Characterization of events in the Rössler system using singular value decomposition
•The Rossler System has multiple types of bifurcation of limit cycles and equilibria.•The bifurcations can be analyzed by defining a tangent phase space representation.•The transformed tangent phase space equations define a boundary-value problem.•The detailed solution is obtained by performing sing...
Saved in:
Published in | Chaos, solitons and fractals Vol. 153; p. 111516 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The Rossler System has multiple types of bifurcation of limit cycles and equilibria.•The bifurcations can be analyzed by defining a tangent phase space representation.•The transformed tangent phase space equations define a boundary-value problem.•The detailed solution is obtained by performing singular value decomposition.•The method works well for both bifurcations of limit cycles and of equilibria.
Chaotic systems change their behavior through topological events such as creation/annihilation and bifurcation. These can be characterized by defining a tangent phase space which measures the first-order response of stable limit cycles to a change in an external variable. If the period of the limit cycle is constant, then the tangent phase space response can be formulated as a boundary-value problem, which is dependent upon a previously calculated limit cycle. If the period is not constant, the tangent phase space will contain an unknown linear drift in time. This can be analytically removed by transforming into a time-dependent coordinate system in which one variable points in the direction of the instantaneous velocity in phase space. The remaining variables can then be decoupled from this motion, and will satisfy a linear system of differential equations subject to periodic boundary conditions. The solutions of these equations at bifurcation events can be analyzed using singular value decomposition of two matrices, one of which contains interactions within the limit cycle, while the other contains interactions with the changing external variable. Collectively, these two decompositions allow us to uniquely characterize any topological event. The method is applied to period-doubling and turning-points of limit cycles in the Rössler system, where it confirms previous work done on the Zeeman Catastrophe Machine. It is also applied to bifurcations of equilibria in the Rössler system, where it allows us to distinguish between Andronov-Hopf and fold-Hopf bifurcations. |
---|---|
AbstractList | •The Rossler System has multiple types of bifurcation of limit cycles and equilibria.•The bifurcations can be analyzed by defining a tangent phase space representation.•The transformed tangent phase space equations define a boundary-value problem.•The detailed solution is obtained by performing singular value decomposition.•The method works well for both bifurcations of limit cycles and of equilibria.
Chaotic systems change their behavior through topological events such as creation/annihilation and bifurcation. These can be characterized by defining a tangent phase space which measures the first-order response of stable limit cycles to a change in an external variable. If the period of the limit cycle is constant, then the tangent phase space response can be formulated as a boundary-value problem, which is dependent upon a previously calculated limit cycle. If the period is not constant, the tangent phase space will contain an unknown linear drift in time. This can be analytically removed by transforming into a time-dependent coordinate system in which one variable points in the direction of the instantaneous velocity in phase space. The remaining variables can then be decoupled from this motion, and will satisfy a linear system of differential equations subject to periodic boundary conditions. The solutions of these equations at bifurcation events can be analyzed using singular value decomposition of two matrices, one of which contains interactions within the limit cycle, while the other contains interactions with the changing external variable. Collectively, these two decompositions allow us to uniquely characterize any topological event. The method is applied to period-doubling and turning-points of limit cycles in the Rössler system, where it confirms previous work done on the Zeeman Catastrophe Machine. It is also applied to bifurcations of equilibria in the Rössler system, where it allows us to distinguish between Andronov-Hopf and fold-Hopf bifurcations. |
ArticleNumber | 111516 |
Author | Penner, Alvin |
Author_xml | – sequence: 1 givenname: Alvin orcidid: 0000-0002-7420-3252 surname: Penner fullname: Penner, Alvin email: penner@vaxxine.com organization: Fonthill, ON, Canada |
BookMark | eNp9kE1OwzAUhC1UJNrCCdj4AgnPTuI4Cxao4k9CQkJlbTn2M3WVxpWdVioH4wJcjIayZjOz-kajb0YmfeiRkGsGOQMmbta5WemQcg6c5YyxiokzMmWyLjIuZT0hU2gEZFDXzQWZpbQGAAaCT8lysdJRmwGj_9SDDz0NjuIe-yFR39NhhfTt-yulDiNNhzTghu6S7z_oGLtOR7rX3Q6pRRM225D8uHFJzp3uEl799Zy8P9wvF0_Zy-vj8-LuJTO8KoYMmalZVZaIAKXlFptCV1ZylCVIYRhvdWuswEZo17q2rIzgDVrLZS01OFfMSXHaNTGkFNGpbfQbHQ-KgRrFqLX6FaNGMeok5kjdnig8Xtt7jCoZj71B6yOaQdng_-V_ADYZcg0 |
Cites_doi | 10.1016/0167-2789(83)90112-4 10.1088/0143-0807/35/1/015018 10.1119/1.17906 10.1016/j.physd.2009.03.010 10.1016/j.camwa.2011.09.064 10.1002/cpa.3160320103 10.1016/j.physleta.2007.10.063 10.1017/S0033583500005175 10.1016/0771-050X(78)90015-3 10.1016/0375-9601(76)90101-8 10.1016/j.chaos.2021.111054 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.chaos.2021.111516 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
EISSN | 1873-2887 |
ExternalDocumentID | 10_1016_j_chaos_2021_111516 S0960077921008705 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLZ HMV HVGLF HZ~ IHE J1W KOM LG9 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SPD SPG SSQ SSZ T5K WUQ XPP ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c253t-e1c71544ee004d2de93a5d82e84086c12babcd6e96afbfb45c629edd2878a0ff3 |
IEDL.DBID | .~1 |
ISSN | 0960-0779 |
IngestDate | Tue Jul 01 02:00:59 EDT 2025 Fri Feb 23 02:46:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Chaos Fold-Hopf Andronov-Hopf Turning point Bifurcation Period-doubling 70K05 Tangent space Rössler equations Limit cycle Singular value decomposition 37G15 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c253t-e1c71544ee004d2de93a5d82e84086c12babcd6e96afbfb45c629edd2878a0ff3 |
ORCID | 0000-0002-7420-3252 |
ParticipantIDs | crossref_primary_10_1016_j_chaos_2021_111516 elsevier_sciencedirect_doi_10_1016_j_chaos_2021_111516 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 2021-12-00 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationTitle | Chaos, solitons and fractals |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Abbott (bib0009) 1978; 4 Feigenbaum (bib0014) 1983; 7 Bjorck (bib0013) 1996 Olsen, Degn (bib0004) 1985; 18 Litherland, Siahmakoun (bib0002) 1995; 63 Nagy, Tasnádi (bib0001) 2013; 35 Kuznetsov (bib0006) 2004 Golubitsky, Schaeffer (bib0011) 1979; 32 Goldstein, Poole, Safko (bib0019) 2002 Press, Teukolsky, Vetterling, Flannery (bib0016) 1992 Barrio, Blesa, Dena, Serrano (bib0018) 2011; 62 Aubin, Ekeland (bib0010) 2006 Stoer, Bulirsch (bib0020) 1980 Genesio, Innocenti, Gualdani (bib0003) 2008; 372 Alligood, Sauer, Yorke (bib0015) 1997 Barrio, Blesa, Serrano (bib0017) 2009; 238 Rössler (bib0005) 1976; 57 Penner (bib0008) 2021; 148 Skokos (bib0012) 2009 Strogatz (bib0007) 2018 Feigenbaum (10.1016/j.chaos.2021.111516_bib0014) 1983; 7 Goldstein (10.1016/j.chaos.2021.111516_sbref0019) 2002 Litherland (10.1016/j.chaos.2021.111516_bib0002) 1995; 63 Olsen (10.1016/j.chaos.2021.111516_bib0004) 1985; 18 Penner (10.1016/j.chaos.2021.111516_bib0008) 2021; 148 Barrio (10.1016/j.chaos.2021.111516_bib0018) 2011; 62 Skokos (10.1016/j.chaos.2021.111516_bib0012) 2009 Aubin (10.1016/j.chaos.2021.111516_sbref0010) 2006 Nagy (10.1016/j.chaos.2021.111516_bib0001) 2013; 35 Golubitsky (10.1016/j.chaos.2021.111516_bib0011) 1979; 32 Rössler (10.1016/j.chaos.2021.111516_bib0005) 1976; 57 Alligood (10.1016/j.chaos.2021.111516_bib0015) 1997 Stoer (10.1016/j.chaos.2021.111516_bib0020) 1980 Strogatz (10.1016/j.chaos.2021.111516_bib0007) 2018 Abbott (10.1016/j.chaos.2021.111516_bib0009) 1978; 4 Press (10.1016/j.chaos.2021.111516_sbref0016) 1992 Genesio (10.1016/j.chaos.2021.111516_bib0003) 2008; 372 Bjorck (10.1016/j.chaos.2021.111516_sbref0013) 1996 Kuznetsov (10.1016/j.chaos.2021.111516_bib0006) 2004 Barrio (10.1016/j.chaos.2021.111516_bib0017) 2009; 238 |
References_xml | – year: 1992 ident: bib0016 article-title: Numerical recipes in C – volume: 62 start-page: 4140 year: 2011 end-page: 4150 ident: bib0018 article-title: Qualitative and numerical analysis of the Rössler model: Bifurcations of equilibria publication-title: Comput Math Appl – volume: 63 start-page: 426 year: 1995 end-page: 431 ident: bib0002 article-title: Chaotic behavior of the zeeman catastrophe machine publication-title: Am J Phys – volume: 7 start-page: 16 year: 1983 end-page: 39 ident: bib0014 article-title: Universal behavior in nonlinear systems publication-title: Physica D – year: 2002 ident: bib0019 article-title: Classical mechanics – year: 2018 ident: bib0007 article-title: Nonlinear dynamics and chaos – volume: 4 start-page: 19 year: 1978 end-page: 27 ident: bib0009 article-title: An efficient algorithm for the determination of certain bifurcation points publication-title: J Comput Appl Math – volume: 32 start-page: 21 year: 1979 end-page: 98 ident: bib0011 article-title: A theory for imperfect bifurcation via singularity theory publication-title: Commun Pure Appl Math – year: 1996 ident: bib0013 article-title: Numerical methods for least squares problems – volume: 57 start-page: 397 year: 1976 end-page: 398 ident: bib0005 article-title: An equation for continuous chaos publication-title: Phys Lett A – volume: 148 start-page: 111054 year: 2021 ident: bib0008 article-title: Characterization of bifurcations in the zeeman catastrophe machine using singular value decomposition publication-title: Chaos Solitons Fractals – start-page: 63 year: 2009 end-page: 135 ident: bib0012 article-title: The Lyapunov characteristic exponents and their computation publication-title: Dynamics of small solar system bodies and exoplanets – volume: 35 start-page: 015018 year: 2013 ident: bib0001 article-title: Zeeman catastrophe machines as a toolkit for teaching chaos publication-title: Eur J Phys – year: 1980 ident: bib0020 article-title: Introduction to numerical analysis – year: 2006 ident: bib0010 article-title: Applied nonlinear analysis publication-title: Dover Books on Mathematics – volume: 372 start-page: 1799 year: 2008 end-page: 1809 ident: bib0003 article-title: A global qualitative view of bifurcations and dynamics in the Rössler system publication-title: Phys Lett A – year: 2004 ident: bib0006 article-title: Elements of applied bifurcation theory – start-page: 105 year: 1997 end-page: 147 ident: bib0015 article-title: Chaos publication-title: Chaos: an introduction to dynamical systems – volume: 238 start-page: 1087 year: 2009 end-page: 1100 ident: bib0017 article-title: Qualitative analysis of the Rössler equations: Bifurcations of limit cycles and chaotic attractors publication-title: Physica D – volume: 18 start-page: 165 year: 1985 end-page: 225 ident: bib0004 article-title: Chaos in biological systems publication-title: Q Rev Biophys – volume: 7 start-page: 16 issue: 1–3 year: 1983 ident: 10.1016/j.chaos.2021.111516_bib0014 article-title: Universal behavior in nonlinear systems publication-title: Physica D doi: 10.1016/0167-2789(83)90112-4 – volume: 35 start-page: 015018 issue: 1 year: 2013 ident: 10.1016/j.chaos.2021.111516_bib0001 article-title: Zeeman catastrophe machines as a toolkit for teaching chaos publication-title: Eur J Phys doi: 10.1088/0143-0807/35/1/015018 – volume: 63 start-page: 426 issue: 5 year: 1995 ident: 10.1016/j.chaos.2021.111516_bib0002 article-title: Chaotic behavior of the zeeman catastrophe machine publication-title: Am J Phys doi: 10.1119/1.17906 – volume: 238 start-page: 1087 issue: 13 year: 2009 ident: 10.1016/j.chaos.2021.111516_bib0017 article-title: Qualitative analysis of the Rössler equations: Bifurcations of limit cycles and chaotic attractors publication-title: Physica D doi: 10.1016/j.physd.2009.03.010 – volume: 62 start-page: 4140 issue: 11 year: 2011 ident: 10.1016/j.chaos.2021.111516_bib0018 article-title: Qualitative and numerical analysis of the Rössler model: Bifurcations of equilibria publication-title: Comput Math Appl doi: 10.1016/j.camwa.2011.09.064 – year: 1992 ident: 10.1016/j.chaos.2021.111516_sbref0016 – year: 2006 ident: 10.1016/j.chaos.2021.111516_sbref0010 article-title: Applied nonlinear analysis – volume: 32 start-page: 21 issue: 1 year: 1979 ident: 10.1016/j.chaos.2021.111516_bib0011 article-title: A theory for imperfect bifurcation via singularity theory publication-title: Commun Pure Appl Math doi: 10.1002/cpa.3160320103 – start-page: 63 year: 2009 ident: 10.1016/j.chaos.2021.111516_bib0012 article-title: The Lyapunov characteristic exponents and their computation – year: 1980 ident: 10.1016/j.chaos.2021.111516_bib0020 – volume: 372 start-page: 1799 issue: 11 year: 2008 ident: 10.1016/j.chaos.2021.111516_bib0003 article-title: A global qualitative view of bifurcations and dynamics in the Rössler system publication-title: Phys Lett A doi: 10.1016/j.physleta.2007.10.063 – volume: 18 start-page: 165 issue: 2 year: 1985 ident: 10.1016/j.chaos.2021.111516_bib0004 article-title: Chaos in biological systems publication-title: Q Rev Biophys doi: 10.1017/S0033583500005175 – year: 1996 ident: 10.1016/j.chaos.2021.111516_sbref0013 – volume: 4 start-page: 19 issue: 1 year: 1978 ident: 10.1016/j.chaos.2021.111516_bib0009 article-title: An efficient algorithm for the determination of certain bifurcation points publication-title: J Comput Appl Math doi: 10.1016/0771-050X(78)90015-3 – start-page: 105 year: 1997 ident: 10.1016/j.chaos.2021.111516_bib0015 article-title: Chaos – year: 2002 ident: 10.1016/j.chaos.2021.111516_sbref0019 – volume: 57 start-page: 397 issue: 5 year: 1976 ident: 10.1016/j.chaos.2021.111516_bib0005 article-title: An equation for continuous chaos publication-title: Phys Lett A doi: 10.1016/0375-9601(76)90101-8 – volume: 148 start-page: 111054 year: 2021 ident: 10.1016/j.chaos.2021.111516_bib0008 article-title: Characterization of bifurcations in the zeeman catastrophe machine using singular value decomposition publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2021.111054 – year: 2004 ident: 10.1016/j.chaos.2021.111516_bib0006 – year: 2018 ident: 10.1016/j.chaos.2021.111516_bib0007 |
SSID | ssj0001062 |
Score | 2.3492675 |
Snippet | •The Rossler System has multiple types of bifurcation of limit cycles and equilibria.•The bifurcations can be analyzed by defining a tangent phase space... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 111516 |
SubjectTerms | Andronov-Hopf Bifurcation Chaos Fold-Hopf Limit cycle Period-doubling Rössler equations Singular value decomposition Tangent space Turning point |
Title | Characterization of events in the Rössler system using singular value decomposition |
URI | https://dx.doi.org/10.1016/j.chaos.2021.111516 |
Volume | 153 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLWqssCAaAFRHpUHBpAwzcNO7LGqqAqoHaCVukXxI1CGtGrLymfxA_wYvolTQEIMLJGS-ErRsX0fyrnHCJ3LwHDNmUe4FoJQzULCQy1J5qUs9GSstIZu5OEoGkzo3ZRNa6hX9cIArdL5_tKnF97aPek4NDuL2azzCMm3F8ciAH2auNAxpTSGVX799kXzsCVP8SfBDiYwulIeKjhe6jmdg2Z34IPrYHDo-W_R6VvE6e-hXZcq4m75NQ1UM3kT7Qw3OqurJmq4rbnCF04_-nIfjXsbEeayxxLPM1wINa3wLMfWHD98vNsE0yxxKeSMgf3-hOECrFQMCuAGawN8c0fqOkCT_s24NyDu8ASiAhauifFVDEo7xthtoANtRJgyze3UUFvFKD-QqVQ6MiJKM5lJylQUCKO1raB46mVZeIjq-Tw3Rwh7MtK-jaXU1iZUeDaDUYLLUGUy5b591UJXFWjJotTISCry2EtSYJwAxkmJcQtFFbDJj6lOrBf_y_D4v4YnaBvuShbKKaqvl6_mzOYSa9kuFksbbXVv7wejTwB6yx8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8NQEB6qHtSDaFWs6zsoKBibvOwHD-JCta0HrdBbzFui9dCWtiJe_FOCf8A_5kwWFxAPQi855PHC5MswC_neNwDbgutABa5pBCoMDUe5thHYShiJGbu2KXypFJ1Gbl56tRvnou22S_BanIUhWmUe-7OYnkbr_E41R7Pa73Sq11R8m74fctKn8c2CWVnXz0_Ytw0Pz0_wI-9wfnbaOq4Z-WgBQ3LXHhnakj7p0GiNTqK40qEduypAwx2s8aXFRSyk8nToxYlIhONKj4daKewvgthMEhufOwFTDoYLGptw8PLFK8EeK_11gdYZZF4hdZSSyuR93CORcG5RrHJpyvpv6fBbijubh7m8NmVH2esvQEl3yzDb_BR2HZZhIY8FQ7abC1bvLULr-FP1OTvUyXoJS5WhhqzTZbidXb2_YUWrByxTjmZEt79jdCEaLCPJcc2UJoJ7ziJbgpuxQLoMk91eV68AM4WnLEzeDjZDTmhiySTDQNgyEXFg4VIF9gvQon4myhEVbLWHKMU4IoyjDOMKeAWw0Q_fijBt_LVx9b8bt2C61mo2osb5ZX0NZmglo8Csw-Ro8Kg3sJAZic3UcRjcjttTPwArcQh0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+events+in+the+R%C3%B6ssler+system+using+singular+value+decomposition&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Penner%2C+Alvin&rft.date=2021-12-01&rft.pub=Elsevier+Ltd&rft.issn=0960-0779&rft.eissn=1873-2887&rft.volume=153&rft_id=info:doi/10.1016%2Fj.chaos.2021.111516&rft.externalDocID=S0960077921008705 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon |