Multivariate Zipper Fractal Functions
A novel approach to zipper fractal interpolation theory for functions of several variables is presented. Multivariate zipper fractal functions are constructed and then perturbed through free choices of base functions, scaling functions, and a binary matrix called signature to obtain their zipper α-f...
Saved in:
Published in | Numerical functional analysis and optimization Vol. 44; no. 14; pp. 1538 - 1569 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
26.10.2023
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0163-0563 1532-2467 |
DOI | 10.1080/01630563.2023.2265722 |
Cover
Abstract | A novel approach to zipper fractal interpolation theory for functions of several variables is presented. Multivariate zipper fractal functions are constructed and then perturbed through free choices of base functions, scaling functions, and a binary matrix called signature to obtain their zipper α-fractal versions. In particular, we propose a multivariate Bernstein zipper fractal function and study its coordinate-wise monotonicity which depends on the values of signature. We derive bounds for the graph of a multivariate zipper fractal function by imposing conditions on the scaling factors and the Hölder exponent of the associated germ function and base function. The box dimension result for multivariate Bernstein zipper fractal function is derived. Finally, we study some constrained approximation properties for multivariate zipper Bernstein fractal functions. |
---|---|
AbstractList | A novel approach to zipper fractal interpolation theory for functions of several variables is presented. Multivariate zipper fractal functions are constructed and then perturbed through free choices of base functions, scaling functions, and a binary matrix called signature to obtain their zipper α-fractal versions. In particular, we propose a multivariate Bernstein zipper fractal function and study its coordinate-wise monotonicity which depends on the values of signature. We derive bounds for the graph of a multivariate zipper fractal function by imposing conditions on the scaling factors and the Hölder exponent of the associated germ function and base function. The box dimension result for multivariate Bernstein zipper fractal function is derived. Finally, we study some constrained approximation properties for multivariate zipper Bernstein fractal functions. |
Author | Kumar, D. Chand, A. K. B. Massopust, P. R. |
Author_xml | – sequence: 1 givenname: D. surname: Kumar fullname: Kumar, D. organization: Department of Mathematics, Indian Institute of Technology Madras – sequence: 2 givenname: A. K. B. surname: Chand fullname: Chand, A. K. B. organization: Department of Mathematics, Indian Institute of Technology Madras – sequence: 3 givenname: P. R. surname: Massopust fullname: Massopust, P. R. organization: School of Computation, Information and Technology, Department of Mathematics, Technical University of Munich (TUM) |
BookMark | eNqFkE1Lw0AQhhepYFv9CUJBPKbuZ7LBi1KsChUvevGyTHY3sCXNxt2N0n9vQvXiQS8zl_eZeXlmaNL61iJ0TvCSYImvMMkZFjlbUkyHQXNRUHqEpkQwmlGeFxM0HTPZGDpBsxi3GGNGSzlFl099k9wHBAfJLt5c19mwWAfQCZrFum91cr6Np-i4hibas-89R6_ru5fVQ7Z5vn9c3W4yTQVLWcFkrW1urSWUGyE0KbXghkHFAWgJ2tSkMMSUQzEpJBdVxYzJxdALA68km6OLw90u-PfexqS2vg_t8FJRKTmmZV7yIXV9SOngYwy2VtolGIumAK5RBKvRi_rxokYv6tvLQItfdBfcDsL-X-7mwLm29mEHnz40RiXYNz7UAVrtomJ_n_gCHZ15-g |
CitedBy_id | crossref_primary_10_1016_j_chaos_2024_115793 crossref_primary_10_1007_s41478_024_00796_3 crossref_primary_10_1016_j_cam_2024_116200 crossref_primary_10_1016_j_padiff_2024_101038 |
Cites_doi | 10.1214/12-EJS735 10.1006/jmaa.1993.1232 10.1007/978-3-7908-1787-4_1 10.1137/0711036 10.1090/proc/13623 10.1007/s10543-019-00774-3 10.1142/S0218348X03002129 10.1016/0168-9274(93)90009-G 10.1016/0022-247X(90)90257-G 10.1016/j.na.2007.10.011 10.1111/j.1540-6261.1994.tb00081.x 10.1007/BF01893434 10.1142/S0218348X16500274 10.1016/0021-9045(85)90043-7 10.1016/j.chaos.2015.10.002 10.1553/etna_vol51s1 10.4171/ZAA/549 10.1016/j.jat.2006.01.006 10.1017/S0956792507007024 10.1016/j.jmaa.2007.01.112 10.1142/S0218348X16500377 10.1007/s40314-022-01862-x 10.3390/math8091397 10.2307/2308924 10.1137/0520080 10.1007/s10092-013-0105-5 10.1090/S0025-5718-1964-0165684-0 10.1553/etna_vol55s627 10.1007/s10543-005-0028-x 10.1016/0021-9045(87)90087-6 10.1137/0706042 10.1137/0722024 10.1137/0708019 10.1017/S0004972715000064 |
ContentType | Journal Article |
Copyright | 2023 Taylor & Francis Group, LLC 2023 2023 Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2023 Taylor & Francis Group, LLC 2023 – notice: 2023 Taylor & Francis Group, LLC |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1080/01630563.2023.2265722 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1532-2467 |
EndPage | 1569 |
ExternalDocumentID | 10_1080_01630563_2023_2265722 2265722 |
Genre | Research Article |
GroupedDBID | -~X .4S .7F .DC .QJ 0BK 0R~ 123 29N 30N 4.4 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ACUHS ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH ARCSS AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EAP EBS EDO EMK EPL EST ESX E~A E~B GTTXZ H13 HF~ HZ~ H~P I-F IPNFZ J.P KYCEM LJTGL M4Z NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TUS TWF UT5 UU3 YNT YQT ZGOLN ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV AMVHM CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c253t-738fce6eee124d55c19c54d3ab4aa29acdf17d1d953285845bb3dd650560a4b83 |
ISSN | 0163-0563 |
IngestDate | Fri Jul 25 03:00:39 EDT 2025 Tue Jul 01 04:09:18 EDT 2025 Thu Apr 24 22:52:38 EDT 2025 Wed Dec 25 09:02:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c253t-738fce6eee124d55c19c54d3ab4aa29acdf17d1d953285845bb3dd650560a4b83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2884029694 |
PQPubID | 2045235 |
PageCount | 32 |
ParticipantIDs | proquest_journals_2884029694 crossref_citationtrail_10_1080_01630563_2023_2265722 crossref_primary_10_1080_01630563_2023_2265722 informaworld_taylorfrancis_310_1080_01630563_2023_2265722 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 10/26/2023 |
PublicationDateYYYYMMDD | 2023-10-26 |
PublicationDate_xml | – month: 10 year: 2023 text: 10/26/2023 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Numerical functional analysis and optimization |
PublicationYear | 2023 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | e_1_3_2_27_1 e_1_3_2_28_1 Gal S. G. (e_1_3_2_36_1) 1987 e_1_3_2_29_1 Massopust P. R. (e_1_3_2_17_1) 1994 e_1_3_2_42_1 e_1_3_2_20_1 e_1_3_2_21_1 e_1_3_2_22_1 e_1_3_2_23_1 e_1_3_2_24_1 Aseev V. V. (e_1_3_2_25_1) 2002 e_1_3_2_40_1 Falconer K. (e_1_3_2_41_1) 2003 e_1_3_2_16_1 e_1_3_2_39_1 e_1_3_2_9_1 e_1_3_2_38_1 e_1_3_2_8_1 e_1_3_2_18_1 e_1_3_2_7_1 e_1_3_2_19_1 e_1_3_2_2_1 e_1_3_2_30_1 e_1_3_2_10_1 e_1_3_2_33_1 e_1_3_2_11_1 e_1_3_2_32_1 e_1_3_2_6_1 e_1_3_2_12_1 e_1_3_2_35_1 e_1_3_2_5_1 e_1_3_2_13_1 Aseev V. V. (e_1_3_2_26_1) 2003; 44 e_1_3_2_34_1 e_1_3_2_4_1 e_1_3_2_14_1 e_1_3_2_37_1 e_1_3_2_3_1 e_1_3_2_15_1 Davis P. J. (e_1_3_2_31_1) 1977 |
References_xml | – volume-title: Shape-Preserving Approximation by Real and Complex Polynomials year: 1987 ident: e_1_3_2_36_1 – volume-title: Mathematical foundations and applications year: 2003 ident: e_1_3_2_41_1 – ident: e_1_3_2_8_1 doi: 10.1214/12-EJS735 – volume: 44 start-page: 481 issue: 3 year: 2003 ident: e_1_3_2_26_1 article-title: Self-similar Jordan curves on the plane publication-title: Sibirsk. Mat. Zh – ident: e_1_3_2_12_1 doi: 10.1006/jmaa.1993.1232 – ident: e_1_3_2_39_1 doi: 10.1007/978-3-7908-1787-4_1 – ident: e_1_3_2_7_1 doi: 10.1137/0711036 – ident: e_1_3_2_2_1 doi: 10.1090/proc/13623 – ident: e_1_3_2_27_1 doi: 10.1007/s10543-019-00774-3 – ident: e_1_3_2_20_1 doi: 10.1142/S0218348X03002129 – ident: e_1_3_2_28_1 – ident: e_1_3_2_6_1 doi: 10.1016/0168-9274(93)90009-G – ident: e_1_3_2_11_1 doi: 10.1016/0022-247X(90)90257-G – ident: e_1_3_2_16_1 doi: 10.1016/j.na.2007.10.011 – volume-title: Fractal Functions, Fractal Surfaces, and Wavelets year: 1994 ident: e_1_3_2_17_1 – volume-title: Interpolation and Approximation year: 1977 ident: e_1_3_2_31_1 – ident: e_1_3_2_37_1 doi: 10.1111/j.1540-6261.1994.tb00081.x – ident: e_1_3_2_35_1 doi: 10.1007/BF01893434 – ident: e_1_3_2_24_1 doi: 10.1142/S0218348X16500274 – ident: e_1_3_2_4_1 doi: 10.1016/0021-9045(85)90043-7 – ident: e_1_3_2_23_1 doi: 10.1016/j.chaos.2015.10.002 – ident: e_1_3_2_32_1 doi: 10.1553/etna_vol51s1 – ident: e_1_3_2_13_1 doi: 10.4171/ZAA/549 – ident: e_1_3_2_15_1 doi: 10.1016/j.jat.2006.01.006 – ident: e_1_3_2_14_1 doi: 10.1017/S0956792507007024 – ident: e_1_3_2_19_1 doi: 10.1016/j.jmaa.2007.01.112 – ident: e_1_3_2_33_1 doi: 10.1142/S0218348X16500377 – start-page: 167 volume-title: 6th Russian-Korean International Symposium on Science and Technology, KORUS-2002 (June 24-30, 2002, Novosibirsk State Techn. Univ. Russia, NGTU, Novosibirsk) year: 2002 ident: e_1_3_2_25_1 – ident: e_1_3_2_29_1 doi: 10.1007/s40314-022-01862-x – ident: e_1_3_2_30_1 doi: 10.3390/math8091397 – ident: e_1_3_2_10_1 doi: 10.2307/2308924 – ident: e_1_3_2_21_1 doi: 10.1137/0520080 – ident: e_1_3_2_22_1 doi: 10.1007/s10092-013-0105-5 – ident: e_1_3_2_3_1 doi: 10.1090/S0025-5718-1964-0165684-0 – ident: e_1_3_2_34_1 doi: 10.1553/etna_vol55s627 – ident: e_1_3_2_38_1 doi: 10.1007/s10543-005-0028-x – ident: e_1_3_2_42_1 doi: 10.1016/0021-9045(87)90087-6 – ident: e_1_3_2_5_1 doi: 10.1137/0706042 – ident: e_1_3_2_40_1 doi: 10.1137/0722024 – ident: e_1_3_2_9_1 doi: 10.1137/0708019 – ident: e_1_3_2_18_1 doi: 10.1017/S0004972715000064 |
SSID | ssj0003298 |
Score | 2.3551576 |
Snippet | A novel approach to zipper fractal interpolation theory for functions of several variables is presented. Multivariate zipper fractal functions are constructed... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1538 |
SubjectTerms | Box dimension fractal interpolation function Fractals Interpolation Mathematical analysis monotonicity Multivariate analysis multivariate Bernstein operator positivity Scaling factors zipper |
Title | Multivariate Zipper Fractal Functions |
URI | https://www.tandfonline.com/doi/abs/10.1080/01630563.2023.2265722 https://www.proquest.com/docview/2884029694 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELagvcAB8RSFgvYAp2ijxK-1jxU0iqAtl42IerHWj5VAJYnaLYf--o4f-4gaUeCyinbleNczHn8ezzeD0AetLRHGCtiWOJNTK2HOaSdzLDmrGCNmYkOA7BmfL-iXJVv2VVEDu6TRY3Ozk1fyP1KFeyBXz5L9B8l2fwo34DfIF64gYbj-lYwDe_Y37HYBMI7Of2w27tIjUeMJjjNYsHpn3M-WZRsPaC5GdXocUgWkvCTeh74GE_IrcTP7Y54Uht1FB3tOQnRIj772dZtPAYivN9eJRZJCEZNHAYfYtEhbDzpQ3inuMYgwCj5If_TLkl1yrd3EOaaxskZrWGNix1aB6MBMejM7WHJhDyl3mvMU_wgd-v7G_mXHgBdZEbnM2-mzz76p2eLkRJXHy_Ih2sdF4c_t94_mn8-_d4szwaE8cvcNLanLp1vf1c0WXNlKZntn8Q6IpHyKnqStRHYU9eIZeuBWz9Hj0y4P79UL9HGoIVnUkCxpSNZpyEu0mB2Xn-Z5KoyRG8xIkxdE1MZx5xygM8uYmUrDqCWVplWFZWVsPS3s1EqQigCEybQm1nIPdicV1YK8Qnur9cq9RhmvDWBYTrTmljpqhOau4pUDWVohmDlAtP1-ZVLWeF-85EJN2-SyadiUHzaVhu0Ajbtmm5g25b4Gcji4qglKWEf9U-SetoetJFSanVcKC0EnYHEkffPnx2_Ro34SHKK95vLavQOg2ej3SXluAbrkdaA |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4MHtSDbyOKugc97sr2RXs0RoIKnCAhXpq-NjEaJLB48NfbdneJaAwHzptputPpzDfNzDcAXCtlENOGubTE6hgb7u6csjyGnBJJCNJNEwpk-7QzxE8jMvrRC-PLKn0OnRVEEcFX-8vtH6OrkrhbB1M88kWJn_2dOABBWtC54U3isLu3ctTsL7wxgmEerheJvUzVxfPfMkvxaYm99I-3DiGovQd0tfmi8uQtmecq0V-_eB3X-7t9sFsi1OiuMKkDsGHHh2Cnt6B3nR2Bm9C2--nSbIdUo5fXycROo7bvt3KCbRcpgzEfg2H7YXDfict5C7GGBOVxC7FMW2qtdUHfEKJTrgk2SCosJeRSmyxtmdRwgiBzwIUohYyhHkM1JVYMnYDa-GNsT0FEM-2gEUVKUYMt1kxRK6m0EFPDGNF1gCstC12SkfuZGO8irThLSy0IrwVRaqEOkoXYpGDjWCXAfx6hyMMzSFbMLBFohWyjOm9RXuyZgMxlxM6QOT5bY-krsNUZ9Lqi-9h_Pgfb_pOPh5A2QC2fzu2FAzq5ugyW_A37Zeyz |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kgujBt1itmoMeE9t9dfcoaqiv4sGCeFn2FRClhjb14K93d5MUq0gPPYdZktl5fBNmvgHgVCmDmDbMlSVWx9hw53PK8hhySiQhSLdNaJDt094A3z6TuptwXLVV-ho6K4kiQqz2zp2brO6IO3coxQNflPjV34nDD6QLXRRepg6e-K4-1O5PgzGCYR2uF4m9TD3E898xM-lphrz0T7AOGSjdAKp-97Lx5C2ZFCrRX79oHRf6uE2wXuHT6KI0qC2wZIfbYO1hSu463gFnYWj30xXZDqdGL695bkdR6qetnGDq8mQw5V0wSK-fLntxtW0h1pCgIu4ilmlLrbUu5RtCdIdrgg2SCksJudQm63RNx3CCIHOwhSiFjKEeQbUlVgztgcbwY2j3QUQz7YARRUpRgy3WTFErqbQQU8MY0U2AayULXVGR-40Y76JTM5ZWWhBeC6LSQhMkU7G85OKYJ8B_3qAowk-QrNxYItAc2VZ93aJy67GAzNXDzow5Pljg6BOw8niVivub_t0hWPVPfDKEtAUaxWhijxzKKdRxsONvEI3rVw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+Zipper+Fractal+Functions&rft.jtitle=Numerical+functional+analysis+and+optimization&rft.au=Kumar%2C+D&rft.au=Chand%2C+A+K+B&rft.au=Massopust%2C+P+R&rft.date=2023-10-26&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0163-0563&rft.eissn=1532-2467&rft.volume=44&rft.issue=14&rft.spage=1538&rft.epage=1569&rft_id=info:doi/10.1080%2F01630563.2023.2265722&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0163-0563&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0163-0563&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0163-0563&client=summon |