Self-expressive subspace clustering to recognize motion dynamics for chronic ankle instability
Ankle sprains and instability are major public health concerns. Up to 70% of individuals do not fully recover from single ankle sprains and eventually develop chronic ankle instability (CAI). The diagnosis of CAI has been mainly based on self-report rather than objective biomechanical measures. The...
Saved in:
Published in | IISE transactions on healthcare systems engineering Vol. 10; no. 1; pp. 60 - 73 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
02.01.2020
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 2472-5579 2472-5587 |
DOI | 10.1080/24725579.2019.1673521 |
Cover
Loading…
Abstract | Ankle sprains and instability are major public health concerns. Up to 70% of individuals do not fully recover from single ankle sprains and eventually develop chronic ankle instability (CAI). The diagnosis of CAI has been mainly based on self-report rather than objective biomechanical measures. The goal of this study is to quantitatively recognize the motion patterns of a multi-joint coordinate system using gait data of bilateral hip, knee, and ankle joints, and further distinguish CAI from control cohorts. We propose an analytic framework, where the concept of subspace clustering is applied to characterize the dynamic gait patterns in a lower dimensional subspace from an inter-dependent network of multiply joints. A support vector machine model is built to validate the learned measures compared to traditional statistical measures in a leave-one-subject-out cross validation. The experimental results showed >70% classification accuracy on average for the dataset of 47 subjects (24 with CAI and 23 controls) recruited to examine in our designed experiment. It is found that CAI can be observed from other joints (e.g., hips) significantly, which reflects the fact that there exists inter-dependency in the multi-joint coordinate system. The proposed framework presents a potential to support clinical decisions using quantitative measures during diagnosis, treatment, rehabilitation of gait abnormality caused by physical injuries (e.g., ankle sprains in this study) or even central nervous system disorders. |
---|---|
AbstractList | Ankle sprains and instability are major public health concerns. Up to 70% of individuals do not fully recover from single ankle sprains and eventually develop chronic ankle instability (CAI). The diagnosis of CAI has been mainly based on self-report rather than objective biomechanical measures. The goal of this study is to quantitatively recognize the motion patterns of a multi-joint coordinate system using gait data of bilateral hip, knee, and ankle joints, and further distinguish CAI from control cohorts. We propose an analytic framework, where the concept of subspace clustering is applied to characterize the dynamic gait patterns in a lower dimensional subspace from an inter-dependent network of multiply joints. A support vector machine model is built to validate the learned measures compared to traditional statistical measures in a leave-one-subject-out cross validation. The experimental results showed >70% classification accuracy on average for the dataset of 47 subjects (24 with CAI and 23 controls) recruited to examine in our designed experiment. It is found that CAI can be observed from other joints (e.g., hips) significantly, which reflects the fact that there exists inter-dependency in the multi-joint coordinate system. The proposed framework presents a potential to support clinical decisions using quantitative measures during diagnosis, treatment, rehabilitation of gait abnormality caused by physical injuries (e.g., ankle sprains in this study) or even central nervous system disorders. |
Author | Chou, Chun-An Yen, Sheng-Che Qian, Shaodi Folmar, Eric |
Author_xml | – sequence: 1 givenname: Shaodi surname: Qian fullname: Qian, Shaodi organization: Department of Mechanical & Industrial Engineering, Northeastern University – sequence: 2 givenname: Sheng-Che surname: Yen fullname: Yen, Sheng-Che organization: Department of Physical Therapy, Movement & Rehabilitation Science, Northeastern University – sequence: 3 givenname: Eric surname: Folmar fullname: Folmar, Eric organization: Department of Physical Therapy, Movement & Rehabilitation Science, Northeastern University – sequence: 4 givenname: Chun-An surname: Chou fullname: Chou, Chun-An email: ch.chou@northeastern.edu organization: Department of Mechanical & Industrial Engineering, Northeastern University |
BookMark | eNqFkEtLAzEUhYMo-PwJQsD11CQzmXRwo4gvKLhQt4b0zk1NnSY1SdX6651SdeFCV_fBOfcevl2y6YNHQg45G3A2ZMeiUkJK1QwE482A16qUgm-QndW-kHKoNn961WyTg5SmjPVSXgtZ75DHO-xsge_ziCm5V6RpMU5zA0ihW6SM0fkJzYFGhDDx7gPpLGQXPG2X3swcJGpDpPAUg3dAjX_ukDqfshm7zuXlPtmypkt48FX3yMPlxf35dTG6vbo5PxsVIGSZC6mEUHWl-mAVDnnbB24Va1WtOCDAGGQFDbbYQNkyqLitbT8zURlb1laW5R45Wt-dx_CywJT1NCyi719qUSomK8aGqlfJtQpiSCmi1fPoZiYuNWd6RVN_09QrmvqLZu87-eUDl80KQ47Gdf-6T9du53tWM_MWYtfqbJZdiDYaDy7p8u8Tn1jmkOI |
CitedBy_id | crossref_primary_10_1109_JBHI_2024_3383588 crossref_primary_10_1080_00140139_2021_1933201 |
Cites_doi | 10.1016/j.pmrj.2014.06.014 10.1016/j.jsams.2008.07.003 10.4085/1062-6050-50.9.01 10.4085/1062-6050-50.3.05 10.1109/TIP.2017.2691557 10.1123/jab.16.4.407 10.1371/journal.pone.0105246 10.1109/5254.708428 10.2106/00004623-195537060-00011 10.2519/jospt.1996.23.4.245 10.1093/ptj/68.11.1667 10.1080/00336297.2005.10491845 10.1007/s10618-013-0317-y 10.1515/hukin-2017-0114 10.1055/s-2008-1025777 10.1007/978-3-319-32703-7_114 10.1016/j.gaitpost.2006.01.007 10.1016/j.apmr.2006.05.022 10.1177/036354659202000304 10.1109/LSP.2015.2507200 10.1186/s13047-014-0058-1 10.1177/036354657700500606 10.1109/TPAMI.2009.191 10.1109/TPAMI.2013.57 10.1080/10255842.2010.542153 10.1016/S0966-6362(97)00042-8 10.1123/jsr.18.3.375 10.1016/j.pmrj.2009.01.013 10.1080/19488300.2015.1095256 10.1177/107110070502601113 10.1111/j.1749-6632.1998.tb09062.x 10.1016/j.jbiomech.2010.09.031 10.1109/TIP.2006.882016 10.2165/00007256-200939030-00003 10.1136/bjsports-2013-093175 10.1123/jab.2013-0085 10.3109/17453679008993546 10.1007/s10462-012-9341-3 10.1016/j.gaitpost.2016.07.019 10.1016/j.gaitpost.2016.11.037 10.1145/1961189.1961199 10.1007/s40846-017-0297-2 10.1097/00005768-200001000-00003 10.1177/0363546509351562 10.1123/jab.2013-0147 10.1007/978-1-4020-6693-1_7 10.1016/j.gaitpost.2012.06.017 10.1561/2200000016 10.1016/j.clinbiomech.2005.09.004 10.1177/0363546506290989 10.1016/j.joca.2014.04.029 10.1136/bjsm.2004.011676 10.1016/j.ptsp.2012.10.001 10.1016/j.clinbiomech.2016.08.003 10.1007/s00508-016-1096-4 10.1016/j.gaitpost.2017.02.001 10.1016/j.humov.2010.11.005 10.2519/jospt.1997.26.2.73 |
ContentType | Journal Article |
Copyright | 2019 "IISE" 2019 2019 “IISE” |
Copyright_xml | – notice: 2019 "IISE" 2019 – notice: 2019 “IISE” |
DBID | AAYXX CITATION 7SC 8FD JQ2 K9. L7M L~C L~D |
DOI | 10.1080/24725579.2019.1673521 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health |
EISSN | 2472-5587 |
EndPage | 73 |
ExternalDocumentID | 10_1080_24725579_2019_1673521 1673521 |
Genre | Article |
GroupedDBID | 0BK 0R~ 30N AAJMT AAPUL ABJNI ABPAQ ABXUL ABXYU ACIWK ACTIO ADGTB AEISY AEYOC AGDLA AIJEM AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH BLEHA CCCUG DGEBU EBS H13 IPNFZ KYCEM LJTGL M4Z PQQKQ RIG ROSJB SNACF TDBHL TFL TFT TFW TTHFI TUROJ ZGOLN AAYXX AIYEW CITATION TEN UT3 7SC 8FD JQ2 K9. L7M L~C L~D |
ID | FETCH-LOGICAL-c253t-572276470014e81d247d70d7671ceccbc54c9ede9c3d0c41f6fc9e024af36f533 |
ISSN | 2472-5579 |
IngestDate | Mon Jun 30 10:18:21 EDT 2025 Tue Jul 01 01:15:56 EDT 2025 Thu Apr 24 22:52:34 EDT 2025 Wed Dec 25 09:08:18 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c253t-572276470014e81d247d70d7671ceccbc54c9ede9c3d0c41f6fc9e024af36f533 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2370540087 |
PQPubID | 436426 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2370540087 crossref_primary_10_1080_24725579_2019_1673521 crossref_citationtrail_10_1080_24725579_2019_1673521 informaworld_taylorfrancis_310_1080_24725579_2019_1673521 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-02 |
PublicationDateYYYYMMDD | 2020-01-02 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | IISE transactions on healthcare systems engineering |
PublicationYear | 2020 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0071 CIT0030 CIT0032 Hertel J. (CIT0037) 2002; 37 CIT0031 CIT0034 CIT0033 CIT0070 CIT0036 CIT0035 CIT0038 CIT0039 Wang Y.-X. (CIT0069) 2016; 17 CIT0041 CIT0040 CIT0042 CIT0001 CIT0045 Kaminski T. W. (CIT0044) 2002; 37 CIT0047 CIT0002 CIT0046 CIT0005 CIT0049 CIT0004 CIT0048 CIT0006 CIT0009 CIT0008 CIT0050 CIT0052 CIT0051 CIT0010 CIT0054 CIT0053 CIT0011 CIT0055 CIT0058 CIT0013 CIT0057 CIT0016 CIT0015 CIT0059 CIT0018 CIT0061 CIT0060 CIT0063 CIT0062 CIT0021 CIT0020 CIT0064 CIT0067 CIT0022 CIT0066 Chen Y. (CIT0007) 2014; 15 Duhamel A. (CIT0017) 2006; 124 Soboroff S. H. (CIT0065) 1984 CIT0025 CIT0024 CIT0068 CIT0027 Docherty C. L. (CIT0014) 2006; 41 CIT0026 CIT0029 CIT0028 |
References_xml | – ident: CIT0061 doi: 10.1016/j.pmrj.2014.06.014 – ident: CIT0015 doi: 10.1016/j.jsams.2008.07.003 – ident: CIT0041 doi: 10.4085/1062-6050-50.9.01 – ident: CIT0042 doi: 10.4085/1062-6050-50.3.05 – ident: CIT0047 doi: 10.1109/TIP.2017.2691557 – ident: CIT0033 doi: 10.1123/jab.16.4.407 – ident: CIT0057 doi: 10.1371/journal.pone.0105246 – ident: CIT0035 doi: 10.1109/5254.708428 – ident: CIT0004 doi: 10.2106/00004623-195537060-00011 – ident: CIT0024 doi: 10.2519/jospt.1996.23.4.245 – ident: CIT0026 doi: 10.1093/ptj/68.11.1667 – volume: 15 start-page: 2213 issue: 1 year: 2014 ident: CIT0007 publication-title: Journal of Machine Learning Research – ident: CIT0068 doi: 10.1080/00336297.2005.10491845 – ident: CIT0051 doi: 10.1007/s10618-013-0317-y – ident: CIT0055 doi: 10.1515/hukin-2017-0114 – start-page: 160 issue: 183 year: 1984 ident: CIT0065 publication-title: Clinical Orthopaedics and Related Research – ident: CIT0066 doi: 10.1055/s-2008-1025777 – volume: 17 start-page: 320 issue: 1 year: 2016 ident: CIT0069 publication-title: The Journal of Machine Learning Research – ident: CIT0058 doi: 10.1007/978-3-319-32703-7_114 – ident: CIT0011 doi: 10.1016/j.gaitpost.2006.01.007 – ident: CIT0038 doi: 10.1016/j.apmr.2006.05.022 – ident: CIT0045 doi: 10.1177/036354659202000304 – ident: CIT0064 doi: 10.1109/LSP.2015.2507200 – ident: CIT0028 doi: 10.1186/s13047-014-0058-1 – ident: CIT0027 doi: 10.1177/036354657700500606 – ident: CIT0062 doi: 10.1109/TPAMI.2009.191 – ident: CIT0021 doi: 10.1109/TPAMI.2013.57 – ident: CIT0022 doi: 10.1080/10255842.2010.542153 – ident: CIT0018 doi: 10.1016/S0966-6362(97)00042-8 – ident: CIT0016 doi: 10.1123/jsr.18.3.375 – ident: CIT0032 doi: 10.1016/j.pmrj.2009.01.013 – ident: CIT0067 doi: 10.1080/19488300.2015.1095256 – ident: CIT0050 doi: 10.1177/107110070502601113 – ident: CIT0013 doi: 10.1111/j.1749-6632.1998.tb09062.x – ident: CIT0025 doi: 10.1016/j.jbiomech.2010.09.031 – ident: CIT0040 doi: 10.1109/TIP.2006.882016 – ident: CIT0039 doi: 10.2165/00007256-200939030-00003 – ident: CIT0031 doi: 10.1136/bjsports-2013-093175 – ident: CIT0036 doi: 10.1123/jab.2013-0085 – ident: CIT0046 doi: 10.3109/17453679008993546 – ident: CIT0030 doi: 10.1007/s10462-012-9341-3 – ident: CIT0049 doi: 10.1016/j.gaitpost.2016.07.019 – ident: CIT0052 doi: 10.1016/j.gaitpost.2016.11.037 – ident: CIT0006 doi: 10.1145/1961189.1961199 – ident: CIT0059 doi: 10.1007/s40846-017-0297-2 – ident: CIT0063 doi: 10.1097/00005768-200001000-00003 – ident: CIT0034 doi: 10.1177/0363546509351562 – ident: CIT0002 doi: 10.1123/jab.2013-0147 – ident: CIT0054 doi: 10.1007/978-1-4020-6693-1_7 – ident: CIT0048 doi: 10.1016/j.gaitpost.2012.06.017 – ident: CIT0005 doi: 10.1561/2200000016 – ident: CIT0053 doi: 10.1016/j.clinbiomech.2005.09.004 – ident: CIT0010 doi: 10.1177/0363546506290989 – volume: 37 start-page: 364 issue: 4 year: 2002 ident: CIT0037 publication-title: Journal of Athletic Training – ident: CIT0029 doi: 10.1016/j.joca.2014.04.029 – ident: CIT0001 doi: 10.1136/bjsm.2004.011676 – ident: CIT0008 doi: 10.1016/j.ptsp.2012.10.001 – volume: 124 start-page: 569 year: 2006 ident: CIT0017 publication-title: Studies in Health Technology and Informatics – ident: CIT0070 doi: 10.1016/j.clinbiomech.2016.08.003 – volume: 37 start-page: 394 issue: 4 year: 2002 ident: CIT0044 publication-title: Journal of Athletic Training – volume: 41 start-page: 154 issue: 2 year: 2006 ident: CIT0014 publication-title: Journal of Athletic Training – ident: CIT0060 doi: 10.1007/s00508-016-1096-4 – ident: CIT0071 doi: 10.1016/j.gaitpost.2017.02.001 – ident: CIT0009 doi: 10.1016/j.humov.2010.11.005 – ident: CIT0020 doi: 10.2519/jospt.1997.26.2.73 |
SSID | ssj0001916256 |
Score | 2.1001415 |
Snippet | Ankle sprains and instability are major public health concerns. Up to 70% of individuals do not fully recover from single ankle sprains and eventually develop... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 60 |
SubjectTerms | Ankle Biomechanics Central nervous system Chronic ankle instability Clustering Coordinates decision model Diagnosis Dynamic stability Gait gait data analysis Joints (anatomy) Motion stability pattern recognition Public health Rehabilitation subspace learning Subspaces Support vector machines |
Title | Self-expressive subspace clustering to recognize motion dynamics for chronic ankle instability |
URI | https://www.tandfonline.com/doi/abs/10.1080/24725579.2019.1673521 https://www.proquest.com/docview/2370540087 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbb5NJLaUlK06ZFh96Mtn7Ikn0MISEpNJckkFPNWg82sNila5eS_9T_2NHL9mZD0-RivALJlufb0cxoNB9CnxPJwO-QOSlpnRJaFpIscqmJ4oXSSoJHYesWfLtgZ9f0601-M5v9mWQt9V09F3cPnit5jlShDeRqTsk-QbLDoNAA9yBfuIKE4fpfMr5UK5jvb5fL-ktFa9AC4AOrSKx6UwDBHoVqI58kdKcix9kTSUdDb0sxRMKVx40MebupIALmok2Y3djvPT-_PDF0EoFb3G4yLMfcMVcQeh2psbzhEFK99THW5aKVt2OM1jdCD3K8HOB12q58zrfR0GPyQdu75IC-IUfNNFSRxjZUMYleppSD55s79pi5mrb5VTeo5HgLek6_Ou4Bv1I7DpStNcAlTZpxzaNM9l45TxgHSzMZF72w0X9vLRwyFBNfOjUMU5lhKj_MC7SbgldiCDOy-GIM6YGpnVq-4GGi4cxYEX958IU2rKGNWrlbtoE1eK5eo1feU8FHDnZv0Ew1e-j7PcjhADk8Qg53LR4ghx3kcIAchmdjDzlsIYcnkNtH16cnV8dnxFN0EJHmWUdy-AqcUZO8QBW4PjBJyWPJGU8EKIda5FSUSqpSZDIWNNFMw2-wCxc6Yxpcjbdop2kb9Q7hmhdap0ylpgYhmMF2Q1qD-cmMG8zyA0TDp6qEr19vaFRW1T9ldYDmQ7cfroDLYx3KqRyqzkbOtKO5qbJH-h4GoVVeT6yrNOPGL4oL_v6p7_IBvRz_R4dop_vZq49gBHf1Jwu9v8PZqc8 |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQDLDwECAeBTywJjSOYzcjQlQF2i60EhNW44eEqFpEUwT99dzFCbQgxNAxw1n2-XL-7nz-jpDzyAiIO0wSpDxjAU8bJhgkxgVWNqyzBiKKgreg0xWtPr99SB7m3sJgWSXG0M4TRRS-Gn9uTEZXJXEXjEtAwhLfmURpGAkJKAIioLUkFRK7GMT17neeBfAPK5q4olSAYtVDnr9GWjiiFghMfzns4hRqbhFdzd8XnzyH0zwL9ewHteNyC9wmmyVIpZfeqnbIih3tksd7OwTtvvvK2TdLJ-BzIOK2VA-nSLcAhyDNx7QsSZpZ6jsEUeOb3k8orJBqT8ZLsVW8pU8ITovy3I890m9e965aQdmdIdAsifMgkYxJwfHemltAvTBnI-tGChlpsItMJ1yn1thUx6aueeSEg2-ABAMXCwcoc5-sjsYje0BoJhvOMWEZ0s8BAiruIh0gD4ERkEgOCa82ROmSuhw7aAxVVDKcVgpTqDBVKuyQhF9iL5674z-BdH63VV4kTZzvcKLif2RrlWmo0g1MFIslQuJ6Qx4tMfQZWW_1Om3VvuneHZMNhhE_JoFYjazmr1N7ArAoz04Lu_8E8Bn9ag |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5SQbz4QMVq1Ry8bu1ms0n3KGqpryJowZOhmweIpS12K9pf78xmV60iPfS4hwnJZHbyTTLzDSHHoREQd5g4SHjKAp40TdCLjQusbFpnDUQUOW_BbUe0u_zqMS6zCcdFWiXG0M4TReS-Gn_ukXFlRtwJ4xKAsMQykzCph0ICiIAAaFkgeThWcTQ639csAH9Y3sMVpQIUK-t4_htp5oSa4S_946_zQ6i1TtJy-j735KU-ydK6nv5idlxofRtkrYCo9NTb1CZZsoMt8nRv-6Dbd583-2bpGDwOxNuW6v4EyRbgCKTZkBYJSVNLfX8ganzL-zGFBVLtqXgpNoq39BmhaZ6c-7FNuq2Lh7N2UPRmCDSLoyyIJWNScHy15hYwL8zZyIaRQoYarCLVMdeJNTbRkWloHjrh4BsAQc9FwgHG3CGVwXBgdwlNZdM5JixD8jnAP_lLpAPcITD-EXGV8HI_lC6Iy7F_Rl-FBb9pqTCFClOFwqqk_iU28swd8wSSn5utsvzKxPn-JiqaI1srLUMVTmCsWCQREDeacm-BoY_Iyt15S91cdq73ySrDcB9vgFiNVLLXiT0ATJSlh7nVfwLHVfwO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-expressive+subspace+clustering+to+recognize+motion+dynamics+for+chronic+ankle+instability&rft.jtitle=IISE+transactions+on+healthcare+systems+engineering&rft.au=Qian%2C+Shaodi&rft.au=Yen%2C+Sheng-Che&rft.au=Folmar%2C+Eric&rft.au=Chou%2C+Chun-An&rft.date=2020-01-02&rft.issn=2472-5579&rft.eissn=2472-5587&rft.volume=10&rft.issue=1&rft.spage=60&rft.epage=73&rft_id=info:doi/10.1080%2F24725579.2019.1673521&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_24725579_2019_1673521 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2472-5579&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2472-5579&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2472-5579&client=summon |