Sliding mode control for the stabilization of fractional heat equations subject to boundary uncertainty

By adopting the sliding mode control (SMC) and the generalized Lyapunov method, the boundary feedback stabilization issue is studied for the fractional diffusion system subject to boundary control matched disturbance. The classical sliding surface and the fractional integral sliding function are con...

Full description

Saved in:
Bibliographic Details
Published inChaos, solitons and fractals Vol. 181; p. 114718
Main Authors Cai, Rui-Yang, Cheng, Lan, Zhou, Hua-Cheng
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract By adopting the sliding mode control (SMC) and the generalized Lyapunov method, the boundary feedback stabilization issue is studied for the fractional diffusion system subject to boundary control matched disturbance. The classical sliding surface and the fractional integral sliding function are constructed and sliding mode controllers are designed respectively to realize the Mittag-Leffler (M-L) stabilization of the considered system. The controller based on the newly-introduced fractional integral sliding function not only helps to relax the constraints on the disturbance but also realizes the same stabilization effect as that of the classical one. The well-posedness result of the solution is also obtained for discontinuous fractional heat equations. Besides, a numerical experiment validates the theoretical outcomes. •The well-posedness of fractional PDEs with discontinuous boundary is proved.•The constraint on the coefficient is relaxed.•The classical sliding surface and a fractional integral sliding function are given.•The range for the external disturbance is broadened.
AbstractList By adopting the sliding mode control (SMC) and the generalized Lyapunov method, the boundary feedback stabilization issue is studied for the fractional diffusion system subject to boundary control matched disturbance. The classical sliding surface and the fractional integral sliding function are constructed and sliding mode controllers are designed respectively to realize the Mittag-Leffler (M-L) stabilization of the considered system. The controller based on the newly-introduced fractional integral sliding function not only helps to relax the constraints on the disturbance but also realizes the same stabilization effect as that of the classical one. The well-posedness result of the solution is also obtained for discontinuous fractional heat equations. Besides, a numerical experiment validates the theoretical outcomes. •The well-posedness of fractional PDEs with discontinuous boundary is proved.•The constraint on the coefficient is relaxed.•The classical sliding surface and a fractional integral sliding function are given.•The range for the external disturbance is broadened.
ArticleNumber 114718
Author Cheng, Lan
Cai, Rui-Yang
Zhou, Hua-Cheng
Author_xml – sequence: 1
  givenname: Rui-Yang
  orcidid: 0000-0001-8385-2329
  surname: Cai
  fullname: Cai, Rui-Yang
  organization: College of Science, University of Shanghai for Science and Technology, Shanghai 200093, PR China
– sequence: 2
  givenname: Lan
  surname: Cheng
  fullname: Cheng, Lan
  organization: School of Mathematics and Statistics, Central South University, Changsha, 410075, PR China
– sequence: 3
  givenname: Hua-Cheng
  orcidid: 0000-0001-6856-2358
  surname: Zhou
  fullname: Zhou, Hua-Cheng
  email: hczhou@amss.ac.cn
  organization: School of Mathematics and Statistics, Central South University, Changsha, 410075, PR China
BookMark eNp9kMtOwzAQRS0EEm3hC9j4B1LGzsPOggWqeEmVWNC95TiT1lFqg-0gla8nbVmzmpFG5-rOmZNL5x0ScsdgyYBV9_3S7LSPSw68WDJWCCYvyIxJkWdcSnFJZlBXkIEQ9TWZx9gDAIOKz8j2Y7CtdVu69y1S410KfqCdDzTtkMakGzvYH52sd9R3tAvaHHc90B3qRPFrPN0ijWPTo0k0edr40bU6HOjoDIakrUuHG3LV6SHi7d9ckM3z02b1mq3fX95Wj-vM8DJPmSjyUnZcYF3XwAxgB1IWQsuqwK40ujDIWI68yTnyqmyghoYJ0-hScy4hX5D8HGuCjzFgpz6D3U9dFAN1VKV6dVKljqrUWdVEPZwpnJp9WwwqGotT-daG6SfVevsv_ws-PHbp
Cites_doi 10.1109/TAC.2012.2228051
10.1007/s11432-019-2876-9
10.1016/j.mechatronics.2018.05.006
10.1109/TAC.2006.875008
10.1109/9.341815
10.1016/j.physa.2005.11.015
10.1016/j.automatica.2013.11.018
10.1016/j.automatica.2014.10.027
10.1049/iet-cta.2017.1352
10.1109/VSS.2012.6163471
10.1109/TAC.2012.2218669
10.1016/S0370-1573(00)00070-3
10.1007/s11071-004-3765-5
10.1109/TAC.2018.2874746
10.1007/s11071-013-1000-y
10.1016/j.jde.2017.03.043
10.1002/rnc.4632
10.1016/j.chaos.2021.110886
10.1109/TAC.2014.2335511
10.1007/s11071-022-07897-3
10.1002/rnc.4958
10.1007/s11071-016-2712-6
10.1016/j.cnsns.2011.04.024
10.1016/j.automatica.2009.04.003
10.1016/j.cnsns.2014.01.022
10.1016/j.chaos.2019.01.031
10.1137/18M1172727
10.1049/ip-d.1991.0060
10.1016/j.sysconle.2018.10.009
10.1002/rnc.1565
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.chaos.2024.114718
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1873-2887
ExternalDocumentID 10_1016_j_chaos_2024_114718
S0960077924002704
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABNEU
ABTAH
ABXDB
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLZ
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG9
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
WUQ
XPP
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c253t-74358f27e99901c0ef08847a864ef5ca4ce113e2b32e265b090b17cba5a22803
IEDL.DBID .~1
ISSN 0960-0779
IngestDate Tue Jul 01 02:01:22 EDT 2025
Sat Aug 10 15:32:01 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Disturbance rejection
37L15
35B35
93D15
Well-posedness of discontinuous systems
Mittag-Leffler stabilization
93B52
Sliding mode control
93B51
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c253t-74358f27e99901c0ef08847a864ef5ca4ce113e2b32e265b090b17cba5a22803
ORCID 0000-0001-6856-2358
0000-0001-8385-2329
ParticipantIDs crossref_primary_10_1016_j_chaos_2024_114718
elsevier_sciencedirect_doi_10_1016_j_chaos_2024_114718
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2024
2024-04-00
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: April 2024
PublicationDecade 2020
PublicationTitle Chaos, solitons and fractals
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Meerschaert, Mortensen, Wheatcraft (b1) 2006; 367
Guo, Zhou (b15) 2015; 60
Liang, Chen, Fullmer (b6) 2004; 38
Yang, Liu (b32) 2013; 74
Cai, Zhou, Kou (b9) 2023; 111
Metzler, Klafter (b2) 2000; 339
Yin, Chen, Zhong (b30) 2014; 50
Ge, Chen, Kou (b36) 2018
Pisano, Rapaić, Jeličić, Usai (b25) 2010; 20
Li, Chen, Podlubny (b3) 2009; 45
Zhou, Lv, Guo, Chen (b19) 2019; 29
Bandyopadhyay, Kamal (b23) 2015; vol. 317
Edwards, Spurgeon (b34) 1998
Ge, Chen (b12) 2020; 30
Filippov (b37) 2015
Castanos, Fridman (b28) 2006; 51
Wang, Shao, Chen (b31) 2018; 53
Jiang, Guirao, Chen, Cao (b21) 2019; 121
Liu, Wang (b14) 2019; 64
Chen, Cui, Chen (b10) 2018; 12
Cai, Zhou, Kou (b20) 2022; 65
Mbodje, Gerard (b5) 1995; 40
Aguila-Camacho, Duarte-Mermoud, Gallegos (b7) 2014; 19
Shen, Lam (b22) 2014; 50
Zhou, Guo (b16) 2017; 263
Pisano A, Rapaić MR, Usai E, Jeličić ZD. Continuous finite-time stabilization for some classes of fractional order dynamics. In: 12th IEEE workshop on variable structure systems, VSS’12, January 12-14, Mumbai. 2012, p. 16–21.
Kamal, Raman, Bandyopadhyay (b24) 2013; 58
Chern, Wu (b27) 1991; 138
Guo, Zhou (b17) 2019; 57
Matignon D. Stability results for fractional differential equations with applications to control processing. In: IMACS/IEEE-SMC multiconference, symposium on control, optimization and supervision. CESA, 1996, p. 963–8.
Cai, Zhou, Kou (b8) 2021; 146
Ge, Meurer, Chen (b11) 2018; 122
Smyshlyaev, Krstic (b18) 2010
Yin, Zhong, Chen (b33) 2012; 17
Pazy (b35) 1983
Guo, Jin (b13) 2013; 58
Chen, Wei, Zhong, Wang (b29) 2016; 85
Yin (10.1016/j.chaos.2024.114718_b33) 2012; 17
Guo (10.1016/j.chaos.2024.114718_b13) 2013; 58
Guo (10.1016/j.chaos.2024.114718_b15) 2015; 60
Castanos (10.1016/j.chaos.2024.114718_b28) 2006; 51
Yin (10.1016/j.chaos.2024.114718_b30) 2014; 50
Cai (10.1016/j.chaos.2024.114718_b9) 2023; 111
Ge (10.1016/j.chaos.2024.114718_b11) 2018; 122
Liang (10.1016/j.chaos.2024.114718_b6) 2004; 38
Metzler (10.1016/j.chaos.2024.114718_b2) 2000; 339
Zhou (10.1016/j.chaos.2024.114718_b19) 2019; 29
Shen (10.1016/j.chaos.2024.114718_b22) 2014; 50
Mbodje (10.1016/j.chaos.2024.114718_b5) 1995; 40
Pisano (10.1016/j.chaos.2024.114718_b25) 2010; 20
Chen (10.1016/j.chaos.2024.114718_b10) 2018; 12
Cai (10.1016/j.chaos.2024.114718_b8) 2021; 146
10.1016/j.chaos.2024.114718_b26
Filippov (10.1016/j.chaos.2024.114718_b37) 2015
Liu (10.1016/j.chaos.2024.114718_b14) 2019; 64
Bandyopadhyay (10.1016/j.chaos.2024.114718_b23) 2015; vol. 317
Cai (10.1016/j.chaos.2024.114718_b20) 2022; 65
Jiang (10.1016/j.chaos.2024.114718_b21) 2019; 121
Pazy (10.1016/j.chaos.2024.114718_b35) 1983
Zhou (10.1016/j.chaos.2024.114718_b16) 2017; 263
Guo (10.1016/j.chaos.2024.114718_b17) 2019; 57
10.1016/j.chaos.2024.114718_b4
Smyshlyaev (10.1016/j.chaos.2024.114718_b18) 2010
Kamal (10.1016/j.chaos.2024.114718_b24) 2013; 58
Yang (10.1016/j.chaos.2024.114718_b32) 2013; 74
Li (10.1016/j.chaos.2024.114718_b3) 2009; 45
Chern (10.1016/j.chaos.2024.114718_b27) 1991; 138
Ge (10.1016/j.chaos.2024.114718_b36) 2018
Chen (10.1016/j.chaos.2024.114718_b29) 2016; 85
Meerschaert (10.1016/j.chaos.2024.114718_b1) 2006; 367
Ge (10.1016/j.chaos.2024.114718_b12) 2020; 30
Wang (10.1016/j.chaos.2024.114718_b31) 2018; 53
Edwards (10.1016/j.chaos.2024.114718_b34) 1998
Aguila-Camacho (10.1016/j.chaos.2024.114718_b7) 2014; 19
References_xml – year: 2018
  ident: b36
  article-title: Regional analysis of time-fractional diffusion processes
– volume: 20
  start-page: 2045
  year: 2010
  end-page: 2056
  ident: b25
  article-title: Sliding mode control approaches to the robust regulation of linear multivariable fractional-order dynamics
  publication-title: Internat J Robust Nonlinear Control
– volume: 60
  start-page: 143
  year: 2015
  end-page: 157
  ident: b15
  article-title: The active disturbance rejection control to stabilization for multi-dimensional wave equation with boundary control matched disturbance
  publication-title: IEEE Trans Automat Control
– volume: 50
  start-page: 3173
  year: 2014
  end-page: 3181
  ident: b30
  article-title: Fractional-order sliding mode based extremum seeking control of a class of nonlinear systems
  publication-title: Automatica
– volume: 367
  start-page: 181
  year: 2006
  end-page: 190
  ident: b1
  article-title: Fractional vector calculus for fractional advection–dispersion
  publication-title: Phys A
– volume: 19
  start-page: 2951
  year: 2014
  end-page: 2957
  ident: b7
  article-title: Lyapunov functions for fractional order systems
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 17
  start-page: 356
  year: 2012
  end-page: 366
  ident: b33
  article-title: Design of sliding mode controller for a class of fractional-order chaotic systems
  publication-title: Commun Nonlinear Sci Numer Simul
– reference: Matignon D. Stability results for fractional differential equations with applications to control processing. In: IMACS/IEEE-SMC multiconference, symposium on control, optimization and supervision. CESA, 1996, p. 963–8.
– volume: 263
  start-page: 2213
  year: 2017
  end-page: 2246
  ident: b16
  article-title: Unknown input observer design and output feedback stabilization for multi-dimensional wave equation with boundary control matched uncertainty
  publication-title: J Differential Equations
– year: 2010
  ident: b18
  article-title: Adaptive control of parabolic PDEs
– volume: 339
  start-page: 1
  year: 2000
  end-page: 77
  ident: b2
  article-title: The random walk’s guide to anomalous diffusion: A fractional dynamics approach
  publication-title: Phys Rep
– year: 2015
  ident: b37
  article-title: Differential equations with discontinuous righthand sides
– volume: 53
  start-page: 8
  year: 2018
  end-page: 19
  ident: b31
  article-title: Fractional order sliding mode control via disturbance observer for a class of fractional order systems with mismatched disturbance
  publication-title: Mechatronics
– volume: 138
  start-page: 439
  year: 1991
  end-page: 444
  ident: b27
  article-title: Design of integral variable structure controller and application to electrohydraulic velocity servosystems
  publication-title: IEE Proc-D
– volume: 111
  start-page: 1355
  year: 2023
  end-page: 1367
  ident: b9
  article-title: Boundary disturbance rejection for fractional distributed parameter systems via the sliding mode and Riesz basis approach
  publication-title: Nonlinear Dyn
– volume: 65
  year: 2022
  ident: b20
  article-title: Active disturbance rejection control for fractional reaction–diffusion equations with spatially varying diffusivity and time delay
  publication-title: Sci China Inf Sci
– volume: 51
  start-page: 853
  year: 2006
  end-page: 858
  ident: b28
  article-title: Analysis and design of integral sliding manifolds for systems with unmatched perturbations
  publication-title: IEEE Trans Automat Control
– volume: 146
  year: 2021
  ident: b8
  article-title: Boundary control strategy for three kinds of fractional heat equations with control-matched disturbances
  publication-title: Chaos Solitons Fractals
– volume: 64
  start-page: 3068
  year: 2019
  end-page: 3073
  ident: b14
  article-title: Stabilization of one-dimensional wave equation with nonlinear boundary condition subject to boundary control matched disturbance
  publication-title: IEEE Trans Automat Control
– volume: vol. 317
  year: 2015
  ident: b23
  publication-title: Stabilization and control of fractional order systems: A sliding mode approach
– volume: 58
  start-page: 1269
  year: 2013
  end-page: 1274
  ident: b13
  article-title: Sliding mode and active disturbance rejection control to stabilization of one-dimensional anti-stable wave equations subject to disturbance in boundary input
  publication-title: IEEE Trans Automat Control
– volume: 12
  start-page: 1561
  year: 2018
  end-page: 1572
  ident: b10
  article-title: Observer-based output feedback control for a boundary controlled fractional reaction diffusion system with spatially-varying diffusivity
  publication-title: IET Control Theory Appl
– volume: 30
  start-page: 3639
  year: 2020
  end-page: 3652
  ident: b12
  article-title: Regional output feedback stabilization of semilinear time-fractional diffusion systems in a parallelepipedon with control constraints
  publication-title: Internat J Robust Nonlinear Control
– volume: 121
  start-page: 92
  year: 2019
  end-page: 97
  ident: b21
  article-title: The boundary control strategy for a fractional wave equation with external disturbances
  publication-title: Chaos Solitons Fractals
– volume: 50
  start-page: 547
  year: 2014
  end-page: 551
  ident: b22
  article-title: Non-existence of finite-time stable equilibria in fractional-order nonlinear system
  publication-title: Automatica
– volume: 74
  start-page: 721
  year: 2013
  end-page: 732
  ident: b32
  article-title: A novel fractional-order hyperchaotic system stabilization via fractional sliding-mode control
  publication-title: Nonlinear Dyn
– volume: 45
  start-page: 1965
  year: 2009
  end-page: 1969
  ident: b3
  article-title: Mittag-Leffler stability of fractional order nonlinear dynamic systems
  publication-title: Automatica
– volume: 40
  start-page: 378
  year: 1995
  end-page: 382
  ident: b5
  article-title: Boundary fractional derivative control of the wave equation
  publication-title: IEEE Trans Automat Control
– year: 1998
  ident: b34
  article-title: Sliding mode control, theory and applications
– volume: 122
  start-page: 86
  year: 2018
  end-page: 92
  ident: b11
  article-title: M-L convergent backstepping observers for coupled semilinear subdiffusion systems with spatially varying parameters
  publication-title: Systems Control Lett
– reference: Pisano A, Rapaić MR, Usai E, Jeličić ZD. Continuous finite-time stabilization for some classes of fractional order dynamics. In: 12th IEEE workshop on variable structure systems, VSS’12, January 12-14, Mumbai. 2012, p. 16–21.
– volume: 58
  start-page: 1597
  year: 2013
  end-page: 1602
  ident: b24
  article-title: Finite-time stabilization of fractional order uncertain chain of integrator: An integral sliding mode approach
  publication-title: IEEE Trans Automat Control
– volume: 85
  start-page: 633
  year: 2016
  end-page: 643
  ident: b29
  article-title: Sliding mode control with a second-order switching law for a class of nonlinear fractional order systems
  publication-title: Nonlinear Dyn
– volume: 57
  start-page: 1890
  year: 2019
  end-page: 1928
  ident: b17
  article-title: Adaptive error feedback regulation problem for an Euler–Bernolli beam equation with unmatched general unmatched boundary harmonic disturbance
  publication-title: SIAM J Control Optim
– year: 1983
  ident: b35
  article-title: Semigroups of linear operators and applications to partial differential equations
– volume: 38
  start-page: 339
  year: 2004
  end-page: 354
  ident: b6
  article-title: Boundary stabilization and disturbance rejection for time fractional order diffusion-wave equations
  publication-title: Nonlinear Dyn
– volume: 29
  start-page: 4384
  year: 2019
  end-page: 4401
  ident: b19
  article-title: Mittag-Leffler stabilization for an unstable time fractional anomalous diffusion equation with boundary control matched disturbance
  publication-title: Internat J Robust Nonlinear Control
– volume: 58
  start-page: 1597
  year: 2013
  ident: 10.1016/j.chaos.2024.114718_b24
  article-title: Finite-time stabilization of fractional order uncertain chain of integrator: An integral sliding mode approach
  publication-title: IEEE Trans Automat Control
  doi: 10.1109/TAC.2012.2228051
– ident: 10.1016/j.chaos.2024.114718_b4
– volume: 65
  year: 2022
  ident: 10.1016/j.chaos.2024.114718_b20
  article-title: Active disturbance rejection control for fractional reaction–diffusion equations with spatially varying diffusivity and time delay
  publication-title: Sci China Inf Sci
  doi: 10.1007/s11432-019-2876-9
– volume: 53
  start-page: 8
  year: 2018
  ident: 10.1016/j.chaos.2024.114718_b31
  article-title: Fractional order sliding mode control via disturbance observer for a class of fractional order systems with mismatched disturbance
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2018.05.006
– volume: 51
  start-page: 853
  issue: 5
  year: 2006
  ident: 10.1016/j.chaos.2024.114718_b28
  article-title: Analysis and design of integral sliding manifolds for systems with unmatched perturbations
  publication-title: IEEE Trans Automat Control
  doi: 10.1109/TAC.2006.875008
– year: 1983
  ident: 10.1016/j.chaos.2024.114718_b35
– volume: 40
  start-page: 378
  year: 1995
  ident: 10.1016/j.chaos.2024.114718_b5
  article-title: Boundary fractional derivative control of the wave equation
  publication-title: IEEE Trans Automat Control
  doi: 10.1109/9.341815
– volume: 367
  start-page: 181
  year: 2006
  ident: 10.1016/j.chaos.2024.114718_b1
  article-title: Fractional vector calculus for fractional advection–dispersion
  publication-title: Phys A
  doi: 10.1016/j.physa.2005.11.015
– volume: 50
  start-page: 547
  year: 2014
  ident: 10.1016/j.chaos.2024.114718_b22
  article-title: Non-existence of finite-time stable equilibria in fractional-order nonlinear system
  publication-title: Automatica
  doi: 10.1016/j.automatica.2013.11.018
– volume: 50
  start-page: 3173
  issue: 12
  year: 2014
  ident: 10.1016/j.chaos.2024.114718_b30
  article-title: Fractional-order sliding mode based extremum seeking control of a class of nonlinear systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2014.10.027
– volume: 12
  start-page: 1561
  year: 2018
  ident: 10.1016/j.chaos.2024.114718_b10
  article-title: Observer-based output feedback control for a boundary controlled fractional reaction diffusion system with spatially-varying diffusivity
  publication-title: IET Control Theory Appl
  doi: 10.1049/iet-cta.2017.1352
– ident: 10.1016/j.chaos.2024.114718_b26
  doi: 10.1109/VSS.2012.6163471
– year: 2015
  ident: 10.1016/j.chaos.2024.114718_b37
– volume: 58
  start-page: 1269
  year: 2013
  ident: 10.1016/j.chaos.2024.114718_b13
  article-title: Sliding mode and active disturbance rejection control to stabilization of one-dimensional anti-stable wave equations subject to disturbance in boundary input
  publication-title: IEEE Trans Automat Control
  doi: 10.1109/TAC.2012.2218669
– volume: 339
  start-page: 1
  year: 2000
  ident: 10.1016/j.chaos.2024.114718_b2
  article-title: The random walk’s guide to anomalous diffusion: A fractional dynamics approach
  publication-title: Phys Rep
  doi: 10.1016/S0370-1573(00)00070-3
– volume: 38
  start-page: 339
  year: 2004
  ident: 10.1016/j.chaos.2024.114718_b6
  article-title: Boundary stabilization and disturbance rejection for time fractional order diffusion-wave equations
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-004-3765-5
– volume: 64
  start-page: 3068
  year: 2019
  ident: 10.1016/j.chaos.2024.114718_b14
  article-title: Stabilization of one-dimensional wave equation with nonlinear boundary condition subject to boundary control matched disturbance
  publication-title: IEEE Trans Automat Control
  doi: 10.1109/TAC.2018.2874746
– volume: 74
  start-page: 721
  issue: 3
  year: 2013
  ident: 10.1016/j.chaos.2024.114718_b32
  article-title: A novel fractional-order hyperchaotic system stabilization via fractional sliding-mode control
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-013-1000-y
– volume: 263
  start-page: 2213
  year: 2017
  ident: 10.1016/j.chaos.2024.114718_b16
  article-title: Unknown input observer design and output feedback stabilization for multi-dimensional wave equation with boundary control matched uncertainty
  publication-title: J Differential Equations
  doi: 10.1016/j.jde.2017.03.043
– volume: 29
  start-page: 4384
  year: 2019
  ident: 10.1016/j.chaos.2024.114718_b19
  article-title: Mittag-Leffler stabilization for an unstable time fractional anomalous diffusion equation with boundary control matched disturbance
  publication-title: Internat J Robust Nonlinear Control
  doi: 10.1002/rnc.4632
– volume: 146
  year: 2021
  ident: 10.1016/j.chaos.2024.114718_b8
  article-title: Boundary control strategy for three kinds of fractional heat equations with control-matched disturbances
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2021.110886
– volume: 60
  start-page: 143
  year: 2015
  ident: 10.1016/j.chaos.2024.114718_b15
  article-title: The active disturbance rejection control to stabilization for multi-dimensional wave equation with boundary control matched disturbance
  publication-title: IEEE Trans Automat Control
  doi: 10.1109/TAC.2014.2335511
– year: 1998
  ident: 10.1016/j.chaos.2024.114718_b34
– volume: 111
  start-page: 1355
  issue: 2
  year: 2023
  ident: 10.1016/j.chaos.2024.114718_b9
  article-title: Boundary disturbance rejection for fractional distributed parameter systems via the sliding mode and Riesz basis approach
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-022-07897-3
– volume: 30
  start-page: 3639
  year: 2020
  ident: 10.1016/j.chaos.2024.114718_b12
  article-title: Regional output feedback stabilization of semilinear time-fractional diffusion systems in a parallelepipedon with control constraints
  publication-title: Internat J Robust Nonlinear Control
  doi: 10.1002/rnc.4958
– volume: 85
  start-page: 633
  year: 2016
  ident: 10.1016/j.chaos.2024.114718_b29
  article-title: Sliding mode control with a second-order switching law for a class of nonlinear fractional order systems
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-016-2712-6
– volume: 17
  start-page: 356
  issue: 1
  year: 2012
  ident: 10.1016/j.chaos.2024.114718_b33
  article-title: Design of sliding mode controller for a class of fractional-order chaotic systems
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2011.04.024
– volume: 45
  start-page: 1965
  year: 2009
  ident: 10.1016/j.chaos.2024.114718_b3
  article-title: Mittag-Leffler stability of fractional order nonlinear dynamic systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2009.04.003
– year: 2018
  ident: 10.1016/j.chaos.2024.114718_b36
– volume: 19
  start-page: 2951
  year: 2014
  ident: 10.1016/j.chaos.2024.114718_b7
  article-title: Lyapunov functions for fractional order systems
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2014.01.022
– volume: 121
  start-page: 92
  year: 2019
  ident: 10.1016/j.chaos.2024.114718_b21
  article-title: The boundary control strategy for a fractional wave equation with external disturbances
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2019.01.031
– volume: 57
  start-page: 1890
  year: 2019
  ident: 10.1016/j.chaos.2024.114718_b17
  article-title: Adaptive error feedback regulation problem for an Euler–Bernolli beam equation with unmatched general unmatched boundary harmonic disturbance
  publication-title: SIAM J Control Optim
  doi: 10.1137/18M1172727
– year: 2010
  ident: 10.1016/j.chaos.2024.114718_b18
– volume: 138
  start-page: 439
  issue: 5
  year: 1991
  ident: 10.1016/j.chaos.2024.114718_b27
  article-title: Design of integral variable structure controller and application to electrohydraulic velocity servosystems
  publication-title: IEE Proc-D
  doi: 10.1049/ip-d.1991.0060
– volume: 122
  start-page: 86
  year: 2018
  ident: 10.1016/j.chaos.2024.114718_b11
  article-title: M-L convergent backstepping observers for coupled semilinear subdiffusion systems with spatially varying parameters
  publication-title: Systems Control Lett
  doi: 10.1016/j.sysconle.2018.10.009
– volume: 20
  start-page: 2045
  year: 2010
  ident: 10.1016/j.chaos.2024.114718_b25
  article-title: Sliding mode control approaches to the robust regulation of linear multivariable fractional-order dynamics
  publication-title: Internat J Robust Nonlinear Control
  doi: 10.1002/rnc.1565
– volume: vol. 317
  year: 2015
  ident: 10.1016/j.chaos.2024.114718_b23
SSID ssj0001062
Score 2.4283466
Snippet By adopting the sliding mode control (SMC) and the generalized Lyapunov method, the boundary feedback stabilization issue is studied for the fractional...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 114718
SubjectTerms Disturbance rejection
Mittag-Leffler stabilization
Sliding mode control
Well-posedness of discontinuous systems
Title Sliding mode control for the stabilization of fractional heat equations subject to boundary uncertainty
URI https://dx.doi.org/10.1016/j.chaos.2024.114718
Volume 181
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwGG0IXvRgBDXiD9KDB02cbN26siMhEtTIBUy4LW3pFGMYsnHg4t9uv7bzR2I8eNzSZstr-31v6-v7EDoP2SxQWRx7ycxnXiQI87iS1PNVNguCkAmqjNpiFA8fo7spndZQvzoLA7JKF_ttTDfR2t3pODQ7y_m8Mwby7TOWgAqSMOMJGkUMZvn1-5fMQ3_ymJ0E3diD1pXzkNF4yWeeg2c3icAzl0Hlj9-y07eMM9hDu44q4p59mwaqqUUT7Tx8-qwWTdRwS7PAF84_-nIfPY1f55CRMFS5wU6LjjU5xbon1mwQ9LD29CXOM5yt7NkG_SgIzFi9WffvAhdrAX9pcJljYaovrTZYp0ErIig3B2gyuJn0h56rp-BJQsPS02SBdjPCVAKbYVIPhw4xEePdOFIZlTySSg-PIiIkisRU-IkvAiYFpxxMc8JDVF_kC3WEcKhYoJmfZLGGTvEu16yNz5JEJVz4koYtdFXBmC6ta0ZaycleUoN6CqinFvUWiiuo0x-Dn-q4_lfH4_92PEHbcGUlOKeoXq7W6kyzi1K0zfRpo63e7f1w9AFZfM-M
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEJ0QOKgHI6gRP_fgQRMb-rVdeiREA_JxARNuze6yVYwBhHLg37vT3RJNjAevbSdt3m5nXrtv3wDcBmzqqTSKnHjqMicUPnO4ktRxVTr1vIAJqnK1xTDqvITPEzopQbvYC4OySpv7TU7Ps7U90rBoNpazWWOE5NtlLEYVpM_QE7SC7lS0DJVWt9cZ7hKy_urJFxP09Q4GFOZDucxLvvEF2nb7IdrmMmz-8VuB-lZ0no7g0LJF0jIPVIWSmtfgYLCzWl3XoGrfzjW5sxbS98fwOvqYYVEi2OiGWDk60fyU6EiiCSFKYs0GTLJISboy2xv0rTA3E_VpDMDXZL0R-KOGZAsi8gZMqy3RldDoCLLtCYyfHsftjmNbKjjSp0HmaL5Am6nPVIzrYVKPiM4yIePNKFQplTyUSo-Q8kXgKz-iwo1d4TEpOOXomxOcQnm-mKszIIFiniZ_kkUaOsWbXBM3Po1jFXPhShrU4aGAMVka44ykUJS9JznqCaKeGNTrEBVQJz_GP9Gp_a_A8_8G3sBeZzzoJ_3usHcB-3jGKHIuoZytNupKk41MXNvJ9AWGVNI9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sliding+mode+control+for+the+stabilization+of+fractional+heat+equations+subject+to+boundary+uncertainty&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Cai%2C+Rui-Yang&rft.au=Cheng%2C+Lan&rft.au=Zhou%2C+Hua-Cheng&rft.date=2024-04-01&rft.pub=Elsevier+Ltd&rft.issn=0960-0779&rft.eissn=1873-2887&rft.volume=181&rft_id=info:doi/10.1016%2Fj.chaos.2024.114718&rft.externalDocID=S0960077924002704
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon