Multivariate Zipper Fractal Functions

A novel approach to zipper fractal interpolation theory for functions of several variables is presented. Multivariate zipper fractal functions are constructed and then perturbed through free choices of base functions, scaling functions, and a binary matrix called signature to obtain their zipper α-f...

Full description

Saved in:
Bibliographic Details
Published inNumerical functional analysis and optimization Vol. 44; no. 14; pp. 1538 - 1569
Main Authors Kumar, D., Chand, A. K. B., Massopust, P. R.
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 26.10.2023
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0163-0563
1532-2467
DOI10.1080/01630563.2023.2265722

Cover

Abstract A novel approach to zipper fractal interpolation theory for functions of several variables is presented. Multivariate zipper fractal functions are constructed and then perturbed through free choices of base functions, scaling functions, and a binary matrix called signature to obtain their zipper α-fractal versions. In particular, we propose a multivariate Bernstein zipper fractal function and study its coordinate-wise monotonicity which depends on the values of signature. We derive bounds for the graph of a multivariate zipper fractal function by imposing conditions on the scaling factors and the Hölder exponent of the associated germ function and base function. The box dimension result for multivariate Bernstein zipper fractal function is derived. Finally, we study some constrained approximation properties for multivariate zipper Bernstein fractal functions.
AbstractList A novel approach to zipper fractal interpolation theory for functions of several variables is presented. Multivariate zipper fractal functions are constructed and then perturbed through free choices of base functions, scaling functions, and a binary matrix called signature to obtain their zipper α-fractal versions. In particular, we propose a multivariate Bernstein zipper fractal function and study its coordinate-wise monotonicity which depends on the values of signature. We derive bounds for the graph of a multivariate zipper fractal function by imposing conditions on the scaling factors and the Hölder exponent of the associated germ function and base function. The box dimension result for multivariate Bernstein zipper fractal function is derived. Finally, we study some constrained approximation properties for multivariate zipper Bernstein fractal functions.
Author Kumar, D.
Chand, A. K. B.
Massopust, P. R.
Author_xml – sequence: 1
  givenname: D.
  surname: Kumar
  fullname: Kumar, D.
  organization: Department of Mathematics, Indian Institute of Technology Madras
– sequence: 2
  givenname: A. K. B.
  surname: Chand
  fullname: Chand, A. K. B.
  organization: Department of Mathematics, Indian Institute of Technology Madras
– sequence: 3
  givenname: P. R.
  surname: Massopust
  fullname: Massopust, P. R.
  organization: School of Computation, Information and Technology, Department of Mathematics, Technical University of Munich (TUM)
BookMark eNqFkE1Lw0AQhhepYFv9CUJBPKbuZ7LBi1KsChUvevGyTHY3sCXNxt2N0n9vQvXiQS8zl_eZeXlmaNL61iJ0TvCSYImvMMkZFjlbUkyHQXNRUHqEpkQwmlGeFxM0HTPZGDpBsxi3GGNGSzlFl099k9wHBAfJLt5c19mwWAfQCZrFum91cr6Np-i4hibas-89R6_ru5fVQ7Z5vn9c3W4yTQVLWcFkrW1urSWUGyE0KbXghkHFAWgJ2tSkMMSUQzEpJBdVxYzJxdALA68km6OLw90u-PfexqS2vg_t8FJRKTmmZV7yIXV9SOngYwy2VtolGIumAK5RBKvRi_rxokYv6tvLQItfdBfcDsL-X-7mwLm29mEHnz40RiXYNz7UAVrtomJ_n_gCHZ15-g
CitedBy_id crossref_primary_10_1016_j_chaos_2024_115793
crossref_primary_10_1007_s41478_024_00796_3
crossref_primary_10_1016_j_cam_2024_116200
crossref_primary_10_1016_j_padiff_2024_101038
Cites_doi 10.1214/12-EJS735
10.1006/jmaa.1993.1232
10.1007/978-3-7908-1787-4_1
10.1137/0711036
10.1090/proc/13623
10.1007/s10543-019-00774-3
10.1142/S0218348X03002129
10.1016/0168-9274(93)90009-G
10.1016/0022-247X(90)90257-G
10.1016/j.na.2007.10.011
10.1111/j.1540-6261.1994.tb00081.x
10.1007/BF01893434
10.1142/S0218348X16500274
10.1016/0021-9045(85)90043-7
10.1016/j.chaos.2015.10.002
10.1553/etna_vol51s1
10.4171/ZAA/549
10.1016/j.jat.2006.01.006
10.1017/S0956792507007024
10.1016/j.jmaa.2007.01.112
10.1142/S0218348X16500377
10.1007/s40314-022-01862-x
10.3390/math8091397
10.2307/2308924
10.1137/0520080
10.1007/s10092-013-0105-5
10.1090/S0025-5718-1964-0165684-0
10.1553/etna_vol55s627
10.1007/s10543-005-0028-x
10.1016/0021-9045(87)90087-6
10.1137/0706042
10.1137/0722024
10.1137/0708019
10.1017/S0004972715000064
ContentType Journal Article
Copyright 2023 Taylor & Francis Group, LLC 2023
2023 Taylor & Francis Group, LLC
Copyright_xml – notice: 2023 Taylor & Francis Group, LLC 2023
– notice: 2023 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/01630563.2023.2265722
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1532-2467
EndPage 1569
ExternalDocumentID 10_1080_01630563_2023_2265722
2265722
Genre Research Article
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
123
29N
30N
4.4
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EDO
EMK
EPL
EST
ESX
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
I-F
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
TWF
UT5
UU3
YNT
YQT
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c253t-738fce6eee124d55c19c54d3ab4aa29acdf17d1d953285845bb3dd650560a4b83
ISSN 0163-0563
IngestDate Fri Jul 25 03:00:39 EDT 2025
Tue Jul 01 04:09:18 EDT 2025
Thu Apr 24 22:52:38 EDT 2025
Wed Dec 25 09:02:43 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c253t-738fce6eee124d55c19c54d3ab4aa29acdf17d1d953285845bb3dd650560a4b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2884029694
PQPubID 2045235
PageCount 32
ParticipantIDs proquest_journals_2884029694
crossref_citationtrail_10_1080_01630563_2023_2265722
crossref_primary_10_1080_01630563_2023_2265722
informaworld_taylorfrancis_310_1080_01630563_2023_2265722
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 10/26/2023
PublicationDateYYYYMMDD 2023-10-26
PublicationDate_xml – month: 10
  year: 2023
  text: 10/26/2023
  day: 26
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Numerical functional analysis and optimization
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_2_27_1
e_1_3_2_28_1
Gal S. G. (e_1_3_2_36_1) 1987
e_1_3_2_29_1
Massopust P. R. (e_1_3_2_17_1) 1994
e_1_3_2_42_1
e_1_3_2_20_1
e_1_3_2_21_1
e_1_3_2_22_1
e_1_3_2_23_1
e_1_3_2_24_1
Aseev V. V. (e_1_3_2_25_1) 2002
e_1_3_2_40_1
Falconer K. (e_1_3_2_41_1) 2003
e_1_3_2_16_1
e_1_3_2_39_1
e_1_3_2_9_1
e_1_3_2_38_1
e_1_3_2_8_1
e_1_3_2_18_1
e_1_3_2_7_1
e_1_3_2_19_1
e_1_3_2_2_1
e_1_3_2_30_1
e_1_3_2_10_1
e_1_3_2_33_1
e_1_3_2_11_1
e_1_3_2_32_1
e_1_3_2_6_1
e_1_3_2_12_1
e_1_3_2_35_1
e_1_3_2_5_1
e_1_3_2_13_1
Aseev V. V. (e_1_3_2_26_1) 2003; 44
e_1_3_2_34_1
e_1_3_2_4_1
e_1_3_2_14_1
e_1_3_2_37_1
e_1_3_2_3_1
e_1_3_2_15_1
Davis P. J. (e_1_3_2_31_1) 1977
References_xml – volume-title: Shape-Preserving Approximation by Real and Complex Polynomials
  year: 1987
  ident: e_1_3_2_36_1
– volume-title: Mathematical foundations and applications
  year: 2003
  ident: e_1_3_2_41_1
– ident: e_1_3_2_8_1
  doi: 10.1214/12-EJS735
– volume: 44
  start-page: 481
  issue: 3
  year: 2003
  ident: e_1_3_2_26_1
  article-title: Self-similar Jordan curves on the plane
  publication-title: Sibirsk. Mat. Zh
– ident: e_1_3_2_12_1
  doi: 10.1006/jmaa.1993.1232
– ident: e_1_3_2_39_1
  doi: 10.1007/978-3-7908-1787-4_1
– ident: e_1_3_2_7_1
  doi: 10.1137/0711036
– ident: e_1_3_2_2_1
  doi: 10.1090/proc/13623
– ident: e_1_3_2_27_1
  doi: 10.1007/s10543-019-00774-3
– ident: e_1_3_2_20_1
  doi: 10.1142/S0218348X03002129
– ident: e_1_3_2_28_1
– ident: e_1_3_2_6_1
  doi: 10.1016/0168-9274(93)90009-G
– ident: e_1_3_2_11_1
  doi: 10.1016/0022-247X(90)90257-G
– ident: e_1_3_2_16_1
  doi: 10.1016/j.na.2007.10.011
– volume-title: Fractal Functions, Fractal Surfaces, and Wavelets
  year: 1994
  ident: e_1_3_2_17_1
– volume-title: Interpolation and Approximation
  year: 1977
  ident: e_1_3_2_31_1
– ident: e_1_3_2_37_1
  doi: 10.1111/j.1540-6261.1994.tb00081.x
– ident: e_1_3_2_35_1
  doi: 10.1007/BF01893434
– ident: e_1_3_2_24_1
  doi: 10.1142/S0218348X16500274
– ident: e_1_3_2_4_1
  doi: 10.1016/0021-9045(85)90043-7
– ident: e_1_3_2_23_1
  doi: 10.1016/j.chaos.2015.10.002
– ident: e_1_3_2_32_1
  doi: 10.1553/etna_vol51s1
– ident: e_1_3_2_13_1
  doi: 10.4171/ZAA/549
– ident: e_1_3_2_15_1
  doi: 10.1016/j.jat.2006.01.006
– ident: e_1_3_2_14_1
  doi: 10.1017/S0956792507007024
– ident: e_1_3_2_19_1
  doi: 10.1016/j.jmaa.2007.01.112
– ident: e_1_3_2_33_1
  doi: 10.1142/S0218348X16500377
– start-page: 167
  volume-title: 6th Russian-Korean International Symposium on Science and Technology, KORUS-2002 (June 24-30, 2002, Novosibirsk State Techn. Univ. Russia, NGTU, Novosibirsk)
  year: 2002
  ident: e_1_3_2_25_1
– ident: e_1_3_2_29_1
  doi: 10.1007/s40314-022-01862-x
– ident: e_1_3_2_30_1
  doi: 10.3390/math8091397
– ident: e_1_3_2_10_1
  doi: 10.2307/2308924
– ident: e_1_3_2_21_1
  doi: 10.1137/0520080
– ident: e_1_3_2_22_1
  doi: 10.1007/s10092-013-0105-5
– ident: e_1_3_2_3_1
  doi: 10.1090/S0025-5718-1964-0165684-0
– ident: e_1_3_2_34_1
  doi: 10.1553/etna_vol55s627
– ident: e_1_3_2_38_1
  doi: 10.1007/s10543-005-0028-x
– ident: e_1_3_2_42_1
  doi: 10.1016/0021-9045(87)90087-6
– ident: e_1_3_2_5_1
  doi: 10.1137/0706042
– ident: e_1_3_2_40_1
  doi: 10.1137/0722024
– ident: e_1_3_2_9_1
  doi: 10.1137/0708019
– ident: e_1_3_2_18_1
  doi: 10.1017/S0004972715000064
SSID ssj0003298
Score 2.3551576
Snippet A novel approach to zipper fractal interpolation theory for functions of several variables is presented. Multivariate zipper fractal functions are constructed...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1538
SubjectTerms Box dimension
fractal interpolation function
Fractals
Interpolation
Mathematical analysis
monotonicity
Multivariate analysis
multivariate Bernstein operator
positivity
Scaling factors
zipper
Title Multivariate Zipper Fractal Functions
URI https://www.tandfonline.com/doi/abs/10.1080/01630563.2023.2265722
https://www.proquest.com/docview/2884029694
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELagvcAB8RSFgvYAp2ijxK-1jxU0iqAtl42IerHWj5VAJYnaLYf--o4f-4gaUeCyinbleNczHn8ezzeD0AetLRHGCtiWOJNTK2HOaSdzLDmrGCNmYkOA7BmfL-iXJVv2VVEDu6TRY3Ozk1fyP1KFeyBXz5L9B8l2fwo34DfIF64gYbj-lYwDe_Y37HYBMI7Of2w27tIjUeMJjjNYsHpn3M-WZRsPaC5GdXocUgWkvCTeh74GE_IrcTP7Y54Uht1FB3tOQnRIj772dZtPAYivN9eJRZJCEZNHAYfYtEhbDzpQ3inuMYgwCj5If_TLkl1yrd3EOaaxskZrWGNix1aB6MBMejM7WHJhDyl3mvMU_wgd-v7G_mXHgBdZEbnM2-mzz76p2eLkRJXHy_Ih2sdF4c_t94_mn8-_d4szwaE8cvcNLanLp1vf1c0WXNlKZntn8Q6IpHyKnqStRHYU9eIZeuBWz9Hj0y4P79UL9HGoIVnUkCxpSNZpyEu0mB2Xn-Z5KoyRG8xIkxdE1MZx5xygM8uYmUrDqCWVplWFZWVsPS3s1EqQigCEybQm1nIPdicV1YK8Qnur9cq9RhmvDWBYTrTmljpqhOau4pUDWVohmDlAtP1-ZVLWeF-85EJN2-SyadiUHzaVhu0Ajbtmm5g25b4Gcji4qglKWEf9U-SetoetJFSanVcKC0EnYHEkffPnx2_Ro34SHKK95vLavQOg2ej3SXluAbrkdaA
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4MHtSDbyOKugc97sr2RXs0RoIKnCAhXpq-NjEaJLB48NfbdneJaAwHzptputPpzDfNzDcAXCtlENOGubTE6hgb7u6csjyGnBJJCNJNEwpk-7QzxE8jMvrRC-PLKn0OnRVEEcFX-8vtH6OrkrhbB1M88kWJn_2dOABBWtC54U3isLu3ctTsL7wxgmEerheJvUzVxfPfMkvxaYm99I-3DiGovQd0tfmi8uQtmecq0V-_eB3X-7t9sFsi1OiuMKkDsGHHh2Cnt6B3nR2Bm9C2--nSbIdUo5fXycROo7bvt3KCbRcpgzEfg2H7YXDfict5C7GGBOVxC7FMW2qtdUHfEKJTrgk2SCosJeRSmyxtmdRwgiBzwIUohYyhHkM1JVYMnYDa-GNsT0FEM-2gEUVKUYMt1kxRK6m0EFPDGNF1gCstC12SkfuZGO8irThLSy0IrwVRaqEOkoXYpGDjWCXAfx6hyMMzSFbMLBFohWyjOm9RXuyZgMxlxM6QOT5bY-krsNUZ9Lqi-9h_Pgfb_pOPh5A2QC2fzu2FAzq5ugyW_A37Zeyz
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kgujBt1itmoMeE9t9dfcoaqiv4sGCeFn2FRClhjb14K93d5MUq0gPPYdZktl5fBNmvgHgVCmDmDbMlSVWx9hw53PK8hhySiQhSLdNaJDt094A3z6TuptwXLVV-ho6K4kiQqz2zp2brO6IO3coxQNflPjV34nDD6QLXRRepg6e-K4-1O5PgzGCYR2uF4m9TD3E898xM-lphrz0T7AOGSjdAKp-97Lx5C2ZFCrRX79oHRf6uE2wXuHT6KI0qC2wZIfbYO1hSu463gFnYWj30xXZDqdGL695bkdR6qetnGDq8mQw5V0wSK-fLntxtW0h1pCgIu4ilmlLrbUu5RtCdIdrgg2SCksJudQm63RNx3CCIHOwhSiFjKEeQbUlVgztgcbwY2j3QUQz7YARRUpRgy3WTFErqbQQU8MY0U2AayULXVGR-40Y76JTM5ZWWhBeC6LSQhMkU7G85OKYJ8B_3qAowk-QrNxYItAc2VZ93aJy67GAzNXDzow5Pljg6BOw8niVivub_t0hWPVPfDKEtAUaxWhijxzKKdRxsONvEI3rVw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+Zipper+Fractal+Functions&rft.jtitle=Numerical+functional+analysis+and+optimization&rft.au=Kumar%2C+D&rft.au=Chand%2C+A+K+B&rft.au=Massopust%2C+P+R&rft.date=2023-10-26&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0163-0563&rft.eissn=1532-2467&rft.volume=44&rft.issue=14&rft.spage=1538&rft.epage=1569&rft_id=info:doi/10.1080%2F01630563.2023.2265722&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0163-0563&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0163-0563&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0163-0563&client=summon