Total isolation of k-cliques in a graph
For a graph G=(V(G),E(G)) and any positive integer k, a set D⊆V(G) is called a total k-clique isolating set of G if G−N[D] contains no k-clique and D induces a subgraph with no vertex of degree 0. The total k-clique isolation number ιt(G,k) is the minimum cardinality of a total k-clique isolating se...
Saved in:
Published in | Discrete mathematics Vol. 348; no. 12; p. 114689 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0012-365X |
DOI | 10.1016/j.disc.2025.114689 |
Cover
Loading…
Abstract | For a graph G=(V(G),E(G)) and any positive integer k, a set D⊆V(G) is called a total k-clique isolating set of G if G−N[D] contains no k-clique and D induces a subgraph with no vertex of degree 0. The total k-clique isolation number ιt(G,k) is the minimum cardinality of a total k-clique isolating set of G. Clearly, ιt(G,1) is the total domination number of G, and ιt(G,2) was investigated by Boyer, Goddard and Henning recently. In this paper, we prove that for k≥3 and n≥k+2, if G is a connected graph of order n, then ιt(G,k)≤2nk+2. The bound is sharp. |
---|---|
AbstractList | For a graph G=(V(G),E(G)) and any positive integer k, a set D⊆V(G) is called a total k-clique isolating set of G if G−N[D] contains no k-clique and D induces a subgraph with no vertex of degree 0. The total k-clique isolation number ιt(G,k) is the minimum cardinality of a total k-clique isolating set of G. Clearly, ιt(G,1) is the total domination number of G, and ιt(G,2) was investigated by Boyer, Goddard and Henning recently. In this paper, we prove that for k≥3 and n≥k+2, if G is a connected graph of order n, then ιt(G,k)≤2nk+2. The bound is sharp. |
ArticleNumber | 114689 |
Author | Cao, Yupei Wu, Baoyindureng An, Xinhui |
Author_xml | – sequence: 1 givenname: Yupei surname: Cao fullname: Cao, Yupei – sequence: 2 givenname: Xinhui orcidid: 0000-0003-2048-0497 surname: An fullname: An, Xinhui email: xjaxh@163.com – sequence: 3 givenname: Baoyindureng surname: Wu fullname: Wu, Baoyindureng |
BookMark | eNp9j01LxDAQhnNYwd3VP-ApN0-t-dhkE_Aii1-w4GUFbyFNJppamzWpgv_elnp2LsPAPC_vs0KLPvWA0AUlNSVUXrW1j8XVjDBRU7qRSi_QkhDKKi7FyylaldKS8ZZcLdHlIQ22w7Gkzg4x9TgF_F65Ln5-QcGxxxa_Znt8O0MnwXYFzv_2Gj3f3R52D9X-6f5xd7OvHBN8qLT33mpOmAta8kbTZstBbZT30ooAxIHldjuNaqDRAEGMnzQwrzi1gfA1YnOuy6mUDMEcc_yw-cdQYiY905pJz0x6ZtYboesZgrHZd4RsiovQO_AxgxuMT_E__BdVIFyL |
Cites_doi | 10.1007/s00009-024-02680-7 10.1002/net.3230100304 10.1016/j.dam.2021.08.013 10.1007/s00373-024-02768-7 10.1016/j.dam.2020.01.005 10.1007/s40840-024-01655-x 10.1016/j.amc.2023.128153 10.1007/s00373-023-02717-w 10.1016/j.dam.2023.05.004 10.1016/j.disc.2024.113903 10.1016/j.dam.2023.07.018 10.1007/s00026-022-00620-4 10.1007/s00373-020-02143-2 10.1016/j.ipl.2024.106521 10.1007/s40840-022-01248-6 10.1016/j.disc.2021.112641 10.2298/FIL1712925C 10.1007/s40840-024-01672-w 10.1016/j.dam.2024.06.005 10.1016/j.disc.2020.111879 10.1007/s40840-024-01711-6 |
ContentType | Journal Article |
Copyright | 2025 Elsevier B.V. |
Copyright_xml | – notice: 2025 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.disc.2025.114689 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
ExternalDocumentID | 10_1016_j_disc_2025_114689 S0012365X25002973 |
GrantInformation_xml | – fundername: NSFC grantid: 12061073; 11801487 funderid: https://doi.org/10.13039/501100001809 |
GroupedDBID | --K --M -DZ -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 41~ 457 4G. 5GY 5VS 6OB 6TJ 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AATTM AAXKI AAXUO AAYWO ABAOU ABEFU ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADIYS ADMUD ADNMO ADVLN ADXHL AEBSH AEIPS AEKER AENEX AEUPX AEXQZ AFFNX AFJKZ AFPUW AFTJW AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AI. AIEXJ AIGII AIGVJ AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE IXB J1W KOM M26 M41 MHUIS MO0 MVM N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K TN5 UPT VH1 WH7 WUQ XJT XOL XPP ZCG ZMT ZY4 ~G- AAYXX CITATION |
ID | FETCH-LOGICAL-c253t-9ddda9302cf963b91b73e848dd6a5fe0cea3a777778beb9eef5cf91f2d831af03 |
IEDL.DBID | .~1 |
ISSN | 0012-365X |
IngestDate | Wed Aug 27 16:28:02 EDT 2025 Sat Aug 30 17:17:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Total isolating set Clique Total domination number |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c253t-9ddda9302cf963b91b73e848dd6a5fe0cea3a777778beb9eef5cf91f2d831af03 |
ORCID | 0000-0003-2048-0497 |
ParticipantIDs | crossref_primary_10_1016_j_disc_2025_114689 elsevier_sciencedirect_doi_10_1016_j_disc_2025_114689 |
PublicationCentury | 2000 |
PublicationDate | December 2025 2025-12-00 |
PublicationDateYYYYMMDD | 2025-12-01 |
PublicationDate_xml | – month: 12 year: 2025 text: December 2025 |
PublicationDecade | 2020 |
PublicationTitle | Discrete mathematics |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kaemawichanurat, Favaron (br0150) 2023; 457 Borg (br0040) 2023; 339 Borg (br0010) 2020; 36 Caro, Hansberg (br0090) 2017; 31 Yin, An, Wu (br0180) 2024; 47 Borg, Fenech, Kaemawichanurat (br0060) 2022; 345 Zhang, Wu (br0210) 2024; 357 Boyer, Goddard, Henning (br0080) 2024 Borg, Kaemawichanurat (br0030) 2020; 283 Yan (br0170) 2022; 45 Zhang, Wu (br0220) 2024; 47 Cui, Zhang (br0130) 2023; 39 Borg, Fenech, Kaemawichanurat (br0020) 2020; 343 Zhang, Wu (br0190) 2021; 304 Lemańska, Mora, Souto-Salorio (br0160) 2024; 347 Chen, Xu (br0110) 2023; 340 Cui, Zhang, Zhong (br0140) 2024; 47 Zhang, Wu (br0230) 2024; 40 Borg, Kaemawichanurat (br0070) 2023; 27 Chen, Liang, Wang, Xu (br0100) 2025; 187 Cockayne, Dawes, Hedetniemi (br0120) 1980; 10 Zhang, Wu (br0200) 2022; 39 Borg (br0050) 2024; 21 Lemańska (10.1016/j.disc.2025.114689_br0160) 2024; 347 Borg (10.1016/j.disc.2025.114689_br0020) 2020; 343 Yan (10.1016/j.disc.2025.114689_br0170) 2022; 45 Borg (10.1016/j.disc.2025.114689_br0010) 2020; 36 Chen (10.1016/j.disc.2025.114689_br0110) 2023; 340 Borg (10.1016/j.disc.2025.114689_br0070) 2023; 27 Borg (10.1016/j.disc.2025.114689_br0030) 2020; 283 Borg (10.1016/j.disc.2025.114689_br0050) 2024; 21 Zhang (10.1016/j.disc.2025.114689_br0210) 2024; 357 Cockayne (10.1016/j.disc.2025.114689_br0120) 1980; 10 Kaemawichanurat (10.1016/j.disc.2025.114689_br0150) 2023; 457 Chen (10.1016/j.disc.2025.114689_br0100) 2025; 187 Yin (10.1016/j.disc.2025.114689_br0180) 2024; 47 Borg (10.1016/j.disc.2025.114689_br0060) 2022; 345 Zhang (10.1016/j.disc.2025.114689_br0220) 2024; 47 Boyer (10.1016/j.disc.2025.114689_br0080) 2024 Caro (10.1016/j.disc.2025.114689_br0090) 2017; 31 Zhang (10.1016/j.disc.2025.114689_br0200) 2022; 39 Cui (10.1016/j.disc.2025.114689_br0130) 2023; 39 Zhang (10.1016/j.disc.2025.114689_br0230) 2024; 40 Zhang (10.1016/j.disc.2025.114689_br0190) 2021; 304 Borg (10.1016/j.disc.2025.114689_br0040) 2023; 339 Cui (10.1016/j.disc.2025.114689_br0140) 2024; 47 |
References_xml | – volume: 40 start-page: 38 year: 2024 ident: br0230 article-title: Cycle isolation of graphs with small girth publication-title: Graphs Comb. – volume: 347 year: 2024 ident: br0160 article-title: Graphs with isolation number equal to one third of the order publication-title: Discrete Math. – volume: 47 start-page: 75 year: 2024 ident: br0180 article-title: -isolation number of claw-free cubic graphs publication-title: Bull. Malays. Math. Sci. Soc. – volume: 39 start-page: 169 year: 2022 end-page: 175 ident: br0200 article-title: Isolation of cycles and trees in graphs publication-title: J. Xinjiang Univ. Nat. Sci. – volume: 283 start-page: 306 year: 2020 end-page: 314 ident: br0030 article-title: Partial domination of maximal outerplanar graphs publication-title: Discrete Appl. Math. – volume: 36 start-page: 631 year: 2020 end-page: 637 ident: br0010 article-title: Isolation of cycles publication-title: Graphs Comb. – volume: 47 start-page: 57 year: 2024 ident: br0220 article-title: A note on the cycle isolation number of graphs publication-title: Bull. Malays. Math. Sci. Soc. – volume: 343 year: 2020 ident: br0020 article-title: Isolation of publication-title: Discrete Math. – volume: 457 year: 2023 ident: br0150 article-title: Partial domination and irredundance numbers in graphs publication-title: Appl. Math. Comput. – volume: 345 year: 2022 ident: br0060 article-title: Isolation of publication-title: Discrete Math. – volume: 304 start-page: 365 year: 2021 end-page: 374 ident: br0190 article-title: -isolation in graphs publication-title: Discrete Appl. Math. – volume: 47 start-page: 1 year: 2024 end-page: 26 ident: br0140 article-title: Extremal graphs for the publication-title: Bull. Malays. Math. Sci. Soc. – volume: 21 year: 2024 ident: br0050 article-title: Isolation of regular graphs and publication-title: Mediterr. J. Math. – volume: 340 start-page: 331 year: 2023 end-page: 349 ident: br0110 article-title: -isolation in graphs publication-title: Discrete Appl. Math. – volume: 339 start-page: 154 year: 2023 end-page: 165 ident: br0040 article-title: Isolation of connected graphs publication-title: Discrete Appl. Math. – volume: 31 start-page: 3925 year: 2017 end-page: 3944 ident: br0090 article-title: Partial domination-the isolation number of a graph publication-title: Filomat – volume: 39 year: 2023 ident: br0130 article-title: A sharp upper bound on the cycle isolation number of graphs publication-title: Graphs Comb. – volume: 10 start-page: 211 year: 1980 end-page: 219 ident: br0120 article-title: Total domination in graphs publication-title: Networks – volume: 45 start-page: 1169 year: 2022 end-page: 1181 ident: br0170 article-title: Isolation of the diamond graph publication-title: Bull. Malays. Math. Sci. Soc. – start-page: 1 year: 2024 end-page: 11 ident: br0080 article-title: On total isolation in graphs publication-title: Aequ. Math. – volume: 27 start-page: 31 year: 2023 end-page: 50 ident: br0070 article-title: Extensions of the Art Gallery Theorem publication-title: Ann. Comb. – volume: 187 year: 2025 ident: br0100 article-title: Algorithmic aspects of publication-title: Inf. Process. Lett. – volume: 357 start-page: 99 year: 2024 end-page: 111 ident: br0210 article-title: -isolation in graphs publication-title: Discrete Appl. Math. – volume: 21 year: 2024 ident: 10.1016/j.disc.2025.114689_br0050 article-title: Isolation of regular graphs and k-chromatic graphs publication-title: Mediterr. J. Math. doi: 10.1007/s00009-024-02680-7 – volume: 10 start-page: 211 year: 1980 ident: 10.1016/j.disc.2025.114689_br0120 article-title: Total domination in graphs publication-title: Networks doi: 10.1002/net.3230100304 – volume: 304 start-page: 365 year: 2021 ident: 10.1016/j.disc.2025.114689_br0190 article-title: K1,2-isolation in graphs publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2021.08.013 – volume: 40 start-page: 38 year: 2024 ident: 10.1016/j.disc.2025.114689_br0230 article-title: Cycle isolation of graphs with small girth publication-title: Graphs Comb. doi: 10.1007/s00373-024-02768-7 – volume: 283 start-page: 306 year: 2020 ident: 10.1016/j.disc.2025.114689_br0030 article-title: Partial domination of maximal outerplanar graphs publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2020.01.005 – volume: 47 start-page: 57 year: 2024 ident: 10.1016/j.disc.2025.114689_br0220 article-title: A note on the cycle isolation number of graphs publication-title: Bull. Malays. Math. Sci. Soc. doi: 10.1007/s40840-024-01655-x – volume: 457 year: 2023 ident: 10.1016/j.disc.2025.114689_br0150 article-title: Partial domination and irredundance numbers in graphs publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2023.128153 – volume: 39 year: 2023 ident: 10.1016/j.disc.2025.114689_br0130 article-title: A sharp upper bound on the cycle isolation number of graphs publication-title: Graphs Comb. doi: 10.1007/s00373-023-02717-w – volume: 339 start-page: 154 year: 2023 ident: 10.1016/j.disc.2025.114689_br0040 article-title: Isolation of connected graphs publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2023.05.004 – volume: 347 year: 2024 ident: 10.1016/j.disc.2025.114689_br0160 article-title: Graphs with isolation number equal to one third of the order publication-title: Discrete Math. doi: 10.1016/j.disc.2024.113903 – start-page: 1 year: 2024 ident: 10.1016/j.disc.2025.114689_br0080 article-title: On total isolation in graphs publication-title: Aequ. Math. – volume: 39 start-page: 169 year: 2022 ident: 10.1016/j.disc.2025.114689_br0200 article-title: Isolation of cycles and trees in graphs publication-title: J. Xinjiang Univ. Nat. Sci. – volume: 340 start-page: 331 year: 2023 ident: 10.1016/j.disc.2025.114689_br0110 article-title: P5-isolation in graphs publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2023.07.018 – volume: 27 start-page: 31 year: 2023 ident: 10.1016/j.disc.2025.114689_br0070 article-title: Extensions of the Art Gallery Theorem publication-title: Ann. Comb. doi: 10.1007/s00026-022-00620-4 – volume: 36 start-page: 631 year: 2020 ident: 10.1016/j.disc.2025.114689_br0010 article-title: Isolation of cycles publication-title: Graphs Comb. doi: 10.1007/s00373-020-02143-2 – volume: 187 year: 2025 ident: 10.1016/j.disc.2025.114689_br0100 article-title: Algorithmic aspects of Pk-isolation in graphs and extremal graphs for a P3-isolation bound publication-title: Inf. Process. Lett. doi: 10.1016/j.ipl.2024.106521 – volume: 45 start-page: 1169 year: 2022 ident: 10.1016/j.disc.2025.114689_br0170 article-title: Isolation of the diamond graph publication-title: Bull. Malays. Math. Sci. Soc. doi: 10.1007/s40840-022-01248-6 – volume: 345 year: 2022 ident: 10.1016/j.disc.2025.114689_br0060 article-title: Isolation of k-cliques II publication-title: Discrete Math. doi: 10.1016/j.disc.2021.112641 – volume: 31 start-page: 3925 year: 2017 ident: 10.1016/j.disc.2025.114689_br0090 article-title: Partial domination-the isolation number of a graph publication-title: Filomat doi: 10.2298/FIL1712925C – volume: 47 start-page: 75 year: 2024 ident: 10.1016/j.disc.2025.114689_br0180 article-title: K1,2-isolation number of claw-free cubic graphs publication-title: Bull. Malays. Math. Sci. Soc. doi: 10.1007/s40840-024-01672-w – volume: 357 start-page: 99 year: 2024 ident: 10.1016/j.disc.2025.114689_br0210 article-title: k-isolation in graphs publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2024.06.005 – volume: 343 year: 2020 ident: 10.1016/j.disc.2025.114689_br0020 article-title: Isolation of k-cliques publication-title: Discrete Math. doi: 10.1016/j.disc.2020.111879 – volume: 47 start-page: 1 year: 2024 ident: 10.1016/j.disc.2025.114689_br0140 article-title: Extremal graphs for the K1,2-isolation number of graphs publication-title: Bull. Malays. Math. Sci. Soc. doi: 10.1007/s40840-024-01711-6 |
SSID | ssj0001638 |
Score | 2.4200976 |
Snippet | For a graph G=(V(G),E(G)) and any positive integer k, a set D⊆V(G) is called a total k-clique isolating set of G if G−N[D] contains no k-clique and D induces a... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 114689 |
SubjectTerms | Clique Total domination number Total isolating set |
Title | Total isolation of k-cliques in a graph |
URI | https://dx.doi.org/10.1016/j.disc.2025.114689 |
Volume | 348 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GD0IHiSubZqlOY7hmB8bIhvsVpL0BabSDTev_u3mNa0fIB7spbQkkPySvLwH7_d7hJzrSAqWKEON1ZomYCyVIaQUutLyVKQgFBKFR-PucJrczvisQfo1FwbTKivb7216aa2rP50Kzc5yPkeOLyqHuGCL-wpMyGBPBO7yq_evNA_0N7w1jim2rogzPscLma8uRox5KZmLpd5_u5y-XTiDHbJdeYpBzw9mlzSg2CNbo0-Z1dU-uZgsnO8czN3-KQEOFjZ4puYFNVlXwbwIVFAKUh-Q6eB60h_SqvIBNTFnayrzPFeShbGx7oBoGWnBIE3SPO8qbiE0oJgS-KQatASw3LWMbJynLFI2ZIekWSwKOCIB0-BCHAuaM5FI1P8DLvIoNlrFhkPUIpf1lLOlF7jI6syvpwwByhCgzAPUIrxGJfuxTJmzwH_0O_5nvxOyiV8-f-SUNNevb3DmvIC1bpfL3CYbvf7j_QO-b-6G4w8niLLC |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1qe1AP4ifWzxwED7I0yWab5FiKJbUfpxZ6W3Y3sxCVttj6_93NJkVBPJhjkoHkbfJ2Bua9AXiQQRrTSCiitJQkQqVJ6mNCsJtqlsQJxsIKhSfTbjaPXhZs0YB-rYWxbZUV9ztOL9m6OtOp0Oysi8JqfK1ziCm2mJvAtAct607FmtDqDUfZdEfINuVwhBwSG1BpZ1yblxW_mjIxZKVrrp32_tv-9G3PGRzDUZUsej33PCfQwOUpHE52TqubM3icrUz67BXmEyox9lbaeyPq3dqybrxi6Qmv9KQ-h_ngedbPSDX8gKiQ0S1J8zwXKfVDpc0_ItNAxhSTKMnzrmAafYWCitgeiUSZImpm7gx0mCc0ENqnF9BcrpZ4CR6VaKocjZLROEqtBSCyOA9CJUWoGAZteKpfma-dxwWvm79euQWIW4C4A6gNrEaF_1gpbkj4j7irf8bdw342m4z5eDgdXcOBveLaSW6guf34xFuTFGzlXbXoX82Ds94 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Total+isolation+of+k-cliques+in+a+graph&rft.jtitle=Discrete+mathematics&rft.au=Cao%2C+Yupei&rft.au=An%2C+Xinhui&rft.au=Wu%2C+Baoyindureng&rft.date=2025-12-01&rft.pub=Elsevier+B.V&rft.issn=0012-365X&rft.volume=348&rft.issue=12&rft_id=info:doi/10.1016%2Fj.disc.2025.114689&rft.externalDocID=S0012365X25002973 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-365X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-365X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-365X&client=summon |