Exploring the rate-distortion-complexity optimization in neural image compression

Despite a short history, neural image codecs have been shown to surpass classical image codecs in terms of rate–distortion performance. However, most of them suffer from significantly longer decoding times, which hinders the practical applications of neural image codecs. This issue is especially pro...

Full description

Saved in:
Bibliographic Details
Published inJournal of visual communication and image representation Vol. 105; p. 104294
Main Authors Gao, Yixin, Feng, Runsen, Guo, Zongyu, Chen, Zhibo
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.12.2024
Subjects
Online AccessGet full text
ISSN1047-3203
DOI10.1016/j.jvcir.2024.104294

Cover

Abstract Despite a short history, neural image codecs have been shown to surpass classical image codecs in terms of rate–distortion performance. However, most of them suffer from significantly longer decoding times, which hinders the practical applications of neural image codecs. This issue is especially pronounced when employing an effective yet time-consuming autoregressive context model since it would increase entropy decoding time by orders of magnitude. In this paper, unlike most previous works that pursue optimal RD performance while temporally overlooking the coding complexity, we make a systematical investigation on the rate–distortion-complexity (RDC) optimization in neural image compression. By quantifying the decoding complexity as a factor in the optimization goal, we are now able to precisely control the RDC trade-off and then demonstrate how the rate–distortion performance of neural image codecs could adapt to various complexity demands. Going beyond the investigation of RDC optimization, a variable-complexity neural codec is designed to leverage the spatial dependencies adaptively according to industrial demands, which supports fine-grained complexity adjustment by balancing the RDC tradeoff. By implementing this scheme in a powerful base model, we demonstrate the feasibility and flexibility of RDC optimization for neural image codecs.
AbstractList Despite a short history, neural image codecs have been shown to surpass classical image codecs in terms of rate–distortion performance. However, most of them suffer from significantly longer decoding times, which hinders the practical applications of neural image codecs. This issue is especially pronounced when employing an effective yet time-consuming autoregressive context model since it would increase entropy decoding time by orders of magnitude. In this paper, unlike most previous works that pursue optimal RD performance while temporally overlooking the coding complexity, we make a systematical investigation on the rate–distortion-complexity (RDC) optimization in neural image compression. By quantifying the decoding complexity as a factor in the optimization goal, we are now able to precisely control the RDC trade-off and then demonstrate how the rate–distortion performance of neural image codecs could adapt to various complexity demands. Going beyond the investigation of RDC optimization, a variable-complexity neural codec is designed to leverage the spatial dependencies adaptively according to industrial demands, which supports fine-grained complexity adjustment by balancing the RDC tradeoff. By implementing this scheme in a powerful base model, we demonstrate the feasibility and flexibility of RDC optimization for neural image codecs.
ArticleNumber 104294
Author Chen, Zhibo
Feng, Runsen
Guo, Zongyu
Gao, Yixin
Author_xml – sequence: 1
  givenname: Yixin
  surname: Gao
  fullname: Gao, Yixin
– sequence: 2
  givenname: Runsen
  orcidid: 0000-0001-6608-0785
  surname: Feng
  fullname: Feng, Runsen
– sequence: 3
  givenname: Zongyu
  surname: Guo
  fullname: Guo, Zongyu
– sequence: 4
  givenname: Zhibo
  orcidid: 0000-0002-8525-5066
  surname: Chen
  fullname: Chen, Zhibo
  email: chenzhibo@ustc.edu.cn
BookMark eNp9kM1OwzAQhH0oEm3hCbj4BVL8m-ADB1SVH6kSQoKz5Tib4ii1I9tULU9PQjlz2tXMzmr0LdDMBw8I3VCyooSWt92qO1gXV4wwMSqCKTFD83GpCs4Iv0SLlDpCCFdczNHb5jj0ITq_w_kTcDQZisalHGJ2wRc27Iceji6fcBiy27tvM-nYeezhK5oeu73ZAZ7uIqQ0elfoojV9guu_uUQfj5v39XOxfX16WT9sC8skzwUwWhpm60byylhKWKlqIe2d5A1XraqoEbUByUwpuLQNgLRVrUgFQqmScOBLxM9_bQwpRWj1EMcy8aQp0RMJ3elfEnoioc8kxtT9OQVjtYODqJN14C00LoLNugnu3_wPPO1uIA
Cites_doi 10.1109/TIP.2021.3058615
10.1109/ICCV.2019.00324
10.1109/CVPR46437.2021.01453
10.1109/CVPR42600.2020.00796
10.1109/TCSVT.2018.2880492
10.1109/TIP.2020.2982832
10.1109/TCSVT.2022.3146061
10.1109/TCSVT.2021.3053635
10.1109/TIP.2023.3266165
10.1109/CVPR52688.2022.00943
10.1109/TIP.2016.2601264
10.1109/CVPR52688.2022.00563
10.1109/30.125072
10.1109/TIP.2020.2985225
10.1109/JSTSP.2020.3034501
10.1109/TIP.2014.2341927
10.1109/TBC.2017.2711142
10.1109/TCSVT.2021.3119660
10.1109/TIP.2021.3083447
10.1109/TCSVT.2013.2249017
10.1109/TCSVT.2012.2221191
10.1109/TCSVT.2021.3108671
10.1109/CVPR52688.2022.01553
10.1007/s00034-019-01110-4
10.1007/s11554-020-00996-7
10.1109/TCSVT.2021.3089491
10.1109/TMM.2021.3052348
10.1109/TII.2018.2844214
10.1109/ICCV48922.2021.00238
10.1109/TCSVT.2019.2904198
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright_xml – notice: 2024 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.jvcir.2024.104294
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Journalism & Communications
Engineering
ExternalDocumentID 10_1016_j_jvcir_2024_104294
S1047320324002505
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMHC
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
LX9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
WH7
WUQ
XPP
YQT
ZMT
ZU3
~G-
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
ID FETCH-LOGICAL-c253t-e216a2cbd537ac10269b45c853d39f971a4bae52a6435cdee5c7b907e499603e3
IEDL.DBID AIKHN
ISSN 1047-3203
IngestDate Wed Sep 10 06:22:37 EDT 2025
Sat Dec 21 15:59:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Rate-distortion-complexity optimization
Variable-complexity
Neural image compression
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c253t-e216a2cbd537ac10269b45c853d39f971a4bae52a6435cdee5c7b907e499603e3
ORCID 0000-0002-8525-5066
0000-0001-6608-0785
ParticipantIDs crossref_primary_10_1016_j_jvcir_2024_104294
elsevier_sciencedirect_doi_10_1016_j_jvcir_2024_104294
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationTitle Journal of visual communication and image representation
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Liu, Yu, Gao, Chen, Ji, Wang (b35) 2016; 25
Cho, Kim (b36) 2013; 23
M. Song, J. Choi, B. Han, Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 2380–2389.
E. Jang, S. Gu, B. Poole, Categorical reparameterization with gumbel-softmax, in: International Conference on Learning Representations, 2017.
Feng, Liu, Liu, Li, Wu (b42) 2023
Ballé, Chou, Minnen, Singh, Johnston, Agustsson, Hwang, Toderici (b46) 2020; 15
Minnen, Singh (b22) 2020
Dong, Shen, Yu, Yang (b5) 2021; 24
J. Lee, S. Cho, S.-K. Beack, Context-adaptive Entropy Model for End-to-end Optimized Image Compression, in: The 7th Int. Conf. on Learning Representations, 2019.
Saldanha, Sanchez, Marcon, Agostini (b41) 2021; 32
Guo, Zhang, Feng, Chen (b20) 2021; 32
Z. Xie, Z. Zhang, Y. Cao, Y. Lin, J. Bao, Z. Yao, Q. Dai, H. Hu, Simmim: A simple framework for masked image modeling, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 9653–9663.
Sullivan, Ohm, Han, Wiegand (b1) 2012; 22
Shen, Zhang, Liu (b3) 2014; 23
Wallace (b29) 1992; 38
N. Asuni, A. Giachetti, TESTIMAGES: a Large-scale Archive for Testing Visual Devices and Basic Image Processing Algorithms, in: STAG, 2014, pp. 63–70.
Rabbani, Joshi (b15) 2002; 17
Y. Choi, M. El-Khamy, J. Lee, Variable rate deep image compression with a conditional autoencoder, in: Proceedings of the IEEE International Conference on Computer Vision, 2019, pp. 3146–3154.
K. He, X. Chen, S. Xie, Y. Li, P. Dollár, R. Girshick, Masked autoencoders are scalable vision learners, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 16000–16009.
Kodak lossless true color image suite
D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, in: International Conference on Learning Representations, 2015.
Wu, Li, Zhang, Jin, Chen (b44) 2021; 32
J. Ballé, V. Laparra, E.P. Simoncelli, End-to-end Optimized Image Compression, in: International Conference on Learning Representations, 2017.
Cai, Chen, Zhang, Gao (b50) 2019; 29
Chen, Liu, Ma, Shen, Cao, Wang (b24) 2021; 30
Ballé, Laparra, Simoncelli (b47) 2016
.
Van Oord, Kalchbrenner, Kavukcuoglu (b25) 2016
H. Bao, L. Dong, S. Piao, F. Wei, BEiT: BERT Pre-Training of Image Transformers, in: International Conference on Learning Representations, 2022.
Guo, Zhang, Feng, Chen (b14) 2021; Vol. 139
Huang, Song, Xie, Izquierdo, Zhang (b40) 2021; 31
Van den Oord, Kalchbrenner, Espeholt, Vinyals, Graves (b48) 2016; 29
Zhang, Kwong, Zhao, Ip (b37) 2018; 15
Hosseini, Pakdaman, Hashemi, Ghanbari (b43) 2021; 18
D. Minnen, J. Ballé, G.D. Toderici, Joint autoregressive and hierarchical priors for learned image compression, in: Advances in Neural Information Processing Systems, 2018, pp. 10794–10803.
Pan, Guo, Chen (b11) 2021
Cui, Wang, Gao, Guo, Feng, Bai (b52) 2021
Z. Cheng, H. Sun, M. Takeuchi, J. Katto, Learned image compression with discretized gaussian mixture likelihoods and attention modules, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 7939–7948.
Li, Ma, You, Zhang, Zuo (b21) 2020; 29
Bellard (b16) 2015
Tang, Jing, Zeng, Fan (b32) 2019
Kuanar, Rao, Bilas, Bredow (b7) 2019; 38
Shi, Gao, Chen (b4) 2019
Min, Cheung (b30) 2014; 25
Wu, Shi, Chen (b8) 2022; 32
Y. Qian, Z. Tan, X. Sun, M. Lin, D. Li, Z. Sun, H. Li, R. Jin, Learning Accurate Entropy Model with Global Reference for Image Compression, in: International Conference on Learning Representations, 2021.
D. He, Z. Yang, W. Peng, R. Ma, H. Qin, Y. Wang, Elic: Efficient learned image compression with unevenly grouped space-channel contextual adaptive coding, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 5718–5727.
J.-R. Ohm, G.J. Sullivan, Versatile video coding–towards the next generation of video compression, in: Picture Coding Symposium, Vol. 2018, 2018.
J. Zhou, Multi-scale and Context-adaptive Entropy Model for Image Compression, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2019.
Li, Xu, Tang, Chen, Xing (b38) 2021; 30
J. Ballé, D. Minnen, S. Singh, S.J. Hwang, N. Johnston, Variational image compression with a scale hyperprior, in: International Conference on Learning Representations, 2018.
Chen, Shi, Li (b39) 2020; 29
Zhu, Zhang, Pan, Wang, Kwong, Peng (b6) 2017; 63
Saldanha, Sanchez, Marcon, Agostini (b34) 2021
Yang, Shen, Dong, Ding, An, Jiang (b31) 2019; 30
D. He, Y. Zheng, B. Sun, Y. Wang, H. Qin, Checkerboard context model for efficient learned image compression, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 14771–14780.
Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollár, Zitnick (b54) 2014
Cui, Zhang, Gu, Zhang, Ma (b33) 2020
10.1016/j.jvcir.2024.104294_b27
10.1016/j.jvcir.2024.104294_b28
Sullivan (10.1016/j.jvcir.2024.104294_b1) 2012; 22
Cui (10.1016/j.jvcir.2024.104294_b33) 2020
Kuanar (10.1016/j.jvcir.2024.104294_b7) 2019; 38
Van Oord (10.1016/j.jvcir.2024.104294_b25) 2016
Chen (10.1016/j.jvcir.2024.104294_b24) 2021; 30
Lin (10.1016/j.jvcir.2024.104294_b54) 2014
Guo (10.1016/j.jvcir.2024.104294_b14) 2021; Vol. 139
Yang (10.1016/j.jvcir.2024.104294_b31) 2019; 30
Liu (10.1016/j.jvcir.2024.104294_b35) 2016; 25
Guo (10.1016/j.jvcir.2024.104294_b20) 2021; 32
10.1016/j.jvcir.2024.104294_b9
Pan (10.1016/j.jvcir.2024.104294_b11) 2021
Chen (10.1016/j.jvcir.2024.104294_b39) 2020; 29
Saldanha (10.1016/j.jvcir.2024.104294_b41) 2021; 32
10.1016/j.jvcir.2024.104294_b2
Min (10.1016/j.jvcir.2024.104294_b30) 2014; 25
Rabbani (10.1016/j.jvcir.2024.104294_b15) 2002; 17
Minnen (10.1016/j.jvcir.2024.104294_b22) 2020
Cui (10.1016/j.jvcir.2024.104294_b52) 2021
Van den Oord (10.1016/j.jvcir.2024.104294_b48) 2016; 29
Zhu (10.1016/j.jvcir.2024.104294_b6) 2017; 63
Li (10.1016/j.jvcir.2024.104294_b38) 2021; 30
Shen (10.1016/j.jvcir.2024.104294_b3) 2014; 23
Huang (10.1016/j.jvcir.2024.104294_b40) 2021; 31
Feng (10.1016/j.jvcir.2024.104294_b42) 2023
Wu (10.1016/j.jvcir.2024.104294_b8) 2022; 32
Hosseini (10.1016/j.jvcir.2024.104294_b43) 2021; 18
Ballé (10.1016/j.jvcir.2024.104294_b46) 2020; 15
10.1016/j.jvcir.2024.104294_b45
10.1016/j.jvcir.2024.104294_b49
Saldanha (10.1016/j.jvcir.2024.104294_b34) 2021
Shi (10.1016/j.jvcir.2024.104294_b4) 2019
Wu (10.1016/j.jvcir.2024.104294_b44) 2021; 32
Bellard (10.1016/j.jvcir.2024.104294_b16) 2015
10.1016/j.jvcir.2024.104294_b51
Cai (10.1016/j.jvcir.2024.104294_b50) 2019; 29
10.1016/j.jvcir.2024.104294_b53
10.1016/j.jvcir.2024.104294_b10
10.1016/j.jvcir.2024.104294_b55
10.1016/j.jvcir.2024.104294_b12
10.1016/j.jvcir.2024.104294_b56
10.1016/j.jvcir.2024.104294_b13
10.1016/j.jvcir.2024.104294_b57
10.1016/j.jvcir.2024.104294_b17
Cho (10.1016/j.jvcir.2024.104294_b36) 2013; 23
10.1016/j.jvcir.2024.104294_b18
10.1016/j.jvcir.2024.104294_b19
Zhang (10.1016/j.jvcir.2024.104294_b37) 2018; 15
Wallace (10.1016/j.jvcir.2024.104294_b29) 1992; 38
Ballé (10.1016/j.jvcir.2024.104294_b47) 2016
Dong (10.1016/j.jvcir.2024.104294_b5) 2021; 24
Tang (10.1016/j.jvcir.2024.104294_b32) 2019
Li (10.1016/j.jvcir.2024.104294_b21) 2020; 29
10.1016/j.jvcir.2024.104294_b23
10.1016/j.jvcir.2024.104294_b26
References_xml – volume: 29
  start-page: 5431
  year: 2020
  end-page: 5446
  ident: b39
  article-title: Learned fast HEVC intra coding
  publication-title: IEEE Trans. Image Process.
– start-page: 740
  year: 2014
  end-page: 755
  ident: b54
  article-title: Microsoft coco: Common objects in context
  publication-title: Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13
– reference: J. Zhou, Multi-scale and Context-adaptive Entropy Model for Image Compression, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2019.
– volume: 30
  start-page: 1668
  year: 2019
  end-page: 1682
  ident: b31
  article-title: Low-complexity CTU partition structure decision and fast intra mode decision for versatile video coding
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– start-page: 1747
  year: 2016
  end-page: 1756
  ident: b25
  article-title: Pixel recurrent neural networks
  publication-title: International Conference on Machine Learning
– volume: Vol. 139
  start-page: 3920
  year: 2021
  end-page: 3929
  ident: b14
  article-title: Soft then hard: Rethinking the quantization in neural image compression
  publication-title: Proceedings of the 38th International Conference on Machine Learning
– year: 2023
  ident: b42
  article-title: Partition map prediction for fast block partitioning in VVC intra-frame coding
  publication-title: IEEE Trans. Image Process.
– reference: D. Minnen, J. Ballé, G.D. Toderici, Joint autoregressive and hierarchical priors for learned image compression, in: Advances in Neural Information Processing Systems, 2018, pp. 10794–10803.
– volume: 15
  start-page: 339
  year: 2020
  end-page: 353
  ident: b46
  article-title: Nonlinear transform coding
  publication-title: IEEE J. Sel. Top. Sign. Proces.
– reference: D. He, Z. Yang, W. Peng, R. Ma, H. Qin, Y. Wang, Elic: Efficient learned image compression with unevenly grouped space-channel contextual adaptive coding, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 5718–5727.
– volume: 25
  start-page: 892
  year: 2014
  end-page: 896
  ident: b30
  article-title: A fast CU size decision algorithm for the HEVC intra encoder
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– reference: D. He, Y. Zheng, B. Sun, Y. Wang, H. Qin, Checkerboard context model for efficient learned image compression, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 14771–14780.
– volume: 31
  start-page: 4454
  year: 2021
  end-page: 4469
  ident: b40
  article-title: Modeling acceleration properties for flexible INTRA HEVC complexity control
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– year: 2015
  ident: b16
  article-title: BPG image format
– volume: 24
  start-page: 400
  year: 2021
  end-page: 414
  ident: b5
  article-title: Fast intra mode decision algorithm for versatile video coding
  publication-title: IEEE Trans. Multimed.
– start-page: 10527
  year: 2021
  end-page: 10536
  ident: b52
  article-title: Asymmetric gained deep image compression with continuous rate adaptation
  publication-title: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition
– reference: J. Lee, S. Cho, S.-K. Beack, Context-adaptive Entropy Model for End-to-end Optimized Image Compression, in: The 7th Int. Conf. on Learning Representations, 2019.
– reference: Kodak lossless true color image suite,
– reference: H. Bao, L. Dong, S. Piao, F. Wei, BEiT: BERT Pre-Training of Image Transformers, in: International Conference on Learning Representations, 2022.
– volume: 29
  start-page: 3687
  year: 2019
  end-page: 3700
  ident: b50
  article-title: Efficient variable rate image compression with multi-scale decomposition network
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 30
  start-page: 3179
  year: 2021
  end-page: 3191
  ident: b24
  article-title: End-to-end learnt image compression via non-local attention optimization and improved context modeling
  publication-title: IEEE Trans. Image Process.
– volume: 32
  start-page: 2329
  year: 2021
  end-page: 2341
  ident: b20
  article-title: Causal contextual prediction for learned image compression
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– reference: E. Jang, S. Gu, B. Poole, Categorical reparameterization with gumbel-softmax, in: International Conference on Learning Representations, 2017.
– reference: Z. Cheng, H. Sun, M. Takeuchi, J. Katto, Learned image compression with discretized gaussian mixture likelihoods and attention modules, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 7939–7948.
– start-page: 103
  year: 2020
  end-page: 112
  ident: b33
  article-title: Gradient-based early termination of CU partition in VVC intra coding
  publication-title: 2020 Data Compression Conference
– volume: 32
  start-page: 3947
  year: 2021
  end-page: 3960
  ident: b41
  article-title: Configurable fast block partitioning for VVC intra coding using light gradient boosting machine
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– start-page: 3339
  year: 2020
  end-page: 3343
  ident: b22
  article-title: Channel-wise autoregressive entropy models for learned image compression
  publication-title: 2020 IEEE International Conference on Image Processing
– volume: 32
  start-page: 5638
  year: 2022
  end-page: 5649
  ident: b8
  article-title: HG-FCN: Hierarchical grid fully convolutional network for fast VVC intra coding
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– reference: D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, in: International Conference on Learning Representations, 2015.
– volume: 22
  start-page: 1649
  year: 2012
  end-page: 1668
  ident: b1
  article-title: Overview of the high efficiency video coding (HEVC) standard
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– reference: Y. Qian, Z. Tan, X. Sun, M. Lin, D. Li, Z. Sun, H. Li, R. Jin, Learning Accurate Entropy Model with Global Reference for Image Compression, in: International Conference on Learning Representations, 2021.
– start-page: 1
  year: 2019
  end-page: 4
  ident: b32
  article-title: Adaptive CU split decision with pooling-variable CNN for VVC intra encoding
  publication-title: 2019 IEEE Visual Communications and Image Processing
– volume: 23
  start-page: 4232
  year: 2014
  end-page: 4241
  ident: b3
  article-title: Effective CU size decision for HEVC intracoding
  publication-title: IEEE Trans. Image Process.
– reference: M. Song, J. Choi, B. Han, Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 2380–2389.
– start-page: 1
  year: 2021
  end-page: 5
  ident: b34
  article-title: Learning-based complexity reduction scheme for VVC intra-frame prediction
  publication-title: 2021 International Conference on Visual Communications and Image Processing
– volume: 17
  start-page: 3
  year: 2002
  end-page: 48
  ident: b15
  article-title: An overview of the JPEG 2000 still image compression standard
  publication-title: Signal Process.: Image Commun.
– volume: 38
  start-page: 5081
  year: 2019
  end-page: 5102
  ident: b7
  article-title: Adaptive CU mode selection in HEVC intra prediction: A deep learning approach
  publication-title: Circuits Systems Signal Process.
– start-page: 1
  year: 2019
  end-page: 5
  ident: b4
  article-title: Asymmetric-kernel CNN based fast CTU partition for HEVC intra coding
  publication-title: 2019 IEEE International Symposium on Circuits and Systems
– volume: 18
  start-page: 603
  year: 2021
  end-page: 618
  ident: b43
  article-title: Fine-grain complexity control of HEVC intra prediction in battery-powered video codecs
  publication-title: J. Real-Time Image Process.
– reference: N. Asuni, A. Giachetti, TESTIMAGES: a Large-scale Archive for Testing Visual Devices and Basic Image Processing Algorithms, in: STAG, 2014, pp. 63–70.
– volume: 23
  start-page: 1555
  year: 2013
  end-page: 1564
  ident: b36
  article-title: Fast CU splitting and pruning for suboptimal CU partitioning in HEVC intra coding
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 63
  start-page: 547
  year: 2017
  end-page: 561
  ident: b6
  article-title: Binary and multi-class learning based low complexity optimization for HEVC encoding
  publication-title: IEEE Trans. Broadcast.
– reference: K. He, X. Chen, S. Xie, Y. Li, P. Dollár, R. Girshick, Masked autoencoders are scalable vision learners, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 16000–16009.
– volume: 15
  start-page: 1437
  year: 2018
  end-page: 1449
  ident: b37
  article-title: Complexity control in the HEVC intracoding for industrial video applications
  publication-title: IEEE Trans. Ind. Inform.
– reference: Y. Choi, M. El-Khamy, J. Lee, Variable rate deep image compression with a conditional autoencoder, in: Proceedings of the IEEE International Conference on Computer Vision, 2019, pp. 3146–3154.
– volume: 29
  year: 2016
  ident: b48
  article-title: Conditional image generation with pixelcnn decoders
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 38
  start-page: xviii
  year: 1992
  end-page: xxxiv
  ident: b29
  article-title: The JPEG still picture compression standard
  publication-title: IEEE Trans. Consum. Electron.
– start-page: 1
  year: 2016
  end-page: 5
  ident: b47
  article-title: End-to-end optimization of nonlinear transform codes for perceptual quality
  publication-title: Picture Coding Symposium (PCS), 2016
– volume: 32
  start-page: 3978
  year: 2021
  end-page: 3990
  ident: b44
  article-title: Learned block-based hybrid image compression
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– reference: Z. Xie, Z. Zhang, Y. Cao, Y. Lin, J. Bao, Z. Yao, Q. Dai, H. Hu, Simmim: A simple framework for masked image modeling, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 9653–9663.
– reference: J. Ballé, D. Minnen, S. Singh, S.J. Hwang, N. Johnston, Variational image compression with a scale hyperprior, in: International Conference on Learning Representations, 2018.
– reference: J. Ballé, V. Laparra, E.P. Simoncelli, End-to-end Optimized Image Compression, in: International Conference on Learning Representations, 2017.
– reference: J.-R. Ohm, G.J. Sullivan, Versatile video coding–towards the next generation of video compression, in: Picture Coding Symposium, Vol. 2018, 2018.
– volume: 30
  start-page: 5377
  year: 2021
  end-page: 5390
  ident: b38
  article-title: DeepQTMT: A deep learning approach for fast QTMT-based CU partition of intra-mode VVC
  publication-title: IEEE Trans. Image Process.
– volume: 25
  start-page: 5088
  year: 2016
  end-page: 5103
  ident: b35
  article-title: CU partition mode decision for HEVC hardwired intra encoder using convolution neural network
  publication-title: IEEE Trans. Image Process.
– reference: .
– volume: 29
  start-page: 5900
  year: 2020
  end-page: 5911
  ident: b21
  article-title: Efficient and effective context-based convolutional entropy modeling for image compression
  publication-title: IEEE Trans. Image Process.
– start-page: 1
  year: 2021
  end-page: 5
  ident: b11
  article-title: Analyzing time complexity of practical learned image compression models
  publication-title: 2021 International Conference on Visual Communications and Image Processing
– start-page: 1
  year: 2019
  ident: 10.1016/j.jvcir.2024.104294_b32
  article-title: Adaptive CU split decision with pooling-variable CNN for VVC intra encoding
– volume: 30
  start-page: 3179
  year: 2021
  ident: 10.1016/j.jvcir.2024.104294_b24
  article-title: End-to-end learnt image compression via non-local attention optimization and improved context modeling
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2021.3058615
– ident: 10.1016/j.jvcir.2024.104294_b17
– volume: 17
  start-page: 3
  issue: 1
  year: 2002
  ident: 10.1016/j.jvcir.2024.104294_b15
  article-title: An overview of the JPEG 2000 still image compression standard
  publication-title: Signal Process.: Image Commun.
– ident: 10.1016/j.jvcir.2024.104294_b51
  doi: 10.1109/ICCV.2019.00324
– start-page: 1
  year: 2021
  ident: 10.1016/j.jvcir.2024.104294_b34
  article-title: Learning-based complexity reduction scheme for VVC intra-frame prediction
– ident: 10.1016/j.jvcir.2024.104294_b23
  doi: 10.1109/CVPR46437.2021.01453
– ident: 10.1016/j.jvcir.2024.104294_b13
  doi: 10.1109/CVPR42600.2020.00796
– ident: 10.1016/j.jvcir.2024.104294_b55
– start-page: 103
  year: 2020
  ident: 10.1016/j.jvcir.2024.104294_b33
  article-title: Gradient-based early termination of CU partition in VVC intra coding
– ident: 10.1016/j.jvcir.2024.104294_b26
– start-page: 3339
  year: 2020
  ident: 10.1016/j.jvcir.2024.104294_b22
  article-title: Channel-wise autoregressive entropy models for learned image compression
– volume: 29
  start-page: 3687
  issue: 12
  year: 2019
  ident: 10.1016/j.jvcir.2024.104294_b50
  article-title: Efficient variable rate image compression with multi-scale decomposition network
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2018.2880492
– volume: 25
  start-page: 892
  issue: 5
  year: 2014
  ident: 10.1016/j.jvcir.2024.104294_b30
  article-title: A fast CU size decision algorithm for the HEVC intra encoder
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– start-page: 1
  year: 2016
  ident: 10.1016/j.jvcir.2024.104294_b47
  article-title: End-to-end optimization of nonlinear transform codes for perceptual quality
– ident: 10.1016/j.jvcir.2024.104294_b18
– ident: 10.1016/j.jvcir.2024.104294_b9
– volume: 29
  start-page: 5431
  year: 2020
  ident: 10.1016/j.jvcir.2024.104294_b39
  article-title: Learned fast HEVC intra coding
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.2982832
– ident: 10.1016/j.jvcir.2024.104294_b45
– ident: 10.1016/j.jvcir.2024.104294_b49
– start-page: 740
  year: 2014
  ident: 10.1016/j.jvcir.2024.104294_b54
  article-title: Microsoft coco: Common objects in context
– volume: 32
  start-page: 5638
  issue: 8
  year: 2022
  ident: 10.1016/j.jvcir.2024.104294_b8
  article-title: HG-FCN: Hierarchical grid fully convolutional network for fast VVC intra coding
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2022.3146061
– volume: 31
  start-page: 4454
  issue: 11
  year: 2021
  ident: 10.1016/j.jvcir.2024.104294_b40
  article-title: Modeling acceleration properties for flexible INTRA HEVC complexity control
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2021.3053635
– ident: 10.1016/j.jvcir.2024.104294_b56
– year: 2023
  ident: 10.1016/j.jvcir.2024.104294_b42
  article-title: Partition map prediction for fast block partitioning in VVC intra-frame coding
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2023.3266165
– ident: 10.1016/j.jvcir.2024.104294_b28
  doi: 10.1109/CVPR52688.2022.00943
– volume: 25
  start-page: 5088
  issue: 11
  year: 2016
  ident: 10.1016/j.jvcir.2024.104294_b35
  article-title: CU partition mode decision for HEVC hardwired intra encoder using convolution neural network
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2601264
– volume: Vol. 139
  start-page: 3920
  year: 2021
  ident: 10.1016/j.jvcir.2024.104294_b14
  article-title: Soft then hard: Rethinking the quantization in neural image compression
– ident: 10.1016/j.jvcir.2024.104294_b10
  doi: 10.1109/CVPR52688.2022.00563
– volume: 38
  start-page: xviii
  issue: 1
  year: 1992
  ident: 10.1016/j.jvcir.2024.104294_b29
  article-title: The JPEG still picture compression standard
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/30.125072
– ident: 10.1016/j.jvcir.2024.104294_b19
– volume: 29
  start-page: 5900
  year: 2020
  ident: 10.1016/j.jvcir.2024.104294_b21
  article-title: Efficient and effective context-based convolutional entropy modeling for image compression
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.2985225
– volume: 15
  start-page: 339
  issue: 2
  year: 2020
  ident: 10.1016/j.jvcir.2024.104294_b46
  article-title: Nonlinear transform coding
  publication-title: IEEE J. Sel. Top. Sign. Proces.
  doi: 10.1109/JSTSP.2020.3034501
– volume: 23
  start-page: 4232
  issue: 10
  year: 2014
  ident: 10.1016/j.jvcir.2024.104294_b3
  article-title: Effective CU size decision for HEVC intracoding
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2341927
– ident: 10.1016/j.jvcir.2024.104294_b57
– volume: 63
  start-page: 547
  issue: 3
  year: 2017
  ident: 10.1016/j.jvcir.2024.104294_b6
  article-title: Binary and multi-class learning based low complexity optimization for HEVC encoding
  publication-title: IEEE Trans. Broadcast.
  doi: 10.1109/TBC.2017.2711142
– volume: 32
  start-page: 3978
  issue: 6
  year: 2021
  ident: 10.1016/j.jvcir.2024.104294_b44
  article-title: Learned block-based hybrid image compression
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2021.3119660
– volume: 30
  start-page: 5377
  year: 2021
  ident: 10.1016/j.jvcir.2024.104294_b38
  article-title: DeepQTMT: A deep learning approach for fast QTMT-based CU partition of intra-mode VVC
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2021.3083447
– start-page: 1
  year: 2021
  ident: 10.1016/j.jvcir.2024.104294_b11
  article-title: Analyzing time complexity of practical learned image compression models
– volume: 23
  start-page: 1555
  issue: 9
  year: 2013
  ident: 10.1016/j.jvcir.2024.104294_b36
  article-title: Fast CU splitting and pruning for suboptimal CU partitioning in HEVC intra coding
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2013.2249017
– volume: 22
  start-page: 1649
  issue: 12
  year: 2012
  ident: 10.1016/j.jvcir.2024.104294_b1
  article-title: Overview of the high efficiency video coding (HEVC) standard
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2012.2221191
– ident: 10.1016/j.jvcir.2024.104294_b2
– volume: 32
  start-page: 3947
  issue: 6
  year: 2021
  ident: 10.1016/j.jvcir.2024.104294_b41
  article-title: Configurable fast block partitioning for VVC intra coding using light gradient boosting machine
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2021.3108671
– start-page: 1
  year: 2019
  ident: 10.1016/j.jvcir.2024.104294_b4
  article-title: Asymmetric-kernel CNN based fast CTU partition for HEVC intra coding
– ident: 10.1016/j.jvcir.2024.104294_b27
  doi: 10.1109/CVPR52688.2022.01553
– start-page: 10527
  year: 2021
  ident: 10.1016/j.jvcir.2024.104294_b52
  article-title: Asymmetric gained deep image compression with continuous rate adaptation
– volume: 38
  start-page: 5081
  year: 2019
  ident: 10.1016/j.jvcir.2024.104294_b7
  article-title: Adaptive CU mode selection in HEVC intra prediction: A deep learning approach
  publication-title: Circuits Systems Signal Process.
  doi: 10.1007/s00034-019-01110-4
– volume: 18
  start-page: 603
  year: 2021
  ident: 10.1016/j.jvcir.2024.104294_b43
  article-title: Fine-grain complexity control of HEVC intra prediction in battery-powered video codecs
  publication-title: J. Real-Time Image Process.
  doi: 10.1007/s11554-020-00996-7
– volume: 32
  start-page: 2329
  issue: 4
  year: 2021
  ident: 10.1016/j.jvcir.2024.104294_b20
  article-title: Causal contextual prediction for learned image compression
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2021.3089491
– volume: 24
  start-page: 400
  year: 2021
  ident: 10.1016/j.jvcir.2024.104294_b5
  article-title: Fast intra mode decision algorithm for versatile video coding
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2021.3052348
– volume: 15
  start-page: 1437
  issue: 3
  year: 2018
  ident: 10.1016/j.jvcir.2024.104294_b37
  article-title: Complexity control in the HEVC intracoding for industrial video applications
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2018.2844214
– volume: 29
  year: 2016
  ident: 10.1016/j.jvcir.2024.104294_b48
  article-title: Conditional image generation with pixelcnn decoders
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.jvcir.2024.104294_b12
– start-page: 1747
  year: 2016
  ident: 10.1016/j.jvcir.2024.104294_b25
  article-title: Pixel recurrent neural networks
– ident: 10.1016/j.jvcir.2024.104294_b53
  doi: 10.1109/ICCV48922.2021.00238
– volume: 30
  start-page: 1668
  issue: 6
  year: 2019
  ident: 10.1016/j.jvcir.2024.104294_b31
  article-title: Low-complexity CTU partition structure decision and fast intra mode decision for versatile video coding
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2019.2904198
– year: 2015
  ident: 10.1016/j.jvcir.2024.104294_b16
SSID ssj0003934
Score 2.4025834
Snippet Despite a short history, neural image codecs have been shown to surpass classical image codecs in terms of rate–distortion performance. However, most of them...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 104294
SubjectTerms Neural image compression
Rate-distortion-complexity optimization
Variable-complexity
Title Exploring the rate-distortion-complexity optimization in neural image compression
URI https://dx.doi.org/10.1016/j.jvcir.2024.104294
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7M7aIH0ak4pyMH8WSd-dn1OIZj_hr-hN1KmmbQwbrhpnjybzdp0uFAPHhseSHlJXzvK_neF4BTJS9VZNVTWHdUYCreOJBUiICEckwxVpqn9kT3figGr-xmxEcV6JW9MFZW6bHfYXqB1v5N22ezPc-y9rM1GaD2AnDmCvkG1AiNBK9CrXt9OxiuAJlG7nDZmhLYAaX5UCHzmnyozPqCEmaPO0nEfi9QP4pOfwe2PVtEXfdBu1DReR22fngI1qHpg7LFFJ2htX6PxR48rjR2yDA9ZH0hgrRwBrEBQSEo15-GiaOZwY6pb8pEWY6s0aWZOpsawEE2zglm83147V-99AaBv0UhUITTZaAJFpKoJOU0lMrwCREljCtTplOzMlGIJUuk5kQabsJVqjVXYWJ-mTWzxi1U0wOo5rNcHwJiqaFzRKdchJKRxFBLJUXUSSKFqdIYN-C8TF08d2YZcakim8RFpmOb6dhlugGiTG-8tuaxgfO_Bh79d2ATNu2Tk6McQ3X59q5PDKlYJi3YuPjCLbN1ek93Dy2_hb4BpizO1w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1qPagH0apY68cexJOx7lfSHEUsVWtBbKG3ZbPZQgpNi63iyd_uTj60BfHgNZkl4W2YeWHevAU4N_rahKieorZlPFfxRp7mvu-xQI84pcbKGDu6Tz2_MxAPQzmswG05C4OyyiL35zk9y9bFlWaBZnOWJM0XNBngeAC4yAv5GqwLyQPU9V19_ug8eJi3ltGSAMNL66FM5DV-Nwm6gjKBzU4Wit_L01LJae_AdsEVyU3-OrtQsWkNtpYcBGvQKIKS-YRckJVpj_kePH8r7IjjeQRdIbw48wXBAC-Tk9sPx8PJ1GWOSTGSSZKUoM2le3QycemGYFwul033YdC-6992vOIMBc8wyReeZdTXzESxQ0Ybxyb8MBLSuCIdu30JA6pFpK1k2jETaWJrpQki98NsBdq2cMsPoJpOU3sIRMSOzDEbSz_QgkWOWBrth60oNJQbS2kdLkvo1Cy3ylClhmysMqQVIq1ypOvgl_CqlR1XLpn_tfDovwvPYKPTf-qq7n3vsQGbeCcXphxDdfH6Zk8cvVhEp9nn8wXwaM4N
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+rate-distortion-complexity+optimization+in+neural+image+compression&rft.jtitle=Journal+of+visual+communication+and+image+representation&rft.au=Gao%2C+Yixin&rft.au=Feng%2C+Runsen&rft.au=Guo%2C+Zongyu&rft.au=Chen%2C+Zhibo&rft.date=2024-12-01&rft.issn=1047-3203&rft.volume=105&rft.spage=104294&rft_id=info:doi/10.1016%2Fj.jvcir.2024.104294&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jvcir_2024_104294
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1047-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1047-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1047-3203&client=summon