Assortativity in sympatric speciation and species classification
We investigate the role of assortative mating in speciation using the sympatric model of Derrida and Higgs. The model explores the idea that genetic differences create incompatibilities between individuals, preventing mating if the number of such differences is too large. Speciation, however, only h...
Saved in:
Published in | Physica A Vol. 653; p. 130111 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We investigate the role of assortative mating in speciation using the sympatric model of Derrida and Higgs. The model explores the idea that genetic differences create incompatibilities between individuals, preventing mating if the number of such differences is too large. Speciation, however, only happens in this mating system if the number of genes is large. Here we show that speciation with small genome sizes can occur if assortative mating is introduced. In our model individuals are represented by three chromosomes: one responsible for reproductive compatibility, one for coding the trait on which assortativity will operate, and a neutral chromosome. Reproduction is possible if individuals are genetically similar with respect to the first chromosome, but among these compatible mating partners, the one with the most similar trait coded by the second chromosome is selected. We show that this type of assortativity facilitates speciation, which can happen with a small number of genes in the first chromosome. Species, classified according to reproductive isolation, dictated by the first chromosome, can display different traits values, as measured by the second and the third chromosomes. Therefore, species can also be identified based on similarity of the neutral trait, which works as a proxy for reproductive isolation. |
---|---|
AbstractList | We investigate the role of assortative mating in speciation using the sympatric model of Derrida and Higgs. The model explores the idea that genetic differences create incompatibilities between individuals, preventing mating if the number of such differences is too large. Speciation, however, only happens in this mating system if the number of genes is large. Here we show that speciation with small genome sizes can occur if assortative mating is introduced. In our model individuals are represented by three chromosomes: one responsible for reproductive compatibility, one for coding the trait on which assortativity will operate, and a neutral chromosome. Reproduction is possible if individuals are genetically similar with respect to the first chromosome, but among these compatible mating partners, the one with the most similar trait coded by the second chromosome is selected. We show that this type of assortativity facilitates speciation, which can happen with a small number of genes in the first chromosome. Species, classified according to reproductive isolation, dictated by the first chromosome, can display different traits values, as measured by the second and the third chromosomes. Therefore, species can also be identified based on similarity of the neutral trait, which works as a proxy for reproductive isolation. |
ArticleNumber | 130111 |
Author | Lizárraga, Joao U.F. Marquitti, Flavia M.D. de Aguiar, Marcus A.M. |
Author_xml | – sequence: 1 givenname: Joao U.F. orcidid: 0000-0002-5408-7362 surname: Lizárraga fullname: Lizárraga, Joao U.F. organization: Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, Brazil – sequence: 2 givenname: Flavia M.D. surname: Marquitti fullname: Marquitti, Flavia M.D. email: flaviam@unicamp.br organization: Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, Brazil – sequence: 3 givenname: Marcus A.M. orcidid: 0000-0003-1379-7568 surname: de Aguiar fullname: de Aguiar, Marcus A.M. organization: Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, Brazil |
BookMark | eNp9j8tqwzAQRbVIoUnaL-jGP2BXI9mWvSg0hL4g0E27FrI0ojKJbTQm4L-vE3fd1WW4nOGeDVt1fYeMPQDPgEP52GbDz0QmE1zkGUgOACu25lJVaS4V3LINUcs5ByXFmj3viPo4mjGcwzgloUtoOg1mjMEmNKANc9N3iencciIl9miIgg_2Wt2xG2-OhPd_uWXfry9f-_f08Pn2sd8dUisKOaZK-RoKLBufN0WNWAovXcUrdBVa68o8594YsE1hjXdCVFZhmRulauANVo3cMrn8tbEniuj1EMPJxEkD1xdx3eqruL6I60V8pp4WCudp54BR0-zQWXQhoh2168O__C9XnmiS |
Cites_doi | 10.1038/22521 10.1111/mec.14126 10.1086/705825 10.1016/j.jtbi.2013.06.011 10.2307/2407946 10.1146/annurev.ecolsys.38.091206.095804 10.1146/annurev.ecolsys.34.011802.132412 10.1086/694889 10.1098/rspb.1998.0461 10.1002/bies.201900047 10.1641/0006-3568(2003)053[0151:TSASIP]2.0.CO;2 10.1088/1751-8121/aa5701 10.1016/j.physa.2014.11.030 10.1111/evo.14235 10.1073/pnas.1217034110 10.1002/ece3.2638 10.1038/nature08168 10.1111/ecog.04937 10.1111/j.1420-9101.2008.01611.x 10.1098/rspb.1998.0570 10.1016/j.tree.2017.11.003 10.1088/0305-4470/24/17/005 10.1016/j.physa.2014.04.026 10.1016/j.tree.2011.01.001 10.1088/0305-4470/27/21/022 10.1093/aob/mcq126 10.1007/BF00171824 10.1086/282457 10.1038/nature01274 10.1098/rsfs.2013.0026 10.1086/303417 10.1016/j.physa.2004.08.068 10.1088/1751-8121/ab7b9f 10.1086/708529 10.1111/evo.14603 10.1038/nature02556 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.physa.2024.130111 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
ExternalDocumentID | 10_1016_j_physa_2024_130111 S0378437124006204 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAPFB AAQFI AAXKI AAXUO ABAOU ABMAC ABNEU ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADEZE ADFHU ADGUI AEBSH AEKER AEYQN AFFNX AFJKZ AFKWA AFTJW AGHFR AGTHC AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIIAU AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR AXLSJ BKOJK BLXMC EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM MHUIS MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SSB SSF SSQ SSW SSZ T5K TN5 TWZ WH7 XPP YNT ZMT ~02 ~G- 29O 5VS 6TJ AAFFL AAQXK AATTM AAYWO AAYXX ABFNM ABJNI ABWVN ABXDB ACNNM ACROA ACRPL ADMUD ADNMO ADVLN AEIPS AFODL AFXIZ AGCQF AGQPQ AGRNS AIIUN AJWLA ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BEHZQ BEZPJ BGSCR BNPGV BNTGB BPUDD BULVW BZJEE CITATION EJD FEDTE FGOYB HMV HVGLF HZ~ M38 M41 MVM NDZJH R2- SPG SSH VOH WUQ XJT XOL YYP ZY4 |
ID | FETCH-LOGICAL-c253t-77f915e6bf4b59ee62f3d808ed8eccd6440faa1cb5cafd228c7e64a77910be8b3 |
IEDL.DBID | .~1 |
ISSN | 0378-4371 |
IngestDate | Tue Jul 01 02:40:02 EDT 2025 Sat Oct 12 15:52:44 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Two-allele model Assortative mating Homotypic preferences Speciation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c253t-77f915e6bf4b59ee62f3d808ed8eccd6440faa1cb5cafd228c7e64a77910be8b3 |
ORCID | 0000-0002-5408-7362 0000-0003-1379-7568 |
ParticipantIDs | crossref_primary_10_1016_j_physa_2024_130111 elsevier_sciencedirect_doi_10_1016_j_physa_2024_130111 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-01 2024-11-00 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Physica A |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Janicke, Marie-Orleach, Aubier, Perrier, Morrow (b14) 2019; 194 Doebeli, Dieckmann (b23) 2000; 156 Rosenthal (b32) 2017 Fitzpatrick, Fordyce, Gavrilets (b46) 2008; 21 Nosil, Schluter (b7) 2011; 26 Boumans, Hogner, Brittain, Johnsen (b20) 2017; 7 Bagnoli, Guardiani (b17) 2005; 347 Irwin (b16) 2020; 195 Smith (b35) 1966; 100 Marquitti, Fernandes, de Aguiar (b42) 2020; 43 Butlin, Servedio, Smadja, Bank, Barton, Flaxman, Giraud, Hopkins, Larson, Maan (b39) 2021; 75 Higgs, Derrida (b28) 1992; 35 Fry (b37) 2003; 57 Yamaguchi, Iwasa (b5) 2013; 3 Puebla, Bermingham, Guichard (b33) 2012; 279 Princepe, Czarnobai, Pradella, Caetano, Marquitti, de Aguiar, Araujo (b6) 2022; 76 Cooley, Simon, Marshall (b11) 2003; 53 Servedio, Noor (b43) 2003; 34 Martins, de Aguiar, Bar-Yam (b40) 2013; 110 Aguiar, M. A (b31) 2017; 50 Richards, Servedio, Martin (b48) 2019; 41 Bolnick, Fitzpatrick (b25) 2007; 38 Felsenstein (b36) 1981; 35 Kondrashov, Shpak (b22) 1998; 265 Gavrilets, Hai, Vose (b29) 1998; 265 Taylor, Friesen (b12) 2017; 26 Foote (b47) 2018; 33 Coyne, Orr (b1) 2004 Gavrilets (b26) 2005 Coyne, Price (b44) 2000; 54 Manzo, Peliti (b4) 1994; 27 Doebeli, Dieckmann (b9) 2003; 421 McKinnon, Mori, Blackman, David, Kingsley, Jamieson, Chou, Schluter (b13) 2004; 429 de Aguiar, Baranger, Baptestini, Kaufman, Bar-Yam (b30) 2009; 460 Caetano, Sanchez, Costa, de Aguiar (b24) 2020; 53 Costa, Lemos-Costa, Marquitti, Fernandes, Ramos, Schneider, Martins, de Aguiar (b41) 2019; 68 Kopp, Servedio, Mendelson, Safran, Rodríguez, Hauber, Scordato, Symes, Balakrishnan, Zonana (b15) 2018; 191 Schneider, do Carmo, de Aguiar (b19) 2015; 421 Baptestini, de Aguiar, Bar-Yam (b34) 2013; 335 Dieckmann, Doebeli (b8) 1999; 400 Mayr (b3) 2013 Nosil (b2) 2012 Bolnick, Fitzpatrick (b45) 2007; 38 Bolnick (b38) 2004; 58 Schneider, do Carmo, Martins, de Aguiar (b18) 2014; 409 Rieseberg, Blackman (b21) 2010; 106 Higgs, Derrida (b27) 1991; 24 Polechová, Barton (b10) 2005; 59 Coyne (10.1016/j.physa.2024.130111_b1) 2004 Schneider (10.1016/j.physa.2024.130111_b19) 2015; 421 Marquitti (10.1016/j.physa.2024.130111_b42) 2020; 43 Gavrilets (10.1016/j.physa.2024.130111_b29) 1998; 265 Bolnick (10.1016/j.physa.2024.130111_b45) 2007; 38 Doebeli (10.1016/j.physa.2024.130111_b9) 2003; 421 Kopp (10.1016/j.physa.2024.130111_b15) 2018; 191 Polechová (10.1016/j.physa.2024.130111_b10) 2005; 59 Schneider (10.1016/j.physa.2024.130111_b18) 2014; 409 de Aguiar (10.1016/j.physa.2024.130111_b30) 2009; 460 Puebla (10.1016/j.physa.2024.130111_b33) 2012; 279 Irwin (10.1016/j.physa.2024.130111_b16) 2020; 195 Servedio (10.1016/j.physa.2024.130111_b43) 2003; 34 Fitzpatrick (10.1016/j.physa.2024.130111_b46) 2008; 21 Baptestini (10.1016/j.physa.2024.130111_b34) 2013; 335 Smith (10.1016/j.physa.2024.130111_b35) 1966; 100 Butlin (10.1016/j.physa.2024.130111_b39) 2021; 75 Bolnick (10.1016/j.physa.2024.130111_b38) 2004; 58 Mayr (10.1016/j.physa.2024.130111_b3) 2013 Fry (10.1016/j.physa.2024.130111_b37) 2003; 57 Nosil (10.1016/j.physa.2024.130111_b7) 2011; 26 Boumans (10.1016/j.physa.2024.130111_b20) 2017; 7 Higgs (10.1016/j.physa.2024.130111_b28) 1992; 35 Doebeli (10.1016/j.physa.2024.130111_b23) 2000; 156 Bolnick (10.1016/j.physa.2024.130111_b25) 2007; 38 Gavrilets (10.1016/j.physa.2024.130111_b26) 2005 Coyne (10.1016/j.physa.2024.130111_b44) 2000; 54 Rosenthal (10.1016/j.physa.2024.130111_b32) 2017 Rieseberg (10.1016/j.physa.2024.130111_b21) 2010; 106 Kondrashov (10.1016/j.physa.2024.130111_b22) 1998; 265 Foote (10.1016/j.physa.2024.130111_b47) 2018; 33 Martins (10.1016/j.physa.2024.130111_b40) 2013; 110 McKinnon (10.1016/j.physa.2024.130111_b13) 2004; 429 Bagnoli (10.1016/j.physa.2024.130111_b17) 2005; 347 Costa (10.1016/j.physa.2024.130111_b41) 2019; 68 Dieckmann (10.1016/j.physa.2024.130111_b8) 1999; 400 Cooley (10.1016/j.physa.2024.130111_b11) 2003; 53 Felsenstein (10.1016/j.physa.2024.130111_b36) 1981; 35 Manzo (10.1016/j.physa.2024.130111_b4) 1994; 27 Richards (10.1016/j.physa.2024.130111_b48) 2019; 41 Princepe (10.1016/j.physa.2024.130111_b6) 2022; 76 Aguiar (10.1016/j.physa.2024.130111_b31) 2017; 50 Higgs (10.1016/j.physa.2024.130111_b27) 1991; 24 Taylor (10.1016/j.physa.2024.130111_b12) 2017; 26 Yamaguchi (10.1016/j.physa.2024.130111_b5) 2013; 3 Nosil (10.1016/j.physa.2024.130111_b2) 2012 Caetano (10.1016/j.physa.2024.130111_b24) 2020; 53 Janicke (10.1016/j.physa.2024.130111_b14) 2019; 194 |
References_xml | – volume: 191 start-page: 1 year: 2018 end-page: 20 ident: b15 article-title: Mechanisms of assortative mating in speciation with gene flow: connecting theory and empirical research publication-title: Amer. Nat. – start-page: 696 year: 2005 end-page: 699 ident: b26 article-title: “Adaptive speciation”: it is not that easy: a reply to doebeli et al. publication-title: Evolution – volume: 58 start-page: 895 year: 2004 end-page: 899 ident: b38 article-title: Waiting for sympatric speciation publication-title: Evolution – volume: 21 start-page: 1452 year: 2008 end-page: 1459 ident: b46 article-title: What, if anything, is sympatric speciation? publication-title: J. Evol. Biol. – volume: 110 start-page: 5080 year: 2013 end-page: 5084 ident: b40 article-title: Evolution and stability of ring species publication-title: Proc. Natl. Acad. Sci. – volume: 41 year: 2019 ident: b48 article-title: Searching for sympatric speciation in the genomic era publication-title: BioEssays – volume: 26 start-page: 3330 year: 2017 end-page: 3342 ident: b12 article-title: The role of allochrony in speciation publication-title: Mol. Ecol. – volume: 54 start-page: 2166 year: 2000 end-page: 2171 ident: b44 article-title: Little evidence for sympatric speciation in island birds publication-title: Evolution – volume: 35 start-page: 124 year: 1981 end-page: 138 ident: b36 article-title: Skepticism towards santa rosalia, or why are there so few kinds of animals? publication-title: Evolution – volume: 195 start-page: E150 year: 2020 end-page: E167 ident: b16 article-title: Assortative mating in hybrid zones is remarkably ineffective in promoting speciation publication-title: Amer. Nat. – volume: 7 start-page: 1635 year: 2017 end-page: 1649 ident: b20 article-title: Ecological speciation by temporal isolation in a population of the stonefly leuctra hippopus (Plecoptera, Leuctridae) publication-title: Ecol. Evol. – volume: 3 year: 2013 ident: b5 article-title: First passage time to allopatric speciation publication-title: Interface Focus – volume: 43 start-page: 1487 year: 2020 end-page: 1498 ident: b42 article-title: Allopatry increases the balance of phylogenetic trees during radiation under neutral speciation publication-title: Ecography – volume: 53 year: 2020 ident: b24 article-title: Sympatric speciation based on pure assortative mating publication-title: J. Phys. A – volume: 265 start-page: 1483 year: 1998 end-page: 1489 ident: b29 article-title: Rapid parapatric speciation on holey adaptive landscapes publication-title: Proc. R. Soc. Lond. Ser. B: Biol. Sci. – volume: 53 start-page: 151 year: 2003 end-page: 157 ident: b11 article-title: Temporal separation and speciation in periodical cicadas publication-title: Bioscience – volume: 76 start-page: 2260 year: 2022 end-page: 2271 ident: b6 article-title: Diversity patterns and speciation processes in a two-island system with continuous migration publication-title: Evolution – volume: 156 start-page: S77 year: 2000 end-page: S101 ident: b23 article-title: Evolutionary branching and sympatric speciation caused by different types of ecological interactions publication-title: Amer. Nat. – volume: 460 start-page: 384 year: 2009 end-page: 387 ident: b30 article-title: Global patterns of speciation and diversity publication-title: Nature – volume: 68 start-page: 131 year: 2019 end-page: 144 ident: b41 article-title: Signatures of microevolutionary processes in phylogenetic patterns publication-title: Syst. Biol. – volume: 24 start-page: L985 year: 1991 ident: b27 article-title: Stochastic models for species formation in evolving populations publication-title: J. Phys. A: Math. Gen. – volume: 34 start-page: 339 year: 2003 end-page: 364 ident: b43 article-title: The role of reinforcement in speciation: theory and data publication-title: Annu. Rev. Ecol. Evol. Syst. – volume: 75 start-page: 978 year: 2021 end-page: 988 ident: b39 article-title: Homage to felsenstein 1981, or why are there so few/many species? publication-title: Evolution – volume: 33 start-page: 85 year: 2018 end-page: 95 ident: b47 article-title: Sympatric speciation in the genomic era publication-title: Trends Ecol. Evol. – year: 2012 ident: b2 article-title: Ecological Speciation – volume: 27 start-page: 7079 year: 1994 ident: b4 article-title: Geographic speciation in the Derrida–Higgs model of species formation publication-title: J. Phys. A: Math. Gen. – volume: 50 year: 2017 ident: b31 article-title: Speciation in the Derrida–Higgs model with finite genomes and spatial populations publication-title: J. Phys. A – volume: 59 start-page: 1194 year: 2005 end-page: 1210 ident: b10 article-title: Speciation through competition: a critical review publication-title: Evolution – volume: 409 start-page: 35 year: 2014 end-page: 47 ident: b18 article-title: Toward a theory of topopatric speciation: the role of genetic assortative mating publication-title: Phys. A – year: 2004 ident: b1 publication-title: Speciation – volume: 194 start-page: 865 year: 2019 end-page: 875 ident: b14 article-title: Assortative mating in animals and its role for speciation publication-title: Amer. Nat. – volume: 400 start-page: 354 year: 1999 end-page: 357 ident: b8 article-title: On the origin of species by sympatric speciation publication-title: Nature – year: 2017 ident: b32 article-title: Mate Choice: The Evolution of Sexual Decision Making from Microbes to Humans – volume: 335 start-page: 51 year: 2013 end-page: 56 ident: b34 article-title: Conditions for neutral speciation via isolation by distance publication-title: J. Theoret. Biol. – volume: 26 start-page: 160 year: 2011 end-page: 167 ident: b7 article-title: The genes underlying the process of speciation publication-title: Trends Ecol. Evol. – volume: 35 start-page: 454 year: 1992 end-page: 465 ident: b28 article-title: Genetic distance and species formation in evolving populations publication-title: J. Mol. Evol. – volume: 38 start-page: 459 year: 2007 end-page: 487 ident: b45 article-title: Sympatric speciation: models and empirical evidence publication-title: Annu. Rev. Ecol. Evol. Syst. – volume: 279 start-page: 1085 year: 2012 end-page: 1092 ident: b33 article-title: Pairing dynamics and the origin of species publication-title: Proc. R. Soc. Lond. Ser. B: Biol. Sci. – volume: 38 start-page: 459 year: 2007 end-page: 487 ident: b25 article-title: Sympatric speciation: Models and empirical evidence publication-title: Annu. Rev. Ecol. Evol. Syst. – volume: 265 start-page: 2273 year: 1998 end-page: 2278 ident: b22 article-title: On the origin of species by means of assortative mating publication-title: Proc. R. Soc. Lond. Ser. B: Biol. Sci. – volume: 100 start-page: 637 year: 1966 end-page: 650 ident: b35 article-title: Sympatric speciation publication-title: Amer. Nat. – volume: 421 start-page: 259 year: 2003 end-page: 264 ident: b9 article-title: Speciation along environmental gradients publication-title: Nature – volume: 429 start-page: 294 year: 2004 end-page: 298 ident: b13 article-title: Evidence for ecology’s role in speciation publication-title: Nature – volume: 57 start-page: 1735 year: 2003 end-page: 1746 ident: b37 article-title: Multilocus models of sympatric speciation: Bush versus rice versus felsenstein publication-title: Evolution – volume: 106 start-page: 439 year: 2010 end-page: 455 ident: b21 article-title: Speciation genes in plants publication-title: Ann. Botany – year: 2013 ident: b3 article-title: Animal species and evolution publication-title: Animal Species and Evolution – volume: 347 start-page: 534 year: 2005 end-page: 574 ident: b17 article-title: A model of sympatric speciation through assortative mating publication-title: Phys. A – volume: 421 start-page: 54 year: 2015 end-page: 68 ident: b19 article-title: A dynamical analysis of allele frequencies in populations evolving under assortative mating and mutations publication-title: Phys. A – volume: 400 start-page: 354 issue: 6742 year: 1999 ident: 10.1016/j.physa.2024.130111_b8 article-title: On the origin of species by sympatric speciation publication-title: Nature doi: 10.1038/22521 – volume: 26 start-page: 3330 issue: 13 year: 2017 ident: 10.1016/j.physa.2024.130111_b12 article-title: The role of allochrony in speciation publication-title: Mol. Ecol. doi: 10.1111/mec.14126 – volume: 194 start-page: 865 issue: 6 year: 2019 ident: 10.1016/j.physa.2024.130111_b14 article-title: Assortative mating in animals and its role for speciation publication-title: Amer. Nat. doi: 10.1086/705825 – volume: 335 start-page: 51 year: 2013 ident: 10.1016/j.physa.2024.130111_b34 article-title: Conditions for neutral speciation via isolation by distance publication-title: J. Theoret. Biol. doi: 10.1016/j.jtbi.2013.06.011 – volume: 35 start-page: 124 issue: 1 year: 1981 ident: 10.1016/j.physa.2024.130111_b36 article-title: Skepticism towards santa rosalia, or why are there so few kinds of animals? publication-title: Evolution doi: 10.2307/2407946 – volume: 38 start-page: 459 year: 2007 ident: 10.1016/j.physa.2024.130111_b45 article-title: Sympatric speciation: models and empirical evidence publication-title: Annu. Rev. Ecol. Evol. Syst. doi: 10.1146/annurev.ecolsys.38.091206.095804 – volume: 34 start-page: 339 issue: 1 year: 2003 ident: 10.1016/j.physa.2024.130111_b43 article-title: The role of reinforcement in speciation: theory and data publication-title: Annu. Rev. Ecol. Evol. Syst. doi: 10.1146/annurev.ecolsys.34.011802.132412 – volume: 191 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.physa.2024.130111_b15 article-title: Mechanisms of assortative mating in speciation with gene flow: connecting theory and empirical research publication-title: Amer. Nat. doi: 10.1086/694889 – volume: 265 start-page: 1483 issue: 1405 year: 1998 ident: 10.1016/j.physa.2024.130111_b29 article-title: Rapid parapatric speciation on holey adaptive landscapes publication-title: Proc. R. Soc. Lond. Ser. B: Biol. Sci. doi: 10.1098/rspb.1998.0461 – volume: 41 issue: 7 year: 2019 ident: 10.1016/j.physa.2024.130111_b48 article-title: Searching for sympatric speciation in the genomic era publication-title: BioEssays doi: 10.1002/bies.201900047 – volume: 53 start-page: 151 issue: 2 year: 2003 ident: 10.1016/j.physa.2024.130111_b11 article-title: Temporal separation and speciation in periodical cicadas publication-title: Bioscience doi: 10.1641/0006-3568(2003)053[0151:TSASIP]2.0.CO;2 – volume: 50 issue: 8 year: 2017 ident: 10.1016/j.physa.2024.130111_b31 article-title: Speciation in the Derrida–Higgs model with finite genomes and spatial populations publication-title: J. Phys. A doi: 10.1088/1751-8121/aa5701 – volume: 59 start-page: 1194 issue: 6 year: 2005 ident: 10.1016/j.physa.2024.130111_b10 article-title: Speciation through competition: a critical review publication-title: Evolution – volume: 421 start-page: 54 year: 2015 ident: 10.1016/j.physa.2024.130111_b19 article-title: A dynamical analysis of allele frequencies in populations evolving under assortative mating and mutations publication-title: Phys. A doi: 10.1016/j.physa.2014.11.030 – year: 2012 ident: 10.1016/j.physa.2024.130111_b2 – year: 2004 ident: 10.1016/j.physa.2024.130111_b1 – volume: 75 start-page: 978 issue: 5 year: 2021 ident: 10.1016/j.physa.2024.130111_b39 article-title: Homage to felsenstein 1981, or why are there so few/many species? publication-title: Evolution doi: 10.1111/evo.14235 – year: 2017 ident: 10.1016/j.physa.2024.130111_b32 – start-page: 696 year: 2005 ident: 10.1016/j.physa.2024.130111_b26 article-title: “Adaptive speciation”: it is not that easy: a reply to doebeli et al. publication-title: Evolution – volume: 110 start-page: 5080 issue: 13 year: 2013 ident: 10.1016/j.physa.2024.130111_b40 article-title: Evolution and stability of ring species publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1217034110 – volume: 7 start-page: 1635 issue: 5 year: 2017 ident: 10.1016/j.physa.2024.130111_b20 article-title: Ecological speciation by temporal isolation in a population of the stonefly leuctra hippopus (Plecoptera, Leuctridae) publication-title: Ecol. Evol. doi: 10.1002/ece3.2638 – volume: 460 start-page: 384 issue: 7253 year: 2009 ident: 10.1016/j.physa.2024.130111_b30 article-title: Global patterns of speciation and diversity publication-title: Nature doi: 10.1038/nature08168 – volume: 43 start-page: 1487 issue: 10 year: 2020 ident: 10.1016/j.physa.2024.130111_b42 article-title: Allopatry increases the balance of phylogenetic trees during radiation under neutral speciation publication-title: Ecography doi: 10.1111/ecog.04937 – volume: 57 start-page: 1735 issue: 8 year: 2003 ident: 10.1016/j.physa.2024.130111_b37 article-title: Multilocus models of sympatric speciation: Bush versus rice versus felsenstein publication-title: Evolution – volume: 279 start-page: 1085 issue: 1731 year: 2012 ident: 10.1016/j.physa.2024.130111_b33 article-title: Pairing dynamics and the origin of species publication-title: Proc. R. Soc. Lond. Ser. B: Biol. Sci. – volume: 21 start-page: 1452 issue: 6 year: 2008 ident: 10.1016/j.physa.2024.130111_b46 article-title: What, if anything, is sympatric speciation? publication-title: J. Evol. Biol. doi: 10.1111/j.1420-9101.2008.01611.x – volume: 54 start-page: 2166 issue: 6 year: 2000 ident: 10.1016/j.physa.2024.130111_b44 article-title: Little evidence for sympatric speciation in island birds publication-title: Evolution – year: 2013 ident: 10.1016/j.physa.2024.130111_b3 article-title: Animal species and evolution – volume: 58 start-page: 895 issue: 4 year: 2004 ident: 10.1016/j.physa.2024.130111_b38 article-title: Waiting for sympatric speciation publication-title: Evolution – volume: 265 start-page: 2273 issue: 1412 year: 1998 ident: 10.1016/j.physa.2024.130111_b22 article-title: On the origin of species by means of assortative mating publication-title: Proc. R. Soc. Lond. Ser. B: Biol. Sci. doi: 10.1098/rspb.1998.0570 – volume: 33 start-page: 85 issue: 2 year: 2018 ident: 10.1016/j.physa.2024.130111_b47 article-title: Sympatric speciation in the genomic era publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2017.11.003 – volume: 24 start-page: L985 issue: 17 year: 1991 ident: 10.1016/j.physa.2024.130111_b27 article-title: Stochastic models for species formation in evolving populations publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/24/17/005 – volume: 409 start-page: 35 year: 2014 ident: 10.1016/j.physa.2024.130111_b18 article-title: Toward a theory of topopatric speciation: the role of genetic assortative mating publication-title: Phys. A doi: 10.1016/j.physa.2014.04.026 – volume: 26 start-page: 160 issue: 4 year: 2011 ident: 10.1016/j.physa.2024.130111_b7 article-title: The genes underlying the process of speciation publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2011.01.001 – volume: 27 start-page: 7079 issue: 21 year: 1994 ident: 10.1016/j.physa.2024.130111_b4 article-title: Geographic speciation in the Derrida–Higgs model of species formation publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/27/21/022 – volume: 106 start-page: 439 issue: 3 year: 2010 ident: 10.1016/j.physa.2024.130111_b21 article-title: Speciation genes in plants publication-title: Ann. Botany doi: 10.1093/aob/mcq126 – volume: 35 start-page: 454 issue: 5 year: 1992 ident: 10.1016/j.physa.2024.130111_b28 article-title: Genetic distance and species formation in evolving populations publication-title: J. Mol. Evol. doi: 10.1007/BF00171824 – volume: 100 start-page: 637 issue: 916 year: 1966 ident: 10.1016/j.physa.2024.130111_b35 article-title: Sympatric speciation publication-title: Amer. Nat. doi: 10.1086/282457 – volume: 421 start-page: 259 issue: 6920 year: 2003 ident: 10.1016/j.physa.2024.130111_b9 article-title: Speciation along environmental gradients publication-title: Nature doi: 10.1038/nature01274 – volume: 3 issue: 6 year: 2013 ident: 10.1016/j.physa.2024.130111_b5 article-title: First passage time to allopatric speciation publication-title: Interface Focus doi: 10.1098/rsfs.2013.0026 – volume: 156 start-page: S77 issue: S4 year: 2000 ident: 10.1016/j.physa.2024.130111_b23 article-title: Evolutionary branching and sympatric speciation caused by different types of ecological interactions publication-title: Amer. Nat. doi: 10.1086/303417 – volume: 347 start-page: 534 year: 2005 ident: 10.1016/j.physa.2024.130111_b17 article-title: A model of sympatric speciation through assortative mating publication-title: Phys. A doi: 10.1016/j.physa.2004.08.068 – volume: 53 issue: 15 year: 2020 ident: 10.1016/j.physa.2024.130111_b24 article-title: Sympatric speciation based on pure assortative mating publication-title: J. Phys. A doi: 10.1088/1751-8121/ab7b9f – volume: 195 start-page: E150 issue: 6 year: 2020 ident: 10.1016/j.physa.2024.130111_b16 article-title: Assortative mating in hybrid zones is remarkably ineffective in promoting speciation publication-title: Amer. Nat. doi: 10.1086/708529 – volume: 76 start-page: 2260 issue: 10 year: 2022 ident: 10.1016/j.physa.2024.130111_b6 article-title: Diversity patterns and speciation processes in a two-island system with continuous migration publication-title: Evolution doi: 10.1111/evo.14603 – volume: 429 start-page: 294 issue: 6989 year: 2004 ident: 10.1016/j.physa.2024.130111_b13 article-title: Evidence for ecology’s role in speciation publication-title: Nature doi: 10.1038/nature02556 – volume: 68 start-page: 131 issue: 1 year: 2019 ident: 10.1016/j.physa.2024.130111_b41 article-title: Signatures of microevolutionary processes in phylogenetic patterns publication-title: Syst. Biol. – volume: 38 start-page: 459 issue: 1 year: 2007 ident: 10.1016/j.physa.2024.130111_b25 article-title: Sympatric speciation: Models and empirical evidence publication-title: Annu. Rev. Ecol. Evol. Syst. doi: 10.1146/annurev.ecolsys.38.091206.095804 |
SSID | ssj0001732 |
Score | 2.443794 |
Snippet | We investigate the role of assortative mating in speciation using the sympatric model of Derrida and Higgs. The model explores the idea that genetic... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 130111 |
SubjectTerms | Assortative mating Homotypic preferences Speciation Two-allele model |
Title | Assortativity in sympatric speciation and species classification |
URI | https://dx.doi.org/10.1016/j.physa.2024.130111 |
Volume | 653 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jIngRf-L8MXrwaF3TpEl6cwzHVNxFB7uV_IQJ1mLnwYt_u3lpiwriwWPaPijfKy9fky_fQ-g8Z9aoTJKYSTDVBqmDYiaJNWU2dZ7hOwvrkPdzNlvQ22W27KFJdxYGZJVt7W9qeqjW7ZVRi-aoWq1GDwnhghKOQQUJrupwgp1y-MovP75kHpiTZifB_y3B053zUNB4weoBmA-lFLoiY4x_n52-zTjTHbTdUsVo3LzNLurZcg9tBsmmrvfRFSAbdtKh_UO0KqP6_bkKjvtRHbrKA-aRLE0ztHWkgSqDNijcOkCL6fXjZBa3_RBinWZk7Ymwy3FmmXJUZbm1LHXEiERYI3wijGc2iZMSa5Vp6UyaCs0to5JzTwmUFYocon75UtojFMmEGCuwTYzJKNNYSeFj8lw6lXDN8ABddDgUVWN7UXR6sKciwFYAbEUD2wCxDqviR_YKX5j_Cjz-b-AJ2oJRcyrwFPXXr2_2zNODtRqG_A_Rxvjmbjb_BEIsu84 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5qRfQiPrE-c9Cbsdk8NslBUNTS2sfFFnqL-wpUMBZTkV78U_5BdzYJKogHwWOyTMh-M8zM7n47A3AcUyV5wDybMiyqjVQHTqVjC58qN9UZfqpwH7I_oO2RfzsOxjV4r-7CIK2y9P2FTzfeunzTLNFsTieT5p3jhZHvhQRZkFhVvWRWdtX8Va_b8vPOtVbyieu2boZXbbtsLWALN_BmOqdMYxIoylOfB7FS1E09GTmRkpGek9RJgpMyRgQPBEul60YiVNRnYaijK1cR9_R3F2DR1-4C2yacvX3ySkjoFUcXenmGv1eVOjKkMtyuwGpHro9tmAkhP4fDLyGutQarZW5qXRbTX4eayjZgyXBERb4JF6hKc3SP_SasSWbl88epKfFv5aaNPSrZYpksHlVuCczNkYxkhrZg9C8obUM9e8rUDljM8aSKiHKkDHwqCGeRloljlnInFJQ04LTCIZkWdTaSioD2kBjYEoQtKWBrAK2wSr6ZS6IjwW-Cu38VPILl9rDfS3qdQXcPVnCkuJK4D_XZ84s60LnJjB8aW7Dg_r-N7wMM6fmU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assortativity+in+sympatric+speciation+and+species+classification&rft.jtitle=Physica+A&rft.au=Liz%C3%A1rraga%2C+Joao+U.F.&rft.au=Marquitti%2C+Flavia+M.D.&rft.au=de+Aguiar%2C+Marcus+A.M.&rft.date=2024-11-01&rft.issn=0378-4371&rft.volume=653&rft.spage=130111&rft_id=info:doi/10.1016%2Fj.physa.2024.130111&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physa_2024_130111 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon |