Self-expressive subspace clustering to recognize motion dynamics for chronic ankle instability

Ankle sprains and instability are major public health concerns. Up to 70% of individuals do not fully recover from single ankle sprains and eventually develop chronic ankle instability (CAI). The diagnosis of CAI has been mainly based on self-report rather than objective biomechanical measures. The...

Full description

Saved in:
Bibliographic Details
Published inIISE transactions on healthcare systems engineering Vol. 10; no. 1; pp. 60 - 73
Main Authors Qian, Shaodi, Yen, Sheng-Che, Folmar, Eric, Chou, Chun-An
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 02.01.2020
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN2472-5579
2472-5587
DOI10.1080/24725579.2019.1673521

Cover

Loading…
Abstract Ankle sprains and instability are major public health concerns. Up to 70% of individuals do not fully recover from single ankle sprains and eventually develop chronic ankle instability (CAI). The diagnosis of CAI has been mainly based on self-report rather than objective biomechanical measures. The goal of this study is to quantitatively recognize the motion patterns of a multi-joint coordinate system using gait data of bilateral hip, knee, and ankle joints, and further distinguish CAI from control cohorts. We propose an analytic framework, where the concept of subspace clustering is applied to characterize the dynamic gait patterns in a lower dimensional subspace from an inter-dependent network of multiply joints. A support vector machine model is built to validate the learned measures compared to traditional statistical measures in a leave-one-subject-out cross validation. The experimental results showed >70% classification accuracy on average for the dataset of 47 subjects (24 with CAI and 23 controls) recruited to examine in our designed experiment. It is found that CAI can be observed from other joints (e.g., hips) significantly, which reflects the fact that there exists inter-dependency in the multi-joint coordinate system. The proposed framework presents a potential to support clinical decisions using quantitative measures during diagnosis, treatment, rehabilitation of gait abnormality caused by physical injuries (e.g., ankle sprains in this study) or even central nervous system disorders.
AbstractList Ankle sprains and instability are major public health concerns. Up to 70% of individuals do not fully recover from single ankle sprains and eventually develop chronic ankle instability (CAI). The diagnosis of CAI has been mainly based on self-report rather than objective biomechanical measures. The goal of this study is to quantitatively recognize the motion patterns of a multi-joint coordinate system using gait data of bilateral hip, knee, and ankle joints, and further distinguish CAI from control cohorts. We propose an analytic framework, where the concept of subspace clustering is applied to characterize the dynamic gait patterns in a lower dimensional subspace from an inter-dependent network of multiply joints. A support vector machine model is built to validate the learned measures compared to traditional statistical measures in a leave-one-subject-out cross validation. The experimental results showed >70% classification accuracy on average for the dataset of 47 subjects (24 with CAI and 23 controls) recruited to examine in our designed experiment. It is found that CAI can be observed from other joints (e.g., hips) significantly, which reflects the fact that there exists inter-dependency in the multi-joint coordinate system. The proposed framework presents a potential to support clinical decisions using quantitative measures during diagnosis, treatment, rehabilitation of gait abnormality caused by physical injuries (e.g., ankle sprains in this study) or even central nervous system disorders.
Author Chou, Chun-An
Yen, Sheng-Che
Qian, Shaodi
Folmar, Eric
Author_xml – sequence: 1
  givenname: Shaodi
  surname: Qian
  fullname: Qian, Shaodi
  organization: Department of Mechanical & Industrial Engineering, Northeastern University
– sequence: 2
  givenname: Sheng-Che
  surname: Yen
  fullname: Yen, Sheng-Che
  organization: Department of Physical Therapy, Movement & Rehabilitation Science, Northeastern University
– sequence: 3
  givenname: Eric
  surname: Folmar
  fullname: Folmar, Eric
  organization: Department of Physical Therapy, Movement & Rehabilitation Science, Northeastern University
– sequence: 4
  givenname: Chun-An
  surname: Chou
  fullname: Chou, Chun-An
  email: ch.chou@northeastern.edu
  organization: Department of Mechanical & Industrial Engineering, Northeastern University
BookMark eNqFkEtLAzEUhYMo-PwJQsD11CQzmXRwo4gvKLhQt4b0zk1NnSY1SdX6651SdeFCV_fBOfcevl2y6YNHQg45G3A2ZMeiUkJK1QwE482A16qUgm-QndW-kHKoNn961WyTg5SmjPVSXgtZ75DHO-xsge_ziCm5V6RpMU5zA0ihW6SM0fkJzYFGhDDx7gPpLGQXPG2X3swcJGpDpPAUg3dAjX_ukDqfshm7zuXlPtmypkt48FX3yMPlxf35dTG6vbo5PxsVIGSZC6mEUHWl-mAVDnnbB24Va1WtOCDAGGQFDbbYQNkyqLitbT8zURlb1laW5R45Wt-dx_CywJT1NCyi719qUSomK8aGqlfJtQpiSCmi1fPoZiYuNWd6RVN_09QrmvqLZu87-eUDl80KQ47Gdf-6T9du53tWM_MWYtfqbJZdiDYaDy7p8u8Tn1jmkOI
CitedBy_id crossref_primary_10_1109_JBHI_2024_3383588
crossref_primary_10_1080_00140139_2021_1933201
Cites_doi 10.1016/j.pmrj.2014.06.014
10.1016/j.jsams.2008.07.003
10.4085/1062-6050-50.9.01
10.4085/1062-6050-50.3.05
10.1109/TIP.2017.2691557
10.1123/jab.16.4.407
10.1371/journal.pone.0105246
10.1109/5254.708428
10.2106/00004623-195537060-00011
10.2519/jospt.1996.23.4.245
10.1093/ptj/68.11.1667
10.1080/00336297.2005.10491845
10.1007/s10618-013-0317-y
10.1515/hukin-2017-0114
10.1055/s-2008-1025777
10.1007/978-3-319-32703-7_114
10.1016/j.gaitpost.2006.01.007
10.1016/j.apmr.2006.05.022
10.1177/036354659202000304
10.1109/LSP.2015.2507200
10.1186/s13047-014-0058-1
10.1177/036354657700500606
10.1109/TPAMI.2009.191
10.1109/TPAMI.2013.57
10.1080/10255842.2010.542153
10.1016/S0966-6362(97)00042-8
10.1123/jsr.18.3.375
10.1016/j.pmrj.2009.01.013
10.1080/19488300.2015.1095256
10.1177/107110070502601113
10.1111/j.1749-6632.1998.tb09062.x
10.1016/j.jbiomech.2010.09.031
10.1109/TIP.2006.882016
10.2165/00007256-200939030-00003
10.1136/bjsports-2013-093175
10.1123/jab.2013-0085
10.3109/17453679008993546
10.1007/s10462-012-9341-3
10.1016/j.gaitpost.2016.07.019
10.1016/j.gaitpost.2016.11.037
10.1145/1961189.1961199
10.1007/s40846-017-0297-2
10.1097/00005768-200001000-00003
10.1177/0363546509351562
10.1123/jab.2013-0147
10.1007/978-1-4020-6693-1_7
10.1016/j.gaitpost.2012.06.017
10.1561/2200000016
10.1016/j.clinbiomech.2005.09.004
10.1177/0363546506290989
10.1016/j.joca.2014.04.029
10.1136/bjsm.2004.011676
10.1016/j.ptsp.2012.10.001
10.1016/j.clinbiomech.2016.08.003
10.1007/s00508-016-1096-4
10.1016/j.gaitpost.2017.02.001
10.1016/j.humov.2010.11.005
10.2519/jospt.1997.26.2.73
ContentType Journal Article
Copyright 2019 "IISE" 2019
2019 “IISE”
Copyright_xml – notice: 2019 "IISE" 2019
– notice: 2019 “IISE”
DBID AAYXX
CITATION
7SC
8FD
JQ2
K9.
L7M
L~C
L~D
DOI 10.1080/24725579.2019.1673521
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 2472-5587
EndPage 73
ExternalDocumentID 10_1080_24725579_2019_1673521
1673521
Genre Article
GroupedDBID 0BK
0R~
30N
AAJMT
AAPUL
ABJNI
ABPAQ
ABXUL
ABXYU
ACIWK
ACTIO
ADGTB
AEISY
AEYOC
AGDLA
AIJEM
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
BLEHA
CCCUG
DGEBU
EBS
H13
IPNFZ
KYCEM
LJTGL
M4Z
PQQKQ
RIG
ROSJB
SNACF
TDBHL
TFL
TFT
TFW
TTHFI
TUROJ
ZGOLN
AAYXX
AIYEW
CITATION
TEN
UT3
7SC
8FD
JQ2
K9.
L7M
L~C
L~D
ID FETCH-LOGICAL-c253t-572276470014e81d247d70d7671ceccbc54c9ede9c3d0c41f6fc9e024af36f533
ISSN 2472-5579
IngestDate Mon Jun 30 10:18:21 EDT 2025
Tue Jul 01 01:15:56 EDT 2025
Thu Apr 24 22:52:34 EDT 2025
Wed Dec 25 09:08:18 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c253t-572276470014e81d247d70d7671ceccbc54c9ede9c3d0c41f6fc9e024af36f533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2370540087
PQPubID 436426
PageCount 14
ParticipantIDs proquest_journals_2370540087
crossref_primary_10_1080_24725579_2019_1673521
crossref_citationtrail_10_1080_24725579_2019_1673521
informaworld_taylorfrancis_310_1080_24725579_2019_1673521
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-02
PublicationDateYYYYMMDD 2020-01-02
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-02
  day: 02
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle IISE transactions on healthcare systems engineering
PublicationYear 2020
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0071
CIT0030
CIT0032
Hertel J. (CIT0037) 2002; 37
CIT0031
CIT0034
CIT0033
CIT0070
CIT0036
CIT0035
CIT0038
CIT0039
Wang Y.-X. (CIT0069) 2016; 17
CIT0041
CIT0040
CIT0042
CIT0001
CIT0045
Kaminski T. W. (CIT0044) 2002; 37
CIT0047
CIT0002
CIT0046
CIT0005
CIT0049
CIT0004
CIT0048
CIT0006
CIT0009
CIT0008
CIT0050
CIT0052
CIT0051
CIT0010
CIT0054
CIT0053
CIT0011
CIT0055
CIT0058
CIT0013
CIT0057
CIT0016
CIT0015
CIT0059
CIT0018
CIT0061
CIT0060
CIT0063
CIT0062
CIT0021
CIT0020
CIT0064
CIT0067
CIT0022
CIT0066
Chen Y. (CIT0007) 2014; 15
Duhamel A. (CIT0017) 2006; 124
Soboroff S. H. (CIT0065) 1984
CIT0025
CIT0024
CIT0068
CIT0027
Docherty C. L. (CIT0014) 2006; 41
CIT0026
CIT0029
CIT0028
References_xml – ident: CIT0061
  doi: 10.1016/j.pmrj.2014.06.014
– ident: CIT0015
  doi: 10.1016/j.jsams.2008.07.003
– ident: CIT0041
  doi: 10.4085/1062-6050-50.9.01
– ident: CIT0042
  doi: 10.4085/1062-6050-50.3.05
– ident: CIT0047
  doi: 10.1109/TIP.2017.2691557
– ident: CIT0033
  doi: 10.1123/jab.16.4.407
– ident: CIT0057
  doi: 10.1371/journal.pone.0105246
– ident: CIT0035
  doi: 10.1109/5254.708428
– ident: CIT0004
  doi: 10.2106/00004623-195537060-00011
– ident: CIT0024
  doi: 10.2519/jospt.1996.23.4.245
– ident: CIT0026
  doi: 10.1093/ptj/68.11.1667
– volume: 15
  start-page: 2213
  issue: 1
  year: 2014
  ident: CIT0007
  publication-title: Journal of Machine Learning Research
– ident: CIT0068
  doi: 10.1080/00336297.2005.10491845
– ident: CIT0051
  doi: 10.1007/s10618-013-0317-y
– ident: CIT0055
  doi: 10.1515/hukin-2017-0114
– start-page: 160
  issue: 183
  year: 1984
  ident: CIT0065
  publication-title: Clinical Orthopaedics and Related Research
– ident: CIT0066
  doi: 10.1055/s-2008-1025777
– volume: 17
  start-page: 320
  issue: 1
  year: 2016
  ident: CIT0069
  publication-title: The Journal of Machine Learning Research
– ident: CIT0058
  doi: 10.1007/978-3-319-32703-7_114
– ident: CIT0011
  doi: 10.1016/j.gaitpost.2006.01.007
– ident: CIT0038
  doi: 10.1016/j.apmr.2006.05.022
– ident: CIT0045
  doi: 10.1177/036354659202000304
– ident: CIT0064
  doi: 10.1109/LSP.2015.2507200
– ident: CIT0028
  doi: 10.1186/s13047-014-0058-1
– ident: CIT0027
  doi: 10.1177/036354657700500606
– ident: CIT0062
  doi: 10.1109/TPAMI.2009.191
– ident: CIT0021
  doi: 10.1109/TPAMI.2013.57
– ident: CIT0022
  doi: 10.1080/10255842.2010.542153
– ident: CIT0018
  doi: 10.1016/S0966-6362(97)00042-8
– ident: CIT0016
  doi: 10.1123/jsr.18.3.375
– ident: CIT0032
  doi: 10.1016/j.pmrj.2009.01.013
– ident: CIT0067
  doi: 10.1080/19488300.2015.1095256
– ident: CIT0050
  doi: 10.1177/107110070502601113
– ident: CIT0013
  doi: 10.1111/j.1749-6632.1998.tb09062.x
– ident: CIT0025
  doi: 10.1016/j.jbiomech.2010.09.031
– ident: CIT0040
  doi: 10.1109/TIP.2006.882016
– ident: CIT0039
  doi: 10.2165/00007256-200939030-00003
– ident: CIT0031
  doi: 10.1136/bjsports-2013-093175
– ident: CIT0036
  doi: 10.1123/jab.2013-0085
– ident: CIT0046
  doi: 10.3109/17453679008993546
– ident: CIT0030
  doi: 10.1007/s10462-012-9341-3
– ident: CIT0049
  doi: 10.1016/j.gaitpost.2016.07.019
– ident: CIT0052
  doi: 10.1016/j.gaitpost.2016.11.037
– ident: CIT0006
  doi: 10.1145/1961189.1961199
– ident: CIT0059
  doi: 10.1007/s40846-017-0297-2
– ident: CIT0063
  doi: 10.1097/00005768-200001000-00003
– ident: CIT0034
  doi: 10.1177/0363546509351562
– ident: CIT0002
  doi: 10.1123/jab.2013-0147
– ident: CIT0054
  doi: 10.1007/978-1-4020-6693-1_7
– ident: CIT0048
  doi: 10.1016/j.gaitpost.2012.06.017
– ident: CIT0005
  doi: 10.1561/2200000016
– ident: CIT0053
  doi: 10.1016/j.clinbiomech.2005.09.004
– ident: CIT0010
  doi: 10.1177/0363546506290989
– volume: 37
  start-page: 364
  issue: 4
  year: 2002
  ident: CIT0037
  publication-title: Journal of Athletic Training
– ident: CIT0029
  doi: 10.1016/j.joca.2014.04.029
– ident: CIT0001
  doi: 10.1136/bjsm.2004.011676
– ident: CIT0008
  doi: 10.1016/j.ptsp.2012.10.001
– volume: 124
  start-page: 569
  year: 2006
  ident: CIT0017
  publication-title: Studies in Health Technology and Informatics
– ident: CIT0070
  doi: 10.1016/j.clinbiomech.2016.08.003
– volume: 37
  start-page: 394
  issue: 4
  year: 2002
  ident: CIT0044
  publication-title: Journal of Athletic Training
– volume: 41
  start-page: 154
  issue: 2
  year: 2006
  ident: CIT0014
  publication-title: Journal of Athletic Training
– ident: CIT0060
  doi: 10.1007/s00508-016-1096-4
– ident: CIT0071
  doi: 10.1016/j.gaitpost.2017.02.001
– ident: CIT0009
  doi: 10.1016/j.humov.2010.11.005
– ident: CIT0020
  doi: 10.2519/jospt.1997.26.2.73
SSID ssj0001916256
Score 2.1001415
Snippet Ankle sprains and instability are major public health concerns. Up to 70% of individuals do not fully recover from single ankle sprains and eventually develop...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 60
SubjectTerms Ankle
Biomechanics
Central nervous system
Chronic ankle instability
Clustering
Coordinates
decision model
Diagnosis
Dynamic stability
Gait
gait data analysis
Joints (anatomy)
Motion stability
pattern recognition
Public health
Rehabilitation
subspace learning
Subspaces
Support vector machines
Title Self-expressive subspace clustering to recognize motion dynamics for chronic ankle instability
URI https://www.tandfonline.com/doi/abs/10.1080/24725579.2019.1673521
https://www.proquest.com/docview/2370540087
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbb5NJLaUlK06ZFh96Mtn7Ikn0MISEpNJckkFPNWg82sNila5eS_9T_2NHL9mZD0-RivALJlufb0cxoNB9CnxPJwO-QOSlpnRJaFpIscqmJ4oXSSoJHYesWfLtgZ9f0601-M5v9mWQt9V09F3cPnit5jlShDeRqTsk-QbLDoNAA9yBfuIKE4fpfMr5UK5jvb5fL-ktFa9AC4AOrSKx6UwDBHoVqI58kdKcix9kTSUdDb0sxRMKVx40MebupIALmok2Y3djvPT-_PDF0EoFb3G4yLMfcMVcQeh2psbzhEFK99THW5aKVt2OM1jdCD3K8HOB12q58zrfR0GPyQdu75IC-IUfNNFSRxjZUMYleppSD55s79pi5mrb5VTeo5HgLek6_Ou4Bv1I7DpStNcAlTZpxzaNM9l45TxgHSzMZF72w0X9vLRwyFBNfOjUMU5lhKj_MC7SbgldiCDOy-GIM6YGpnVq-4GGi4cxYEX958IU2rKGNWrlbtoE1eK5eo1feU8FHDnZv0Ew1e-j7PcjhADk8Qg53LR4ghx3kcIAchmdjDzlsIYcnkNtH16cnV8dnxFN0EJHmWUdy-AqcUZO8QBW4PjBJyWPJGU8EKIda5FSUSqpSZDIWNNFMw2-wCxc6Yxpcjbdop2kb9Q7hmhdap0ylpgYhmMF2Q1qD-cmMG8zyA0TDp6qEr19vaFRW1T9ldYDmQ7cfroDLYx3KqRyqzkbOtKO5qbJH-h4GoVVeT6yrNOPGL4oL_v6p7_IBvRz_R4dop_vZq49gBHf1Jwu9v8PZqc8
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQDLDwECAeBTywJjSOYzcjQlQF2i60EhNW44eEqFpEUwT99dzFCbQgxNAxw1n2-XL-7nz-jpDzyAiIO0wSpDxjAU8bJhgkxgVWNqyzBiKKgreg0xWtPr99SB7m3sJgWSXG0M4TRRS-Gn9uTEZXJXEXjEtAwhLfmURpGAkJKAIioLUkFRK7GMT17neeBfAPK5q4olSAYtVDnr9GWjiiFghMfzns4hRqbhFdzd8XnzyH0zwL9ewHteNyC9wmmyVIpZfeqnbIih3tksd7OwTtvvvK2TdLJ-BzIOK2VA-nSLcAhyDNx7QsSZpZ6jsEUeOb3k8orJBqT8ZLsVW8pU8ITovy3I890m9e965aQdmdIdAsifMgkYxJwfHemltAvTBnI-tGChlpsItMJ1yn1thUx6aueeSEg2-ABAMXCwcoc5-sjsYje0BoJhvOMWEZ0s8BAiruIh0gD4ERkEgOCa82ROmSuhw7aAxVVDKcVgpTqDBVKuyQhF9iL5674z-BdH63VV4kTZzvcKLif2RrlWmo0g1MFIslQuJ6Qx4tMfQZWW_1Om3VvuneHZMNhhE_JoFYjazmr1N7ArAoz04Lu_8E8Bn9ag
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5SQbz4QMVq1Ry8bu1ms0n3KGqpryJowZOhmweIpS12K9pf78xmV60iPfS4hwnJZHbyTTLzDSHHoREQd5g4SHjKAp40TdCLjQusbFpnDUQUOW_BbUe0u_zqMS6zCcdFWiXG0M4TReS-Gn_ukXFlRtwJ4xKAsMQykzCph0ICiIAAaFkgeThWcTQ639csAH9Y3sMVpQIUK-t4_htp5oSa4S_946_zQ6i1TtJy-j735KU-ydK6nv5idlxofRtkrYCo9NTb1CZZsoMt8nRv-6Dbd583-2bpGDwOxNuW6v4EyRbgCKTZkBYJSVNLfX8ganzL-zGFBVLtqXgpNoq39BmhaZ6c-7FNuq2Lh7N2UPRmCDSLoyyIJWNScHy15hYwL8zZyIaRQoYarCLVMdeJNTbRkWloHjrh4BsAQc9FwgHG3CGVwXBgdwlNZdM5JixD8jnAP_lLpAPcITD-EXGV8HI_lC6Iy7F_Rl-FBb9pqTCFClOFwqqk_iU28swd8wSSn5utsvzKxPn-JiqaI1srLUMVTmCsWCQREDeacm-BoY_Iyt15S91cdq73ySrDcB9vgFiNVLLXiT0ATJSlh7nVfwLHVfwO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-expressive+subspace+clustering+to+recognize+motion+dynamics+for+chronic+ankle+instability&rft.jtitle=IISE+transactions+on+healthcare+systems+engineering&rft.au=Qian%2C+Shaodi&rft.au=Yen%2C+Sheng-Che&rft.au=Folmar%2C+Eric&rft.au=Chou%2C+Chun-An&rft.date=2020-01-02&rft.issn=2472-5579&rft.eissn=2472-5587&rft.volume=10&rft.issue=1&rft.spage=60&rft.epage=73&rft_id=info:doi/10.1080%2F24725579.2019.1673521&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_24725579_2019_1673521
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2472-5579&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2472-5579&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2472-5579&client=summon