POST: Prototype‐oriented similarity transfer framework for cross‐domain facial expression recognition
Facial expression recognition (FER) is one of the popular research topics in computer vision. Most deep learning expression recognition methods perform well on a single dataset, but may struggle in cross‐domain FER applications when applied to different datasets. FER under cross‐dataset also suffers...
Saved in:
Published in | Computer animation and virtual worlds Vol. 35; no. 3 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester
Wiley Subscription Services, Inc
01.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Facial expression recognition (FER) is one of the popular research topics in computer vision. Most deep learning expression recognition methods perform well on a single dataset, but may struggle in cross‐domain FER applications when applied to different datasets. FER under cross‐dataset also suffers from difficulties such as feature distribution deviation and discriminator degradation. To address these issues, we propose a prototype‐oriented similarity transfer framework (POST) for cross‐domain FER. The bidirectional cross‐attention Swin Transformer (BCS Transformer) module is designed to aggregate local facial feature similarities across different domains, enabling the extraction of relevant cross‐domain features. The dual learnable category prototypes is designed to represent potential space samples for both source and target domains, ensuring enhanced domain alignment by leveraging both cross‐domain and specific domain features. We further introduce the self‐training resampling (STR) strategy to enhance similarity transfer. The experimental results with the RAF‐DB dataset as the source domain and the CK+, FER2013, JAFFE and SFEW 2.0 datasets as the target domains, show that our approach achieves much higher performance than the state‐of‐the‐art cross‐domain FER methods.
In this paper, we proposed a prototype‐oriented similarity transfer framework (POST) for cross‐domain facial expression recognition. The bidirectional cross‐attention Swin Transformer (BCS Transformer) module is designed to aggregate local facial feature similarities across different domains. The dual learnable category prototypes is designed to represent potential space samples for both source and target domains. The self‐training resampling (STR) strategy is further introduced to enhance similarity transfer. |
---|---|
AbstractList | Facial expression recognition (FER) is one of the popular research topics in computer vision. Most deep learning expression recognition methods perform well on a single dataset, but may struggle in cross‐domain FER applications when applied to different datasets. FER under cross‐dataset also suffers from difficulties such as feature distribution deviation and discriminator degradation. To address these issues, we propose a prototype‐oriented similarity transfer framework (POST) for cross‐domain FER. The bidirectional cross‐attention Swin Transformer (BCS Transformer) module is designed to aggregate local facial feature similarities across different domains, enabling the extraction of relevant cross‐domain features. The dual learnable category prototypes is designed to represent potential space samples for both source and target domains, ensuring enhanced domain alignment by leveraging both cross‐domain and specific domain features. We further introduce the self‐training resampling (STR) strategy to enhance similarity transfer. The experimental results with the RAF‐DB dataset as the source domain and the CK+, FER2013, JAFFE and SFEW 2.0 datasets as the target domains, show that our approach achieves much higher performance than the state‐of‐the‐art cross‐domain FER methods. Facial expression recognition (FER) is one of the popular research topics in computer vision. Most deep learning expression recognition methods perform well on a single dataset, but may struggle in cross‐domain FER applications when applied to different datasets. FER under cross‐dataset also suffers from difficulties such as feature distribution deviation and discriminator degradation. To address these issues, we propose a prototype‐oriented similarity transfer framework (POST) for cross‐domain FER. The bidirectional cross‐attention Swin Transformer (BCS Transformer) module is designed to aggregate local facial feature similarities across different domains, enabling the extraction of relevant cross‐domain features. The dual learnable category prototypes is designed to represent potential space samples for both source and target domains, ensuring enhanced domain alignment by leveraging both cross‐domain and specific domain features. We further introduce the self‐training resampling (STR) strategy to enhance similarity transfer. The experimental results with the RAF‐DB dataset as the source domain and the CK+, FER2013, JAFFE and SFEW 2.0 datasets as the target domains, show that our approach achieves much higher performance than the state‐of‐the‐art cross‐domain FER methods. In this paper, we proposed a prototype‐oriented similarity transfer framework (POST) for cross‐domain facial expression recognition. The bidirectional cross‐attention Swin Transformer (BCS Transformer) module is designed to aggregate local facial feature similarities across different domains. The dual learnable category prototypes is designed to represent potential space samples for both source and target domains. The self‐training resampling (STR) strategy is further introduced to enhance similarity transfer. |
Author | Guo, Zhe Wang, Yi Cai, Qinglin Wei, Bingxin Liu, Jiayi |
Author_xml | – sequence: 1 givenname: Zhe orcidid: 0000-0001-8024-1434 surname: Guo fullname: Guo, Zhe email: guozhe@nwpu.edu.cn organization: Northwestern Polytechnical University – sequence: 2 givenname: Bingxin surname: Wei fullname: Wei, Bingxin organization: Northwestern Polytechnical University – sequence: 3 givenname: Qinglin surname: Cai fullname: Cai, Qinglin organization: Northwestern Polytechnical University – sequence: 4 givenname: Jiayi surname: Liu fullname: Liu, Jiayi organization: Northwestern Polytechnical University – sequence: 5 givenname: Yi surname: Wang fullname: Wang, Yi organization: Northwestern Polytechnical University |
BookMark | eNp1kLtOwzAUhi1UJNqCxCNYYmFJsR3bKWxVxU2q1EoUxBY59glySeJgp5RsPALPyJOQtoiN6fzDd27fAPUqVwFCp5SMKCHsQqv3EWOSHKA-FVxGnCXPvb8s6REahLDqSMko6SO7mD8sr_DCu8Y1bQ3fn1_OW6gaMDjY0hbK26bFjVdVyMHj3KsSNs6_4tx5rL0LoWsxrlS2wrnSVhUYPmoPIVhXYQ_avVS26fIxOsxVEeDktw7R4831cnoXzea399PJLNJMcBJl0iRme60Z60vOWKZ4YrKEGC2UyEzMqBoLbiAhGUDCGRFxrITIpTaSxRDHQ3S2n1t797aG0KQrt_ZVtzKNSUIlGTOedNT5ntq94CFPa29L5duUknQrMu1EpluRHRrt0Y0toP2XS6eTpx3_AxLEecg |
Cites_doi | 10.1109/CVPR.2018.00354 10.1109/ICPR.2018.8545284 10.1109/AFGR.1998.670949 10.31234/osf.io/bvf2s 10.1109/CVPR.2017.277 10.1109/TPAMI.2021.3131222 10.1109/TAFFC.2020.2981446 10.1109/ICCVW.2011.6130508 10.1109/LSP.2016.2603342 10.1109/ICCV48922.2021.00986 10.1007/978-3-030-01261-8_14 10.1109/CVPRW.2010.5543262 10.1016/j.jvcir.2023.103898 10.1109/ICCV.2019.00151 10.1109/CVPR52688.2022.01965 10.1109/ICCV48922.2021.00041 10.1109/CVPR52688.2022.00413 10.1109/TAFFC.2020.2973158 |
ContentType | Journal Article |
Copyright | 2024 John Wiley & Sons Ltd. 2024 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2024 John Wiley & Sons Ltd. – notice: 2024 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/cav.2260 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts |
EISSN | 1546-427X |
EndPage | n/a |
ExternalDocumentID | 10_1002_cav_2260 CAV2260 |
Genre | article |
GrantInformation_xml | – fundername: the Key Research and Development Project of Shaanxi Province funderid: 2023‐YBGY‐239 – fundername: National Natural Science Foundation of China funderid: 62071384; 62371399 – fundername: Natural Science Basic Research Program of Shaanxi Province funderid: 2023‐JC‐YB‐531 |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 29F 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA HF~ HGLYW HHY HVGLF HZ~ I-F ITG ITH IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A NF~ O66 O9- OIG P2W P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 TUS UB1 V2E V8K W8V W99 WBKPD WIH WIK WQJ WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2540-b6d7d1546d8c9422ba47db70dc5a5bd321a854de70bee7420533a55f6cd623e33 |
IEDL.DBID | DR2 |
ISSN | 1546-4261 |
IngestDate | Sat Jul 26 03:40:53 EDT 2025 Tue Jul 01 02:42:24 EDT 2025 Wed Aug 20 07:26:33 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2540-b6d7d1546d8c9422ba47db70dc5a5bd321a854de70bee7420533a55f6cd623e33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8024-1434 |
PQID | 3071608247 |
PQPubID | 2034909 |
PageCount | 14 |
ParticipantIDs | proquest_journals_3071608247 crossref_primary_10_1002_cav_2260 wiley_primary_10_1002_cav_2260_CAV2260 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May/June 2024 2024-05-00 20240501 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: May/June 2024 |
PublicationDecade | 2020 |
PublicationPlace | Chichester |
PublicationPlace_xml | – name: Chichester |
PublicationTitle | Computer animation and virtual worlds |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2023; 95 2014; 27:2672–2680 2021; 34 2021; 44 2012 2022 2011 2021 2010 2020 1998 2022; 13 2019 2018 2006; 19 2017 2013 2018; 31:1647–1657 2016; 23 e_1_2_11_10_1 Tanwisuth K (e_1_2_11_27_1) 2021; 34 e_1_2_11_30_1 e_1_2_11_14_1 e_1_2_11_13_1 e_1_2_11_12_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_4_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_2_1 Gretton A (e_1_2_11_7_1) 2006; 19 e_1_2_11_20_1 e_1_2_11_25_1 e_1_2_11_24_1 e_1_2_11_9_1 Goodfellow I (e_1_2_11_21_1) 2014; 27 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_18_1 e_1_2_11_17_1 e_1_2_11_16_1 e_1_2_11_15_1 Long M (e_1_2_11_23_1) 2018; 31 e_1_2_11_19_1 |
References_xml | – start-page: 94 year: 2010 end-page: 101 – volume: 27:2672–2680 year: 2014 article-title: Generative adversarial nets publication-title: Adv Neural Inf Process Syst – volume: 44 start-page: 9887 issue: 12 year: 2021 end-page: 9903 article-title: Cross‐domain facial expression recognition: a unified evaluation benchmark and adversarial graph learning publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 31:1647–1657 year: 2018 article-title: Conditional adversarial domain adaptation publication-title: Adv Neural Inf Process Syst – volume: 13 start-page: 881 issue: 2 year: 2022 end-page: 893 article-title: A deeper look at facial expression dataset bias publication-title: IEEE Trans Affect Comput – volume: 95 year: 2023 article-title: Transformer‐based global–local feature learning model for occluded person re‐identification publication-title: J Visual Commun Image Represent – year: 2021 – start-page: 2106 year: 2011 end-page: 2112 – start-page: 117 year: 2013 end-page: 124 – start-page: 3092 year: 2018 end-page: 3099 – start-page: 142 year: 2019 end-page: 1435 – start-page: 20291 year: 2022 end-page: 20300 – volume: 23 start-page: 1499 issue: 10 year: 2016 end-page: 1503 article-title: Joint face detection and alignment using multitask cascaded convolutional networks publication-title: IEEE Signal Process Lett – start-page: 3186 year: 2021 end-page: 3197 – start-page: 3359 year: 2018 end-page: 3368 – volume: 13 start-page: 1195 issue: 3 year: 2022 end-page: 1215 article-title: Deep facial expression recognition: a survey publication-title: IEEE Trans Affect Comput – start-page: 4166 year: 2022 end-page: 4175 – start-page: 2584 year: 2017 end-page: 2593 – start-page: 10012 year: 2021 end-page: 10022 – start-page: 568 year: 2012 end-page: 578 – start-page: 357 year: 2021 end-page: 366 – year: 2022 – year: 2020 – volume: 34 start-page: 17194 year: 2021 end-page: 17208 article-title: A prototype‐oriented framework for unsupervised domain adaptation publication-title: Adv Neural Inf Process Syst – start-page: 4194 year: 2022 end-page: 4210 – volume: 19 start-page: 513 year: 2006 end-page: 520 article-title: A kernel method for the two‐sample‐problem publication-title: Adv Neural Inf Process Syst – start-page: 200 year: 1998 end-page: 205 – start-page: 222 year: 2018 end-page: 237 – ident: e_1_2_11_19_1 – ident: e_1_2_11_2_1 doi: 10.1109/CVPR.2018.00354 – ident: e_1_2_11_16_1 – ident: e_1_2_11_22_1 doi: 10.1109/ICPR.2018.8545284 – ident: e_1_2_11_10_1 – ident: e_1_2_11_11_1 doi: 10.1109/AFGR.1998.670949 – ident: e_1_2_11_12_1 doi: 10.31234/osf.io/bvf2s – ident: e_1_2_11_14_1 doi: 10.1109/CVPR.2017.277 – ident: e_1_2_11_25_1 doi: 10.1109/TPAMI.2021.3131222 – ident: e_1_2_11_3_1 doi: 10.1109/TAFFC.2020.2981446 – ident: e_1_2_11_13_1 doi: 10.1109/ICCVW.2011.6130508 – ident: e_1_2_11_28_1 doi: 10.1109/LSP.2016.2603342 – volume: 27 year: 2014 ident: e_1_2_11_21_1 article-title: Generative adversarial nets publication-title: Adv Neural Inf Process Syst – ident: e_1_2_11_8_1 doi: 10.1109/ICCV48922.2021.00986 – ident: e_1_2_11_6_1 doi: 10.1007/978-3-030-01261-8_14 – ident: e_1_2_11_9_1 doi: 10.1109/CVPRW.2010.5543262 – ident: e_1_2_11_20_1 – ident: e_1_2_11_15_1 doi: 10.1016/j.jvcir.2023.103898 – ident: e_1_2_11_26_1 – ident: e_1_2_11_29_1 doi: 10.1109/ICCV.2019.00151 – volume: 31 year: 2018 ident: e_1_2_11_23_1 article-title: Conditional adversarial domain adaptation publication-title: Adv Neural Inf Process Syst – ident: e_1_2_11_5_1 doi: 10.1109/CVPR52688.2022.01965 – volume: 19 start-page: 513 year: 2006 ident: e_1_2_11_7_1 article-title: A kernel method for the two‐sample‐problem publication-title: Adv Neural Inf Process Syst – ident: e_1_2_11_18_1 doi: 10.1109/ICCV48922.2021.00041 – ident: e_1_2_11_4_1 doi: 10.1109/CVPR52688.2022.00413 – ident: e_1_2_11_17_1 – ident: e_1_2_11_24_1 doi: 10.1109/TAFFC.2020.2973158 – volume: 34 start-page: 17194 year: 2021 ident: e_1_2_11_27_1 article-title: A prototype‐oriented framework for unsupervised domain adaptation publication-title: Adv Neural Inf Process Syst – ident: e_1_2_11_30_1 |
SSID | ssj0026210 |
Score | 2.3459666 |
Snippet | Facial expression recognition (FER) is one of the popular research topics in computer vision. Most deep learning expression recognition methods perform well on... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | bidirectional cross‐attention Computer vision Datasets Face recognition facial expression recognition learnable category prototypes Prototypes Resampling Similarity similarity transfer Transformers |
Title | POST: Prototype‐oriented similarity transfer framework for cross‐domain facial expression recognition |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.2260 https://www.proquest.com/docview/3071608247 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA7ikz54F6dTIohv3bo0aTrfxnAMQR26jYEPJVcoslbWTsQnf4K_0V9i0sumgiA-FUoONOfkJN85fPkKwJlwJdWo7TuU5K0bYXJOC-EEkkpKlRewXInp-sbvj_DVhExKVqW9C1PoQywabjYz8v3aJjjjaXMpGirYc8NgB1uuW6qWxUN3C-Uo5KNCiIBg37FVQqU766JmZfj9JFrCy68gNT9lepvgofq-glzy2JhnvCFef0g3_m8CW2CjBJ-wU6yWbbCi4h2wPo7SefE23QXR4PZ-eAEHsyRLbHv24-09sVLIBpjCNJpGphA2uB1mOd5VM6grchc06BfmMzUmMpmyKIaa2YY8VC8l2zaGC75SEu-BUe9y2O075e8YHIEsfYL7Jn7WoTIQbYwQZ5hKTl0pCCNceqjFAoKloi5XylTc9pYvI0T7QhqMpTxvH6zGSawOAERUa8rNIB8z7CrVVgJz7mLq6bYOWKsGTqvQhE-F6kZY6Cuj0LgttG6rgXoVs7DMuzQ0O1bLN6gG0xo4z53_q33Y7Yzt8_CvA4_AGjKIpmA71sFqNpurY4NIMn6Sr71PXB3g_Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL1CsCgsSl-oA9PiSi27DBmPE2cqdTHioaE8RQfELvgpRYgETTJ9rfoJ_Y_-Cl_Bl_Q6j6FFQuqGRVeRIjtyfB8-9_r6GOCt8jW3tB96PChTNwptzirlRZprzk0vEiUT0_5BODxhH8-Csxn41ZyFqfghpgk3Zxmlv3YG7hLS67esoUp87iB48OuKyl3z7QvGa_mHnU0U7jtKt7dGG0OvvlLAU9SVAMgQx4CoIdSR6jNKpWBcS-5rFYhA6h7tiihg2nBfGoNRozupKoLAhkojTjAu-4n-fs5dIO6I-jePp1xVNKQV9QF-3HNxScN069P1ZqR_r323gPZPWFyua9uLcN3MSFXOctGZFLKjvt8hi_xPpuwJPK7xNRlUBvEUZkz6DBZOk3xSvc2fQ3J0-Gn0nhyNsyJzGeibHz8zx_aM2JvkyWWCsT6GJqQoIb0ZE9vUrxEE-KScWuyis0uRpMQKt-dAzNe6oDgl05KsLH0BJw_yr0swm2apeQmEcmu5xEYhE8w3pm8Uk9JnvGf7NhLdFrxpdCG-qohF4opCmsYoptiJqQXtRkni2rXkMTrlbojAjfEWrJXSvrd_vDE4dc_lf224Co-Go_29eG_nYHcF5ikCuKq4sw2zxXhiXiEAK-TrUvEJnD-02vwGDoE-oA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL2qWgnBgvIU05ZiJGCXacbj2EklFlWHUUuhjKCtugt-ShFqUk0y0HbFJ_Ad_Ap_wZf0Oo8pICGx6YJVpMiOHN-Hz72-PgZ4pkMjHE14IKI6daPR5pzWQWyEEcIOY1kzMb3d5zuH7PVxdLwA37uzMA0_xDzh5i2j9tfewE-N27giDdXycx-xQ9gWVO7Z8y8YrpUvd0co2-eUjl8dbO8E7Y0Cgaa-AkBxHAKCBm5inTBKlWTCKBEaHclImSEdyDhixopQWYtBoz-oKqPIcW0QJlif_ER3v8R4mPhrIkbv51RVlNOG-QA_HviwpCO6DelGN9Lfl74rPPsrKq6XtfEy_OgmpKlm-dSfVaqvL_7givw_ZuwO3G7RNdlqzOEuLNj8Htw6yspZ87a8D9nk3YeDTTKZFlXh888_v34rPNczIm9SZicZRvoYmJCqBvR2SlxXvUYQ3pN6ZrGLKU5klhMn_Y4DsWdtOXFO5gVZRf4ADq_lXx_CYl7k9hEQKpwTChtxJllobWI1UypkYugSF8tBD552qpCeNrQiaUMgTVMUU-rF1IO1TkfS1rGUKbrkAUfYxkQPXtTC_mv_dHvryD9X_rXhE7gxGY3TN7v7e6twkyJ6ayo712Cxms7sY0RflVqv1Z7Ax-vWmksEvj1P |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=POST%3A+Prototype%E2%80%90oriented+similarity+transfer+framework+for+cross%E2%80%90domain+facial+expression+recognition&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Guo%2C+Zhe&rft.au=Wei%2C+Bingxin&rft.au=Cai%2C+Qinglin&rft.au=Liu%2C+Jiayi&rft.date=2024-05-01&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=35&rft.issue=3&rft_id=info:doi/10.1002%2Fcav.2260&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cav_2260 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon |