR) complexities introduced by NOMA's Successive Interference Cancellation (SIC). Traditional convex optimization solvers, such as the CVX, struggle to address nonconvexity directly. Consequently, they were unable to produce the desired outcome. Moreover, the combination of multiple technologies to improve the sum rate complicates the optimization framework, necessitating a multitude of constraints that not only heightens the mathematical complexity but also induces errors through the requisite approximations for convexity conversion. To circumvent these hurdles, we advocate the application of a minimum constrained nonlinear multivariable function (Fmincon). This approach enables us to tackle the nonconvex problem head‐on, maintaining consistent simulation parameters while limiting constraints to two pivotal factors: joint optimization of the transmit power (PT) and transmit time (Tx). This strategic simplification mitigates complexity and minimizes errors. Our numerical analyses confirmed the efficacy of the proposed model and optimization technique. By co‐optimizing the transmission power and time, we achieved a notable sum rate. Comparative evaluations with extant models underscored the superior performance of our proposed framework, marking a significant stride in WPCN advancement.
Wireless Powered Communication Networks (WPCNs) represent a transformative approach to address the energy demands of mobile and Internet of Things (IoT) devices. By integrating Nonorthogonal Multiple Access (NOMA) and Intelligent Reflecting Surfaces (IRS), we can significantly enhance system performance, extend coverage, and elevate the sum rate. NOMA efficiently utilizes the entire bandwidth by employing a power allocation strategy, whereas IRS, serving as an alternative to traditional relay amplification, further bolsters the sum rate. Despite these advancements, optimizing the sum rate introduces a nonconvex optimization challenge, primarily owing to the signal‐to‐interference‐plus‐noise ratio (SINR) complexities introduced by NOMA's Successive Interference Cancellation (SIC). Traditional convex optimization solvers, such as the CVX, struggle to address nonconvexity directly. Consequently, they were unable to produce the desired outcome. Moreover, the combination of multiple technologies to improve the sum rate complicates the optimization framework, necessitating a multitude of constraints that not only heightens the mathematical complexity but also induces errors through the requisite approximations for convexity conversion. To circumvent these hurdles, we advocate the application of a minimum constrained nonlinear multivariable function (Fmincon). This approach enables us to tackle the nonconvex problem head‐on, maintaining consistent simulation parameters while limiting constraints to two pivotal factors: joint optimization of the transmit power ( ) and transmit time ( ). This strategic simplification mitigates complexity and minimizes errors. Our numerical analyses confirmed the efficacy of the proposed model and optimization technique. By co‐optimizing the transmission power and time, we achieved a notable sum rate. Comparative evaluations with extant models underscored the superior performance of our proposed framework, marking a significant stride in WPCN advancement.
Author Adeola Ajagbe, Sunday
Agyeman Antwi, Owusu
Adigun, Matthew
Ampoma Affum, Emmanuel
Kubi Appiah, Michael
Tweneboah‐Koduah, Samuel
Gyamfi, Eric
Author_xml – sequence: 1
  givenname: Emmanuel
  surname: Ampoma Affum
  fullname: Ampoma Affum, Emmanuel
  organization: Kwame Nkrumah University of Science and Technology
– sequence: 2
  givenname: Samuel
  orcidid: 0000-0003-0054-3200
  surname: Tweneboah‐Koduah
  fullname: Tweneboah‐Koduah, Samuel
  email: samuel.tweneboah-koduah@uenr.edu.gh
  organization: University of Energy and Natural Resources
– sequence: 3
  givenname: Michael
  surname: Kubi Appiah
  fullname: Kubi Appiah, Michael
  organization: Kwame Nkrumah University of Science and Technology
– sequence: 4
  givenname: Eric
  surname: Gyamfi
  fullname: Gyamfi, Eric
  organization: University College Dublin
– sequence: 5
  givenname: Sunday
  surname: Adeola Ajagbe
  fullname: Adeola Ajagbe, Sunday
  organization: First Technical University
– sequence: 6
  givenname: Owusu
  surname: Agyeman Antwi
  fullname: Agyeman Antwi, Owusu
  organization: Ghana Communication Technology University
– sequence: 7
  givenname: Matthew
  surname: Adigun
  fullname: Adigun, Matthew
  organization: Cape Peninsula University of Technology
BookMark eNp1kctu3DAMRY0iBZqkBfoJBLrpok4ke2SPl4PpK0AeRR_o0qBlKtHEkhxJhpP-Zn8o8ky33YgieHh5gXuSHVlnKcvecnbGGSvOe5RnouH8RXbMWdPknJf8aPnXq1yUgr_KTkLYMcbWRSWOs79X-KiN_oNROwtOQZgMeIwEynn4rT0NFAJ8czN56mHrjJmslgf8muLs_D3MOt7BhY00DPqWbITvpAaSUdtb-DF5hZIAbQ_XN1cb0BbiHUGyjeNI6NGmaTo8jYO293uud7PdNx2hST7MImQwev34IRnsdkkbooOYloPREcbF3n41akOvs5cKh0Bv_tXT7NfnTz-3X_PLmy8X281lLgux4nlX9Ygdr0UlZSFr1dcdlUyQUE0nGimFRF72rFDIK1XXpFjZ4Vp1fCVLtlbr8jR7d9AdvXuYKMR25yZv08m25LyoqvTWiXp_oKR3IXhS7ei1Qf_UctYukbUpsnaJLKH5AZ31QE__5dqPm-2efwYZkZ8j
Cites_doi 10.1016/j.jestch.2023.101365
10.1109/LWC.2021.3087495
10.1109/TSP.2021.3073813
10.1007/978-3-031-30171-1_23
10.1109/TCOMM.2019.2919558
10.1109/JIOT.2021.3072987
10.1109/TCOMM.2020.3028875
10.1109/TGCN.2022.3144465
10.1109/JIOT.2023.3331737
10.1109/COMST.2014.2368999
10.1109/VTC2020-Fall49728.2020.9348801
10.1109/TCOMM.2020.3001125
10.1109/ACCESS.2023.3243848
10.1109/TCOMM.2021.3051897
10.1109/MNET.011.1900601
10.1364/OE.510558
10.1109/LWC.2020.3046722
10.1109/LCOMM.2020.2974196
10.1109/TWC.2019.2936025
10.1109/TCOMM.2019.2958916
10.1049/cmu2.12648
10.1109/TVT.2021.3126013
10.1155/2021/8836757
10.1109/LWC.2021.3072502
10.1049/cmu2.12571
10.1007/978-3-319-91578-4
10.1109/ACCESS.2023.3266375
10.1109/TVT.2023.3260976
10.1109/ACCESS.2024.3352085
10.1109/MWC.003.2300013
10.1109/TNSM.2024.3374527
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SP
8FD
JQ2
L7M
DOI 10.1002/dac.5911
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
ProQuest Computer Science Collection
DatabaseTitleList
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1131
EndPage n/a
ExternalDocumentID 10_1002_dac_5911
DAC5911
Genre article
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ESX
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
7SP
8FD
AAMMB
ACUHS
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
ID FETCH-LOGICAL-c2541-b6daab1756cc2c7fd7be305e5f9b59cc5ca13d02fa16f77ef03ba8fb14c308f83
IEDL.DBID DR2
ISSN 1074-5351
IngestDate Fri Jul 25 12:16:05 EDT 2025
Tue Jul 01 02:36:23 EDT 2025
Wed Jan 22 17:16:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2541-b6daab1756cc2c7fd7be305e5f9b59cc5ca13d02fa16f77ef03ba8fb14c308f83
Notes Funding information
Post Office Box 214, Sunyani, Bono Region, Ghana
The authors declare that the work in this manuscript received no specific grant from any funding agency in the public, commercial, or not‐for‐profit sectors.
Present address
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0054-3200
PQID 3112663117
PQPubID 996367
PageCount 18
ParticipantIDs proquest_journals_3112663117
crossref_primary_10_1002_dac_5911
wiley_primary_10_1002_dac_5911_DAC5911
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 10 November 2024
PublicationDateYYYYMMDD 2024-11-10
PublicationDate_xml – month: 11
  year: 2024
  text: 10 November 2024
  day: 10
PublicationDecade 2020
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle International journal of communication systems
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 69
2021; 8
2023; 11
2023; 17
2019; 18
2024; 32
2020; 34
2024
2020; 10
2021; 71
2023; 40
2021; 10
2023
2022
2020
2022; 6
2019; 68
2019; 67
2024; 2024
2022; 13
2018
2020; 69
2020; 24
2020; 68
2022; 2
2014; 17
2021; 2021
e_1_2_10_23_1
e_1_2_10_24_1
Liu Y (e_1_2_10_7_1) 2022; 2
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_15_1
e_1_2_10_36_1
Fang Y (e_1_2_10_5_1) 2024; 2024
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
Tweneboah‐Koduah S (e_1_2_10_14_1) 2022; 13
e_1_2_10_30_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 11
  start-page: 16021
  year: 2023
  end-page: 16031
  article-title: Intelligent reflecting surfaces for sum‐rate maximization in cognitive radio enabled wireless powered communication network
  publication-title: IEEE Access
– volume: 71
  start-page: 1083
  issue: 1
  year: 2021
  end-page: 1088
  article-title: IRS‐assisted downlink and uplink NOMA in wireless powered communication networks
  publication-title: IEEE Trans Veh Technol
– volume: 13
  issue: 10
  year: 2022
  article-title: Decode and forward coding scheme for cooperative relay noma system with cylindrical array transmitter
  publication-title: Int J Adv Comput Sci Appl
– volume: 68
  start-page: 5849
  issue: 9
  year: 2020
  end-page: 5863
  article-title: Intelligent reflecting surface: practical phase shift model and beamforming optimization
  publication-title: IEEE Trans Commun
– volume: 10
  start-page: 1944
  issue: 9
  year: 2021
  end-page: 1948
  article-title: Throughput maximization for irs‐assisted wireless powered hybrid NOMA and TDMA
  publication-title: IEEE Wirel Commun Lett
– volume: 24
  start-page: 1119
  issue: 5
  year: 2020
  end-page: 1123
  article-title: A simple design of irs‐noma transmission
  publication-title: IEEE Commun Lett
– volume: 17
  start-page: 757
  issue: 2
  year: 2014
  end-page: 789
  article-title: Wireless networks with RF energy harvesting: a contemporary survey
  publication-title: IEEE Commun Surv Tutor
– volume: 2
  start-page: 136
  issue: 4
  year: 2022
  end-page: 142
  article-title: A study on irs‐assisted communications: problems, challenges, and solutions
  publication-title: J Netw Netw Appl
– year: 2024
– volume: 10
  start-page: 849
  issue: 4
  year: 2020
  end-page: 853
  article-title: A maximum throughput design for wireless powered communication networks with IRS‐NOMA
  publication-title: IEEE Wirel Commun Lett
– volume: 34
  start-page: 205
  issue: 5
  year: 2020
  end-page: 211
  article-title: Cooperative NOMA: state of the art, key techniques, and open challenges
  publication-title: IEEE Netw
– volume: 8
  start-page: 14959
  issue: 19
  year: 2021
  end-page: 14970
  article-title: Sum‐rate maximization in IRS‐assisted wireless power communication networks
  publication-title: IEEE Internet Things J
– volume: 6
  start-page: 163
  issue: 1
  year: 2022
  end-page: 174
  article-title: Exploiting intelligent reflecting surface for energy efficiency in ambient backscatter communication‐enabled noma networks
  publication-title: IEEE Trans Green Commun Netw
– year: 2024
  article-title: Active‐irs‐aided wireless communication: fundamentals, designs and open issues
  publication-title: IEEE Wireless Commun
– year: 2018
– volume: 17
  start-page: 1730
  issue: 14
  year: 2023
  end-page: 1740
  article-title: Stochastic geometry modelling and analysis for cooperative noma with large transmit antennas for 5g applications and beyond
  publication-title: IET Commun
– volume: 11
  start-page: 36713
  year: 2023
  end-page: 36726
  article-title: Resource configuration for throughput maximization in UAV‐WPCN with intelligent reflecting surface
  publication-title: IEEE Access
– volume: 2024
  start-page: 1
  year: 2024
  end-page: 1
  article-title: Multi‐IRS‐enabled integrated sensing and communications
  publication-title: IEEE Trans Commun
– volume: 18
  start-page: 5394
  issue: 11
  year: 2019
  end-page: 5409
  article-title: Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming
  publication-title: IEEE Trans Wireless Commun
– volume: 40
  year: 2023
  article-title: Achievable rate optimization for space–time block code‐aided cooperative NOMA with energy harvesting
  publication-title: Eng Sci Technol, an Int J
– volume: 67
  start-page: 6499
  issue: 9
  year: 2019
  end-page: 6511
  article-title: Noma throughput and energy efficiency in energy harvesting enabled networks
  publication-title: IEEE Trans Commun
– volume: 10
  start-page: 1493
  issue: 7
  year: 2021
  end-page: 1497
  article-title: Irs‐assisted wireless powered NOMA: do we really need different phase shifts in DL and UL?
  publication-title: IEEE Wirel Commun Lett
– volume: 69
  start-page: 2706
  year: 2021
  end-page: 2724
  article-title: Throughput maximization for intelligent reflecting surface aided MIMO WPCNS with different DL/UL reflection patterns
  publication-title: IEEE Trans Sig Process
– volume: 69
  start-page: 619
  issue: 1
  year: 2020
  end-page: 633
  article-title: Optimized energy and information relaying in self‐sustainable irs‐empowered WPCN
  publication-title: IEEE Trans Commun
– volume: 2021
  issue: 1
  year: 2021
  article-title: Enhanced secure swipt in heterogeneous network via intelligent reflecting surface
  publication-title: Sec Commun Netw
– year: 2022
– year: 2023
– start-page: 209
  year: 2022
  end-page: 219
– volume: 68
  start-page: 1838
  issue: 3
  year: 2019
  end-page: 1851
  article-title: Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts
  publication-title: IEEE Trans Commun
– start-page: 1
  year: 2020
  end-page: 6
– volume: 17
  start-page: 497
  issue: 5
  year: 2023
  end-page: 537
  article-title: A survey on reconfigurable intelligent surfaces: wireless communication perspective
  publication-title: IET Commun
– volume: 69
  start-page: 3313
  issue: 5
  year: 2021
  end-page: 3351
  article-title: Intelligent reflecting surface‐aided wireless communications: a tutorial
  publication-title: IEEE Trans Commun
– volume: 32
  start-page: 1979
  issue: 2
  year: 2024
  end-page: 1997
  article-title: Highly secure non‐orthogonal multiple access based on key accompanying transmission in training sequence
  publication-title: Optics Express
– volume: 13
  issue: 10
  year: 2022
  ident: e_1_2_10_14_1
  article-title: Decode and forward coding scheme for cooperative relay noma system with cylindrical array transmitter
  publication-title: Int J Adv Comput Sci Appl
– ident: e_1_2_10_12_1
  doi: 10.1016/j.jestch.2023.101365
– ident: e_1_2_10_17_1
  doi: 10.1109/LWC.2021.3087495
– ident: e_1_2_10_23_1
  doi: 10.1109/TSP.2021.3073813
– volume: 2
  start-page: 136
  issue: 4
  year: 2022
  ident: e_1_2_10_7_1
  article-title: A study on irs‐assisted communications: problems, challenges, and solutions
  publication-title: J Netw Netw Appl
– ident: e_1_2_10_31_1
  doi: 10.1007/978-3-031-30171-1_23
– ident: e_1_2_10_10_1
– volume: 2024
  start-page: 1
  year: 2024
  ident: e_1_2_10_5_1
  article-title: Multi‐IRS‐enabled integrated sensing and communications
  publication-title: IEEE Trans Commun
– ident: e_1_2_10_15_1
  doi: 10.1109/TCOMM.2019.2919558
– ident: e_1_2_10_21_1
  doi: 10.1109/JIOT.2021.3072987
– ident: e_1_2_10_16_1
  doi: 10.1109/TCOMM.2020.3028875
– ident: e_1_2_10_36_1
  doi: 10.1109/TGCN.2022.3144465
– ident: e_1_2_10_18_1
  doi: 10.1109/JIOT.2023.3331737
– ident: e_1_2_10_11_1
  doi: 10.1109/COMST.2014.2368999
– ident: e_1_2_10_22_1
  doi: 10.1109/VTC2020-Fall49728.2020.9348801
– ident: e_1_2_10_34_1
  doi: 10.1109/TCOMM.2020.3001125
– ident: e_1_2_10_26_1
  doi: 10.1109/ACCESS.2023.3243848
– ident: e_1_2_10_6_1
  doi: 10.1109/TCOMM.2021.3051897
– ident: e_1_2_10_13_1
  doi: 10.1109/MNET.011.1900601
– ident: e_1_2_10_3_1
  doi: 10.1364/OE.510558
– ident: e_1_2_10_28_1
  doi: 10.1109/LWC.2020.3046722
– ident: e_1_2_10_20_1
  doi: 10.1109/LCOMM.2020.2974196
– ident: e_1_2_10_9_1
  doi: 10.1109/TWC.2019.2936025
– ident: e_1_2_10_35_1
  doi: 10.1109/TCOMM.2019.2958916
– ident: e_1_2_10_2_1
  doi: 10.1049/cmu2.12648
– ident: e_1_2_10_27_1
  doi: 10.1109/TVT.2021.3126013
– ident: e_1_2_10_30_1
  doi: 10.1155/2021/8836757
– ident: e_1_2_10_25_1
  doi: 10.1109/LWC.2021.3072502
– ident: e_1_2_10_8_1
  doi: 10.1049/cmu2.12571
– ident: e_1_2_10_33_1
  doi: 10.1007/978-3-319-91578-4
– ident: e_1_2_10_19_1
  doi: 10.1109/ACCESS.2023.3266375
– ident: e_1_2_10_29_1
  doi: 10.1109/TVT.2023.3260976
– ident: e_1_2_10_24_1
  doi: 10.1109/ACCESS.2024.3352085
– ident: e_1_2_10_4_1
  doi: 10.1109/MWC.003.2300013
– ident: e_1_2_10_32_1
  doi: 10.1109/TNSM.2024.3374527
SSID ssj0008265
Score 2.344979
Snippet Wireless Powered Communication Networks (WPCNs) represent a transformative approach to address the energy demands of mobile and Internet of Things (IoT)...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Beamforming
Communication networks
Complexity
Constraints
convex optimization solver (CVX)
Convexity
Errors
Functions (mathematics)
intelligent reflecting surface (IRS)
Internet of Things
minimum of constrained nonlinear multivariable function (Fmincon)
Nonorthogonal multiple access
nonorthogonal multiple access (NOMA)
Optimization
Optimization techniques
Performance evaluation
Power management
Reconfigurable intelligent surfaces
successive interference cancellation (SIC)
Wireless communications
wireless energy transfer (WET)
wireless information transfer (WIT)
Wireless networks
wireless powered communication networks (WPCN)
WPCN
Title Maximization of sum rate for Wireless Powered Communication Network with Intelligent Reflecting Surface and NOMA in the nonappearance of uplink and downlink beamforming matrix, subject to transmit power and time
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fdac.5911
https://www.proquest.com/docview/3112663117
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9tAEF5KntKH3qVu0zCFkqcq0bU6Hk0O0oLd4DYQ6IPY2QOMI9s4MoT-zfyhzKyk2CkUSl90wB4jdmbn29XMt0J8LlOTOitNgHGOtEApLD1ZG2QJ-ZMSQyc9z-xonJ1fpt-u5FUXVcm5MC0_xMOGG1uGn6_ZwBXeHG1IQw31J0uf1suhWoyHJhvmKELNsg83lImMet7ZMD7qKz72RBt4uQ1SvZc5ey5-9fK1wSWzw3WDh_r3H9SN__cBL8SzDnzCsNWWl-KJnb8ST7coCV-Lu5G6ndZdciYsHJCmAtNJAKFb4FjZa5ob4YIPV7MGHuWXwLiNKQfe3IWvD2SfDUys498D1AP8WK-c0hbU3MD4-2gI0zkQCIU5LQmWS7I7VkPueM25wjNfzjCjP7-gVTWjbG6o5sMFbr-QgMh7SdAsoGHHW08bWLJ4vmozre0bcXl2-vP4POgOfgg0rVejADOjFBKw4aBunTuTo6V5yUpXoiy1llpFiQljp6LM5bl1YYKqcBilOgkLVyRvxQ5Jbd8JcOR9jUFqpEhTWdCCDbNMGReFiUYZqoH41CtBtWz5PaqWyTmuaIAqHqCB2Ou1o-os_KZKOPcqo2s-EAd-mP9avzoZHvP9_b8W_CB2Y8JOgY823BM7zWptPxL2aXDfa_k98JUGgQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSxxBEC7EHJIckmgSssZoBcRTRufV8yCnRSNr4q7BKHgIDP2ERWddzCyIf9M_lKqeHVcDgZDLPKAfNXR111c9VV8DbJWpSZ0VJlBxrshBKSw9WRtkCdmTUoVOeJ7Z4SgbnKVfz8X5EnzucmFafoj7DTeeGX695gnOG9K7C9ZQQx2KkvN6n_CB3t6fOllwRxFuFl3AoUhE1DHPhvFuV_OxLVoAzIcw1duZg5fws5OwDS-52Jk1akff_kHe-J-f8ApezPEn9luFWYElO1mF5w9YCV_D3VDejOt5fiZeOSRlRWaUQAK4yOGyl7Q84nc-X80afJRigqM2rBx5fxcP7_k-Gzyxjv8QUA_4Y3btpLYoJwZHx8M-jidIOBQn5BVMpzT1WBO54xmnC1_4coZJ_flFWVkz0OaGaj5f4OYTCah4OwmbK2zY9tbjBqcsnq_ajGv7Bs4OvpzuDYL52Q-BJpc1ClRmpFSEbTiuW-fO5MrS0mSFK5UotRZaRokJYyejzOW5dWGiZOFUlOokLFyRvIVlktq-A3RkgI1R1EiRpqIgn01lmTQuChOtRCh78LHTgmraUnxULZlzXNEAVTxAPVjv1KOaT_JfVcLpVxld8x5s-3H-a_1qv7_H97V_LbgJTwenw6Pq6HD07T08iwlKBT74cB2Wm-uZ_UBQqFEbXuV_AzP3Cpw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSxxBEG6CQogPMV64yaoliE8ZnavneFx2s6jJrmIUhDwMfcKisw5mFsS_6R-yag5XA0LwZQ7oo4au6vq6p-prxvbSUIfWcO1IP5a4QEkMPhnjRAH6k1S6llc8s6NxdHQZnlzxqyaqknJhan6I5w03soxqviYDL7Q9nJOGauyPp5TWuxhGbkIaPTifU0chbOZtvCEPuNcSz7r-YVvztSua48uXKLVyM8Nl9qcVsI4uuT6YlfJAPfzD3fi-L_jCPjfoE3q1uqywD2a6ypZecBKusceRuJ_kTXYm3FpAVQXikwCEt0DBsjc4OcIZna5mNLxKMIFxHVQOtLsLx89snyWcG0v_B7AH-D27s0IZEFMN49NRDyZTQBQKU1wTFAUaHukhdTyjZOHrqpwmSn96kUbkBLOpoZxOF7j_jgJK2kyC8hZK8rz5pISCxKuqlpPcrLPL4Y-L_pHTnPzgKFyweo6MtBASkQ1FdavY6lganJgMt6nkqVJcCS_Qrm-FF9k4NtYNpEis9EIVuIlNgg22gFKbTQYW3a_WEhtJwpAnuGKTUSS09dxASe6KDtttlSAraoKPrKZy9jMcoIwGqMO6rXZkjYn_zQJKvorwGnfYfjXMb9bPBr0-3b_-b8Ed9vFsMMx-HY9_fmOffMRRThV52GUL5d3MbCEOKuV2pfBPPWQJVA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximization+of+sum+rate+for+Wireless+Powered+Communication+Network+with+Intelligent+Reflecting+Surface+and+NOMA+in+the+nonappearance+of+uplink+and+downlink+beamforming+matrix%2C+subject+to+transmit+power+and+time&rft.jtitle=International+journal+of+communication+systems&rft.au=Ampoma+Affum%2C+Emmanuel&rft.au=Tweneboah%E2%80%90Koduah%2C+Samuel&rft.au=Kubi+Appiah%2C+Michael&rft.au=Gyamfi%2C+Eric&rft.date=2024-11-10&rft.issn=1074-5351&rft.eissn=1099-1131&rft.volume=37&rft.issue=16&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fdac.5911&rft.externalDBID=10.1002%252Fdac.5911&rft.externalDocID=DAC5911
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-5351&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-5351&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-5351&client=summon