POST: Prototype‐oriented similarity transfer framework for cross‐domain facial expression recognition

Facial expression recognition (FER) is one of the popular research topics in computer vision. Most deep learning expression recognition methods perform well on a single dataset, but may struggle in cross‐domain FER applications when applied to different datasets. FER under cross‐dataset also suffers...

Full description

Saved in:
Bibliographic Details
Published inComputer animation and virtual worlds Vol. 35; no. 3
Main Authors Guo, Zhe, Wei, Bingxin, Cai, Qinglin, Liu, Jiayi, Wang, Yi
Format Journal Article
LanguageEnglish
Published Chichester Wiley Subscription Services, Inc 01.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Facial expression recognition (FER) is one of the popular research topics in computer vision. Most deep learning expression recognition methods perform well on a single dataset, but may struggle in cross‐domain FER applications when applied to different datasets. FER under cross‐dataset also suffers from difficulties such as feature distribution deviation and discriminator degradation. To address these issues, we propose a prototype‐oriented similarity transfer framework (POST) for cross‐domain FER. The bidirectional cross‐attention Swin Transformer (BCS Transformer) module is designed to aggregate local facial feature similarities across different domains, enabling the extraction of relevant cross‐domain features. The dual learnable category prototypes is designed to represent potential space samples for both source and target domains, ensuring enhanced domain alignment by leveraging both cross‐domain and specific domain features. We further introduce the self‐training resampling (STR) strategy to enhance similarity transfer. The experimental results with the RAF‐DB dataset as the source domain and the CK+, FER2013, JAFFE and SFEW 2.0 datasets as the target domains, show that our approach achieves much higher performance than the state‐of‐the‐art cross‐domain FER methods. In this paper, we proposed a prototype‐oriented similarity transfer framework (POST) for cross‐domain facial expression recognition. The bidirectional cross‐attention Swin Transformer (BCS Transformer) module is designed to aggregate local facial feature similarities across different domains. The dual learnable category prototypes is designed to represent potential space samples for both source and target domains. The self‐training resampling (STR) strategy is further introduced to enhance similarity transfer.
AbstractList Facial expression recognition (FER) is one of the popular research topics in computer vision. Most deep learning expression recognition methods perform well on a single dataset, but may struggle in cross‐domain FER applications when applied to different datasets. FER under cross‐dataset also suffers from difficulties such as feature distribution deviation and discriminator degradation. To address these issues, we propose a prototype‐oriented similarity transfer framework (POST) for cross‐domain FER. The bidirectional cross‐attention Swin Transformer (BCS Transformer) module is designed to aggregate local facial feature similarities across different domains, enabling the extraction of relevant cross‐domain features. The dual learnable category prototypes is designed to represent potential space samples for both source and target domains, ensuring enhanced domain alignment by leveraging both cross‐domain and specific domain features. We further introduce the self‐training resampling (STR) strategy to enhance similarity transfer. The experimental results with the RAF‐DB dataset as the source domain and the CK+, FER2013, JAFFE and SFEW 2.0 datasets as the target domains, show that our approach achieves much higher performance than the state‐of‐the‐art cross‐domain FER methods.
Facial expression recognition (FER) is one of the popular research topics in computer vision. Most deep learning expression recognition methods perform well on a single dataset, but may struggle in cross‐domain FER applications when applied to different datasets. FER under cross‐dataset also suffers from difficulties such as feature distribution deviation and discriminator degradation. To address these issues, we propose a prototype‐oriented similarity transfer framework (POST) for cross‐domain FER. The bidirectional cross‐attention Swin Transformer (BCS Transformer) module is designed to aggregate local facial feature similarities across different domains, enabling the extraction of relevant cross‐domain features. The dual learnable category prototypes is designed to represent potential space samples for both source and target domains, ensuring enhanced domain alignment by leveraging both cross‐domain and specific domain features. We further introduce the self‐training resampling (STR) strategy to enhance similarity transfer. The experimental results with the RAF‐DB dataset as the source domain and the CK+, FER2013, JAFFE and SFEW 2.0 datasets as the target domains, show that our approach achieves much higher performance than the state‐of‐the‐art cross‐domain FER methods. In this paper, we proposed a prototype‐oriented similarity transfer framework (POST) for cross‐domain facial expression recognition. The bidirectional cross‐attention Swin Transformer (BCS Transformer) module is designed to aggregate local facial feature similarities across different domains. The dual learnable category prototypes is designed to represent potential space samples for both source and target domains. The self‐training resampling (STR) strategy is further introduced to enhance similarity transfer.
Author Guo, Zhe
Wang, Yi
Cai, Qinglin
Wei, Bingxin
Liu, Jiayi
Author_xml – sequence: 1
  givenname: Zhe
  orcidid: 0000-0001-8024-1434
  surname: Guo
  fullname: Guo, Zhe
  email: guozhe@nwpu.edu.cn
  organization: Northwestern Polytechnical University
– sequence: 2
  givenname: Bingxin
  surname: Wei
  fullname: Wei, Bingxin
  organization: Northwestern Polytechnical University
– sequence: 3
  givenname: Qinglin
  surname: Cai
  fullname: Cai, Qinglin
  organization: Northwestern Polytechnical University
– sequence: 4
  givenname: Jiayi
  surname: Liu
  fullname: Liu, Jiayi
  organization: Northwestern Polytechnical University
– sequence: 5
  givenname: Yi
  surname: Wang
  fullname: Wang, Yi
  organization: Northwestern Polytechnical University
BookMark eNp1kLtOwzAUhi1UJNqCxCNYYmFJsR3bKWxVxU2q1EoUxBY59glySeJgp5RsPALPyJOQtoiN6fzDd27fAPUqVwFCp5SMKCHsQqv3EWOSHKA-FVxGnCXPvb8s6REahLDqSMko6SO7mD8sr_DCu8Y1bQ3fn1_OW6gaMDjY0hbK26bFjVdVyMHj3KsSNs6_4tx5rL0LoWsxrlS2wrnSVhUYPmoPIVhXYQ_avVS26fIxOsxVEeDktw7R4831cnoXzea399PJLNJMcBJl0iRme60Z60vOWKZ4YrKEGC2UyEzMqBoLbiAhGUDCGRFxrITIpTaSxRDHQ3S2n1t797aG0KQrt_ZVtzKNSUIlGTOedNT5ntq94CFPa29L5duUknQrMu1EpluRHRrt0Y0toP2XS6eTpx3_AxLEecg
Cites_doi 10.1109/CVPR.2018.00354
10.1109/ICPR.2018.8545284
10.1109/AFGR.1998.670949
10.31234/osf.io/bvf2s
10.1109/CVPR.2017.277
10.1109/TPAMI.2021.3131222
10.1109/TAFFC.2020.2981446
10.1109/ICCVW.2011.6130508
10.1109/LSP.2016.2603342
10.1109/ICCV48922.2021.00986
10.1007/978-3-030-01261-8_14
10.1109/CVPRW.2010.5543262
10.1016/j.jvcir.2023.103898
10.1109/ICCV.2019.00151
10.1109/CVPR52688.2022.01965
10.1109/ICCV48922.2021.00041
10.1109/CVPR52688.2022.00413
10.1109/TAFFC.2020.2973158
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cav.2260
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 1546-427X
EndPage n/a
ExternalDocumentID 10_1002_cav_2260
CAV2260
Genre article
GrantInformation_xml – fundername: the Key Research and Development Project of Shaanxi Province
  funderid: 2023‐YBGY‐239
– fundername: National Natural Science Foundation of China
  funderid: 62071384; 62371399
– fundername: Natural Science Basic Research Program of Shaanxi Province
  funderid: 2023‐JC‐YB‐531
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
29F
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
ITG
ITH
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
NF~
O66
O9-
OIG
P2W
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WQJ
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2540-b6d7d1546d8c9422ba47db70dc5a5bd321a854de70bee7420533a55f6cd623e33
IEDL.DBID DR2
ISSN 1546-4261
IngestDate Sat Jul 26 03:40:53 EDT 2025
Tue Jul 01 02:42:24 EDT 2025
Wed Aug 20 07:26:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2540-b6d7d1546d8c9422ba47db70dc5a5bd321a854de70bee7420533a55f6cd623e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8024-1434
PQID 3071608247
PQPubID 2034909
PageCount 14
ParticipantIDs proquest_journals_3071608247
crossref_primary_10_1002_cav_2260
wiley_primary_10_1002_cav_2260_CAV2260
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May/June 2024
2024-05-00
20240501
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May/June 2024
PublicationDecade 2020
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Computer animation and virtual worlds
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 95
2014; 27:2672–2680
2021; 34
2021; 44
2012
2022
2011
2021
2010
2020
1998
2022; 13
2019
2018
2006; 19
2017
2013
2018; 31:1647–1657
2016; 23
e_1_2_11_10_1
Tanwisuth K (e_1_2_11_27_1) 2021; 34
e_1_2_11_30_1
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_12_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_4_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_2_1
Gretton A (e_1_2_11_7_1) 2006; 19
e_1_2_11_20_1
e_1_2_11_25_1
e_1_2_11_24_1
e_1_2_11_9_1
Goodfellow I (e_1_2_11_21_1) 2014; 27
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_15_1
Long M (e_1_2_11_23_1) 2018; 31
e_1_2_11_19_1
References_xml – start-page: 94
  year: 2010
  end-page: 101
– volume: 27:2672–2680
  year: 2014
  article-title: Generative adversarial nets
  publication-title: Adv Neural Inf Process Syst
– volume: 44
  start-page: 9887
  issue: 12
  year: 2021
  end-page: 9903
  article-title: Cross‐domain facial expression recognition: a unified evaluation benchmark and adversarial graph learning
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 31:1647–1657
  year: 2018
  article-title: Conditional adversarial domain adaptation
  publication-title: Adv Neural Inf Process Syst
– volume: 13
  start-page: 881
  issue: 2
  year: 2022
  end-page: 893
  article-title: A deeper look at facial expression dataset bias
  publication-title: IEEE Trans Affect Comput
– volume: 95
  year: 2023
  article-title: Transformer‐based global–local feature learning model for occluded person re‐identification
  publication-title: J Visual Commun Image Represent
– year: 2021
– start-page: 2106
  year: 2011
  end-page: 2112
– start-page: 117
  year: 2013
  end-page: 124
– start-page: 3092
  year: 2018
  end-page: 3099
– start-page: 142
  year: 2019
  end-page: 1435
– start-page: 20291
  year: 2022
  end-page: 20300
– volume: 23
  start-page: 1499
  issue: 10
  year: 2016
  end-page: 1503
  article-title: Joint face detection and alignment using multitask cascaded convolutional networks
  publication-title: IEEE Signal Process Lett
– start-page: 3186
  year: 2021
  end-page: 3197
– start-page: 3359
  year: 2018
  end-page: 3368
– volume: 13
  start-page: 1195
  issue: 3
  year: 2022
  end-page: 1215
  article-title: Deep facial expression recognition: a survey
  publication-title: IEEE Trans Affect Comput
– start-page: 4166
  year: 2022
  end-page: 4175
– start-page: 2584
  year: 2017
  end-page: 2593
– start-page: 10012
  year: 2021
  end-page: 10022
– start-page: 568
  year: 2012
  end-page: 578
– start-page: 357
  year: 2021
  end-page: 366
– year: 2022
– year: 2020
– volume: 34
  start-page: 17194
  year: 2021
  end-page: 17208
  article-title: A prototype‐oriented framework for unsupervised domain adaptation
  publication-title: Adv Neural Inf Process Syst
– start-page: 4194
  year: 2022
  end-page: 4210
– volume: 19
  start-page: 513
  year: 2006
  end-page: 520
  article-title: A kernel method for the two‐sample‐problem
  publication-title: Adv Neural Inf Process Syst
– start-page: 200
  year: 1998
  end-page: 205
– start-page: 222
  year: 2018
  end-page: 237
– ident: e_1_2_11_19_1
– ident: e_1_2_11_2_1
  doi: 10.1109/CVPR.2018.00354
– ident: e_1_2_11_16_1
– ident: e_1_2_11_22_1
  doi: 10.1109/ICPR.2018.8545284
– ident: e_1_2_11_10_1
– ident: e_1_2_11_11_1
  doi: 10.1109/AFGR.1998.670949
– ident: e_1_2_11_12_1
  doi: 10.31234/osf.io/bvf2s
– ident: e_1_2_11_14_1
  doi: 10.1109/CVPR.2017.277
– ident: e_1_2_11_25_1
  doi: 10.1109/TPAMI.2021.3131222
– ident: e_1_2_11_3_1
  doi: 10.1109/TAFFC.2020.2981446
– ident: e_1_2_11_13_1
  doi: 10.1109/ICCVW.2011.6130508
– ident: e_1_2_11_28_1
  doi: 10.1109/LSP.2016.2603342
– volume: 27
  year: 2014
  ident: e_1_2_11_21_1
  article-title: Generative adversarial nets
  publication-title: Adv Neural Inf Process Syst
– ident: e_1_2_11_8_1
  doi: 10.1109/ICCV48922.2021.00986
– ident: e_1_2_11_6_1
  doi: 10.1007/978-3-030-01261-8_14
– ident: e_1_2_11_9_1
  doi: 10.1109/CVPRW.2010.5543262
– ident: e_1_2_11_20_1
– ident: e_1_2_11_15_1
  doi: 10.1016/j.jvcir.2023.103898
– ident: e_1_2_11_26_1
– ident: e_1_2_11_29_1
  doi: 10.1109/ICCV.2019.00151
– volume: 31
  year: 2018
  ident: e_1_2_11_23_1
  article-title: Conditional adversarial domain adaptation
  publication-title: Adv Neural Inf Process Syst
– ident: e_1_2_11_5_1
  doi: 10.1109/CVPR52688.2022.01965
– volume: 19
  start-page: 513
  year: 2006
  ident: e_1_2_11_7_1
  article-title: A kernel method for the two‐sample‐problem
  publication-title: Adv Neural Inf Process Syst
– ident: e_1_2_11_18_1
  doi: 10.1109/ICCV48922.2021.00041
– ident: e_1_2_11_4_1
  doi: 10.1109/CVPR52688.2022.00413
– ident: e_1_2_11_17_1
– ident: e_1_2_11_24_1
  doi: 10.1109/TAFFC.2020.2973158
– volume: 34
  start-page: 17194
  year: 2021
  ident: e_1_2_11_27_1
  article-title: A prototype‐oriented framework for unsupervised domain adaptation
  publication-title: Adv Neural Inf Process Syst
– ident: e_1_2_11_30_1
SSID ssj0026210
Score 2.3459666
Snippet Facial expression recognition (FER) is one of the popular research topics in computer vision. Most deep learning expression recognition methods perform well on...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms bidirectional cross‐attention
Computer vision
Datasets
Face recognition
facial expression recognition
learnable category prototypes
Prototypes
Resampling
Similarity
similarity transfer
Transformers
Title POST: Prototype‐oriented similarity transfer framework for cross‐domain facial expression recognition
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.2260
https://www.proquest.com/docview/3071608247
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA7ikz54F6dTIohv3bo0aTrfxnAMQR26jYEPJVcoslbWTsQnf4K_0V9i0sumgiA-FUoONOfkJN85fPkKwJlwJdWo7TuU5K0bYXJOC-EEkkpKlRewXInp-sbvj_DVhExKVqW9C1PoQywabjYz8v3aJjjjaXMpGirYc8NgB1uuW6qWxUN3C-Uo5KNCiIBg37FVQqU766JmZfj9JFrCy68gNT9lepvgofq-glzy2JhnvCFef0g3_m8CW2CjBJ-wU6yWbbCi4h2wPo7SefE23QXR4PZ-eAEHsyRLbHv24-09sVLIBpjCNJpGphA2uB1mOd5VM6grchc06BfmMzUmMpmyKIaa2YY8VC8l2zaGC75SEu-BUe9y2O075e8YHIEsfYL7Jn7WoTIQbYwQZ5hKTl0pCCNceqjFAoKloi5XylTc9pYvI0T7QhqMpTxvH6zGSawOAERUa8rNIB8z7CrVVgJz7mLq6bYOWKsGTqvQhE-F6kZY6Cuj0LgttG6rgXoVs7DMuzQ0O1bLN6gG0xo4z53_q33Y7Yzt8_CvA4_AGjKIpmA71sFqNpurY4NIMn6Sr71PXB3g_Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL1CsCgsSl-oA9PiSi27DBmPE2cqdTHioaE8RQfELvgpRYgETTJ9rfoJ_Y_-Cl_Bl_Q6j6FFQuqGRVeRIjtyfB8-9_r6GOCt8jW3tB96PChTNwptzirlRZprzk0vEiUT0_5BODxhH8-Csxn41ZyFqfghpgk3Zxmlv3YG7hLS67esoUp87iB48OuKyl3z7QvGa_mHnU0U7jtKt7dGG0OvvlLAU9SVAMgQx4CoIdSR6jNKpWBcS-5rFYhA6h7tiihg2nBfGoNRozupKoLAhkojTjAu-4n-fs5dIO6I-jePp1xVNKQV9QF-3HNxScN069P1ZqR_r323gPZPWFyua9uLcN3MSFXOctGZFLKjvt8hi_xPpuwJPK7xNRlUBvEUZkz6DBZOk3xSvc2fQ3J0-Gn0nhyNsyJzGeibHz8zx_aM2JvkyWWCsT6GJqQoIb0ZE9vUrxEE-KScWuyis0uRpMQKt-dAzNe6oDgl05KsLH0BJw_yr0swm2apeQmEcmu5xEYhE8w3pm8Uk9JnvGf7NhLdFrxpdCG-qohF4opCmsYoptiJqQXtRkni2rXkMTrlbojAjfEWrJXSvrd_vDE4dc_lf224Co-Go_29eG_nYHcF5ikCuKq4sw2zxXhiXiEAK-TrUvEJnD-02vwGDoE-oA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL2qWgnBgvIU05ZiJGCXacbj2EklFlWHUUuhjKCtugt-ShFqUk0y0HbFJ_Ad_Ap_wZf0Oo8pICGx6YJVpMiOHN-Hz72-PgZ4pkMjHE14IKI6daPR5pzWQWyEEcIOY1kzMb3d5zuH7PVxdLwA37uzMA0_xDzh5i2j9tfewE-N27giDdXycx-xQ9gWVO7Z8y8YrpUvd0co2-eUjl8dbO8E7Y0Cgaa-AkBxHAKCBm5inTBKlWTCKBEaHclImSEdyDhixopQWYtBoz-oKqPIcW0QJlif_ER3v8R4mPhrIkbv51RVlNOG-QA_HviwpCO6DelGN9Lfl74rPPsrKq6XtfEy_OgmpKlm-dSfVaqvL_7givw_ZuwO3G7RNdlqzOEuLNj8Htw6yspZ87a8D9nk3YeDTTKZFlXh888_v34rPNczIm9SZicZRvoYmJCqBvR2SlxXvUYQ3pN6ZrGLKU5klhMn_Y4DsWdtOXFO5gVZRf4ADq_lXx_CYl7k9hEQKpwTChtxJllobWI1UypkYugSF8tBD552qpCeNrQiaUMgTVMUU-rF1IO1TkfS1rGUKbrkAUfYxkQPXtTC_mv_dHvryD9X_rXhE7gxGY3TN7v7e6twkyJ6ayo712Cxms7sY0RflVqv1Z7Ax-vWmksEvj1P
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=POST%3A+Prototype%E2%80%90oriented+similarity+transfer+framework+for+cross%E2%80%90domain+facial+expression+recognition&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Guo%2C+Zhe&rft.au=Wei%2C+Bingxin&rft.au=Cai%2C+Qinglin&rft.au=Liu%2C+Jiayi&rft.date=2024-05-01&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=35&rft.issue=3&rft_id=info:doi/10.1002%2Fcav.2260&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cav_2260
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon