Cross-graph meta matching correction for noisy graph matching

In recent years, significant advancements have been made in image feature point matching within the context of deep graph matching. However, keypoint annotations in images can be inaccurate due to various issues such as occlusion, changes in viewpoint, or poor recognizability, leading to noisy corre...

Full description

Saved in:
Bibliographic Details
Published inComputer vision and image understanding Vol. 259; p. 104433
Main Authors Li, Fangkai, Pan, Feiyu, Meng, Wenjia, Sun, Haoliang, Nie, Xiushan, Yin, Yilong, Lu, Xiankai
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.09.2025
Subjects
Online AccessGet full text
ISSN1077-3142
DOI10.1016/j.cviu.2025.104433

Cover

Loading…
Abstract In recent years, significant advancements have been made in image feature point matching within the context of deep graph matching. However, keypoint annotations in images can be inaccurate due to various issues such as occlusion, changes in viewpoint, or poor recognizability, leading to noisy correspondence. To address this limitation, we propose a novel Meta Matching Correction for noisy Graph Matching (MCGM), which introduces meta-learning to mitigate noisy correspondence for the first time. Specifically, we design a Meta Correcting Network (MCN) that integrates global features and geometric consistency information of graphs to generate confidence scores for nodes and edges. Based on the scores, MCN adaptively adjusts and penalizes the noisy assignments, enhancing the model’s ability to handle noisy correspondence. We conduct joint training of the main network and MCN to achieve dynamic correction through a bi-level optimization framework. Experimental evaluations on three public benchmark datasets demonstrate that our proposed method delivers robust performance improvements over state-of-the-art graph matching solutions and exhibits excellent stability when handling images under complex conditions. •First use of meta-learning for correcting noisy correspondences in graph matching.•Generate matching confidence using global features and geometric consistency.•Bi-level optimization framework for joint training.•Significant performance and noise robustness on public benchmark datasets.
AbstractList In recent years, significant advancements have been made in image feature point matching within the context of deep graph matching. However, keypoint annotations in images can be inaccurate due to various issues such as occlusion, changes in viewpoint, or poor recognizability, leading to noisy correspondence. To address this limitation, we propose a novel Meta Matching Correction for noisy Graph Matching (MCGM), which introduces meta-learning to mitigate noisy correspondence for the first time. Specifically, we design a Meta Correcting Network (MCN) that integrates global features and geometric consistency information of graphs to generate confidence scores for nodes and edges. Based on the scores, MCN adaptively adjusts and penalizes the noisy assignments, enhancing the model’s ability to handle noisy correspondence. We conduct joint training of the main network and MCN to achieve dynamic correction through a bi-level optimization framework. Experimental evaluations on three public benchmark datasets demonstrate that our proposed method delivers robust performance improvements over state-of-the-art graph matching solutions and exhibits excellent stability when handling images under complex conditions. •First use of meta-learning for correcting noisy correspondences in graph matching.•Generate matching confidence using global features and geometric consistency.•Bi-level optimization framework for joint training.•Significant performance and noise robustness on public benchmark datasets.
ArticleNumber 104433
Author Yin, Yilong
Lu, Xiankai
Meng, Wenjia
Li, Fangkai
Pan, Feiyu
Sun, Haoliang
Nie, Xiushan
Author_xml – sequence: 1
  givenname: Fangkai
  orcidid: 0009-0008-0549-7315
  surname: Li
  fullname: Li, Fangkai
  email: lifangkai@mail.sdu.edu.cn
  organization: School of Software, Shandong University, Jinan, 250101, Shandong, China
– sequence: 2
  givenname: Feiyu
  orcidid: 0009-0000-8796-2680
  surname: Pan
  fullname: Pan, Feiyu
  email: panfeiyu@mail.sdu.edu.cn
  organization: School of Software, Shandong University, Jinan, 250101, Shandong, China
– sequence: 3
  givenname: Wenjia
  surname: Meng
  fullname: Meng, Wenjia
  email: wjmeng@sdu.edu.cn
  organization: School of Software, Shandong University, Jinan, 250101, Shandong, China
– sequence: 4
  givenname: Haoliang
  orcidid: 0000-0001-7715-5682
  surname: Sun
  fullname: Sun, Haoliang
  email: haolsun@sdu.edu.cn
  organization: School of Software, Shandong University, Jinan, 250101, Shandong, China
– sequence: 5
  givenname: Xiushan
  surname: Nie
  fullname: Nie, Xiushan
  email: niexiushan19@sdjzu.edu.cn
  organization: School of Computer Science and Technology, Shandong Jianzhu University, Jinan, 250101, Shandong, China
– sequence: 6
  givenname: Yilong
  surname: Yin
  fullname: Yin, Yilong
  email: ylyin@sdu.edu.cn
  organization: School of Software, Shandong University, Jinan, 250101, Shandong, China
– sequence: 7
  givenname: Xiankai
  surname: Lu
  fullname: Lu, Xiankai
  email: carrierlxk@gmail.com
  organization: School of Software, Shandong University, Jinan, 250101, Shandong, China
BookMark eNp9j01Lw0AQhvdQwbb6BzzlDyTuZ9KAHiSoFQpe9LzsTibtBpMtu7HQf29CcvY0w_A-w_tsyKr3PRLywGjGKMsf2wwu7jfjlKvxIKUQK7JmtChSwSS_JZsYW0oZkyVbk-cq-BjTYzDnU9LhYJLODHBy_TEBHwLC4HyfND4kvXfxmizBJXNHbhrzE_F-mVvy_fb6Ve3Tw-f7R_VySIErMaRIawvAC8u5UELWEqxs0HJTSyV3O8tqW1opmhIB0dJcFZgDSqPGtVGYiy3h81-Y2gZs9Dm4zoSrZlRP0rrVk7SepPUsPUJPM4Rjs4vDoCM47AFrN3np2rv_8D-wTGVW
Cites_doi 10.1109/ICCV.2009.5459303
10.1002/nav.3800020109
10.1016/j.ejor.2005.09.032
10.1109/CVPR46437.2021.00503
10.1007/s11263-020-01359-2
10.1109/ICRA40945.2020.9197023
10.1016/j.patcog.2022.109059
10.1609/aaai.v38i13.29392
10.1214/aoms/1177729586
10.1109/TPAMI.2022.3155499
10.1109/CVPR.2018.00097
10.1007/978-3-031-20050-2_22
10.1214/aoms/1177703591
10.1109/ICCV.2019.00315
10.1145/2911996.2912035
10.1109/ICCV51070.2023.02135
10.1007/978-3-030-58604-1_25
10.1109/DSW.2018.8439919
10.1109/CVPR.2014.471
10.1109/ICCV.2013.11
10.1109/CVPR.2018.00284
10.1609/aaai.v35i12.17319
10.1109/CVPR52688.2022.00656
10.1109/CVPR52688.2022.01483
10.1109/CVPR42600.2020.00759
10.1109/CVPR52729.2023.00726
10.1007/978-3-031-19812-0_6
10.1145/3503161.3547922
10.1109/TPAMI.2008.245
10.1109/CVPR.2016.465
10.1109/TPAMI.2017.2716350
10.1109/TPAMI.2015.2501802
10.1016/S0968-090X(00)00026-7
10.1007/s10044-008-0141-y
10.1016/j.cviu.2018.01.001
10.1016/j.cviu.2023.103803
10.1109/CVPR42600.2020.00458
10.1109/TPAMI.2020.3005590
ContentType Journal Article
Copyright 2025 Elsevier Inc.
Copyright_xml – notice: 2025 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.cviu.2025.104433
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
ExternalDocumentID 10_1016_j_cviu_2025_104433
S1077314225001560
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADFGL
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HF~
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
XPP
ZMT
~G-
AAYXX
CITATION
ID FETCH-LOGICAL-c253t-e0dbcc27b223534d4cb4feb2ad45488b1db9b43f9eceeb0657e6ce4a5065f5e63
IEDL.DBID AIKHN
ISSN 1077-3142
IngestDate Wed Aug 27 16:27:11 EDT 2025
Sat Sep 06 17:18:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Bi-level optimization
Noisy correspondence
Graph matching
Meta learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c253t-e0dbcc27b223534d4cb4feb2ad45488b1db9b43f9eceeb0657e6ce4a5065f5e63
ORCID 0009-0008-0549-7315
0009-0000-8796-2680
0000-0001-7715-5682
ParticipantIDs crossref_primary_10_1016_j_cviu_2025_104433
elsevier_sciencedirect_doi_10_1016_j_cviu_2025_104433
PublicationCentury 2000
PublicationDate September 2025
2025-09-00
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationTitle Computer vision and image understanding
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Zhou, De la Torre (b54) 2015; 38
Rolínek, M., Swoboda, P., Zietlow, D., Paulus, A., Musil, V., Martius, G., 2020. Deep graph matching via blackbox differentiation of combinatorial solvers. In: Proceedings of the IEEE Proceedings of the European Conference on Computer Vision. pp. 407–424.
Wang, Z., Hu, G., Hu, Q., 2020a. Training noise-robust deep neural networks via meta-learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4524–4533.
Zhou, L., Wang, S., Kaess, M., 2020. A fast and accurate solution for pose estimation from 3D correspondences. In: International Conference on Robotics and Automation. pp. 1308–1314.
Zhang, Herrmann, Hur, Chen, Jampani, Sun, Yang (b51) 2023
Bourdev, L., Malik, J., 2009. Poselets: Body part detectors trained using 3D human pose annotations. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 1365–1372.
Sinkhorn (b34) 1964; 35
Zheng, G., Awadallah, A.H., Dumais, S., 2021. Meta label correction for noisy label learning. In: Proceedings of the AAAI Conference on Artificial Intelligence. pp. 11053–11061.
Moskalev, A., Sosnovik, I., Fischer, V., Smeulders, A., 2022. Contrasting quadratic assignments for set-based representation learning. In: Proceedings of European Conference on Computer Vision. pp. 88–104.
Wang, Ling (b37) 2017; 40
Xu, Luo, Carin (b43) 2019; 32
Yu, Sun, Yang, Rui, Yao (b47) 2018; 169
Han, Zheng, Luo, Miao, Tian, Chen (b9) 2024
Ren, Q., Bao, Q., Wang, R., Yan, J., 2022. Appearance and structure aware robust deep visual graph matching: Attack, defense and beyond. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 15263–15272.
Fey, M., Lenssen, J.E., Morris, C., Masci, J., Kriege, N.M., 2019. Deep Graph Matching Consensus. In: Proceedings of the International Conference on Learning Representations.
Yan, J., Yin, X.-C., Lin, W., Deng, C., Zha, H., Yang, X., 2016. A short survey of recent advances in graph matching. In: Proceedings of ACM on International Conference on Multimedia Retrieval. pp. 167–174.
Jiang, Zhang, Zhang, Ma (b11) 2023; 235
Leordeanu, Hebert (b15) 2005; vol. 2
Zanfir, A., Sminchisescu, C., 2018. Deep learning of graph matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 2684–2693.
White, Bernstein, Kornhauser (b42) 2000; 8
Zhou, Jia, Lin, Quan, Zhao, Lyu (b53) 2024; 36
Ma, Jiang, Fan, Jiang, Yan (b22) 2021; 129
Simonyan, K., Zisserman, A., 2015. Very deep convolutional networks for large-scale image recognition. In: Proceedings of the International Conference on Learning Representations.
Liu, C., Zhang, S., Yang, X., Yan, J., 2022. Self-supervised learning of visual graph matching. In: Proceedings of the European Conference on Computer Vision. pp. 370–388.
Loiola, De Abreu, Boaventura-Netto, Hahn, Querido (b21) 2007; 176
Huang, Niu, Liu, Ding, Xiao, Wu, Peng (b10) 2021; 34
Gao, Q., Wang, F., Xue, N., Yu, J.-G., Xia, G.-S., 2021. Deep graph matching under quadratic constraint. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5069–5078.
Kuhn (b14) 1955; 2
Yang, Li, Hu, Bai, Lv, Peng (b45) 2022; 45
Yu, T., Wang, R., Yan, J., Li, B., 2019. Learning deep graph matching with channel-independent embedding and hungarian attention. In: Proceedings of the International Conference on Learning Representations.
Wang, T., Liu, H., Li, Y., Jin, Y., Hou, X., Ling, H., 2020c. Learning combinatorial solver for graph matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 13–19.
Robbins, Monro (b31) 1951
Que, X., Yu, Q., 2024. Dual-Level Curriculum Meta-Learning for Noisy Few-Shot Learning Tasks. In: Proceedings of the AAAI Conference on Artificial Intelligence. pp. 14740–14748.
Wang, Yan, Yang (b40) 2020; 45
Yew, Z.J., Lee, G.H., 2022. Regtr: End-to-end point cloud correspondences with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 6677–6686.
Qin, Y., Peng, D., Peng, X., Wang, X., Hu, P., 2022. Deep evidential learning with noisy correspondence for cross-modal retrieval. In: Proceedings of the ACM International Conference on Multimedia. pp. 4948–4956.
Nam, H., Han, B., 2016. Learning multi-domain convolutional neural networks for visual tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4293–4302.
Qin, Chen, Peng, Peng, Zhou, Hu (b27) 2023
Wang, Hua, Liu, Zhang, Yan, Qi, Yang, Zhou, Yang (b36) 2021; 34
Gao, Xiao, Tao, Li (b7) 2010; 13
Cho, M., Alahari, K., Ponce, J., 2013. Learning graphs to match. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 25–32.
Wang, R., Yan, J., Yang, X., 2019. Learning combinatorial embedding networks for deep graph matching. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 3056–3065.
Kipf, T.N., Welling, M., 2016. Semi-Supervised Classification with Graph Convolutional Networks. In: Proceedings of the International Conference on Learning Representations.
Kingma, D., 2014. Adam: a method for stochastic optimization. In: Proceedings of the Proceedings of International Conference on Machine Learning.
Min, Lee, Ponce, Cho (b23) 2019
Fey, M., Lenssen, J.E., Weichert, F., Müller, H., 2018. Splinecnn: Fast geometric deep learning with continuous b-spline kernels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 869–877.
Lin, Zhang, Huang, Liu, Wen, Peng (b18) 2024
Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B., 2014. 2d human pose estimation: New benchmark and state of the art analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 3686–3693.
Liu, Wang, Li, Lang, Jin, Ling (b19) 2023; 134
Han, H., Miao, K., Zheng, Q., Luo, M., 2023. Noisy correspondence learning with meta similarity correction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 7517–7526.
Nowak, A., Villar, S., Bandeira, A.S., Bruna, J., 2018. Revised note on learning quadratic assignment with graph neural networks. In: Proceedings of the IEEE Data Science Workshop. pp. 1–5.
Wang, Yan, Yang (b41) 2021; 44
Zaslavskiy, Bach, Vert (b50) 2008; 31
Li, Yang, Song, Hospedales (b16) 2018; vol. 32
Lin, Y., Yang, M., Yu, J., Hu, P., Zhang, C., Peng, X., 2023. Graph matching with bi-level noisy correspondence. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 23362–23371.
10.1016/j.cviu.2025.104433_b20
Wang (10.1016/j.cviu.2025.104433_b40) 2020; 45
Li (10.1016/j.cviu.2025.104433_b16) 2018; vol. 32
Ma (10.1016/j.cviu.2025.104433_b22) 2021; 129
Wang (10.1016/j.cviu.2025.104433_b37) 2017; 40
Jiang (10.1016/j.cviu.2025.104433_b11) 2023; 235
Yang (10.1016/j.cviu.2025.104433_b45) 2022; 45
Leordeanu (10.1016/j.cviu.2025.104433_b15) 2005; vol. 2
10.1016/j.cviu.2025.104433_b17
White (10.1016/j.cviu.2025.104433_b42) 2000; 8
10.1016/j.cviu.2025.104433_b13
10.1016/j.cviu.2025.104433_b12
10.1016/j.cviu.2025.104433_b55
10.1016/j.cviu.2025.104433_b52
Qin (10.1016/j.cviu.2025.104433_b27) 2023
Kuhn (10.1016/j.cviu.2025.104433_b14) 1955; 2
Robbins (10.1016/j.cviu.2025.104433_b31) 1951
Sinkhorn (10.1016/j.cviu.2025.104433_b34) 1964; 35
Zhou (10.1016/j.cviu.2025.104433_b53) 2024; 36
Xu (10.1016/j.cviu.2025.104433_b43) 2019; 32
Wang (10.1016/j.cviu.2025.104433_b36) 2021; 34
Wang (10.1016/j.cviu.2025.104433_b41) 2021; 44
10.1016/j.cviu.2025.104433_b49
10.1016/j.cviu.2025.104433_b48
10.1016/j.cviu.2025.104433_b46
10.1016/j.cviu.2025.104433_b44
Zaslavskiy (10.1016/j.cviu.2025.104433_b50) 2008; 31
Loiola (10.1016/j.cviu.2025.104433_b21) 2007; 176
10.1016/j.cviu.2025.104433_b8
Zhou (10.1016/j.cviu.2025.104433_b54) 2015; 38
10.1016/j.cviu.2025.104433_b5
Gao (10.1016/j.cviu.2025.104433_b7) 2010; 13
10.1016/j.cviu.2025.104433_b4
Min (10.1016/j.cviu.2025.104433_b23) 2019
10.1016/j.cviu.2025.104433_b39
10.1016/j.cviu.2025.104433_b38
10.1016/j.cviu.2025.104433_b6
10.1016/j.cviu.2025.104433_b1
10.1016/j.cviu.2025.104433_b35
10.1016/j.cviu.2025.104433_b3
10.1016/j.cviu.2025.104433_b2
10.1016/j.cviu.2025.104433_b33
10.1016/j.cviu.2025.104433_b32
10.1016/j.cviu.2025.104433_b30
Lin (10.1016/j.cviu.2025.104433_b18) 2024
Zhang (10.1016/j.cviu.2025.104433_b51) 2023
Huang (10.1016/j.cviu.2025.104433_b10) 2021; 34
Liu (10.1016/j.cviu.2025.104433_b19) 2023; 134
Han (10.1016/j.cviu.2025.104433_b9) 2024
10.1016/j.cviu.2025.104433_b29
10.1016/j.cviu.2025.104433_b28
Yu (10.1016/j.cviu.2025.104433_b47) 2018; 169
10.1016/j.cviu.2025.104433_b26
10.1016/j.cviu.2025.104433_b25
10.1016/j.cviu.2025.104433_b24
References_xml – year: 2024
  ident: b9
  article-title: Noise-tolerant learning for audio-visual action recognition
  publication-title: IEEE Trans. Multimed.
– volume: 2
  start-page: 83
  year: 1955
  end-page: 97
  ident: b14
  article-title: The hungarian method for the assignment problem
  publication-title: Nav. Res. Logist. Q.
– reference: Zheng, G., Awadallah, A.H., Dumais, S., 2021. Meta label correction for noisy label learning. In: Proceedings of the AAAI Conference on Artificial Intelligence. pp. 11053–11061.
– volume: 32
  year: 2019
  ident: b43
  article-title: Scalable Gromov-Wasserstein learning for graph partitioning and matching
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 235
  year: 2023
  ident: b11
  article-title: Improving sparse graph attention for feature matching by informative keypoints exploration
  publication-title: Comput. Vis. Image Underst.
– reference: Ren, Q., Bao, Q., Wang, R., Yan, J., 2022. Appearance and structure aware robust deep visual graph matching: Attack, defense and beyond. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 15263–15272.
– reference: Kipf, T.N., Welling, M., 2016. Semi-Supervised Classification with Graph Convolutional Networks. In: Proceedings of the International Conference on Learning Representations.
– volume: 40
  start-page: 1494
  year: 2017
  end-page: 1501
  ident: b37
  article-title: Gracker: A graph-based planar object tracker
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 169
  start-page: 40
  year: 2018
  end-page: 51
  ident: b47
  article-title: Hierarchical semantic image matching using CNN feature pyramid
  publication-title: Comput. Vis. Image Underst.
– reference: Zanfir, A., Sminchisescu, C., 2018. Deep learning of graph matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 2684–2693.
– year: 2023
  ident: b27
  article-title: Noisy-correspondence learning for text-to-image person re-identification
– reference: Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B., 2014. 2d human pose estimation: New benchmark and state of the art analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 3686–3693.
– volume: 134
  year: 2023
  ident: b19
  article-title: Joint graph learning and matching for semantic feature correspondence
  publication-title: Pattern Recognit.
– reference: Wang, T., Liu, H., Li, Y., Jin, Y., Hou, X., Ling, H., 2020c. Learning combinatorial solver for graph matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 13–19.
– reference: Yan, J., Yin, X.-C., Lin, W., Deng, C., Zha, H., Yang, X., 2016. A short survey of recent advances in graph matching. In: Proceedings of ACM on International Conference on Multimedia Retrieval. pp. 167–174.
– reference: Fey, M., Lenssen, J.E., Weichert, F., Müller, H., 2018. Splinecnn: Fast geometric deep learning with continuous b-spline kernels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 869–877.
– volume: 8
  start-page: 91
  year: 2000
  end-page: 108
  ident: b42
  article-title: Some map matching algorithms for personal navigation assistants
  publication-title: Transp. Res. Part C: Emerg. Technol.
– volume: 38
  start-page: 1774
  year: 2015
  end-page: 1789
  ident: b54
  article-title: Factorized graph matching
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Nam, H., Han, B., 2016. Learning multi-domain convolutional neural networks for visual tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4293–4302.
– reference: Nowak, A., Villar, S., Bandeira, A.S., Bruna, J., 2018. Revised note on learning quadratic assignment with graph neural networks. In: Proceedings of the IEEE Data Science Workshop. pp. 1–5.
– volume: 35
  start-page: 876
  year: 1964
  end-page: 879
  ident: b34
  article-title: A relationship between arbitrary positive matrices and doubly stochastic matrices
  publication-title: Ann. Math. Stat.
– volume: 34
  start-page: 21453
  year: 2021
  end-page: 21466
  ident: b36
  article-title: A bi-level framework for learning to solve combinatorial optimization on graphs
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: Liu, C., Zhang, S., Yang, X., Yan, J., 2022. Self-supervised learning of visual graph matching. In: Proceedings of the European Conference on Computer Vision. pp. 370–388.
– reference: Gao, Q., Wang, F., Xue, N., Yu, J.-G., Xia, G.-S., 2021. Deep graph matching under quadratic constraint. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5069–5078.
– year: 2019
  ident: b23
  article-title: Spair-71k: A large-scale benchmark for semantic correspondence
– year: 2023
  ident: b51
  article-title: Telling left from right: Identifying geometry-aware semantic correspondence
– volume: 36
  year: 2024
  ident: b53
  article-title: Improving graph matching with positional reconstruction encoder-decoder network
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: vol. 2
  start-page: 1482
  year: 2005
  end-page: 1489
  ident: b15
  article-title: A spectral technique for correspondence problems using pairwise constraints
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 13
  start-page: 113
  year: 2010
  end-page: 129
  ident: b7
  article-title: A survey of graph edit distance
  publication-title: Pattern Anal. Appl.
– reference: Rolínek, M., Swoboda, P., Zietlow, D., Paulus, A., Musil, V., Martius, G., 2020. Deep graph matching via blackbox differentiation of combinatorial solvers. In: Proceedings of the IEEE Proceedings of the European Conference on Computer Vision. pp. 407–424.
– reference: Fey, M., Lenssen, J.E., Morris, C., Masci, J., Kriege, N.M., 2019. Deep Graph Matching Consensus. In: Proceedings of the International Conference on Learning Representations.
– reference: Simonyan, K., Zisserman, A., 2015. Very deep convolutional networks for large-scale image recognition. In: Proceedings of the International Conference on Learning Representations.
– reference: Wang, Z., Hu, G., Hu, Q., 2020a. Training noise-robust deep neural networks via meta-learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4524–4533.
– reference: Kingma, D., 2014. Adam: a method for stochastic optimization. In: Proceedings of the Proceedings of International Conference on Machine Learning.
– reference: Bourdev, L., Malik, J., 2009. Poselets: Body part detectors trained using 3D human pose annotations. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 1365–1372.
– reference: Yew, Z.J., Lee, G.H., 2022. Regtr: End-to-end point cloud correspondences with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 6677–6686.
– start-page: 400
  year: 1951
  end-page: 407
  ident: b31
  article-title: A stochastic approximation method
  publication-title: Ann. Math. Stat.
– reference: Moskalev, A., Sosnovik, I., Fischer, V., Smeulders, A., 2022. Contrasting quadratic assignments for set-based representation learning. In: Proceedings of European Conference on Computer Vision. pp. 88–104.
– reference: Yu, T., Wang, R., Yan, J., Li, B., 2019. Learning deep graph matching with channel-independent embedding and hungarian attention. In: Proceedings of the International Conference on Learning Representations.
– volume: vol. 32
  year: 2018
  ident: b16
  article-title: Learning to generalize: Meta-learning for domain generalization
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– volume: 31
  start-page: 2227
  year: 2008
  end-page: 2242
  ident: b50
  article-title: A path following algorithm for the graph matching problem
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2024
  ident: b18
  article-title: Multi-granularity correspondence learning from long-term noisy videos
– volume: 44
  start-page: 5261
  year: 2021
  end-page: 5279
  ident: b41
  article-title: Neural graph matching network: Learning Lawler’s quadratic assignment problem with extension to hypergraph and multiple-graph matching
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 129
  start-page: 23
  year: 2021
  end-page: 79
  ident: b22
  article-title: Image matching from handcrafted to deep features: A survey
  publication-title: Int. J. Comput. Vis.
– reference: Zhou, L., Wang, S., Kaess, M., 2020. A fast and accurate solution for pose estimation from 3D correspondences. In: International Conference on Robotics and Automation. pp. 1308–1314.
– reference: Cho, M., Alahari, K., Ponce, J., 2013. Learning graphs to match. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 25–32.
– reference: Han, H., Miao, K., Zheng, Q., Luo, M., 2023. Noisy correspondence learning with meta similarity correction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 7517–7526.
– volume: 45
  start-page: 1055
  year: 2022
  end-page: 1069
  ident: b45
  article-title: Robust multi-view clustering with incomplete information
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 34
  start-page: 29406
  year: 2021
  end-page: 29419
  ident: b10
  article-title: Learning with noisy correspondence for cross-modal matching
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: Lin, Y., Yang, M., Yu, J., Hu, P., Zhang, C., Peng, X., 2023. Graph matching with bi-level noisy correspondence. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 23362–23371.
– volume: 45
  start-page: 6984
  year: 2020
  end-page: 7000
  ident: b40
  article-title: Combinatorial learning of robust deep graph matching: an embedding based approach
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Qin, Y., Peng, D., Peng, X., Wang, X., Hu, P., 2022. Deep evidential learning with noisy correspondence for cross-modal retrieval. In: Proceedings of the ACM International Conference on Multimedia. pp. 4948–4956.
– reference: Wang, R., Yan, J., Yang, X., 2019. Learning combinatorial embedding networks for deep graph matching. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 3056–3065.
– volume: 176
  start-page: 657
  year: 2007
  end-page: 690
  ident: b21
  article-title: A survey for the quadratic assignment problem
  publication-title: European J. Oper. Res.
– reference: Que, X., Yu, Q., 2024. Dual-Level Curriculum Meta-Learning for Noisy Few-Shot Learning Tasks. In: Proceedings of the AAAI Conference on Artificial Intelligence. pp. 14740–14748.
– ident: 10.1016/j.cviu.2025.104433_b2
  doi: 10.1109/ICCV.2009.5459303
– volume: 2
  start-page: 83
  issue: 1–2
  year: 1955
  ident: 10.1016/j.cviu.2025.104433_b14
  article-title: The hungarian method for the assignment problem
  publication-title: Nav. Res. Logist. Q.
  doi: 10.1002/nav.3800020109
– volume: 176
  start-page: 657
  issue: 2
  year: 2007
  ident: 10.1016/j.cviu.2025.104433_b21
  article-title: A survey for the quadratic assignment problem
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2005.09.032
– ident: 10.1016/j.cviu.2025.104433_b6
  doi: 10.1109/CVPR46437.2021.00503
– volume: 129
  start-page: 23
  issue: 1
  year: 2021
  ident: 10.1016/j.cviu.2025.104433_b22
  article-title: Image matching from handcrafted to deep features: A survey
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-020-01359-2
– ident: 10.1016/j.cviu.2025.104433_b55
  doi: 10.1109/ICRA40945.2020.9197023
– ident: 10.1016/j.cviu.2025.104433_b4
– volume: 134
  year: 2023
  ident: 10.1016/j.cviu.2025.104433_b19
  article-title: Joint graph learning and matching for semantic feature correspondence
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2022.109059
– ident: 10.1016/j.cviu.2025.104433_b12
– ident: 10.1016/j.cviu.2025.104433_b29
  doi: 10.1609/aaai.v38i13.29392
– start-page: 400
  year: 1951
  ident: 10.1016/j.cviu.2025.104433_b31
  article-title: A stochastic approximation method
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177729586
– volume: 45
  start-page: 1055
  issue: 1
  year: 2022
  ident: 10.1016/j.cviu.2025.104433_b45
  article-title: Robust multi-view clustering with incomplete information
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2022.3155499
– ident: 10.1016/j.cviu.2025.104433_b5
  doi: 10.1109/CVPR.2018.00097
– ident: 10.1016/j.cviu.2025.104433_b20
  doi: 10.1007/978-3-031-20050-2_22
– year: 2023
  ident: 10.1016/j.cviu.2025.104433_b51
– volume: 35
  start-page: 876
  issue: 2
  year: 1964
  ident: 10.1016/j.cviu.2025.104433_b34
  article-title: A relationship between arbitrary positive matrices and doubly stochastic matrices
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177703591
– ident: 10.1016/j.cviu.2025.104433_b39
  doi: 10.1109/ICCV.2019.00315
– ident: 10.1016/j.cviu.2025.104433_b44
  doi: 10.1145/2911996.2912035
– ident: 10.1016/j.cviu.2025.104433_b17
  doi: 10.1109/ICCV51070.2023.02135
– ident: 10.1016/j.cviu.2025.104433_b32
  doi: 10.1007/978-3-030-58604-1_25
– ident: 10.1016/j.cviu.2025.104433_b48
– ident: 10.1016/j.cviu.2025.104433_b26
  doi: 10.1109/DSW.2018.8439919
– ident: 10.1016/j.cviu.2025.104433_b1
  doi: 10.1109/CVPR.2014.471
– ident: 10.1016/j.cviu.2025.104433_b13
– ident: 10.1016/j.cviu.2025.104433_b33
– volume: 34
  start-page: 21453
  year: 2021
  ident: 10.1016/j.cviu.2025.104433_b36
  article-title: A bi-level framework for learning to solve combinatorial optimization on graphs
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2024
  ident: 10.1016/j.cviu.2025.104433_b9
  article-title: Noise-tolerant learning for audio-visual action recognition
  publication-title: IEEE Trans. Multimed.
– ident: 10.1016/j.cviu.2025.104433_b3
  doi: 10.1109/ICCV.2013.11
– ident: 10.1016/j.cviu.2025.104433_b49
  doi: 10.1109/CVPR.2018.00284
– ident: 10.1016/j.cviu.2025.104433_b52
  doi: 10.1609/aaai.v35i12.17319
– ident: 10.1016/j.cviu.2025.104433_b46
  doi: 10.1109/CVPR52688.2022.00656
– volume: 44
  start-page: 5261
  issue: 9
  year: 2021
  ident: 10.1016/j.cviu.2025.104433_b41
  article-title: Neural graph matching network: Learning Lawler’s quadratic assignment problem with extension to hypergraph and multiple-graph matching
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: 10.1016/j.cviu.2025.104433_b30
  doi: 10.1109/CVPR52688.2022.01483
– year: 2019
  ident: 10.1016/j.cviu.2025.104433_b23
– ident: 10.1016/j.cviu.2025.104433_b38
  doi: 10.1109/CVPR42600.2020.00759
– ident: 10.1016/j.cviu.2025.104433_b8
  doi: 10.1109/CVPR52729.2023.00726
– ident: 10.1016/j.cviu.2025.104433_b24
  doi: 10.1007/978-3-031-19812-0_6
– ident: 10.1016/j.cviu.2025.104433_b28
  doi: 10.1145/3503161.3547922
– volume: 32
  year: 2019
  ident: 10.1016/j.cviu.2025.104433_b43
  article-title: Scalable Gromov-Wasserstein learning for graph partitioning and matching
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2023
  ident: 10.1016/j.cviu.2025.104433_b27
– volume: 36
  year: 2024
  ident: 10.1016/j.cviu.2025.104433_b53
  article-title: Improving graph matching with positional reconstruction encoder-decoder network
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 31
  start-page: 2227
  issue: 12
  year: 2008
  ident: 10.1016/j.cviu.2025.104433_b50
  article-title: A path following algorithm for the graph matching problem
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.245
– ident: 10.1016/j.cviu.2025.104433_b25
  doi: 10.1109/CVPR.2016.465
– volume: 40
  start-page: 1494
  issue: 6
  year: 2017
  ident: 10.1016/j.cviu.2025.104433_b37
  article-title: Gracker: A graph-based planar object tracker
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2716350
– volume: 38
  start-page: 1774
  issue: 9
  year: 2015
  ident: 10.1016/j.cviu.2025.104433_b54
  article-title: Factorized graph matching
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2501802
– volume: vol. 2
  start-page: 1482
  year: 2005
  ident: 10.1016/j.cviu.2025.104433_b15
  article-title: A spectral technique for correspondence problems using pairwise constraints
– volume: 34
  start-page: 29406
  year: 2021
  ident: 10.1016/j.cviu.2025.104433_b10
  article-title: Learning with noisy correspondence for cross-modal matching
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 8
  start-page: 91
  issue: 1–6
  year: 2000
  ident: 10.1016/j.cviu.2025.104433_b42
  article-title: Some map matching algorithms for personal navigation assistants
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/S0968-090X(00)00026-7
– year: 2024
  ident: 10.1016/j.cviu.2025.104433_b18
– volume: vol. 32
  year: 2018
  ident: 10.1016/j.cviu.2025.104433_b16
  article-title: Learning to generalize: Meta-learning for domain generalization
– volume: 13
  start-page: 113
  year: 2010
  ident: 10.1016/j.cviu.2025.104433_b7
  article-title: A survey of graph edit distance
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-008-0141-y
– volume: 169
  start-page: 40
  year: 2018
  ident: 10.1016/j.cviu.2025.104433_b47
  article-title: Hierarchical semantic image matching using CNN feature pyramid
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2018.01.001
– volume: 235
  year: 2023
  ident: 10.1016/j.cviu.2025.104433_b11
  article-title: Improving sparse graph attention for feature matching by informative keypoints exploration
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2023.103803
– ident: 10.1016/j.cviu.2025.104433_b35
  doi: 10.1109/CVPR42600.2020.00458
– volume: 45
  start-page: 6984
  issue: 6
  year: 2020
  ident: 10.1016/j.cviu.2025.104433_b40
  article-title: Combinatorial learning of robust deep graph matching: an embedding based approach
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.3005590
SSID ssj0011491
Score 2.4599915
Snippet In recent years, significant advancements have been made in image feature point matching within the context of deep graph matching. However, keypoint...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 104433
SubjectTerms Bi-level optimization
Graph matching
Meta learning
Noisy correspondence
Title Cross-graph meta matching correction for noisy graph matching
URI https://dx.doi.org/10.1016/j.cviu.2025.104433
Volume 259
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB76uOjBR1Wsj7IHbxLbzT7SHDyUolTFXrTQW8g-AhFMi00FL_52d7MbqSAevIRk2CVhksx8s_PNLMBFlR7LuA4oFuYQyywQLKOBwCkXhMZDLG2g-Djlkxm9n7N5A8Z1LYylVXrb72x6Za29pO-12V_mef_JBC4RsUsYzNUDN6EdkpizFrRHdw-T6XcywQQB2FEP7ZIcDX3tjKN5yfd8bcLEkNlsJyXkd_-04XNu92DHg0U0cs-zDw1ddGDXA0fkf8uVEdV7M9SyDmxvNBo8gOuxvVlQdadGr7pMkQGqFYsSSbs9R1XcgAx-RcUiX30gP9CPOYTZ7c3zeBL4jRMCGTJSBnqghJRhJIzvZ4QqKgXNTAidKmoClKHASsSCkizWxkUKA0IizaWmKTOnGdOcHEGrWBT6GBCXaiC4iHDMUjpkNM2YIukAqzhVWhHehctaXcnS9cdIauLYS2KVm1jlJk65XWC1RpMfbzkxBvyPeSf_nHcKW_bKccLOoFW-rfW5ARGl6EHz6hP3_KfyBRSRxos
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qPagHH1WxPvfgTdY23UeagwcplqptL7bgLewrEMG02FTw4m93N9lIBfHgJYTNLAmTZOab3W9mAC6L7bGEG0wDaQ-RSrBkCcUyEFwSGnUD5QLF0ZgPpvThmT3XoFflwjhapbf9pU0vrLUfaXlttuZp2nqygUtI3BIGK_OB12CdMhI6Xt_15zfPw-L9om2ek8ZO3GfOlCQv9Z4ubZDYYW6vkxLyu3da8Tj9Xdj2UBHdlk-zBzWTNWDHw0bkf8qFHao6M1RjDdhaKTO4Dzc9dzNc1KZGryYXyMLUgkOJlGvOUaQ2IIteUTZLFx_IC3qZA5j27ya9AfZtE7DqMJJj09ZSqU4orednhGqqJE1sAC00teFJVwZaRpKSJDLWQUoLQULDlaGC2dOEGU4OoZ7NMnMEiCvdllyGQcQE7TIqEqaJaAc6EtpowptwVakrnpfVMeKKNvYSO-XGTrlxqdwmsEqj8Y93HFvz_ce843_Ou4CNwWQ0jIf348cT2HRXSnbYKdTzt6U5s3Ail-fF5_IFvJ7HVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-graph+meta+matching+correction+for+noisy+graph+matching&rft.jtitle=Computer+vision+and+image+understanding&rft.au=Li%2C+Fangkai&rft.au=Pan%2C+Feiyu&rft.au=Meng%2C+Wenjia&rft.au=Sun%2C+Haoliang&rft.date=2025-09-01&rft.pub=Elsevier+Inc&rft.issn=1077-3142&rft.volume=259&rft_id=info:doi/10.1016%2Fj.cviu.2025.104433&rft.externalDocID=S1077314225001560
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-3142&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-3142&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-3142&client=summon