The Dixmier-Douady classes and abelian extensions of groups of homeomorphisms
Let X be a connected topological space and c∈H2(X;Z) be a non-zero cohomology class. A Homeo(X,c)-bundle is a fiber bundle with fiber X whose structure group reduces to the group Homeo(X,c) of c-preserving homeomorphisms of X. If H1(X;Z)=0, then a characteristic class for Homeo(X,c)-bundles called t...
Saved in:
Published in | Topology and its applications Vol. 336; p. 108600 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Let X be a connected topological space and c∈H2(X;Z) be a non-zero cohomology class. A Homeo(X,c)-bundle is a fiber bundle with fiber X whose structure group reduces to the group Homeo(X,c) of c-preserving homeomorphisms of X. If H1(X;Z)=0, then a characteristic class for Homeo(X,c)-bundles called the Dixmier-Douady class is defined via the Serre spectral sequence. We show the relation between the universal Dixmier-Douady class for foliated Homeo(X,c)-bundles and the gauge group extension of Homeo(X,c). Moreover, under some assumptions, we construct a central S1-extension and a group two-cocycle on Homeo(X,c) corresponding to the Dixmier-Douady class. |
---|---|
AbstractList | Let X be a connected topological space and c∈H2(X;Z) be a non-zero cohomology class. A Homeo(X,c)-bundle is a fiber bundle with fiber X whose structure group reduces to the group Homeo(X,c) of c-preserving homeomorphisms of X. If H1(X;Z)=0, then a characteristic class for Homeo(X,c)-bundles called the Dixmier-Douady class is defined via the Serre spectral sequence. We show the relation between the universal Dixmier-Douady class for foliated Homeo(X,c)-bundles and the gauge group extension of Homeo(X,c). Moreover, under some assumptions, we construct a central S1-extension and a group two-cocycle on Homeo(X,c) corresponding to the Dixmier-Douady class. |
ArticleNumber | 108600 |
Author | Maruyama, Shuhei |
Author_xml | – sequence: 1 givenname: Shuhei orcidid: 0000-0003-2491-2728 surname: Maruyama fullname: Maruyama, Shuhei email: smaruyama1001b@g.chuo-u.ac.jp organization: Department of Mathematics, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan |
BookMark | eNp9kMtOwzAQRS1UJNrCF7DJD6T4kdjOggVqeUlFbMracuwJdZXYkZ2i9u9JW9asZjS6ZzRzZmjigweE7gleEEz4w24xhD60C4opGyeSY3yFpkSKKmcUiwmajimeS16QGzRLaYcxJpWgU_Sx2UK2cofOQcxXYa_tMTOtTglSpr3NdA2t0z6DwwA-ueBTFprsO4Z9f-62oYPQhdhvXerSLbpudJvg7q_O0dfL82b5lq8_X9-XT-vc0JINuZAlF40uqLBgS6hqw4mpalkQhkVhaymg0E3JOFBekVpKWRosSt0UtGCABZsjdtlrYkgpQqP66Dodj4pgdTKidupsRJ2MqIuRkXq8UDCe9jM-rJJx4A1YF8EMygb3L_8LxZptIA |
Cites_doi | 10.2977/prims/1195163725 10.1007/s002200050323 10.17323/1609-4514-2006-6-2-307-315 10.4310/JSG.2020.v18.n1.a7 10.1007/BF02564625 10.1090/S0002-9947-1953-0052438-8 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.topol.2023.108600 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1879-3207 |
ExternalDocumentID | 10_1016_j_topol_2023_108600 S0166864123001943 |
GroupedDBID | --K --M --Z -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 7-5 71M 8P~ 9JN AACTN AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AASFE AAXUO ABAOU ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE IXB J1W KOM M26 M41 MCRUF MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 PC. Q38 ROL RPZ SCC SDF SDG SES SEW SPC SPCBC SSW T5K TN5 WH7 ~G- 0SF 186 29Q 5VS 6I. AAEDT AAQFI AAQXK AAXKI AAYXX ABFNM ABVKL ABXDB ADIYS ADMUD ADVLN AEXQZ AFJKZ AGHFR AKRWK ASPBG AVWKF AZFZN CITATION EJD FGOYB G-2 HZ~ H~9 NCXOZ NHB R2- RIG SSZ WUQ ZKB |
ID | FETCH-LOGICAL-c253t-78567fa427ded5e9bc61c9b8413074db87e4af536e2691b8885c075af4243e073 |
IEDL.DBID | AIKHN |
ISSN | 0166-8641 |
IngestDate | Thu Sep 26 16:53:01 EDT 2024 Fri Feb 23 02:37:33 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Dixmier-Douady class 55R40 Gauge group 57R20 20J06 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c253t-78567fa427ded5e9bc61c9b8413074db87e4af536e2691b8885c075af4243e073 |
ORCID | 0000-0003-2491-2728 |
ParticipantIDs | crossref_primary_10_1016_j_topol_2023_108600 elsevier_sciencedirect_doi_10_1016_j_topol_2023_108600 |
PublicationCentury | 2000 |
PublicationDate | 2023-08-15 |
PublicationDateYYYYMMDD | 2023-08-15 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Topology and its applications |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Dobbins (br0050) 2021 Neukirch, Schmidt, Wingberg (br0120) 2008; vol. 323 Davis, Kirk (br0040) 2001; vol. 35 Savelyev, Shelukhin (br0130) 2020; 18 Ismagilov, Losik, Michor (br0090) 2006; 6 Brown (br0010) 1982; vol. 87 Shuhei Maruyama, The dixmier-douady class, the action homomorphism, and group cocycles on the symplectomorphism group. Frigerio (br0060) 2017; vol. 227 Gal, Kędra (br0070) 2011 Brylinski (br0020) 1993; vol. 107 Yamanoshita (br0140) 1995; 31 Hochschild, Serre (br0080) 1953; 74 Carey, Crowley, Murray (br0030) 1998; 193 Milnor (br0110) 1983; 58 Brylinski (10.1016/j.topol.2023.108600_br0020) 1993; vol. 107 10.1016/j.topol.2023.108600_br0100 Brown (10.1016/j.topol.2023.108600_br0010) 1982; vol. 87 Neukirch (10.1016/j.topol.2023.108600_br0120) 2008; vol. 323 Gal (10.1016/j.topol.2023.108600_br0070) Milnor (10.1016/j.topol.2023.108600_br0110) 1983; 58 Yamanoshita (10.1016/j.topol.2023.108600_br0140) 1995; 31 Frigerio (10.1016/j.topol.2023.108600_br0060) 2017; vol. 227 Hochschild (10.1016/j.topol.2023.108600_br0080) 1953; 74 Ismagilov (10.1016/j.topol.2023.108600_br0090) 2006; 6 Dobbins (10.1016/j.topol.2023.108600_br0050) Savelyev (10.1016/j.topol.2023.108600_br0130) 2020; 18 Davis (10.1016/j.topol.2023.108600_br0040) 2001; vol. 35 Carey (10.1016/j.topol.2023.108600_br0030) 1998; 193 |
References_xml | – volume: 74 start-page: 110 year: 1953 end-page: 134 ident: br0080 article-title: Cohomology of group extensions publication-title: Trans. Am. Math. Soc. contributor: fullname: Serre – volume: 6 start-page: 307 year: 2006 end-page: 315 ident: br0090 article-title: A 2-cocycle on a symplectomorphism group publication-title: Mosc. Math. J. contributor: fullname: Michor – volume: vol. 323 year: 2008 ident: br0120 article-title: Cohomology of Number Fields publication-title: Grundlehren der mathematischen Wissenschaften contributor: fullname: Wingberg – volume: 31 start-page: 953 year: 1995 end-page: 958 ident: br0140 article-title: On the group of publication-title: Publ. Res. Inst. Math. Sci. contributor: fullname: Yamanoshita – volume: vol. 107 year: 1993 ident: br0020 article-title: Loop Spaces, Characteristic Classes and Geometric Quantization publication-title: Progress in Mathematics contributor: fullname: Brylinski – year: 2021 ident: br0050 article-title: A strong equivariant deformation retraction from the homeomorphism group of the projective plane to the special orthogonal group contributor: fullname: Dobbins – year: 2011 ident: br0070 contributor: fullname: Kędra – volume: vol. 35 year: 2001 ident: br0040 article-title: Lecture Notes in Algebraic Topology publication-title: Graduate Studies in Mathematics contributor: fullname: Kirk – volume: 58 start-page: 72 year: 1983 end-page: 85 ident: br0110 article-title: On the homology of Lie groups made discrete publication-title: Comment. Math. Helv. contributor: fullname: Milnor – volume: 193 start-page: 171 year: 1998 end-page: 196 ident: br0030 article-title: Principal bundles and the Dixmier Douady class publication-title: Commun. Math. Phys. contributor: fullname: Murray – volume: vol. 227 year: 2017 ident: br0060 article-title: Bounded Cohomology of Discrete Groups publication-title: Mathematical Surveys and Monographs contributor: fullname: Frigerio – volume: vol. 87 year: 1982 ident: br0010 article-title: Cohomology of Groups publication-title: Graduate Texts in Mathematics contributor: fullname: Brown – volume: 18 start-page: 251 year: 2020 end-page: 289 ident: br0130 article-title: K-theoretic invariants of Hamiltonian fibrations publication-title: J. Symplectic Geom. contributor: fullname: Shelukhin – volume: vol. 35 year: 2001 ident: 10.1016/j.topol.2023.108600_br0040 article-title: Lecture Notes in Algebraic Topology contributor: fullname: Davis – volume: 31 start-page: 953 issue: 5 year: 1995 ident: 10.1016/j.topol.2023.108600_br0140 article-title: On the group of S1-equivariant homeomorphisms of the 3-sphere publication-title: Publ. Res. Inst. Math. Sci. doi: 10.2977/prims/1195163725 contributor: fullname: Yamanoshita – volume: vol. 227 year: 2017 ident: 10.1016/j.topol.2023.108600_br0060 article-title: Bounded Cohomology of Discrete Groups contributor: fullname: Frigerio – volume: 193 start-page: 171 issue: 1 year: 1998 ident: 10.1016/j.topol.2023.108600_br0030 article-title: Principal bundles and the Dixmier Douady class publication-title: Commun. Math. Phys. doi: 10.1007/s002200050323 contributor: fullname: Carey – ident: 10.1016/j.topol.2023.108600_br0100 – volume: vol. 323 year: 2008 ident: 10.1016/j.topol.2023.108600_br0120 article-title: Cohomology of Number Fields contributor: fullname: Neukirch – ident: 10.1016/j.topol.2023.108600_br0050 contributor: fullname: Dobbins – ident: 10.1016/j.topol.2023.108600_br0070 contributor: fullname: Gal – volume: 6 start-page: 307 issue: 2 year: 2006 ident: 10.1016/j.topol.2023.108600_br0090 article-title: A 2-cocycle on a symplectomorphism group publication-title: Mosc. Math. J. doi: 10.17323/1609-4514-2006-6-2-307-315 contributor: fullname: Ismagilov – volume: 18 start-page: 251 issue: 1 year: 2020 ident: 10.1016/j.topol.2023.108600_br0130 article-title: K-theoretic invariants of Hamiltonian fibrations publication-title: J. Symplectic Geom. doi: 10.4310/JSG.2020.v18.n1.a7 contributor: fullname: Savelyev – volume: 58 start-page: 72 issue: 1 year: 1983 ident: 10.1016/j.topol.2023.108600_br0110 article-title: On the homology of Lie groups made discrete publication-title: Comment. Math. Helv. doi: 10.1007/BF02564625 contributor: fullname: Milnor – volume: vol. 87 year: 1982 ident: 10.1016/j.topol.2023.108600_br0010 article-title: Cohomology of Groups contributor: fullname: Brown – volume: vol. 107 year: 1993 ident: 10.1016/j.topol.2023.108600_br0020 article-title: Loop Spaces, Characteristic Classes and Geometric Quantization contributor: fullname: Brylinski – volume: 74 start-page: 110 year: 1953 ident: 10.1016/j.topol.2023.108600_br0080 article-title: Cohomology of group extensions publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1953-0052438-8 contributor: fullname: Hochschild |
SSID | ssj0001972 |
Score | 2.3566008 |
Snippet | Let X be a connected topological space and c∈H2(X;Z) be a non-zero cohomology class. A Homeo(X,c)-bundle is a fiber bundle with fiber X whose structure group... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 108600 |
SubjectTerms | Dixmier-Douady class Gauge group |
Title | The Dixmier-Douady classes and abelian extensions of groups of homeomorphisms |
URI | https://dx.doi.org/10.1016/j.topol.2023.108600 |
Volume | 336 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsNAFL30sdGF-MT6KLNwado8JpNkWaqlKu1GC92FyTwwQpJiIujGb3dmkhQFceEuCVwIZ2bOnNzMvQfgijhC2lRGFgttbuEEE4tKta6IIwnzXC6pMZtYLMl8he_X_roD07YWRh-rbLi_5nTD1s2TcYPmeJOm40clVkhIsKJerVOw14W--UnUg_7k7mG-3BKydtaqW3wTSwe0zYfMMa9KexGMtIm4MR3SlW6_bVDfNp3ZPuw1ahFN6hc6gI7ID2F3sW21Wh7BQg00uknfMxVuKTlM-QdiWhKLEtGcI5oInclAJtutU2MlKiQyxRzm6rnIRJEVCu60zMpjWM1un6Zzq_FIsJjre5UVhD4JJMVuwAX3RZQw4rAoCTUQAeZJGAhMpe8R4ZLISdT3rs-USqASu9gTan2fQC8vcnEKiErqYc9mPLAx5gJHoSsEFkHkUhwkLh_AdQtMvKlbYcTtGbGX2OAYaxzjGscBkBa8-MeIxoqs_wo8-2_gOezoO53xdfwL6FWvb-JSSYYqGUJ39OkMm4nxBYlTwLE |
link.rule.ids | 315,783,787,4511,24130,27938,27939,45599,45693 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA5zO6gH8RPnZw4ejVvbNGmPYyqdW3dxg91C2iRYoe2wFfTfm_RjKIgHb6XlhfAked6nL-8HADfEkmrIlY9ibygQjjBBXOl7RSxFYscWilfDJsI5CZb4aeWuOmDc1sKYtMqG-2tOr9i6eTNo0Bysk2TwrMUK8QjW1Gt0Cna2QE-rAV8f9t5oMg3mG0I2k7XqFt8EGYO2-VCV5lWaWQR3Zoh4NXTIVLr95qC-OZ3HfbDXqEU4qhd0ADoyOwS74abVanEEQr3R8D75SLU50nKYi08YG0ksC8gzAXkkTSQDVtFuExorYK5gVcxRPb3kqczTXMOdFGlxDJaPD4txgJoZCSi2XadE1HMJVRzbVEjhSj-KiRX7kWd8E8Ui8qjEXLkOkTbxrUj_77qxVglcYRs7Ut_vE9DN8kyeAsgVd7AzjAUdYiwk9j1bSiypb3NMI1v0wW0LDFvXrTBYmyP2yiocmcGR1Tj2AWnBYz92lGmy_svw7L-G12A7WIQzNpvMp-dgx3wx0V_LvQDd8u1dXmr5UEZXzfH4Aksewq4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Dixmier-Douady+classes+and+abelian+extensions+of+groups+of+homeomorphisms&rft.jtitle=Topology+and+its+applications&rft.au=Maruyama%2C+Shuhei&rft.date=2023-08-15&rft.pub=Elsevier+B.V&rft.issn=0166-8641&rft.eissn=1879-3207&rft.volume=336&rft_id=info:doi/10.1016%2Fj.topol.2023.108600&rft.externalDocID=S0166864123001943 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-8641&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-8641&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-8641&client=summon |