The Dixmier-Douady classes and abelian extensions of groups of homeomorphisms

Let X be a connected topological space and c∈H2(X;Z) be a non-zero cohomology class. A Homeo(X,c)-bundle is a fiber bundle with fiber X whose structure group reduces to the group Homeo(X,c) of c-preserving homeomorphisms of X. If H1(X;Z)=0, then a characteristic class for Homeo(X,c)-bundles called t...

Full description

Saved in:
Bibliographic Details
Published inTopology and its applications Vol. 336; p. 108600
Main Author Maruyama, Shuhei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Let X be a connected topological space and c∈H2(X;Z) be a non-zero cohomology class. A Homeo(X,c)-bundle is a fiber bundle with fiber X whose structure group reduces to the group Homeo(X,c) of c-preserving homeomorphisms of X. If H1(X;Z)=0, then a characteristic class for Homeo(X,c)-bundles called the Dixmier-Douady class is defined via the Serre spectral sequence. We show the relation between the universal Dixmier-Douady class for foliated Homeo(X,c)-bundles and the gauge group extension of Homeo(X,c). Moreover, under some assumptions, we construct a central S1-extension and a group two-cocycle on Homeo(X,c) corresponding to the Dixmier-Douady class.
AbstractList Let X be a connected topological space and c∈H2(X;Z) be a non-zero cohomology class. A Homeo(X,c)-bundle is a fiber bundle with fiber X whose structure group reduces to the group Homeo(X,c) of c-preserving homeomorphisms of X. If H1(X;Z)=0, then a characteristic class for Homeo(X,c)-bundles called the Dixmier-Douady class is defined via the Serre spectral sequence. We show the relation between the universal Dixmier-Douady class for foliated Homeo(X,c)-bundles and the gauge group extension of Homeo(X,c). Moreover, under some assumptions, we construct a central S1-extension and a group two-cocycle on Homeo(X,c) corresponding to the Dixmier-Douady class.
ArticleNumber 108600
Author Maruyama, Shuhei
Author_xml – sequence: 1
  givenname: Shuhei
  orcidid: 0000-0003-2491-2728
  surname: Maruyama
  fullname: Maruyama, Shuhei
  email: smaruyama1001b@g.chuo-u.ac.jp
  organization: Department of Mathematics, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
BookMark eNp9kMtOwzAQRS1UJNrCF7DJD6T4kdjOggVqeUlFbMracuwJdZXYkZ2i9u9JW9asZjS6ZzRzZmjigweE7gleEEz4w24xhD60C4opGyeSY3yFpkSKKmcUiwmajimeS16QGzRLaYcxJpWgU_Sx2UK2cofOQcxXYa_tMTOtTglSpr3NdA2t0z6DwwA-ueBTFprsO4Z9f-62oYPQhdhvXerSLbpudJvg7q_O0dfL82b5lq8_X9-XT-vc0JINuZAlF40uqLBgS6hqw4mpalkQhkVhaymg0E3JOFBekVpKWRosSt0UtGCABZsjdtlrYkgpQqP66Dodj4pgdTKidupsRJ2MqIuRkXq8UDCe9jM-rJJx4A1YF8EMygb3L_8LxZptIA
Cites_doi 10.2977/prims/1195163725
10.1007/s002200050323
10.17323/1609-4514-2006-6-2-307-315
10.4310/JSG.2020.v18.n1.a7
10.1007/BF02564625
10.1090/S0002-9947-1953-0052438-8
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.topol.2023.108600
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1879-3207
ExternalDocumentID 10_1016_j_topol_2023_108600
S0166864123001943
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
7-5
71M
8P~
9JN
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AASFE
AAXUO
ABAOU
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
M26
M41
MCRUF
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSW
T5K
TN5
WH7
~G-
0SF
186
29Q
5VS
6I.
AAEDT
AAQFI
AAQXK
AAXKI
AAYXX
ABFNM
ABVKL
ABXDB
ADIYS
ADMUD
ADVLN
AEXQZ
AFJKZ
AGHFR
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
EJD
FGOYB
G-2
HZ~
H~9
NCXOZ
NHB
R2-
RIG
SSZ
WUQ
ZKB
ID FETCH-LOGICAL-c253t-78567fa427ded5e9bc61c9b8413074db87e4af536e2691b8885c075af4243e073
IEDL.DBID AIKHN
ISSN 0166-8641
IngestDate Thu Sep 26 16:53:01 EDT 2024
Fri Feb 23 02:37:33 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Dixmier-Douady class
55R40
Gauge group
57R20
20J06
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c253t-78567fa427ded5e9bc61c9b8413074db87e4af536e2691b8885c075af4243e073
ORCID 0000-0003-2491-2728
ParticipantIDs crossref_primary_10_1016_j_topol_2023_108600
elsevier_sciencedirect_doi_10_1016_j_topol_2023_108600
PublicationCentury 2000
PublicationDate 2023-08-15
PublicationDateYYYYMMDD 2023-08-15
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-15
  day: 15
PublicationDecade 2020
PublicationTitle Topology and its applications
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Dobbins (br0050) 2021
Neukirch, Schmidt, Wingberg (br0120) 2008; vol. 323
Davis, Kirk (br0040) 2001; vol. 35
Savelyev, Shelukhin (br0130) 2020; 18
Ismagilov, Losik, Michor (br0090) 2006; 6
Brown (br0010) 1982; vol. 87
Shuhei Maruyama, The dixmier-douady class, the action homomorphism, and group cocycles on the symplectomorphism group.
Frigerio (br0060) 2017; vol. 227
Gal, Kędra (br0070) 2011
Brylinski (br0020) 1993; vol. 107
Yamanoshita (br0140) 1995; 31
Hochschild, Serre (br0080) 1953; 74
Carey, Crowley, Murray (br0030) 1998; 193
Milnor (br0110) 1983; 58
Brylinski (10.1016/j.topol.2023.108600_br0020) 1993; vol. 107
10.1016/j.topol.2023.108600_br0100
Brown (10.1016/j.topol.2023.108600_br0010) 1982; vol. 87
Neukirch (10.1016/j.topol.2023.108600_br0120) 2008; vol. 323
Gal (10.1016/j.topol.2023.108600_br0070)
Milnor (10.1016/j.topol.2023.108600_br0110) 1983; 58
Yamanoshita (10.1016/j.topol.2023.108600_br0140) 1995; 31
Frigerio (10.1016/j.topol.2023.108600_br0060) 2017; vol. 227
Hochschild (10.1016/j.topol.2023.108600_br0080) 1953; 74
Ismagilov (10.1016/j.topol.2023.108600_br0090) 2006; 6
Dobbins (10.1016/j.topol.2023.108600_br0050)
Savelyev (10.1016/j.topol.2023.108600_br0130) 2020; 18
Davis (10.1016/j.topol.2023.108600_br0040) 2001; vol. 35
Carey (10.1016/j.topol.2023.108600_br0030) 1998; 193
References_xml – volume: 74
  start-page: 110
  year: 1953
  end-page: 134
  ident: br0080
  article-title: Cohomology of group extensions
  publication-title: Trans. Am. Math. Soc.
  contributor:
    fullname: Serre
– volume: 6
  start-page: 307
  year: 2006
  end-page: 315
  ident: br0090
  article-title: A 2-cocycle on a symplectomorphism group
  publication-title: Mosc. Math. J.
  contributor:
    fullname: Michor
– volume: vol. 323
  year: 2008
  ident: br0120
  article-title: Cohomology of Number Fields
  publication-title: Grundlehren der mathematischen Wissenschaften
  contributor:
    fullname: Wingberg
– volume: 31
  start-page: 953
  year: 1995
  end-page: 958
  ident: br0140
  article-title: On the group of
  publication-title: Publ. Res. Inst. Math. Sci.
  contributor:
    fullname: Yamanoshita
– volume: vol. 107
  year: 1993
  ident: br0020
  article-title: Loop Spaces, Characteristic Classes and Geometric Quantization
  publication-title: Progress in Mathematics
  contributor:
    fullname: Brylinski
– year: 2021
  ident: br0050
  article-title: A strong equivariant deformation retraction from the homeomorphism group of the projective plane to the special orthogonal group
  contributor:
    fullname: Dobbins
– year: 2011
  ident: br0070
  contributor:
    fullname: Kędra
– volume: vol. 35
  year: 2001
  ident: br0040
  article-title: Lecture Notes in Algebraic Topology
  publication-title: Graduate Studies in Mathematics
  contributor:
    fullname: Kirk
– volume: 58
  start-page: 72
  year: 1983
  end-page: 85
  ident: br0110
  article-title: On the homology of Lie groups made discrete
  publication-title: Comment. Math. Helv.
  contributor:
    fullname: Milnor
– volume: 193
  start-page: 171
  year: 1998
  end-page: 196
  ident: br0030
  article-title: Principal bundles and the Dixmier Douady class
  publication-title: Commun. Math. Phys.
  contributor:
    fullname: Murray
– volume: vol. 227
  year: 2017
  ident: br0060
  article-title: Bounded Cohomology of Discrete Groups
  publication-title: Mathematical Surveys and Monographs
  contributor:
    fullname: Frigerio
– volume: vol. 87
  year: 1982
  ident: br0010
  article-title: Cohomology of Groups
  publication-title: Graduate Texts in Mathematics
  contributor:
    fullname: Brown
– volume: 18
  start-page: 251
  year: 2020
  end-page: 289
  ident: br0130
  article-title: K-theoretic invariants of Hamiltonian fibrations
  publication-title: J. Symplectic Geom.
  contributor:
    fullname: Shelukhin
– volume: vol. 35
  year: 2001
  ident: 10.1016/j.topol.2023.108600_br0040
  article-title: Lecture Notes in Algebraic Topology
  contributor:
    fullname: Davis
– volume: 31
  start-page: 953
  issue: 5
  year: 1995
  ident: 10.1016/j.topol.2023.108600_br0140
  article-title: On the group of S1-equivariant homeomorphisms of the 3-sphere
  publication-title: Publ. Res. Inst. Math. Sci.
  doi: 10.2977/prims/1195163725
  contributor:
    fullname: Yamanoshita
– volume: vol. 227
  year: 2017
  ident: 10.1016/j.topol.2023.108600_br0060
  article-title: Bounded Cohomology of Discrete Groups
  contributor:
    fullname: Frigerio
– volume: 193
  start-page: 171
  issue: 1
  year: 1998
  ident: 10.1016/j.topol.2023.108600_br0030
  article-title: Principal bundles and the Dixmier Douady class
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s002200050323
  contributor:
    fullname: Carey
– ident: 10.1016/j.topol.2023.108600_br0100
– volume: vol. 323
  year: 2008
  ident: 10.1016/j.topol.2023.108600_br0120
  article-title: Cohomology of Number Fields
  contributor:
    fullname: Neukirch
– ident: 10.1016/j.topol.2023.108600_br0050
  contributor:
    fullname: Dobbins
– ident: 10.1016/j.topol.2023.108600_br0070
  contributor:
    fullname: Gal
– volume: 6
  start-page: 307
  issue: 2
  year: 2006
  ident: 10.1016/j.topol.2023.108600_br0090
  article-title: A 2-cocycle on a symplectomorphism group
  publication-title: Mosc. Math. J.
  doi: 10.17323/1609-4514-2006-6-2-307-315
  contributor:
    fullname: Ismagilov
– volume: 18
  start-page: 251
  issue: 1
  year: 2020
  ident: 10.1016/j.topol.2023.108600_br0130
  article-title: K-theoretic invariants of Hamiltonian fibrations
  publication-title: J. Symplectic Geom.
  doi: 10.4310/JSG.2020.v18.n1.a7
  contributor:
    fullname: Savelyev
– volume: 58
  start-page: 72
  issue: 1
  year: 1983
  ident: 10.1016/j.topol.2023.108600_br0110
  article-title: On the homology of Lie groups made discrete
  publication-title: Comment. Math. Helv.
  doi: 10.1007/BF02564625
  contributor:
    fullname: Milnor
– volume: vol. 87
  year: 1982
  ident: 10.1016/j.topol.2023.108600_br0010
  article-title: Cohomology of Groups
  contributor:
    fullname: Brown
– volume: vol. 107
  year: 1993
  ident: 10.1016/j.topol.2023.108600_br0020
  article-title: Loop Spaces, Characteristic Classes and Geometric Quantization
  contributor:
    fullname: Brylinski
– volume: 74
  start-page: 110
  year: 1953
  ident: 10.1016/j.topol.2023.108600_br0080
  article-title: Cohomology of group extensions
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1953-0052438-8
  contributor:
    fullname: Hochschild
SSID ssj0001972
Score 2.3566008
Snippet Let X be a connected topological space and c∈H2(X;Z) be a non-zero cohomology class. A Homeo(X,c)-bundle is a fiber bundle with fiber X whose structure group...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 108600
SubjectTerms Dixmier-Douady class
Gauge group
Title The Dixmier-Douady classes and abelian extensions of groups of homeomorphisms
URI https://dx.doi.org/10.1016/j.topol.2023.108600
Volume 336
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsNAFL30sdGF-MT6KLNwado8JpNkWaqlKu1GC92FyTwwQpJiIujGb3dmkhQFceEuCVwIZ2bOnNzMvQfgijhC2lRGFgttbuEEE4tKta6IIwnzXC6pMZtYLMl8he_X_roD07YWRh-rbLi_5nTD1s2TcYPmeJOm40clVkhIsKJerVOw14W--UnUg_7k7mG-3BKydtaqW3wTSwe0zYfMMa9KexGMtIm4MR3SlW6_bVDfNp3ZPuw1ahFN6hc6gI7ID2F3sW21Wh7BQg00uknfMxVuKTlM-QdiWhKLEtGcI5oInclAJtutU2MlKiQyxRzm6rnIRJEVCu60zMpjWM1un6Zzq_FIsJjre5UVhD4JJMVuwAX3RZQw4rAoCTUQAeZJGAhMpe8R4ZLISdT3rs-USqASu9gTan2fQC8vcnEKiErqYc9mPLAx5gJHoSsEFkHkUhwkLh_AdQtMvKlbYcTtGbGX2OAYaxzjGscBkBa8-MeIxoqs_wo8-2_gOezoO53xdfwL6FWvb-JSSYYqGUJ39OkMm4nxBYlTwLE
link.rule.ids 315,783,787,4511,24130,27938,27939,45599,45693
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA5zO6gH8RPnZw4ejVvbNGmPYyqdW3dxg91C2iRYoe2wFfTfm_RjKIgHb6XlhfAked6nL-8HADfEkmrIlY9ibygQjjBBXOl7RSxFYscWilfDJsI5CZb4aeWuOmDc1sKYtMqG-2tOr9i6eTNo0Bysk2TwrMUK8QjW1Gt0Cna2QE-rAV8f9t5oMg3mG0I2k7XqFt8EGYO2-VCV5lWaWQR3Zoh4NXTIVLr95qC-OZ3HfbDXqEU4qhd0ADoyOwS74abVanEEQr3R8D75SLU50nKYi08YG0ksC8gzAXkkTSQDVtFuExorYK5gVcxRPb3kqczTXMOdFGlxDJaPD4txgJoZCSi2XadE1HMJVRzbVEjhSj-KiRX7kWd8E8Ui8qjEXLkOkTbxrUj_77qxVglcYRs7Ut_vE9DN8kyeAsgVd7AzjAUdYiwk9j1bSiypb3NMI1v0wW0LDFvXrTBYmyP2yiocmcGR1Tj2AWnBYz92lGmy_svw7L-G12A7WIQzNpvMp-dgx3wx0V_LvQDd8u1dXmr5UEZXzfH4Aksewq4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Dixmier-Douady+classes+and+abelian+extensions+of+groups+of+homeomorphisms&rft.jtitle=Topology+and+its+applications&rft.au=Maruyama%2C+Shuhei&rft.date=2023-08-15&rft.pub=Elsevier+B.V&rft.issn=0166-8641&rft.eissn=1879-3207&rft.volume=336&rft_id=info:doi/10.1016%2Fj.topol.2023.108600&rft.externalDocID=S0166864123001943
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-8641&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-8641&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-8641&client=summon