Sliding mode control for the stabilization of fractional heat equations subject to boundary uncertainty
By adopting the sliding mode control (SMC) and the generalized Lyapunov method, the boundary feedback stabilization issue is studied for the fractional diffusion system subject to boundary control matched disturbance. The classical sliding surface and the fractional integral sliding function are con...
Saved in:
Published in | Chaos, solitons and fractals Vol. 181; p. 114718 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | By adopting the sliding mode control (SMC) and the generalized Lyapunov method, the boundary feedback stabilization issue is studied for the fractional diffusion system subject to boundary control matched disturbance. The classical sliding surface and the fractional integral sliding function are constructed and sliding mode controllers are designed respectively to realize the Mittag-Leffler (M-L) stabilization of the considered system. The controller based on the newly-introduced fractional integral sliding function not only helps to relax the constraints on the disturbance but also realizes the same stabilization effect as that of the classical one. The well-posedness result of the solution is also obtained for discontinuous fractional heat equations. Besides, a numerical experiment validates the theoretical outcomes.
•The well-posedness of fractional PDEs with discontinuous boundary is proved.•The constraint on the coefficient is relaxed.•The classical sliding surface and a fractional integral sliding function are given.•The range for the external disturbance is broadened. |
---|---|
AbstractList | By adopting the sliding mode control (SMC) and the generalized Lyapunov method, the boundary feedback stabilization issue is studied for the fractional diffusion system subject to boundary control matched disturbance. The classical sliding surface and the fractional integral sliding function are constructed and sliding mode controllers are designed respectively to realize the Mittag-Leffler (M-L) stabilization of the considered system. The controller based on the newly-introduced fractional integral sliding function not only helps to relax the constraints on the disturbance but also realizes the same stabilization effect as that of the classical one. The well-posedness result of the solution is also obtained for discontinuous fractional heat equations. Besides, a numerical experiment validates the theoretical outcomes.
•The well-posedness of fractional PDEs with discontinuous boundary is proved.•The constraint on the coefficient is relaxed.•The classical sliding surface and a fractional integral sliding function are given.•The range for the external disturbance is broadened. |
ArticleNumber | 114718 |
Author | Cheng, Lan Cai, Rui-Yang Zhou, Hua-Cheng |
Author_xml | – sequence: 1 givenname: Rui-Yang orcidid: 0000-0001-8385-2329 surname: Cai fullname: Cai, Rui-Yang organization: College of Science, University of Shanghai for Science and Technology, Shanghai 200093, PR China – sequence: 2 givenname: Lan surname: Cheng fullname: Cheng, Lan organization: School of Mathematics and Statistics, Central South University, Changsha, 410075, PR China – sequence: 3 givenname: Hua-Cheng orcidid: 0000-0001-6856-2358 surname: Zhou fullname: Zhou, Hua-Cheng email: hczhou@amss.ac.cn organization: School of Mathematics and Statistics, Central South University, Changsha, 410075, PR China |
BookMark | eNp9kMtOwzAQRS0EEm3hC9j4B1LGzsPOggWqeEmVWNC95TiT1lFqg-0gla8nbVmzmpFG5-rOmZNL5x0ScsdgyYBV9_3S7LSPSw68WDJWCCYvyIxJkWdcSnFJZlBXkIEQ9TWZx9gDAIOKz8j2Y7CtdVu69y1S410KfqCdDzTtkMakGzvYH52sd9R3tAvaHHc90B3qRPFrPN0ijWPTo0k0edr40bU6HOjoDIakrUuHG3LV6SHi7d9ckM3z02b1mq3fX95Wj-vM8DJPmSjyUnZcYF3XwAxgB1IWQsuqwK40ujDIWI68yTnyqmyghoYJ0-hScy4hX5D8HGuCjzFgpz6D3U9dFAN1VKV6dVKljqrUWdVEPZwpnJp9WwwqGotT-daG6SfVevsv_ws-PHbp |
Cites_doi | 10.1109/TAC.2012.2228051 10.1007/s11432-019-2876-9 10.1016/j.mechatronics.2018.05.006 10.1109/TAC.2006.875008 10.1109/9.341815 10.1016/j.physa.2005.11.015 10.1016/j.automatica.2013.11.018 10.1016/j.automatica.2014.10.027 10.1049/iet-cta.2017.1352 10.1109/VSS.2012.6163471 10.1109/TAC.2012.2218669 10.1016/S0370-1573(00)00070-3 10.1007/s11071-004-3765-5 10.1109/TAC.2018.2874746 10.1007/s11071-013-1000-y 10.1016/j.jde.2017.03.043 10.1002/rnc.4632 10.1016/j.chaos.2021.110886 10.1109/TAC.2014.2335511 10.1007/s11071-022-07897-3 10.1002/rnc.4958 10.1007/s11071-016-2712-6 10.1016/j.cnsns.2011.04.024 10.1016/j.automatica.2009.04.003 10.1016/j.cnsns.2014.01.022 10.1016/j.chaos.2019.01.031 10.1137/18M1172727 10.1049/ip-d.1991.0060 10.1016/j.sysconle.2018.10.009 10.1002/rnc.1565 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.chaos.2024.114718 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
EISSN | 1873-2887 |
ExternalDocumentID | 10_1016_j_chaos_2024_114718 S0960077924002704 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABNEU ABTAH ABXDB ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLZ HMV HVGLF HZ~ IHE J1W KOM LG9 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SPD SPG SSQ SSZ T5K WUQ XPP ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c253t-74358f27e99901c0ef08847a864ef5ca4ce113e2b32e265b090b17cba5a22803 |
IEDL.DBID | .~1 |
ISSN | 0960-0779 |
IngestDate | Tue Jul 01 02:01:22 EDT 2025 Sat Aug 10 15:32:01 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Disturbance rejection 37L15 35B35 93D15 Well-posedness of discontinuous systems Mittag-Leffler stabilization 93B52 Sliding mode control 93B51 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c253t-74358f27e99901c0ef08847a864ef5ca4ce113e2b32e265b090b17cba5a22803 |
ORCID | 0000-0001-6856-2358 0000-0001-8385-2329 |
ParticipantIDs | crossref_primary_10_1016_j_chaos_2024_114718 elsevier_sciencedirect_doi_10_1016_j_chaos_2024_114718 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2024 2024-04-00 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: April 2024 |
PublicationDecade | 2020 |
PublicationTitle | Chaos, solitons and fractals |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Meerschaert, Mortensen, Wheatcraft (b1) 2006; 367 Guo, Zhou (b15) 2015; 60 Liang, Chen, Fullmer (b6) 2004; 38 Yang, Liu (b32) 2013; 74 Cai, Zhou, Kou (b9) 2023; 111 Metzler, Klafter (b2) 2000; 339 Yin, Chen, Zhong (b30) 2014; 50 Ge, Chen, Kou (b36) 2018 Pisano, Rapaić, Jeličić, Usai (b25) 2010; 20 Li, Chen, Podlubny (b3) 2009; 45 Zhou, Lv, Guo, Chen (b19) 2019; 29 Bandyopadhyay, Kamal (b23) 2015; vol. 317 Edwards, Spurgeon (b34) 1998 Ge, Chen (b12) 2020; 30 Filippov (b37) 2015 Castanos, Fridman (b28) 2006; 51 Wang, Shao, Chen (b31) 2018; 53 Jiang, Guirao, Chen, Cao (b21) 2019; 121 Liu, Wang (b14) 2019; 64 Chen, Cui, Chen (b10) 2018; 12 Cai, Zhou, Kou (b20) 2022; 65 Mbodje, Gerard (b5) 1995; 40 Aguila-Camacho, Duarte-Mermoud, Gallegos (b7) 2014; 19 Shen, Lam (b22) 2014; 50 Zhou, Guo (b16) 2017; 263 Pisano A, Rapaić MR, Usai E, Jeličić ZD. Continuous finite-time stabilization for some classes of fractional order dynamics. In: 12th IEEE workshop on variable structure systems, VSS’12, January 12-14, Mumbai. 2012, p. 16–21. Kamal, Raman, Bandyopadhyay (b24) 2013; 58 Chern, Wu (b27) 1991; 138 Guo, Zhou (b17) 2019; 57 Matignon D. Stability results for fractional differential equations with applications to control processing. In: IMACS/IEEE-SMC multiconference, symposium on control, optimization and supervision. CESA, 1996, p. 963–8. Cai, Zhou, Kou (b8) 2021; 146 Ge, Meurer, Chen (b11) 2018; 122 Smyshlyaev, Krstic (b18) 2010 Yin, Zhong, Chen (b33) 2012; 17 Pazy (b35) 1983 Guo, Jin (b13) 2013; 58 Chen, Wei, Zhong, Wang (b29) 2016; 85 Yin (10.1016/j.chaos.2024.114718_b33) 2012; 17 Guo (10.1016/j.chaos.2024.114718_b13) 2013; 58 Guo (10.1016/j.chaos.2024.114718_b15) 2015; 60 Castanos (10.1016/j.chaos.2024.114718_b28) 2006; 51 Yin (10.1016/j.chaos.2024.114718_b30) 2014; 50 Cai (10.1016/j.chaos.2024.114718_b9) 2023; 111 Ge (10.1016/j.chaos.2024.114718_b11) 2018; 122 Liang (10.1016/j.chaos.2024.114718_b6) 2004; 38 Metzler (10.1016/j.chaos.2024.114718_b2) 2000; 339 Zhou (10.1016/j.chaos.2024.114718_b19) 2019; 29 Shen (10.1016/j.chaos.2024.114718_b22) 2014; 50 Mbodje (10.1016/j.chaos.2024.114718_b5) 1995; 40 Pisano (10.1016/j.chaos.2024.114718_b25) 2010; 20 Chen (10.1016/j.chaos.2024.114718_b10) 2018; 12 Cai (10.1016/j.chaos.2024.114718_b8) 2021; 146 10.1016/j.chaos.2024.114718_b26 Filippov (10.1016/j.chaos.2024.114718_b37) 2015 Liu (10.1016/j.chaos.2024.114718_b14) 2019; 64 Bandyopadhyay (10.1016/j.chaos.2024.114718_b23) 2015; vol. 317 Cai (10.1016/j.chaos.2024.114718_b20) 2022; 65 Jiang (10.1016/j.chaos.2024.114718_b21) 2019; 121 Pazy (10.1016/j.chaos.2024.114718_b35) 1983 Zhou (10.1016/j.chaos.2024.114718_b16) 2017; 263 Guo (10.1016/j.chaos.2024.114718_b17) 2019; 57 10.1016/j.chaos.2024.114718_b4 Smyshlyaev (10.1016/j.chaos.2024.114718_b18) 2010 Kamal (10.1016/j.chaos.2024.114718_b24) 2013; 58 Yang (10.1016/j.chaos.2024.114718_b32) 2013; 74 Li (10.1016/j.chaos.2024.114718_b3) 2009; 45 Chern (10.1016/j.chaos.2024.114718_b27) 1991; 138 Ge (10.1016/j.chaos.2024.114718_b36) 2018 Chen (10.1016/j.chaos.2024.114718_b29) 2016; 85 Meerschaert (10.1016/j.chaos.2024.114718_b1) 2006; 367 Ge (10.1016/j.chaos.2024.114718_b12) 2020; 30 Wang (10.1016/j.chaos.2024.114718_b31) 2018; 53 Edwards (10.1016/j.chaos.2024.114718_b34) 1998 Aguila-Camacho (10.1016/j.chaos.2024.114718_b7) 2014; 19 |
References_xml | – year: 2018 ident: b36 article-title: Regional analysis of time-fractional diffusion processes – volume: 20 start-page: 2045 year: 2010 end-page: 2056 ident: b25 article-title: Sliding mode control approaches to the robust regulation of linear multivariable fractional-order dynamics publication-title: Internat J Robust Nonlinear Control – volume: 60 start-page: 143 year: 2015 end-page: 157 ident: b15 article-title: The active disturbance rejection control to stabilization for multi-dimensional wave equation with boundary control matched disturbance publication-title: IEEE Trans Automat Control – volume: 50 start-page: 3173 year: 2014 end-page: 3181 ident: b30 article-title: Fractional-order sliding mode based extremum seeking control of a class of nonlinear systems publication-title: Automatica – volume: 367 start-page: 181 year: 2006 end-page: 190 ident: b1 article-title: Fractional vector calculus for fractional advection–dispersion publication-title: Phys A – volume: 19 start-page: 2951 year: 2014 end-page: 2957 ident: b7 article-title: Lyapunov functions for fractional order systems publication-title: Commun Nonlinear Sci Numer Simul – volume: 17 start-page: 356 year: 2012 end-page: 366 ident: b33 article-title: Design of sliding mode controller for a class of fractional-order chaotic systems publication-title: Commun Nonlinear Sci Numer Simul – reference: Matignon D. Stability results for fractional differential equations with applications to control processing. In: IMACS/IEEE-SMC multiconference, symposium on control, optimization and supervision. CESA, 1996, p. 963–8. – volume: 263 start-page: 2213 year: 2017 end-page: 2246 ident: b16 article-title: Unknown input observer design and output feedback stabilization for multi-dimensional wave equation with boundary control matched uncertainty publication-title: J Differential Equations – year: 2010 ident: b18 article-title: Adaptive control of parabolic PDEs – volume: 339 start-page: 1 year: 2000 end-page: 77 ident: b2 article-title: The random walk’s guide to anomalous diffusion: A fractional dynamics approach publication-title: Phys Rep – year: 2015 ident: b37 article-title: Differential equations with discontinuous righthand sides – volume: 53 start-page: 8 year: 2018 end-page: 19 ident: b31 article-title: Fractional order sliding mode control via disturbance observer for a class of fractional order systems with mismatched disturbance publication-title: Mechatronics – volume: 138 start-page: 439 year: 1991 end-page: 444 ident: b27 article-title: Design of integral variable structure controller and application to electrohydraulic velocity servosystems publication-title: IEE Proc-D – volume: 111 start-page: 1355 year: 2023 end-page: 1367 ident: b9 article-title: Boundary disturbance rejection for fractional distributed parameter systems via the sliding mode and Riesz basis approach publication-title: Nonlinear Dyn – volume: 65 year: 2022 ident: b20 article-title: Active disturbance rejection control for fractional reaction–diffusion equations with spatially varying diffusivity and time delay publication-title: Sci China Inf Sci – volume: 51 start-page: 853 year: 2006 end-page: 858 ident: b28 article-title: Analysis and design of integral sliding manifolds for systems with unmatched perturbations publication-title: IEEE Trans Automat Control – volume: 146 year: 2021 ident: b8 article-title: Boundary control strategy for three kinds of fractional heat equations with control-matched disturbances publication-title: Chaos Solitons Fractals – volume: 64 start-page: 3068 year: 2019 end-page: 3073 ident: b14 article-title: Stabilization of one-dimensional wave equation with nonlinear boundary condition subject to boundary control matched disturbance publication-title: IEEE Trans Automat Control – volume: vol. 317 year: 2015 ident: b23 publication-title: Stabilization and control of fractional order systems: A sliding mode approach – volume: 58 start-page: 1269 year: 2013 end-page: 1274 ident: b13 article-title: Sliding mode and active disturbance rejection control to stabilization of one-dimensional anti-stable wave equations subject to disturbance in boundary input publication-title: IEEE Trans Automat Control – volume: 12 start-page: 1561 year: 2018 end-page: 1572 ident: b10 article-title: Observer-based output feedback control for a boundary controlled fractional reaction diffusion system with spatially-varying diffusivity publication-title: IET Control Theory Appl – volume: 30 start-page: 3639 year: 2020 end-page: 3652 ident: b12 article-title: Regional output feedback stabilization of semilinear time-fractional diffusion systems in a parallelepipedon with control constraints publication-title: Internat J Robust Nonlinear Control – volume: 121 start-page: 92 year: 2019 end-page: 97 ident: b21 article-title: The boundary control strategy for a fractional wave equation with external disturbances publication-title: Chaos Solitons Fractals – volume: 50 start-page: 547 year: 2014 end-page: 551 ident: b22 article-title: Non-existence of finite-time stable equilibria in fractional-order nonlinear system publication-title: Automatica – volume: 74 start-page: 721 year: 2013 end-page: 732 ident: b32 article-title: A novel fractional-order hyperchaotic system stabilization via fractional sliding-mode control publication-title: Nonlinear Dyn – volume: 45 start-page: 1965 year: 2009 end-page: 1969 ident: b3 article-title: Mittag-Leffler stability of fractional order nonlinear dynamic systems publication-title: Automatica – volume: 40 start-page: 378 year: 1995 end-page: 382 ident: b5 article-title: Boundary fractional derivative control of the wave equation publication-title: IEEE Trans Automat Control – year: 1998 ident: b34 article-title: Sliding mode control, theory and applications – volume: 122 start-page: 86 year: 2018 end-page: 92 ident: b11 article-title: M-L convergent backstepping observers for coupled semilinear subdiffusion systems with spatially varying parameters publication-title: Systems Control Lett – reference: Pisano A, Rapaić MR, Usai E, Jeličić ZD. Continuous finite-time stabilization for some classes of fractional order dynamics. In: 12th IEEE workshop on variable structure systems, VSS’12, January 12-14, Mumbai. 2012, p. 16–21. – volume: 58 start-page: 1597 year: 2013 end-page: 1602 ident: b24 article-title: Finite-time stabilization of fractional order uncertain chain of integrator: An integral sliding mode approach publication-title: IEEE Trans Automat Control – volume: 85 start-page: 633 year: 2016 end-page: 643 ident: b29 article-title: Sliding mode control with a second-order switching law for a class of nonlinear fractional order systems publication-title: Nonlinear Dyn – volume: 57 start-page: 1890 year: 2019 end-page: 1928 ident: b17 article-title: Adaptive error feedback regulation problem for an Euler–Bernolli beam equation with unmatched general unmatched boundary harmonic disturbance publication-title: SIAM J Control Optim – year: 1983 ident: b35 article-title: Semigroups of linear operators and applications to partial differential equations – volume: 38 start-page: 339 year: 2004 end-page: 354 ident: b6 article-title: Boundary stabilization and disturbance rejection for time fractional order diffusion-wave equations publication-title: Nonlinear Dyn – volume: 29 start-page: 4384 year: 2019 end-page: 4401 ident: b19 article-title: Mittag-Leffler stabilization for an unstable time fractional anomalous diffusion equation with boundary control matched disturbance publication-title: Internat J Robust Nonlinear Control – volume: 58 start-page: 1597 year: 2013 ident: 10.1016/j.chaos.2024.114718_b24 article-title: Finite-time stabilization of fractional order uncertain chain of integrator: An integral sliding mode approach publication-title: IEEE Trans Automat Control doi: 10.1109/TAC.2012.2228051 – ident: 10.1016/j.chaos.2024.114718_b4 – volume: 65 year: 2022 ident: 10.1016/j.chaos.2024.114718_b20 article-title: Active disturbance rejection control for fractional reaction–diffusion equations with spatially varying diffusivity and time delay publication-title: Sci China Inf Sci doi: 10.1007/s11432-019-2876-9 – volume: 53 start-page: 8 year: 2018 ident: 10.1016/j.chaos.2024.114718_b31 article-title: Fractional order sliding mode control via disturbance observer for a class of fractional order systems with mismatched disturbance publication-title: Mechatronics doi: 10.1016/j.mechatronics.2018.05.006 – volume: 51 start-page: 853 issue: 5 year: 2006 ident: 10.1016/j.chaos.2024.114718_b28 article-title: Analysis and design of integral sliding manifolds for systems with unmatched perturbations publication-title: IEEE Trans Automat Control doi: 10.1109/TAC.2006.875008 – year: 1983 ident: 10.1016/j.chaos.2024.114718_b35 – volume: 40 start-page: 378 year: 1995 ident: 10.1016/j.chaos.2024.114718_b5 article-title: Boundary fractional derivative control of the wave equation publication-title: IEEE Trans Automat Control doi: 10.1109/9.341815 – volume: 367 start-page: 181 year: 2006 ident: 10.1016/j.chaos.2024.114718_b1 article-title: Fractional vector calculus for fractional advection–dispersion publication-title: Phys A doi: 10.1016/j.physa.2005.11.015 – volume: 50 start-page: 547 year: 2014 ident: 10.1016/j.chaos.2024.114718_b22 article-title: Non-existence of finite-time stable equilibria in fractional-order nonlinear system publication-title: Automatica doi: 10.1016/j.automatica.2013.11.018 – volume: 50 start-page: 3173 issue: 12 year: 2014 ident: 10.1016/j.chaos.2024.114718_b30 article-title: Fractional-order sliding mode based extremum seeking control of a class of nonlinear systems publication-title: Automatica doi: 10.1016/j.automatica.2014.10.027 – volume: 12 start-page: 1561 year: 2018 ident: 10.1016/j.chaos.2024.114718_b10 article-title: Observer-based output feedback control for a boundary controlled fractional reaction diffusion system with spatially-varying diffusivity publication-title: IET Control Theory Appl doi: 10.1049/iet-cta.2017.1352 – ident: 10.1016/j.chaos.2024.114718_b26 doi: 10.1109/VSS.2012.6163471 – year: 2015 ident: 10.1016/j.chaos.2024.114718_b37 – volume: 58 start-page: 1269 year: 2013 ident: 10.1016/j.chaos.2024.114718_b13 article-title: Sliding mode and active disturbance rejection control to stabilization of one-dimensional anti-stable wave equations subject to disturbance in boundary input publication-title: IEEE Trans Automat Control doi: 10.1109/TAC.2012.2218669 – volume: 339 start-page: 1 year: 2000 ident: 10.1016/j.chaos.2024.114718_b2 article-title: The random walk’s guide to anomalous diffusion: A fractional dynamics approach publication-title: Phys Rep doi: 10.1016/S0370-1573(00)00070-3 – volume: 38 start-page: 339 year: 2004 ident: 10.1016/j.chaos.2024.114718_b6 article-title: Boundary stabilization and disturbance rejection for time fractional order diffusion-wave equations publication-title: Nonlinear Dyn doi: 10.1007/s11071-004-3765-5 – volume: 64 start-page: 3068 year: 2019 ident: 10.1016/j.chaos.2024.114718_b14 article-title: Stabilization of one-dimensional wave equation with nonlinear boundary condition subject to boundary control matched disturbance publication-title: IEEE Trans Automat Control doi: 10.1109/TAC.2018.2874746 – volume: 74 start-page: 721 issue: 3 year: 2013 ident: 10.1016/j.chaos.2024.114718_b32 article-title: A novel fractional-order hyperchaotic system stabilization via fractional sliding-mode control publication-title: Nonlinear Dyn doi: 10.1007/s11071-013-1000-y – volume: 263 start-page: 2213 year: 2017 ident: 10.1016/j.chaos.2024.114718_b16 article-title: Unknown input observer design and output feedback stabilization for multi-dimensional wave equation with boundary control matched uncertainty publication-title: J Differential Equations doi: 10.1016/j.jde.2017.03.043 – volume: 29 start-page: 4384 year: 2019 ident: 10.1016/j.chaos.2024.114718_b19 article-title: Mittag-Leffler stabilization for an unstable time fractional anomalous diffusion equation with boundary control matched disturbance publication-title: Internat J Robust Nonlinear Control doi: 10.1002/rnc.4632 – volume: 146 year: 2021 ident: 10.1016/j.chaos.2024.114718_b8 article-title: Boundary control strategy for three kinds of fractional heat equations with control-matched disturbances publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2021.110886 – volume: 60 start-page: 143 year: 2015 ident: 10.1016/j.chaos.2024.114718_b15 article-title: The active disturbance rejection control to stabilization for multi-dimensional wave equation with boundary control matched disturbance publication-title: IEEE Trans Automat Control doi: 10.1109/TAC.2014.2335511 – year: 1998 ident: 10.1016/j.chaos.2024.114718_b34 – volume: 111 start-page: 1355 issue: 2 year: 2023 ident: 10.1016/j.chaos.2024.114718_b9 article-title: Boundary disturbance rejection for fractional distributed parameter systems via the sliding mode and Riesz basis approach publication-title: Nonlinear Dyn doi: 10.1007/s11071-022-07897-3 – volume: 30 start-page: 3639 year: 2020 ident: 10.1016/j.chaos.2024.114718_b12 article-title: Regional output feedback stabilization of semilinear time-fractional diffusion systems in a parallelepipedon with control constraints publication-title: Internat J Robust Nonlinear Control doi: 10.1002/rnc.4958 – volume: 85 start-page: 633 year: 2016 ident: 10.1016/j.chaos.2024.114718_b29 article-title: Sliding mode control with a second-order switching law for a class of nonlinear fractional order systems publication-title: Nonlinear Dyn doi: 10.1007/s11071-016-2712-6 – volume: 17 start-page: 356 issue: 1 year: 2012 ident: 10.1016/j.chaos.2024.114718_b33 article-title: Design of sliding mode controller for a class of fractional-order chaotic systems publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2011.04.024 – volume: 45 start-page: 1965 year: 2009 ident: 10.1016/j.chaos.2024.114718_b3 article-title: Mittag-Leffler stability of fractional order nonlinear dynamic systems publication-title: Automatica doi: 10.1016/j.automatica.2009.04.003 – year: 2018 ident: 10.1016/j.chaos.2024.114718_b36 – volume: 19 start-page: 2951 year: 2014 ident: 10.1016/j.chaos.2024.114718_b7 article-title: Lyapunov functions for fractional order systems publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2014.01.022 – volume: 121 start-page: 92 year: 2019 ident: 10.1016/j.chaos.2024.114718_b21 article-title: The boundary control strategy for a fractional wave equation with external disturbances publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2019.01.031 – volume: 57 start-page: 1890 year: 2019 ident: 10.1016/j.chaos.2024.114718_b17 article-title: Adaptive error feedback regulation problem for an Euler–Bernolli beam equation with unmatched general unmatched boundary harmonic disturbance publication-title: SIAM J Control Optim doi: 10.1137/18M1172727 – year: 2010 ident: 10.1016/j.chaos.2024.114718_b18 – volume: 138 start-page: 439 issue: 5 year: 1991 ident: 10.1016/j.chaos.2024.114718_b27 article-title: Design of integral variable structure controller and application to electrohydraulic velocity servosystems publication-title: IEE Proc-D doi: 10.1049/ip-d.1991.0060 – volume: 122 start-page: 86 year: 2018 ident: 10.1016/j.chaos.2024.114718_b11 article-title: M-L convergent backstepping observers for coupled semilinear subdiffusion systems with spatially varying parameters publication-title: Systems Control Lett doi: 10.1016/j.sysconle.2018.10.009 – volume: 20 start-page: 2045 year: 2010 ident: 10.1016/j.chaos.2024.114718_b25 article-title: Sliding mode control approaches to the robust regulation of linear multivariable fractional-order dynamics publication-title: Internat J Robust Nonlinear Control doi: 10.1002/rnc.1565 – volume: vol. 317 year: 2015 ident: 10.1016/j.chaos.2024.114718_b23 |
SSID | ssj0001062 |
Score | 2.4283466 |
Snippet | By adopting the sliding mode control (SMC) and the generalized Lyapunov method, the boundary feedback stabilization issue is studied for the fractional... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 114718 |
SubjectTerms | Disturbance rejection Mittag-Leffler stabilization Sliding mode control Well-posedness of discontinuous systems |
Title | Sliding mode control for the stabilization of fractional heat equations subject to boundary uncertainty |
URI | https://dx.doi.org/10.1016/j.chaos.2024.114718 |
Volume | 181 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwGG0IXvRgBDXiD9KDB02cbN26siMhEtTIBUy4LW3pFGMYsnHg4t9uv7bzR2I8eNzSZstr-31v6-v7EDoP2SxQWRx7ycxnXiQI87iS1PNVNguCkAmqjNpiFA8fo7spndZQvzoLA7JKF_ttTDfR2t3pODQ7y_m8Mwby7TOWgAqSMOMJGkUMZvn1-5fMQ3_ymJ0E3diD1pXzkNF4yWeeg2c3icAzl0Hlj9-y07eMM9hDu44q4p59mwaqqUUT7Tx8-qwWTdRwS7PAF84_-nIfPY1f55CRMFS5wU6LjjU5xbon1mwQ9LD29CXOM5yt7NkG_SgIzFi9WffvAhdrAX9pcJljYaovrTZYp0ErIig3B2gyuJn0h56rp-BJQsPS02SBdjPCVAKbYVIPhw4xEePdOFIZlTySSg-PIiIkisRU-IkvAiYFpxxMc8JDVF_kC3WEcKhYoJmfZLGGTvEu16yNz5JEJVz4koYtdFXBmC6ta0ZaycleUoN6CqinFvUWiiuo0x-Dn-q4_lfH4_92PEHbcGUlOKeoXq7W6kyzi1K0zfRpo63e7f1w9AFZfM-M |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEJ0QOKgHI6gRP_fgQRMb-rVdeiREA_JxARNuze6yVYwBhHLg37vT3RJNjAevbSdt3m5nXrtv3wDcBmzqqTSKnHjqMicUPnO4ktRxVTr1vIAJqnK1xTDqvITPEzopQbvYC4OySpv7TU7Ps7U90rBoNpazWWOE5NtlLEYVpM_QE7SC7lS0DJVWt9cZ7hKy_urJFxP09Q4GFOZDucxLvvEF2nb7IdrmMmz-8VuB-lZ0no7g0LJF0jIPVIWSmtfgYLCzWl3XoGrfzjW5sxbS98fwOvqYYVEi2OiGWDk60fyU6EiiCSFKYs0GTLJISboy2xv0rTA3E_VpDMDXZL0R-KOGZAsi8gZMqy3RldDoCLLtCYyfHsftjmNbKjjSp0HmaL5Am6nPVIzrYVKPiM4yIePNKFQplTyUSo-Q8kXgKz-iwo1d4TEpOOXomxOcQnm-mKszIIFiniZ_kkUaOsWbXBM3Po1jFXPhShrU4aGAMVka44ykUJS9JznqCaKeGNTrEBVQJz_GP9Gp_a_A8_8G3sBeZzzoJ_3usHcB-3jGKHIuoZytNupKk41MXNvJ9AWGVNI9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sliding+mode+control+for+the+stabilization+of+fractional+heat+equations+subject+to+boundary+uncertainty&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Cai%2C+Rui-Yang&rft.au=Cheng%2C+Lan&rft.au=Zhou%2C+Hua-Cheng&rft.date=2024-04-01&rft.pub=Elsevier+Ltd&rft.issn=0960-0779&rft.eissn=1873-2887&rft.volume=181&rft_id=info:doi/10.1016%2Fj.chaos.2024.114718&rft.externalDocID=S0960077924002704 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon |