Characterization of events in the Rössler system using singular value decomposition

•The Rossler System has multiple types of bifurcation of limit cycles and equilibria.•The bifurcations can be analyzed by defining a tangent phase space representation.•The transformed tangent phase space equations define a boundary-value problem.•The detailed solution is obtained by performing sing...

Full description

Saved in:
Bibliographic Details
Published inChaos, solitons and fractals Vol. 153; p. 111516
Main Author Penner, Alvin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The Rossler System has multiple types of bifurcation of limit cycles and equilibria.•The bifurcations can be analyzed by defining a tangent phase space representation.•The transformed tangent phase space equations define a boundary-value problem.•The detailed solution is obtained by performing singular value decomposition.•The method works well for both bifurcations of limit cycles and of equilibria. Chaotic systems change their behavior through topological events such as creation/annihilation and bifurcation. These can be characterized by defining a tangent phase space which measures the first-order response of stable limit cycles to a change in an external variable. If the period of the limit cycle is constant, then the tangent phase space response can be formulated as a boundary-value problem, which is dependent upon a previously calculated limit cycle. If the period is not constant, the tangent phase space will contain an unknown linear drift in time. This can be analytically removed by transforming into a time-dependent coordinate system in which one variable points in the direction of the instantaneous velocity in phase space. The remaining variables can then be decoupled from this motion, and will satisfy a linear system of differential equations subject to periodic boundary conditions. The solutions of these equations at bifurcation events can be analyzed using singular value decomposition of two matrices, one of which contains interactions within the limit cycle, while the other contains interactions with the changing external variable. Collectively, these two decompositions allow us to uniquely characterize any topological event. The method is applied to period-doubling and turning-points of limit cycles in the Rössler system, where it confirms previous work done on the Zeeman Catastrophe Machine. It is also applied to bifurcations of equilibria in the Rössler system, where it allows us to distinguish between Andronov-Hopf and fold-Hopf bifurcations.
AbstractList •The Rossler System has multiple types of bifurcation of limit cycles and equilibria.•The bifurcations can be analyzed by defining a tangent phase space representation.•The transformed tangent phase space equations define a boundary-value problem.•The detailed solution is obtained by performing singular value decomposition.•The method works well for both bifurcations of limit cycles and of equilibria. Chaotic systems change their behavior through topological events such as creation/annihilation and bifurcation. These can be characterized by defining a tangent phase space which measures the first-order response of stable limit cycles to a change in an external variable. If the period of the limit cycle is constant, then the tangent phase space response can be formulated as a boundary-value problem, which is dependent upon a previously calculated limit cycle. If the period is not constant, the tangent phase space will contain an unknown linear drift in time. This can be analytically removed by transforming into a time-dependent coordinate system in which one variable points in the direction of the instantaneous velocity in phase space. The remaining variables can then be decoupled from this motion, and will satisfy a linear system of differential equations subject to periodic boundary conditions. The solutions of these equations at bifurcation events can be analyzed using singular value decomposition of two matrices, one of which contains interactions within the limit cycle, while the other contains interactions with the changing external variable. Collectively, these two decompositions allow us to uniquely characterize any topological event. The method is applied to period-doubling and turning-points of limit cycles in the Rössler system, where it confirms previous work done on the Zeeman Catastrophe Machine. It is also applied to bifurcations of equilibria in the Rössler system, where it allows us to distinguish between Andronov-Hopf and fold-Hopf bifurcations.
ArticleNumber 111516
Author Penner, Alvin
Author_xml – sequence: 1
  givenname: Alvin
  orcidid: 0000-0002-7420-3252
  surname: Penner
  fullname: Penner, Alvin
  email: penner@vaxxine.com
  organization: Fonthill, ON, Canada
BookMark eNp9kE1OwzAUhC1UJNrCCdj4AgnPTuI4Cxao4k9CQkJlbTn2M3WVxpWdVioH4wJcjIayZjOz-kajb0YmfeiRkGsGOQMmbta5WemQcg6c5YyxiokzMmWyLjIuZT0hU2gEZFDXzQWZpbQGAAaCT8lysdJRmwGj_9SDDz0NjuIe-yFR39NhhfTt-yulDiNNhzTghu6S7z_oGLtOR7rX3Q6pRRM225D8uHFJzp3uEl799Zy8P9wvF0_Zy-vj8-LuJTO8KoYMmalZVZaIAKXlFptCV1ZylCVIYRhvdWuswEZo17q2rIzgDVrLZS01OFfMSXHaNTGkFNGpbfQbHQ-KgRrFqLX6FaNGMeok5kjdnig8Xtt7jCoZj71B6yOaQdng_-V_ADYZcg0
Cites_doi 10.1016/0167-2789(83)90112-4
10.1088/0143-0807/35/1/015018
10.1119/1.17906
10.1016/j.physd.2009.03.010
10.1016/j.camwa.2011.09.064
10.1002/cpa.3160320103
10.1016/j.physleta.2007.10.063
10.1017/S0033583500005175
10.1016/0771-050X(78)90015-3
10.1016/0375-9601(76)90101-8
10.1016/j.chaos.2021.111054
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.chaos.2021.111516
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1873-2887
ExternalDocumentID 10_1016_j_chaos_2021_111516
S0960077921008705
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLZ
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG9
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
WUQ
XPP
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c253t-e1c71544ee004d2de93a5d82e84086c12babcd6e96afbfb45c629edd2878a0ff3
IEDL.DBID .~1
ISSN 0960-0779
IngestDate Tue Jul 01 02:00:59 EDT 2025
Fri Feb 23 02:46:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Chaos
Fold-Hopf
Andronov-Hopf
Turning point
Bifurcation
Period-doubling
70K05
Tangent space
Rössler equations
Limit cycle
Singular value decomposition
37G15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c253t-e1c71544ee004d2de93a5d82e84086c12babcd6e96afbfb45c629edd2878a0ff3
ORCID 0000-0002-7420-3252
ParticipantIDs crossref_primary_10_1016_j_chaos_2021_111516
elsevier_sciencedirect_doi_10_1016_j_chaos_2021_111516
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationTitle Chaos, solitons and fractals
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Abbott (bib0009) 1978; 4
Feigenbaum (bib0014) 1983; 7
Bjorck (bib0013) 1996
Olsen, Degn (bib0004) 1985; 18
Litherland, Siahmakoun (bib0002) 1995; 63
Nagy, Tasnádi (bib0001) 2013; 35
Kuznetsov (bib0006) 2004
Golubitsky, Schaeffer (bib0011) 1979; 32
Goldstein, Poole, Safko (bib0019) 2002
Press, Teukolsky, Vetterling, Flannery (bib0016) 1992
Barrio, Blesa, Dena, Serrano (bib0018) 2011; 62
Aubin, Ekeland (bib0010) 2006
Stoer, Bulirsch (bib0020) 1980
Genesio, Innocenti, Gualdani (bib0003) 2008; 372
Alligood, Sauer, Yorke (bib0015) 1997
Barrio, Blesa, Serrano (bib0017) 2009; 238
Rössler (bib0005) 1976; 57
Penner (bib0008) 2021; 148
Skokos (bib0012) 2009
Strogatz (bib0007) 2018
Feigenbaum (10.1016/j.chaos.2021.111516_bib0014) 1983; 7
Goldstein (10.1016/j.chaos.2021.111516_sbref0019) 2002
Litherland (10.1016/j.chaos.2021.111516_bib0002) 1995; 63
Olsen (10.1016/j.chaos.2021.111516_bib0004) 1985; 18
Penner (10.1016/j.chaos.2021.111516_bib0008) 2021; 148
Barrio (10.1016/j.chaos.2021.111516_bib0018) 2011; 62
Skokos (10.1016/j.chaos.2021.111516_bib0012) 2009
Aubin (10.1016/j.chaos.2021.111516_sbref0010) 2006
Nagy (10.1016/j.chaos.2021.111516_bib0001) 2013; 35
Golubitsky (10.1016/j.chaos.2021.111516_bib0011) 1979; 32
Rössler (10.1016/j.chaos.2021.111516_bib0005) 1976; 57
Alligood (10.1016/j.chaos.2021.111516_bib0015) 1997
Stoer (10.1016/j.chaos.2021.111516_bib0020) 1980
Strogatz (10.1016/j.chaos.2021.111516_bib0007) 2018
Abbott (10.1016/j.chaos.2021.111516_bib0009) 1978; 4
Press (10.1016/j.chaos.2021.111516_sbref0016) 1992
Genesio (10.1016/j.chaos.2021.111516_bib0003) 2008; 372
Bjorck (10.1016/j.chaos.2021.111516_sbref0013) 1996
Kuznetsov (10.1016/j.chaos.2021.111516_bib0006) 2004
Barrio (10.1016/j.chaos.2021.111516_bib0017) 2009; 238
References_xml – year: 1992
  ident: bib0016
  article-title: Numerical recipes in C
– volume: 62
  start-page: 4140
  year: 2011
  end-page: 4150
  ident: bib0018
  article-title: Qualitative and numerical analysis of the Rössler model: Bifurcations of equilibria
  publication-title: Comput Math Appl
– volume: 63
  start-page: 426
  year: 1995
  end-page: 431
  ident: bib0002
  article-title: Chaotic behavior of the zeeman catastrophe machine
  publication-title: Am J Phys
– volume: 7
  start-page: 16
  year: 1983
  end-page: 39
  ident: bib0014
  article-title: Universal behavior in nonlinear systems
  publication-title: Physica D
– year: 2002
  ident: bib0019
  article-title: Classical mechanics
– year: 2018
  ident: bib0007
  article-title: Nonlinear dynamics and chaos
– volume: 4
  start-page: 19
  year: 1978
  end-page: 27
  ident: bib0009
  article-title: An efficient algorithm for the determination of certain bifurcation points
  publication-title: J Comput Appl Math
– volume: 32
  start-page: 21
  year: 1979
  end-page: 98
  ident: bib0011
  article-title: A theory for imperfect bifurcation via singularity theory
  publication-title: Commun Pure Appl Math
– year: 1996
  ident: bib0013
  article-title: Numerical methods for least squares problems
– volume: 57
  start-page: 397
  year: 1976
  end-page: 398
  ident: bib0005
  article-title: An equation for continuous chaos
  publication-title: Phys Lett A
– volume: 148
  start-page: 111054
  year: 2021
  ident: bib0008
  article-title: Characterization of bifurcations in the zeeman catastrophe machine using singular value decomposition
  publication-title: Chaos Solitons Fractals
– start-page: 63
  year: 2009
  end-page: 135
  ident: bib0012
  article-title: The Lyapunov characteristic exponents and their computation
  publication-title: Dynamics of small solar system bodies and exoplanets
– volume: 35
  start-page: 015018
  year: 2013
  ident: bib0001
  article-title: Zeeman catastrophe machines as a toolkit for teaching chaos
  publication-title: Eur J Phys
– year: 1980
  ident: bib0020
  article-title: Introduction to numerical analysis
– year: 2006
  ident: bib0010
  article-title: Applied nonlinear analysis
  publication-title: Dover Books on Mathematics
– volume: 372
  start-page: 1799
  year: 2008
  end-page: 1809
  ident: bib0003
  article-title: A global qualitative view of bifurcations and dynamics in the Rössler system
  publication-title: Phys Lett A
– year: 2004
  ident: bib0006
  article-title: Elements of applied bifurcation theory
– start-page: 105
  year: 1997
  end-page: 147
  ident: bib0015
  article-title: Chaos
  publication-title: Chaos: an introduction to dynamical systems
– volume: 238
  start-page: 1087
  year: 2009
  end-page: 1100
  ident: bib0017
  article-title: Qualitative analysis of the Rössler equations: Bifurcations of limit cycles and chaotic attractors
  publication-title: Physica D
– volume: 18
  start-page: 165
  year: 1985
  end-page: 225
  ident: bib0004
  article-title: Chaos in biological systems
  publication-title: Q Rev Biophys
– volume: 7
  start-page: 16
  issue: 1–3
  year: 1983
  ident: 10.1016/j.chaos.2021.111516_bib0014
  article-title: Universal behavior in nonlinear systems
  publication-title: Physica D
  doi: 10.1016/0167-2789(83)90112-4
– volume: 35
  start-page: 015018
  issue: 1
  year: 2013
  ident: 10.1016/j.chaos.2021.111516_bib0001
  article-title: Zeeman catastrophe machines as a toolkit for teaching chaos
  publication-title: Eur J Phys
  doi: 10.1088/0143-0807/35/1/015018
– volume: 63
  start-page: 426
  issue: 5
  year: 1995
  ident: 10.1016/j.chaos.2021.111516_bib0002
  article-title: Chaotic behavior of the zeeman catastrophe machine
  publication-title: Am J Phys
  doi: 10.1119/1.17906
– volume: 238
  start-page: 1087
  issue: 13
  year: 2009
  ident: 10.1016/j.chaos.2021.111516_bib0017
  article-title: Qualitative analysis of the Rössler equations: Bifurcations of limit cycles and chaotic attractors
  publication-title: Physica D
  doi: 10.1016/j.physd.2009.03.010
– volume: 62
  start-page: 4140
  issue: 11
  year: 2011
  ident: 10.1016/j.chaos.2021.111516_bib0018
  article-title: Qualitative and numerical analysis of the Rössler model: Bifurcations of equilibria
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2011.09.064
– year: 1992
  ident: 10.1016/j.chaos.2021.111516_sbref0016
– year: 2006
  ident: 10.1016/j.chaos.2021.111516_sbref0010
  article-title: Applied nonlinear analysis
– volume: 32
  start-page: 21
  issue: 1
  year: 1979
  ident: 10.1016/j.chaos.2021.111516_bib0011
  article-title: A theory for imperfect bifurcation via singularity theory
  publication-title: Commun Pure Appl Math
  doi: 10.1002/cpa.3160320103
– start-page: 63
  year: 2009
  ident: 10.1016/j.chaos.2021.111516_bib0012
  article-title: The Lyapunov characteristic exponents and their computation
– year: 1980
  ident: 10.1016/j.chaos.2021.111516_bib0020
– volume: 372
  start-page: 1799
  issue: 11
  year: 2008
  ident: 10.1016/j.chaos.2021.111516_bib0003
  article-title: A global qualitative view of bifurcations and dynamics in the Rössler system
  publication-title: Phys Lett A
  doi: 10.1016/j.physleta.2007.10.063
– volume: 18
  start-page: 165
  issue: 2
  year: 1985
  ident: 10.1016/j.chaos.2021.111516_bib0004
  article-title: Chaos in biological systems
  publication-title: Q Rev Biophys
  doi: 10.1017/S0033583500005175
– year: 1996
  ident: 10.1016/j.chaos.2021.111516_sbref0013
– volume: 4
  start-page: 19
  issue: 1
  year: 1978
  ident: 10.1016/j.chaos.2021.111516_bib0009
  article-title: An efficient algorithm for the determination of certain bifurcation points
  publication-title: J Comput Appl Math
  doi: 10.1016/0771-050X(78)90015-3
– start-page: 105
  year: 1997
  ident: 10.1016/j.chaos.2021.111516_bib0015
  article-title: Chaos
– year: 2002
  ident: 10.1016/j.chaos.2021.111516_sbref0019
– volume: 57
  start-page: 397
  issue: 5
  year: 1976
  ident: 10.1016/j.chaos.2021.111516_bib0005
  article-title: An equation for continuous chaos
  publication-title: Phys Lett A
  doi: 10.1016/0375-9601(76)90101-8
– volume: 148
  start-page: 111054
  year: 2021
  ident: 10.1016/j.chaos.2021.111516_bib0008
  article-title: Characterization of bifurcations in the zeeman catastrophe machine using singular value decomposition
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2021.111054
– year: 2004
  ident: 10.1016/j.chaos.2021.111516_bib0006
– year: 2018
  ident: 10.1016/j.chaos.2021.111516_bib0007
SSID ssj0001062
Score 2.3492675
Snippet •The Rossler System has multiple types of bifurcation of limit cycles and equilibria.•The bifurcations can be analyzed by defining a tangent phase space...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 111516
SubjectTerms Andronov-Hopf
Bifurcation
Chaos
Fold-Hopf
Limit cycle
Period-doubling
Rössler equations
Singular value decomposition
Tangent space
Turning point
Title Characterization of events in the Rössler system using singular value decomposition
URI https://dx.doi.org/10.1016/j.chaos.2021.111516
Volume 153
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLWqssCAaAFRHpUHBpAwzcNO7LGqqAqoHaCVukXxI1CGtGrLymfxA_wYvolTQEIMLJGS-ErRsX0fyrnHCJ3LwHDNmUe4FoJQzULCQy1J5qUs9GSstIZu5OEoGkzo3ZRNa6hX9cIArdL5_tKnF97aPek4NDuL2azzCMm3F8ciAH2auNAxpTSGVX799kXzsCVP8SfBDiYwulIeKjhe6jmdg2Z34IPrYHDo-W_R6VvE6e-hXZcq4m75NQ1UM3kT7Qw3OqurJmq4rbnCF04_-nIfjXsbEeayxxLPM1wINa3wLMfWHD98vNsE0yxxKeSMgf3-hOECrFQMCuAGawN8c0fqOkCT_s24NyDu8ASiAhauifFVDEo7xthtoANtRJgyze3UUFvFKD-QqVQ6MiJKM5lJylQUCKO1raB46mVZeIjq-Tw3Rwh7MtK-jaXU1iZUeDaDUYLLUGUy5b591UJXFWjJotTISCry2EtSYJwAxkmJcQtFFbDJj6lOrBf_y_D4v4YnaBvuShbKKaqvl6_mzOYSa9kuFksbbXVv7wejTwB6yx8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8NQEB6qHtSDaFWs6zsoKBibvOwHD-JCta0HrdBbzFui9dCWtiJe_FOCf8A_5kwWFxAPQi855PHC5MswC_neNwDbgutABa5pBCoMDUe5thHYShiJGbu2KXypFJ1Gbl56tRvnou22S_BanIUhWmUe-7OYnkbr_E41R7Pa73Sq11R8m74fctKn8c2CWVnXz0_Ytw0Pz0_wI-9wfnbaOq4Z-WgBQ3LXHhnakj7p0GiNTqK40qEduypAwx2s8aXFRSyk8nToxYlIhONKj4daKewvgthMEhufOwFTDoYLGptw8PLFK8EeK_11gdYZZF4hdZSSyuR93CORcG5RrHJpyvpv6fBbijubh7m8NmVH2esvQEl3yzDb_BR2HZZhIY8FQ7abC1bvLULr-FP1OTvUyXoJS5WhhqzTZbidXb2_YUWrByxTjmZEt79jdCEaLCPJcc2UJoJ7ziJbgpuxQLoMk91eV68AM4WnLEzeDjZDTmhiySTDQNgyEXFg4VIF9gvQon4myhEVbLWHKMU4IoyjDOMKeAWw0Q_fijBt_LVx9b8bt2C61mo2osb5ZX0NZmglo8Csw-Ro8Kg3sJAZic3UcRjcjttTPwArcQh0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+events+in+the+R%C3%B6ssler+system+using+singular+value+decomposition&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Penner%2C+Alvin&rft.date=2021-12-01&rft.pub=Elsevier+Ltd&rft.issn=0960-0779&rft.eissn=1873-2887&rft.volume=153&rft_id=info:doi/10.1016%2Fj.chaos.2021.111516&rft.externalDocID=S0960077921008705
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon