De‐NeRF: Ultra‐high‐definition NeRF with deformable net alignment

Neural Radiance Field (NeRF) can render complex 3D scenes with viewpoint‐dependent effects. However, less work has been devoted to exploring its limitations in high‐resolution environments, especially when upscaled to ultra‐high resolution (e.g., 4k). Specifically, existing NeRF‐based methods face s...

Full description

Saved in:
Bibliographic Details
Published inComputer animation and virtual worlds Vol. 35; no. 3
Main Authors Hou, Jianing, Zhang, Runjie, Wu, Zhongqi, Meng, Weiliang, Zhang, Xiaopeng, Guo, Jianwei
Format Journal Article
LanguageEnglish
Published Chichester Wiley Subscription Services, Inc 01.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Neural Radiance Field (NeRF) can render complex 3D scenes with viewpoint‐dependent effects. However, less work has been devoted to exploring its limitations in high‐resolution environments, especially when upscaled to ultra‐high resolution (e.g., 4k). Specifically, existing NeRF‐based methods face severe limitations in reconstructing high‐resolution real scenes, for example, a large number of parameters, misalignment of the input data, and over‐smoothing of details. In this paper, we present a novel and effective framework, called De‐NeRF, based on NeRF and deformable convolutional network, to achieve high‐fidelity view synthesis in ultra‐high resolution scenes: (1) marrying the deformable convolution unit which can solve the problem of misaligned input of the high‐resolution data. (2) Presenting a density sparse voxel‐based approach which can greatly reduce the training time while rendering results with higher accuracy. Compared to existing high‐resolution NeRF methods, our approach improves the rendering quality of high‐frequency details and achieves better visual effects in 4K high‐resolution scenes. We present a novel framework, De‐NeRF, for achieving high‐fidelity view synthesis in ultra‐high resolution scenes. The key technical components of De‐NeRF includes a hybrid volumetric representation that can significantly speed up the training, and a deformable alignment unit module that can solve the problem of misaligned input of the high‐resolution data.
AbstractList Neural Radiance Field (NeRF) can render complex 3D scenes with viewpoint‐dependent effects. However, less work has been devoted to exploring its limitations in high‐resolution environments, especially when upscaled to ultra‐high resolution (e.g., 4k). Specifically, existing NeRF‐based methods face severe limitations in reconstructing high‐resolution real scenes, for example, a large number of parameters, misalignment of the input data, and over‐smoothing of details. In this paper, we present a novel and effective framework, called De‐NeRF, based on NeRF and deformable convolutional network, to achieve high‐fidelity view synthesis in ultra‐high resolution scenes: (1) marrying the deformable convolution unit which can solve the problem of misaligned input of the high‐resolution data. (2) Presenting a density sparse voxel‐based approach which can greatly reduce the training time while rendering results with higher accuracy. Compared to existing high‐resolution NeRF methods, our approach improves the rendering quality of high‐frequency details and achieves better visual effects in 4K high‐resolution scenes. We present a novel framework, De‐NeRF, for achieving high‐fidelity view synthesis in ultra‐high resolution scenes. The key technical components of De‐NeRF includes a hybrid volumetric representation that can significantly speed up the training, and a deformable alignment unit module that can solve the problem of misaligned input of the high‐resolution data.
Neural Radiance Field (NeRF) can render complex 3D scenes with viewpoint‐dependent effects. However, less work has been devoted to exploring its limitations in high‐resolution environments, especially when upscaled to ultra‐high resolution (e.g., 4k). Specifically, existing NeRF‐based methods face severe limitations in reconstructing high‐resolution real scenes, for example, a large number of parameters, misalignment of the input data, and over‐smoothing of details. In this paper, we present a novel and effective framework, called De‐NeRF, based on NeRF and deformable convolutional network, to achieve high‐fidelity view synthesis in ultra‐high resolution scenes: (1) marrying the deformable convolution unit which can solve the problem of misaligned input of the high‐resolution data. (2) Presenting a density sparse voxel‐based approach which can greatly reduce the training time while rendering results with higher accuracy. Compared to existing high‐resolution NeRF methods, our approach improves the rendering quality of high‐frequency details and achieves better visual effects in 4K high‐resolution scenes.
Neural Radiance Field (NeRF) can render complex 3D scenes with viewpoint‐dependent effects. However, less work has been devoted to exploring its limitations in high‐resolution environments, especially when upscaled to ultra‐high resolution (e.g., 4k). Specifically, existing NeRF‐based methods face severe limitations in reconstructing high‐resolution real scenes, for example, a large number of parameters, misalignment of the input data, and over‐smoothing of details. In this paper, we present a novel and effective framework, called De‐NeRF , based on NeRF and deformable convolutional network, to achieve high‐fidelity view synthesis in ultra‐high resolution scenes: (1) marrying the deformable convolution unit which can solve the problem of misaligned input of the high‐resolution data. (2) Presenting a density sparse voxel‐based approach which can greatly reduce the training time while rendering results with higher accuracy. Compared to existing high‐resolution NeRF methods, our approach improves the rendering quality of high‐frequency details and achieves better visual effects in 4K high‐resolution scenes.
Author Zhang, Xiaopeng
Hou, Jianing
Wu, Zhongqi
Zhang, Runjie
Guo, Jianwei
Meng, Weiliang
Author_xml – sequence: 1
  givenname: Jianing
  surname: Hou
  fullname: Hou, Jianing
  organization: Institute of Automation, Chinese Academy of Sciences
– sequence: 2
  givenname: Runjie
  surname: Zhang
  fullname: Zhang, Runjie
  organization: University of California San Diego
– sequence: 3
  givenname: Zhongqi
  surname: Wu
  fullname: Wu, Zhongqi
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Weiliang
  orcidid: 0000-0002-3221-4981
  surname: Meng
  fullname: Meng, Weiliang
  organization: Institute of Automation, Chinese Academy of Sciences
– sequence: 5
  givenname: Xiaopeng
  orcidid: 0000-0002-0092-6474
  surname: Zhang
  fullname: Zhang, Xiaopeng
  organization: Institute of Automation, Chinese Academy of Sciences
– sequence: 6
  givenname: Jianwei
  orcidid: 0000-0002-3376-1725
  surname: Guo
  fullname: Guo, Jianwei
  email: jianwei.guo@nlpr.ia.ac.cn
  organization: Institute of Automation, Chinese Academy of Sciences
BookMark eNp1kMtKw0AUhgepYFsFHyHgxk3q3JO6K9VWoSiIFXfDZC7tlHRSJ6mlOx_BZ_RJnFhx5-o_l49z4OuBjq-8AeAcwQGCEF8p-T7AmMIj0EWM8pTi7LXzV3N0Anp1vYokxwh2wfTGfH18PpinyXUyL5sgY7d0i2UMbazzrnGVT9p9snPNMonDKqxlUZrEmyaRpVv4tfHNKTi2sqzN2W_2wXxy-zy-S2eP0_vxaJYqzChMGS1IbiyXWA-VggQNLeFKU1pwyKHFRhmmVaG1zCkhVuU6Y1hzlRUZpIwNSR9cHO5uQvW2NXUjVtU2-PhSEJghDnNEcaQuD5QKVV0HY8UmuLUMe4GgaDWJqEm0miKaHtCdK83-X06MRy8__Dd2VmxX
Cites_doi 10.1007/978-3-030-58580-8_31
10.1109/CVPR.2018.00411
10.1109/CVPR52688.2022.00538
10.1109/CVPR46437.2021.00455
10.1145/3503161.3547808
10.1109/CVPR42600.2020.00342
10.1109/ICCV48922.2021.01386
10.1109/TPAMI.2015.2439281
10.1145/3528223.3530127
10.1109/CVPR.2019.00025
10.1109/ICCV.2019.00239
10.1109/ICCV.2019.00780
10.1016/j.robot.2021.103755
10.1109/2945.468400
10.1109/CVPR46437.2021.00713
10.1109/ICCV.2017.89
10.1109/3DV.2015.66
10.1145/3306346.3322980
10.1109/CVPR52729.2023.00013
10.1109/CVPR42600.2020.00251
10.1007/978-3-030-58598-3_4
10.1109/ICCV48922.2021.01271
10.1109/CVPR42600.2020.00356
10.1109/CVPR.2019.00609
10.1109/CVPR.2019.00459
10.1007/s11263-013-0654-8
10.1109/ICCV.2017.481
10.1109/ICCV48922.2021.00581
10.1145/3503250
10.1109/ICCV48922.2021.01490
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cav.2240
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 1546-427X
EndPage n/a
ExternalDocumentID 10_1002_cav_2240
CAV2240
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 62172416; 62262043; 62376271; U21A20515; U22B2034
– fundername: Guangdong Basic and Applied Basic Research Foundation
  funderid: 2023B1515120026
– fundername: Beijing Natural Science Foundation
  funderid: L231013
– fundername: CAS Youth Innovation Promotion Association
  funderid: 2022131
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
29F
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
ITG
ITH
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
NF~
O66
O9-
OIG
P2W
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WQJ
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2540-54b38ef6a2d9cc0319f36cd44b6060f2ece5dcbdda8433fc8d752d6c7b7045593
IEDL.DBID DR2
ISSN 1546-4261
IngestDate Sat Jul 26 03:40:53 EDT 2025
Tue Jul 01 02:42:24 EDT 2025
Wed Aug 20 07:26:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2540-54b38ef6a2d9cc0319f36cd44b6060f2ece5dcbdda8433fc8d752d6c7b7045593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0092-6474
0000-0002-3376-1725
0000-0002-3221-4981
PQID 3071608142
PQPubID 2034909
PageCount 14
ParticipantIDs proquest_journals_3071608142
crossref_primary_10_1002_cav_2240
wiley_primary_10_1002_cav_2240_CAV2240
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May/June 2024
2024-05-00
20240501
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May/June 2024
PublicationDecade 2020
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Computer animation and virtual worlds
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014; 106
2021; 65
2015; 38
2023
2022
2021
2020
2019
2019; 38
2018
2017
2022; 41
2016
2021; 142
2015
2020; 33
2014
2012; 25:84–90
1995; 1
e_1_2_9_30_1
Schonberger JL (e_1_2_9_29_1) 2016
Lindenberger P (e_1_2_9_9_1) 2021
e_1_2_9_11_1
Goodfellow I (e_1_2_9_31_1) 2014
e_1_2_9_34_1
e_1_2_9_10_1
Krizhevsky A (e_1_2_9_44_1) 2012; 25
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
Pumarola A (e_1_2_9_23_1) 2021
Liu L (e_1_2_9_5_1) 2020; 33
Zeng Y (e_1_2_9_33_1) 2020
Blau Y (e_1_2_9_43_1) 2018
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
Ledig C (e_1_2_9_26_1) 2017
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
Dong C (e_1_2_9_28_1) 2014
Barron JT (e_1_2_9_3_1) 2021
Wang X (e_1_2_9_35_1) 2019
e_1_2_9_25_1
e_1_2_9_27_1
References_xml – start-page: 536
  year: 2015
  end-page: 544
– start-page: 523
  year: 2020
  end-page: 540
– start-page: 4578
  year: 2021
  end-page: 4587
– start-page: 14124
  year: 2021
  end-page: 14133
– start-page: 5865
  year: 2021
  end-page: 5874
– start-page: 6445
  year: 2022
  end-page: 6454
– start-page: 184
  year: 2014
  end-page: 199
– start-page: 7210
  year: 2021
  end-page: 7219
– start-page: 4104
  year: 2016
  end-page: 4113
– start-page: 46
  year: 2023
  end-page: 55
– start-page: 165
  year: 2019
  end-page: 174
– start-page: 27
  year: 2014
– volume: 65
  start-page: 99
  issue: 1
  year: 2021
  end-page: 106
  article-title: NeRF: Representing scenes as neural radiance fields for view synthesis
  publication-title: Commun ACM
– start-page: 7708
  year: 2019
  end-page: 7717
– start-page: 528
  year: 2020
  end-page: 543
– volume: 25:84–90
  year: 2012
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv Neural Inf Proces Syst
– start-page: 4491
  year: 2017
  end-page: 4500
– volume: 38
  start-page: 1
  issue: 4
  year: 2019
  end-page: 14
  article-title: Local light field fusion: Practical view synthesis with prescriptive sampling guidelines
  publication-title: ACM Trans Graph
– start-page: 4681
  year: 2017
  end-page: 4690
– start-page: 764
  year: 2017
  end-page: 773
– volume: 142
  year: 2021
  article-title: ColMap: A memory‐efficient occupancy grid mapping framework
  publication-title: Robot Auton Syst
– start-page: 3907
  year: 2018
  end-page: 3916
– start-page: 5987
  year: 2021
  end-page: 5997
– start-page: 2304
  year: 2019
  end-page: 2314
– volume: 106
  start-page: 172
  year: 2014
  end-page: 191
  article-title: A super‐resolution framework for high‐accuracy multiview reconstruction
  publication-title: Int J Comput Vis
– year: 2019
  article-title: EDVR: Video restoration with enhanced deformable convolutional networks
  publication-title: Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA:IEEE
– volume: 33
  start-page: 15651
  year: 2020
  end-page: 15663
  article-title: Neural sparse voxel fields
  publication-title: Adv Neural Inf Proces Syst
– start-page: 10318
  year: 2021
  end-page: 10327
– volume: 41
  start-page: 1
  issue: 4
  year: 2022
  end-page: 15
  article-title: Instant neural graphics primitives with a multiresolution hash encoding
  publication-title: ACM Trans Graph
– start-page: 6228
  year: 2018
  end-page: 6237
– start-page: 3504
  year: 2020
  end-page: 3515
– year: 2022
– start-page: 15182
  year: 2021
  end-page: 15192
– volume: 38
  start-page: 295
  issue: 2
  year: 2015
  end-page: 307
  article-title: Image super‐resolution using deep convolutional networks
  publication-title: IEEE Trans Pattern Anal Mach Intell
– start-page: 5855
  year: 2021
  end-page: 5864
– start-page: 51
  year: 2020
  end-page: 67
– start-page: 2437
  year: 2020
  end-page: 2445
– start-page: 4460
  year: 2019
  end-page: 4470
– start-page: 5459
  year: 2022
  end-page: 5469
– start-page: 5939
  year: 2019
  end-page: 5948
– start-page: 12949
  year: 2021
  end-page: 12958
– start-page: 3360
  year: 2020
  end-page: 3369
– volume: 1
  start-page: 99
  issue: 2
  year: 1995
  end-page: 108
  article-title: Optical models for direct volume rendering
  publication-title: IEEE Trans Vis Comput Graph
– start-page: 6228
  volume-title: IEEE computer vision and pattern recognition (CVPR)
  year: 2018
  ident: e_1_2_9_43_1
– start-page: 528
  volume-title: European Conference on Computer Vision (ECCV), Glasgow, UK: Springer
  year: 2020
  ident: e_1_2_9_33_1
– volume: 25
  year: 2012
  ident: e_1_2_9_44_1
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv Neural Inf Proces Syst
– start-page: 5855
  volume-title: IEEE international conference on computer vision (ICCV)
  year: 2021
  ident: e_1_2_9_3_1
– ident: e_1_2_9_16_1
  doi: 10.1007/978-3-030-58580-8_31
– volume: 33
  start-page: 15651
  year: 2020
  ident: e_1_2_9_5_1
  article-title: Neural sparse voxel fields
  publication-title: Adv Neural Inf Proces Syst
– ident: e_1_2_9_18_1
  doi: 10.1109/CVPR.2018.00411
– ident: e_1_2_9_7_1
  doi: 10.1109/CVPR52688.2022.00538
– ident: e_1_2_9_21_1
  doi: 10.1109/CVPR46437.2021.00455
– start-page: 4104
  volume-title: IEEE computer vision and pattern recognition (CVPR)
  year: 2016
  ident: e_1_2_9_29_1
– ident: e_1_2_9_39_1
  doi: 10.1145/3503161.3547808
– ident: e_1_2_9_34_1
  doi: 10.1109/CVPR42600.2020.00342
– ident: e_1_2_9_4_1
  doi: 10.1109/ICCV48922.2021.01386
– ident: e_1_2_9_30_1
  doi: 10.1109/TPAMI.2015.2439281
– ident: e_1_2_9_8_1
  doi: 10.1145/3528223.3530127
– ident: e_1_2_9_12_1
  doi: 10.1109/CVPR.2019.00025
– start-page: 5987
  volume-title: IEEE international conference on computer vision (ICCV)
  year: 2021
  ident: e_1_2_9_9_1
– ident: e_1_2_9_20_1
  doi: 10.1109/ICCV.2019.00239
– ident: e_1_2_9_19_1
  doi: 10.1109/ICCV.2019.00780
– ident: e_1_2_9_42_1
  doi: 10.1016/j.robot.2021.103755
– ident: e_1_2_9_40_1
  doi: 10.1109/2945.468400
– year: 2019
  ident: e_1_2_9_35_1
  article-title: EDVR: Video restoration with enhanced deformable convolutional networks
  publication-title: Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA:IEEE
– ident: e_1_2_9_6_1
  doi: 10.1109/CVPR46437.2021.00713
– ident: e_1_2_9_36_1
  doi: 10.1109/ICCV.2017.89
– start-page: 10318
  volume-title: IEEE Computer Vision and Pattern Recognition (CVPR)
  year: 2021
  ident: e_1_2_9_23_1
– ident: e_1_2_9_38_1
  doi: 10.1109/3DV.2015.66
– ident: e_1_2_9_41_1
  doi: 10.1145/3306346.3322980
– ident: e_1_2_9_10_1
– ident: e_1_2_9_11_1
  doi: 10.1109/CVPR52729.2023.00013
– ident: e_1_2_9_27_1
  doi: 10.1109/CVPR42600.2020.00251
– ident: e_1_2_9_13_1
  doi: 10.1007/978-3-030-58598-3_4
– ident: e_1_2_9_25_1
  doi: 10.1109/ICCV48922.2021.01271
– ident: e_1_2_9_17_1
  doi: 10.1109/CVPR42600.2020.00356
– ident: e_1_2_9_14_1
  doi: 10.1109/CVPR.2019.00609
– ident: e_1_2_9_15_1
  doi: 10.1109/CVPR.2019.00459
– ident: e_1_2_9_37_1
  doi: 10.1007/s11263-013-0654-8
– ident: e_1_2_9_32_1
  doi: 10.1109/ICCV.2017.481
– ident: e_1_2_9_22_1
  doi: 10.1109/ICCV48922.2021.00581
– ident: e_1_2_9_2_1
  doi: 10.1145/3503250
– start-page: 184
  volume-title: European Conference on Computer Vision (ECCV), Zurich, Switzerland: Springer
  year: 2014
  ident: e_1_2_9_28_1
– start-page: 4681
  volume-title: IEEE computer vision and pattern recognition (CVPR)
  year: 2017
  ident: e_1_2_9_26_1
– start-page: 27
  volume-title: Generative adversarial nets. Advances in neural information processing systems
  year: 2014
  ident: e_1_2_9_31_1
– ident: e_1_2_9_24_1
  doi: 10.1109/ICCV48922.2021.01490
SSID ssj0026210
Score 2.3450737
Snippet Neural Radiance Field (NeRF) can render complex 3D scenes with viewpoint‐dependent effects. However, less work has been devoted to exploring its limitations in...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Data smoothing
deformable convolution net
Deformation effects
Formability
High resolution
Misalignment
neural radiance fields
Rendering
Visual effects
voxel‐based embedding
Title De‐NeRF: Ultra‐high‐definition NeRF with deformable net alignment
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.2240
https://www.proquest.com/docview/3071608142
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsNAFB2kbnThW6zWEkHcpU0mk5e70lqL2C6qLQUXIfOIFEuUJnXhyk_wG_0S783DqiCIqyGTDGTuzL1zZjj3DCGnArzIdCXVTd9VOpOMgUspX_d8QzgAULkdYaJwf-D0RuxqYk8KViXmwuT6EJ8HbugZWbxGBw950lyKhorwuYHrEYRfpGohHhp-KkdRh-ZCBDZzdNwllLqzBm2WDb-vREt4-RWkZqtMd5Pclf-Xk0seGouUN8TLD-nG_3Vgi2wU4FNr5bNlm6yoeIesj6fJIq9NdsllR72_vg3UsHuujWbpPIQnlDSGQqpoGmcMLw3fa3iEq0Elol4-U1qsUg1Q_X3GL9gjo-7FbbunF5ct6IIiOcJm3PJU5IRU-kJgblNkOQLGjsMWx4ioEsqWgksZesyyIuFJ16bSES53ARXavrVPKvFjrA6IBq2UJ_zIZFQwl_uhL5g0uDTw8kCbsio5KQ0fPOWaGkGunkwDMEqARqmSWjkiQeFVSQDxyHQAwzBaJWeZaX9tH7RbYywP__rhEVmjgFdyLmONVNL5Qh0D3kh5nay2Ov3rm3o2wz4A3UvUTg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTsJAEJ4gHtSD_0YUtSbGW7Fsd7etngiKqMCBAOFg0nR_aoikGigePPkIPqNP4m5LQU1MjKdNt52kO7uz881m9huAE66sqOwIZJY9R5pYYKxMSnqm61mcKoDKSKgvCjdbtN7Ft33Sz8FFdhcm5YeYHbhpy0j2a23g-kD6bM4ayoOXknZIC7CoC3on8VR7xh2FKEqpCAimpo4TMuZZC51lkt990RxgfoWpiZ-prcF99odpesljaRKzEn_9Qd74zyGsw-oUfxqVdMFsQE5Gm7DSG4wnae94C64v5cfbe0u2a-dGdxiPAvWkWY1VI2Q4iJIkL0O_N_QprqE6NfBlQ2lEMjYUsH9IUgy2oVu76lTr5rTegsmRzo8gmNmuDGmAhMe5vt4U2pSr6WMqyrFCJLkkgjMhAhfbdshd4RAkKHeYo4Ah8ewdyEdPkdwFQ0lJl3thGSOOHeYFHsfCYsLS9QMJwgU4zjTvP6e0Gn5KoIx8pRRfK6UAxWxK_KlhjX21JZWpgjEYFeA00e2v8n610tPt3l8_PIKleqfZ8Bs3rbt9WEYKvqSpjUXIx6OJPFDwI2aHyTL7BG3j1tU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60gujBt1itGkG8pSabzctbaa31VaTYUvAQso9IscTSph48-RP8jf4SZ5OmVUEQT0s2mZDMY_fbZeZbgGOOUWS6guim70qdCkoxpKSve77BHQSozI5UofBt02m06VXX7k6yKlUtTMYPMd1wU5GRjtcqwAciOp2RhvLwpazmo3lYoI7hKY-utabUUcQhGROBTR1dLRNy4lmDnOaS36eiGb78ilLTaaa-Cg_5B2bZJU_lccLK_PUHd-P__mANViboU6tk7rIOczLegOVObzTOekebcFGTH2_vTdmqn2ntfjIM8UpxGmMjZNSL0xQvTd3X1B6uhp0K9rK-1GKZaAjrH9MEgy1o18_vqw19ctqCzonKjrApszwZOSERPuequCmyHI7GY7jGMSIiubQFZ0KEHrWsiHvCtYlwuMtchIW2b21DIX6O5Q5oKCU97kcmJZy6zA99ToXBhKFOD7QJLcJRrvhgkJFqBBl9MglQKYFSShFKuUWCSViNAhyQTLQ1vrcIJ6lqf5UPqpWOanf_-uAhLN7V6sHNZfN6D5YIYpcsr7EEhWQ4lvuIPRJ2kDrZJy0h1Y0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=De%E2%80%90NeRF%3A+Ultra%E2%80%90high%E2%80%90definition+NeRF+with+deformable+net+alignment&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Hou%2C+Jianing&rft.au=Zhang%2C+Runjie&rft.au=Wu%2C+Zhongqi&rft.au=Meng%2C+Weiliang&rft.date=2024-05-01&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=35&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcav.2240&rft.externalDBID=10.1002%252Fcav.2240&rft.externalDocID=CAV2240
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon